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We have introduced a new class of multipartite entangled mixed states with pure state de-

compositions of generalized W states, similar to SC states having generalized GHZ states

in the pure state decomposition. The entanglement and separability properties are studied

according to PPT operations. Monogamy relations related to these states are also investi-

gated.
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I. INTRODUCTION

Entanglement is a striking feature of quantum systems and responsible for many quantum

tasks such as teleportation, dense coding, key distribution, error correction etc. [1], which has

provided a strong motivation for the study of detection and quantification of entanglement.

There have been many results related to separability criterion and entanglement measures

whose effectiveness depends on detailed quantum states. For instance PPT criterion [2,

3] detects many entangled states but not bound entangled ones, while the realignment

criterion does [4]. The entanglement of formation [5] and concurrence [6] are two well defined

quantitative measures of quantum entanglement. However the entanglement of formation

and concurrence have only explicit analytical results for some special quantum states such

as Werner states and isotropic states [7].

For multipartite case there are two well known classes of pure states, the GHZ and W

states. They are shown to be robust against external flux fluctuations for feasible experimen-

tal realizations [8] and the related fidelity can be determined with an effort increasing only

linearly with the number of qubits [9]. Two-party and three-party quantum teleportation

with GHZ state has been discussed. The W state can be also used as quantum channels for

perfect two-party teleportation [10] and quantum key distribution [11]. In [12] the entan-

glement dynamics of GHZ state and W state have been monitored under different models

of system-environment interaction and an exponential decay of entanglement as a function

of time has been obtained. In [13] a protocol has been presented for distilling maximally

entangled bipartite states between random pairs of parties from those sharing a tripartite



W state. Various experiments have been set up in the literature for generating three-qubit

GHZ and W states by applying optical systems, nuclear magnetic resonance, cavity QED,

or ion trapping techniques.

The Schmidt-correlated (SC) states are the mixtures of pure states, sharing the same

Schmidt bases [14]. They are generalized to multipartite case, having the generalized GHZ

states as pure state decompositions in [15]. An N -partite SC state ρSC ∈ CM ⊗ · · · ⊗CM is

generally of the form

ρSC =
M−1
∑

m,n=0

ρmn|m · · ·m〉〈n · · ·n|, (1)

where
∑M−1

m=0 ρmm = 1. For any pure state decomposition ρSC =
∑

k pk|φk〉〈φk|, |φk〉 has the

from |φk〉 =
∑

m

√
ρmme

iΘ
(k)
m |m · · ·m〉, which is a kind of generalized N -partite GHZ(N,M)

state, where

GHZ(N,M) =
1√
M

(|0 · · ·0〉 + |1 · · ·1〉 + · · · + |M − 1, · · · ,M − 1〉). (2)

An SC state is fully separable if and only if it is PPT with respect to some subsystems [15],

and it is either fully separable or genuine entangled.

In this paper we study another class of multipartite mixed states, which have the gener-

alized W states as pure state decompositions.

II. GENERALIZED MIXED W STATES IN MULTIQUBITS SYSTEM

First we consider multipartite qubit case. The N -partite |WN〉 state reads,

|WN〉 =
1√
N

(|0 · · ·01〉 + |0 · · ·10〉 + · · · + |1 · · ·00〉). (3)

The generalized |WN〉 state is given by,

|WN〉g =

N
∑

m=1

am|0 · · ·1m · · · 0〉 = a1|0 · · ·01〉 + a2|0 · · ·10〉 + · · · + aN |10 · · ·0〉, (4)

with
∑N

m=1 |am|2 = 1.

For non zero a1, a2, · · · , aN , one can show that |WN〉g is equivalent to |WN〉 under stochas-

tic local operation and classical communication (SLOCC) [17], |WN〉 = A1 ⊗ A2 ⊗ · · · ⊗
AN |WN〉g, with

A1 =





1 0

0 1
aN

√
N



 , A2 =





1 0

0 1
aN−1

√
N



 , · · · , AN =





1 0

0 1
a1

√
N



 .
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Therefore in this case |WN〉g are all genuine N -partite entangled states. Similarly if the

number of nonzero coefficients ai of |WN〉g is t (0 < t < N), then the states are genuine

t-partite entangled ones.

Let us consider mixed states with ensembles of pure state decomposition {pk, |φk〉},
with |φk〉 =

∑N

m=1

√
ρmme

iθ
(k)
m |0 · · ·1m · · · 0〉, here |0 · · ·1m · · · 0〉 denotes a state with the

m-th position from right one and others positions zeros, i.e. |1N0 · · · 0〉 = |10 · · ·0〉,
|01(N−1) · · · 0〉 = |01 · · ·0〉 and so on. Such states are generally of the form

ρ =

N
∑

m,n=1

ρmn|0 · · ·1m · · · 0〉〈0 · · ·1n · · · 0|, (5)

with
∑N

m=1 ρmm = 1. Such mixed states ρ has only ensemble realizations with pure states

of the form (4).

To study the entanglement property of state (5), we consider the partial transposition,

for instance, with respect to the N -th subsystem, which gives rise to

ρPT =

























































0 0 0 ρ12 0 · · · 0 · · · ρ1N · · · 0

0 ρ11 0 0 0 · · · 0 · · · 0 · · · 0

0 0 ρ22 0 ρ23 · · · ρ2N · · · 0 · · · 0

ρ21 0 0 0 0 · · · 0 · · · 0 · · · 0

0 0 ρ32 0 ρ33 · · · ρ3N · · · 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 ρN2 0 ρN3 · · · ρNN · · · 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ρN1 0 0 0 0 · · · 0 · · · 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 0 · · · 0 · · · 0

























































.

By carrying out some elementary transformations, ρPT can be transformed into another

matrix (ρPT )′:

(ρPT )′ =















A 0 0 0

0 ρ11 0 0

0 0 C 0

0 0 0 D















,
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where

A =















0 ρ12 · · · ρ1N

ρ21 0 · · · 0

· · · · · · · · · · · ·
ρN1 0 · · · 0















, C =















ρ22 ρ23 · · · ρ2N

ρ32 ρ33 · · · ρ3N

· · · · · · · · · · · ·
ρN2 ρN3 · · · ρNN















,

and D is a zero matrix. C is semi-positive as ρ is a density matrix. Therefore the positivity

of the matrix (ρPT )′, and hence (ρPT ), depends on the matrix A. By deduction we get that

the eigenvalues of A are ±(
∑

j 6=1 |ρ1j|2)
1
2 and 0. Hence ρPT is semi-positive if and only if

(
∑

j 6=1 |ρ1j |2)
1
2 = 0, that is, ρ1j = 0 for j = 2, · · · , N . In this case the mixed state (5)

becomes

ρ = ρ11|0 · · ·0〉〈0 · · ·0| ⊗ |1〉〈1| +
N

∑

m,n=2

ρmn|0 · · ·1m · · · 0〉〈0 · · ·1n · · · 0| ⊗ |0〉〈0|.

Therefore it is a bi-separable state with respect to partition 12 · · ·N − 1 and N subsys-

tems. Similar results can be obtained related to partial transpositions with respect to other

subsystems. We have

Proposition. The mixed state (5) is a bi-separable one with respect to partition the

i-th system and the rest systems if and only if it is semi-positive under partial transposition

with respect to the i-th subsystem.

The above property is rather special compared with the ones of SC states. Moreover,

the entanglement of the state ρ is very robust against particle loss. As the state |WN〉
remains entangled even if any N − 2 parties lose the information, any two out of N par-

ties possess an entangled state, independent of whether the remaining N − 2 parties de-

cide to cooperate with them or not. Therefore if the mixed state (5) is genuine entan-

gled, the reduced density matrix of ρ, for instance, ρN = trNρ = ρ11|0 · · ·0〉〈0 · · ·0| +
∑N

m,n=2 ρmn|0 · · ·1m · · · 0〉〈0 · · ·1n · · · 0| is still a genuine entangled state. The SC states have

no such property. Any kinds of reduced density matrices of ρSC states are fully separable.

III. MONOGAMY RELATION OF THE GENERALIZED MIXED W STATES IN

MULTIQUBITS SYSTEM

We now study some monogamy relations related to the generalized mixed W states in

multiqubits system. Recall that the concurrence of any bipartite pure state |ψ〉 in system

HA ⊗ HB is defined as C(|ψ〉) =
√

2(1 − trρ2
A), where ρA = trB|ψ〉〈ψ|. The concurrence

is then extended to mixed states ρ by the convex roof: C(ρ) ≡ min{pi,|ψi〉}
∑

i piC(|ψi〉)
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for all possible ensemble realizations ρ =
∑

i pi|ψi〉〈ψi|, where pi ≥ 0 and
∑

i pi = 1.

For a pure three-qubit state |ψABC〉, Coffman, Kundu and Wootters (CKW) [19] intro-

duced a monogamy inequality in terms of concurrence, C2
AB + C2

AC ≤ C2
A(BC), where

CAB and CAC are the concurrences of the mixed states ρAB = trC(|ψABC〉〈ψABC |) and

ρAC = trB(|ψABC〉〈ψABC |), respectively, and CA(BC) is the concurrence of |ψABC〉 under bi-

partite decomposition between subsystems A and BC. The general monogamy inequality

for the case of n qubits is proved in [20]. Ref. [21] provided the general monogamy relation

of |WN〉g state with respect to arbitrary partitions. Recently another monogamy inequality

in terms of negativity is deduced in [22]. Negativity is an entanglement measure in two

partite systems which can be expressed as N(ρ) = ‖ρPT ‖−1
2

, where PT stands for partial

transposition and the trace norm ‖R‖ is given by ‖R‖ = tr
√
RR†. In fact the negativity of

state ρ is essentially the absolute value of the sum of negative eigenvalues of ρPT . For any

three-qubit pure state |ψ〉ABC , the following CKW-inequality-like monogamy inequality in

terms of negativity holds,

N2
AB +N2

AC ≤ N2
A(BC), (6)

where NAB and NAC are the negativities of the mixed states ρAB and ρAC respectively.

NA(BC) is the negativity of |ψABC〉 for the bipartite partition of subsystems A and BC.

Similarly one has also

N2
BA +N2

BC ≤ N2
B(AC), N2

CA +N2
CB ≤ N2

C(AB).

The general monogamy relation in terms of negativity is given by

N2
A1A2

+N2
A1A3

+ · · · +N2
A1AN

≤ N2
A1(A2A3···AN ). (7)

Other general monogamy inequalities corresponding to different focused subsystems Ai can

be written down similar to the form (7). In the context of quantum cryptography, such

a monogamy property is of fundamental importance because it quantifies how much in-

formation an eavesdropper could potentially obtain about the secret key extraction. The

constraints on shareability of entanglement lie also at the heart of the success of many

information-theoretic protocols, such as entanglement distillation [20]. In this section we

prove the monogamy relation of the mixed state (5) in terms of negativity.

From the above section we have that the negativity of ρ for a bipartite decomposition be-

tween subsystem Ai and the rest subsystems (non Ai) Ai is (
∑

j 6=N+1−i |ρN+1−i,j|2)
1
2 . There-

fore we get

N2
A1(A2···AN ) =

∑

j 6=N
|ρNj|2. (8)
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As ρA1A2 = trA3···AN
ρ = (ρ11 + · · ·+ρN−2,N−2)|00〉〈00|+ρN−1,N−1|01〉〈01|+ρN−1,N|01〉〈10|+

ρN,N−1|10〉〈01| + ρNN |10〉〈10|, we get

NA1A2 =
1

2
(
√

(ρ11 + · · · + ρN−2,N−2)2 + 4|ρN−1,N |2 − (ρ11 + · · · + ρN−2,N−2)).

Similarly we can deduce

NA1Ai
=

1

2
(
√

(ρ11 + · · · + ρN+1−i,N+1−i + · · · + ρN−1,N−1)2 + 4|ρN+1−i,N |2

−(ρ11 + · · ·+ ρN+1−i,N+1−i + · · ·+ ρN−1,N−1)),

where ρN+1−i,N+1−i means that the term is absent in the summation. As
√
a+ b ≤ √

a+
√
b,

we have

NA1Ai
=

1

2
(
√

(ρ11 + · · · + ρN+1−i,N+1−i + · · · + ρN−1,N−1)2 + 4|ρN+1−i,N |2 (9)

−(ρ11 + · · · + ρN+1−i,N+1−i + · · · + ρN−1,N−1))

≤ |ρN+1−i,N |.

From (8) and (9) we see that (7) holds for the mixed state ρ. Inequality (9) becomes equality

if and only if ρ11 = · · · = ρN+1−i,N+1−i = · · · = ρN−1,N−1 = 0 or ρN+1−i,N = 0, i = 2, · · · , N .

Hence one arrives at that if the inequality (7) becomes equality, then ρ is at least bipartite

Ai|Ai separable for some i, 1 ≤ i ≤ N . In other words, monogamy inequality (7) holds

strictly for genuine entangled state (5).

Similarly we have

N2
AkAl(A1···Ak···Al···AN )

=
∑

i=N+1−k,N+1−l, j 6=N+1−k,N+1−l
|ρij|2. (10)

For A1A2|A3 · · ·AN partition, the following equalities holds:

N2
A1A2(A3···AN ) =

∑

i=N−1,N, j 6=N−1,N

|ρij|2, (11)

NA1A2(Ak) =
1

2
(((ρ11 + · · ·+ ρN+1−k,N+1−k + · · ·+ ρN−2,N−2)

2 (12)

+4(|ρN+1−k,N−1|2 + |ρN+1−k,N |2))
1
2

−(ρ11 + · · ·+ ρN+1−k,N+1−k + · · · + ρN−2,N−2)).

Therefore one gets

N2
A1A2(A3) + · · ·+N2

A1A2(AN ) ≤ N2
A1A2(A3···AN ). (13)

If inequality (13) becomes an equality, then state ρ is at least separable under some partition

AiAj |AiAj , 1 ≤ i < j ≤ N , otherwise it will be a strictly inequality. Generally for any

partition P1 = {Ai1, · · · , Aik}, P2 = {Aik+1
, · · · , Aik+l

}, · · · , Ps = {Aik+s
, · · · , AiN}, we have

N2
P1P2

+ · · · +N2
P1Ps

≤ N2
P1(P2···Ps). (14)
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If this inequality becomes an equality, the state is at least separable under some partition

At1At2 · · ·Atk |At1At2 · · ·Atk , 1 ≤ t1 < t2 < · · · < tk ≤ N . On the other hand, we can deduce

another conclusion that mixed state ρ (5) is biseparable if and only if it is PPT with respect

to such partition.

IV. COMMENTS AND CONCLUSIONS

The results can be generalized to N -partite d dimensional systems. That is

ρ =
N

∑

i,k=1

d−1
∑

j,l=0

ρi(j),k(l)|0 · · · ji · · · 0〉〈0 · · · lk · · · 0| (15)

with
∑N

i=1

∑d−1
j=0 ρi(j),i(j) = 1. We can similarly prove that pure state decomposition of

(15) has the form |ψ〉 =
∑N

i=1

∑d−1
j=0 ai(j)|0 · · · ji · · ·0〉, which is equivalent to pure state

|ψ〉 =
∑N

i=1

∑d−1
j=0 |0 · · · ji · · · 0〉 under SLOCC. Moreover state (15) is separable with respect

to the subsystem Ai (1 ≤ i ≤ N) if and only if (15) is PPT with respect to Ai.

The monogamy relations can be similarly studied. For example, the negative eigenvalue

of ρPT with respect to the first subsystem is (
∑

i6=N
∑d−1

j,l=0 |ρi(j),N(l)|2)
1
2 . Therefore the neg-

ativity N2
A1(A2···AN ) =

∑

i6=N
∑d−1

j,l=0 |ρi(j),N(l)|2. By tedious calculation we can show that

inequality (7) and (14) also hold for state (15). And if the inequalities become equalities,

then corresponding results hold similar to qubit case. While for SC states, the equalities

hold if and only if they are fully separable, as their reduced matrices are all fully separable.

In summary, similar to SC states having generalized GHZ states in the pure state decom-

position, we have introduced a new class of multipartite entangled mixed states with pure

state decompositions of generalized W states. The entanglement and separability properties

are studied according to PPT operations. It is shown that the states are bipartite separable

if they are PPT corresponding such partition. Monogamy relations related to these states

are also investigated. Although it is still not known if the monogamy relations in terms

of negativity hold for general high dimensional mixed state, they are true for our class of

states. Above all, the entanglement of these states is very robust against particle loss. If

the mixed state (5) is genuine entangled, the reduced density matrix of ρ is still a genuine

entangled state.
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