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Abstract

We improve recently published results about resources of Restricted Boltzmann Ma-

chines (RBM) and Deep Belief Networks (DBN) required to makethem Universal Ap-

proximators. We show that any distributionp on the set{0, 1}n of binary vectors of

lengthn can be arbitrarily well approximated by an RBM withk − 1 hidden units,

wherek is the minimal number of pairs of binary vectors differing inonly one entry

such that their union contains the support set ofp. In important cases this number is

half of the cardinality of the support set ofp (given in Le Roux & Bengio (2008)). We

construct a DBN with 2n

2(n−b)
, b ∼ log n, hidden layers of widthn that is capable of

approximating any distribution on{0, 1}n arbitrarily well. This confirms a conjecture

presented in Le Roux & Bengio (2010).

1 Introduction

This work rests upon ideas presented in (Le Roux & Bengio , 2008) and (Le Roux

& Bengio , 2010). We positively resolve a conjecture that wasposed in Le Roux &
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Bengio (2010). Before going into the details of this conjecture we first recall some

basic notions.

The definition of RBM’s and DBN’s that we use is the one given inthe papers

mentioned above and references therein. For details the reader is referred to those

works. Here we give a short description: A Boltzmann Machineconsists of a collection

of binary stochastic units, where any pair of units may interact. The unit set is divided

into visibleandhiddenunits. Correspondingly the state is characterized by a pair(v, h)

wherev denotes the state of the visible andh denotes the state of the hidden units. One is

usually interested in distributions on the visible statesv and would like to generate these

as marginals of distributions on the states(v, h). In a general Boltzmann Machine the

interaction graph is allowed to be complete. A Restricted Boltzmann Machine (RBM)

is a special type of Boltzmann Machine, where the graph describing the interactions is

bipartite: Only connections between visible and hidden units appear. It is not allowed

that two visible units or two hidden units interact with eachother (see Fig. 1). The

distribution over the states of all RBM units has the form of the Boltzmann distribution

p(v, h) ∝ exp(hT W ·v +B ·v +C ·h), wherev is a binary vector of length equal to the

number of visible units, andh a binary vector with length equal to the number of hidden

units. The parameters of the RBM are given by the matrixW and the two vectorsB

andC. A Deep Belief Network consists of a chain of layers of units.Only units from

neighboring layers are allowed to be connected, there are noconnections within each

layer. The last two layers have undirected connections between them, while the other

layers have connections directed towards the first layer, the visible layer. The general

idea of a DBN is to assume that all layers are of similar size, as shown in Fig. 1.

A major difficulty in the use of Boltzmann Machines always hasbeen the slowness

of learning. In order to overcome this problem, DBN’s have been proposed as an al-

ternative to classical Boltzmann Machines. An efficient learning algorithm for DBN’s

was given in the paper Hinton et. al. (2006).

The fundamental questions along the above-mentioned previous work are the fol-

lowing: Does a DBN exist that is capable of approximating anydistribution on the vis-

ible states through appropriate choice of parameters? We will refer to such a DBN as

a universal DBN approximator (similarly we will use the denomination universal RBM

approximator). If universal DBN approximators exist, whatis their minimal size?
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RBM

DBN

Figure 1: In the left side we sketched the graph of interactions in an RBM, in the right

side the corresponding graph for a DBN withn = 4 visible units (drawn brighter).

An arbitrary weight can be assigned to every edge. Beside this connection weights,

every node contains an individualoffsetweight. Every node takes value0 or 1 with a

probability that depends on the weights. The RBM and DBN of size depicted above

are examples of universal approximators of distributions on {0, 1}4 (Le Roux & Bengio

(2008) and Le Roux & Bengio (2010) respectively). In the present paper is shown that

the number of hidden units in the RBM can be halved, and the number of hidden layers

in the DBN can be roughly halved.

Since DBN’s are more difficult to study than RBM’s, as a preliminary step, cor-

responding questions related to the representational power of RBM’s have been ad-

dressed. Theorem 2 in Le Roux & Bengio (2008) shows that any distribution on{0, 1}n

with support of cardinalitys is arbitrarily well approximated (with respect to the Kull-

back Leibler divergence) by the marginal distribution of anRBM containings + 1

hidden units:

Theorem 2 in Le Roux & Bengio (2008). Any distribution on{0, 1}n can be approx-

imated arbitrarily well with an RBM withs + 1 hidden units, wheres is the number of

input vectors whose probability does not vanish.

This theorem proved the existence of a universal RBM approximator. The existence

proof of a universal DBN approximator is due to Sutskever & Hinton (2008). More

precisely, Sutskever & Hinton (2008) explicitely constructed a DBN with∼ 3 · 2n

hidden layers of widthn + 1 that approximates any distribution on{0, 1}n. Given that

the existence problem of universal DBN approximators was positively resolved through

this result, the efforts have been put into optimizing the size, i.e. reducing the number

of parameters. This can be done by reducing the number of hidden layers involved in a

DBN, or by making the hidden layers narrower. In terms of simple counting arguments,
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we give a lower bound on the minimal number of hidden layers required for the univer-

sality of a DBN with layers of sizen. The number of free parameters in such a DBN is

square of the width of each layer× number of hidden layers+ number of units, which

for k hidden layers isk(n2 + n) + n. On the other hand, the number of parameters

needed to describe all distributions over2n elements, e.g. over binary vectors of length

n, is 2n − 1. Therefore, a lower bound on the number of hidden layers of a universal

DBN approximator is given by2
n
−1−n

n(n+1)
(which yields2n − 1 free parameters). Other-

wise the number of parameters would not be sufficient. Asymptotically, this bound is

of order 2n

n2 . Certainly, since the architecture of DBN’s makes important restrictions on

the way the parameters are used, such a lower bound is not expected to be achievable.

In particular the approximation of a distribution through aDBN or RBM is not unam-

biguous, i.e. for several choices of the parameters the samedistribution is produced as

marginal distribution. However, in Le Roux & Bengio (2010) it has been shown that a

number of hidden layers of order2n

n
is sufficient:

Theorem 4 in Le Roux & Bengio (2010). If n = 2t, a DBN composed of2
n

n
+ 1 layers

of sizen is a universal approximator of distributions on{0, 1}n.

In the paper Le Roux & Bengio (2010) the optimality of the bound given in this the-

orem remains an open problem. However, their proof method suggests the sufficiency

of less hidden layers, which was conjectured in their paper.The proof of Theorem 4

crucially depends on the authors’ previous Theorem 2 in Le Roux & Bengio (2008).

Our main contribution is to sharpen Theorem 2 (see Theorem 1 in Section 2) which

allows us to even better exploit their method and thereby confirm their conjecture (see

Theorem 3 in Section 2). We consider our refinement as particularly interesting because

there are reasons to believe that this already provides the optimal bound for the minimal

number of hidden layers in a universal DBN approximator.

2 Results

2.1 Restricted Boltzmann Machines

The following Theorem 1 sharpens Theorem 2 in Le Roux & Bengio(2010). We will

use it (its Corollary 2) in the proof of our main result, Theorem 3.
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Theorem 1 (Reduced RBM’s which are universal approximators). Any distributionp

on binary vectors of lengthn can be approximated arbitrarily well by an RBM with

k − 1 hidden units, wherek is the minimal number of pairs of binary vectors, such that

the two vectors in each pair differ in only one entry, and suchthat the support set ofp

is contained in the union of these pairs.

The set{0, 1}n corresponds to the vertex set of then-dimensional cube. The edges

of the n-dimensional cube correspond to pairs of binary vectors of lengthn which

differ in exactly one entry. For the graph of then-dimensional cube there exist perfect

matchings, i.e., collections of disjoint edges which coverall vertices. Therefore we

have the following:

Corollary 2. Any distribution on{0, 1}n can be approximated arbitrarily well by an

RBM with 2n

2
− 1 hidden units.

The proof of Theorem 1 given below is very much in the spirit ofthe proof of

Theorem 2 in Le Roux & Bengio (2008). The idea there consists on showing that

given an RBM with some marginal visible distribution, the inclusion of an additional

hidden unit allows to increment the probability mass of one visible state vector, while

uniformly reducing the probability mass of all other visible vectors.

We show that the inclusion of an additional hidden unit in fact allows to increase

the probabiliy mass of a pair of visible vectors, in independent ratio, given that this

pair differs in one entry. At the same time, the probability of all other visible states is

reduced uniformly. We also use the offset weights in the visible units to further improve

the result.

Proof of Theorem 1.We stay close to the notation used in Le Roux & Bengio (2008).

1. Let p be the distribution on the states of visible and hidden unitsof an RBM. Its

marginal probability distribution onv can be written as

p(v) =

∑

h z(v, h)
∑

v0,h0 z(v0, h0)
.

Denote bypw,c the distribution arising through the adding of a hidden unitto the RBM

connected with weigthsw = (w1, . . . , wn) to the visible units, and with offset weightc.

Its marginal distribution can be written as

pw,c(v) =
(1 + exp(w · v + c))

∑

h z(v, h)
∑

v0,h0(1 + exp(w · v0 + c))z(v0, h0)
.

5



2. Given any vectorv ∈ {0, 1}n we writevĵ for the vector defined through(vĵ)i =

vi, ∀i 6= j, and(vĵ)j = 0. We also write1 := (1, . . . , 1), andej := 1− 1ĵ .

3. For anyj ∈ {1, . . . , n} let ṽ be an arbitrary vector with̃vj = 1. Define

ŵ := a(ṽĵ −
1

2
1ĵ),

w̄ := a(ṽĵ −
1

2
1ĵ) + (λ2 − λ1)ej ,

c̄ := −ŵ · ṽ + λ1 = −ŵ · ṽĵ + λ1.

For the weights̄w andc̄ we have:

w̄ · v =
1

2
a((n − 1) − |{i : (ṽĵ)i 6= (vĵ)i}|) + (λ2 − λ1)vj ,

c̄ = −
1

2
a(n − 1) + λ1,

and in the limita → ∞ we get:

lim
a→∞

1 + exp(w̄ · v + c̄) = 1, ∀v 6= ṽ, ṽĵ ,

lim
a→∞

1 + exp(w̄ · ṽĵ + c̄) = 1 + eλ1 ,

lim
a→∞

1 + exp(w̄ · ṽ + c̄) = 1 + eλ2 .

Just as in the Proof of Theorem 2 in Le Roux & Bengio (2008) thisyields for the

marginal distribution on the visible states of the enlargedRBM the following:

lim
a→∞

pw̄,c̄(v) =
p(v)

1 + eλ1p(ṽĵ) + eλ2p(ṽ)
, ∀v 6= ṽ, ṽĵ ,

lim
a→∞

pw̄,c̄(ṽĵ) =
(1 + eλ1)p(ṽĵ)

1 + eλ1p(ṽĵ) + eλ2p(ṽ)
,

lim
a→∞

pw̄,c̄(ṽ) =
(1 + eλ2)p(ṽ)

1 + eλ1p(ṽĵ) + eλ2p(ṽ)
.

This means that the probability of̃v and of ṽĵ can be increased independently by a

multiplicative factor, while all other probabilities are reduced uniformly.

4. Now we explain how to start an induction from which the claim follows. Con-

sider an RBM with no hidden units, RBM0. Through a choice of the offset weigths

in every visible unit, RBM0 produces as visible distribution any arbitrary factorizable

distributionp0(v) ∝ exp(B · v) ∝ exp(B · v + K), whereB is the vector of off-

set weights andK is a constant that we introduce for illustrative reasons, and is not
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a parameter of the RBM0 since it cancels out with the normalization ofp0. In partic-

ular, RBM0 can approximate arbitrarily well any distribution with support given by a

pair of vectors that differ in only one entry. To see this consider any pair of vectors̃v

and ṽĵ that differ in the entryj. Then, the choiceB = a(ṽĵ −
1
2
1ĵ) + (λ2 − λ1)ej

and K = −a(ṽĵ − 1
2
1ĵ)ṽ + λ1 yields in the limit lima→∞ (similarly to the equa-

tions in item 3. above) thatlima→∞ p0(v) = 0 wheneverv 6= ṽ andv 6= ṽĵ, while

lima→∞ p0(ṽ)/p0(ṽĵ) = exp(λ2 − λ1) can be chosen arbitrarily by modifyingλ1 and

λ2. Hence,p0 can be made arbitrarily similar to any distribution with support {ṽ, ṽĵ}.

Notice thatp0 remains positive for allv anda < ∞.

By the arguments described above, every additional hidden unit allows to increase

the probability of any pair of vectors which differ in one entry. Obviously, it is possible

to do the same for a single vector instead of a pair. Thence, with every additional hidden

unit the support set of the probabilities which can be approximated arbitrarily well is

enlarged by an arbitrary pair of vectors which differ in one entry. This is, RBM(i−1)

is an approximator of distributions with support containedin any union ofi pairs of

vectors which differ in exactly one entry.

We close this passage with some remarks:

The possiblity of independent change of the probability mass of two visible vectors

is due to the usability of the following two parameters: a) The offset input weigth in the

added hidden unit, and b) the weight of the connection between the added hidden unit

and the visible unit where the pair of visible vectors differ. See item 3. in the Proof.

The attempt to use a similar idea to increment the probability mass of three differ-

ent vectors in independent ratios inducts a coupled change in the probability of a fourth

vector. Three vectors differ in at least 2 entries, as do fourvectors. Since only 3 param-

eters are available (the offset of the new hidden unit and twoconnection weigths), the

dependency arises.

It is worth noting, that using exclusively a similar idea will not allow an exension of

Theorem 2 in Le Roux & Bengio (2010) to permit the flip of a certain bit with a certain

probability (only) given one of three input vectors.
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2.2 Deep Belief Networks

In this section we implement our Theorem 1 to modify the construction given in the

proof of Theorem 4 in Le Roux & Bengio (2010) and prove our mainresult, Theorem 3:

Theorem 3 (Reduced DBN’s which are universal approximators). Let n = 2b

2
+ b,

b ∈ N, b ≥ 1. A DBN containing 2n

2(n−b)
hidden layers of widthn is a universal

approximator of distributions on{0, 1}n.

Before proving Theorem 3 we first develop some components of the proof.

An important idea of Sutskever & Hinton (2008) is that ofsharing, by means of

which in a part of a DBN the probability of a vector is increased while the probability

of another vector is decreased and the probability of all other vectors remains nearly

constant. This idea is refined in Theorem 2 of Le Roux & Bengio (2010):

Theorem 2 in Le Roux & Bengio (2010) (slightly different formulation). Consider

two layers of units indexed byi ∈ {1, . . . , n} andk ∈ {1, . . . , n}, and denote byv and

h state vectors in each layer. Denote by{wik}i,k=1,...,n the connection weights and by

{ck}k=1,...,n the offset weights in the second layer. Given anyl andj, l 6= j, let a be an

arbitrary vector in{0, 1}n andb another vector withbi = ai ∀i 6= j, andaj 6= bj . Then,

it is possible to choose weightswk,l, k ∈ {1, . . . , n}, and cl such that the following

equations are satisfied with arbitrary accuracy:P (vl = hl|h) = 1∀h 6∈ {a, b}, while

P (vl = 1|h = a) = pa andP (vl = 1|h = b) = pb with arbitrary pa, pb.

By this Theorem, a sharing step can be accomplished in only one layer, whereas

probability mass is transferred from a chosen vector to another vector differing in one

entry. Futhermore, it demands adaptation only of the connection weights and offset

weight of one single unit. Thereby, the overlay of a number ofsharing steps in each

layer is possible.

The main idea in Le Roux & Bengio (2010) was to exploit these circumstances

using a clever sequence of transactions of probabilities. The requirements for the re-

alizability of sharing sequences using Theorem 2 in Le Roux &Bengio (2010) can

be summarized in properties of sequences of vectors. These properties are described

in Theorem 3 of Le Roux & Bengio (2010), or in the items 2-3 of our appropriately

modified version of that Theorem, Lemma 4 below.
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How the Theorem 2 in Le Roux & Bengio (2010) and Lemma 4 brace the construc-

tion of a universal DBN approximator will become clearer in the afterwards following

Lemma 5.

Lemma 4. Letn = 2b

2
+ b, b ∈ N, b ≥ 1. There exista := 2b = 2(n − b) sequences of

binary vectorsSi, 0 ≤ i < a − 1 composed of vectorsSi,k, 1 ≤ k ≤ 2n

a
satisfying the

following:

1. {S0, . . . , Sa−1} is a partition of{0, 1}n.

2. ∀i ∈ {0, . . . , a − 1}, ∀k ∈ {1, . . . , 2n

a
− 1} we haveH(Si,k, Si,k+1) = 1, where

H(·, ·) denotes the Hamming distance.

3. ∀i, j ∈ {0, . . . , a − 1} such thati 6= j and∀k ∈ {1, . . . , 2n

a
− 1} the bit switched

betweenSi,k andSj,k+1 and the bit switched betweenSj,k andSj,k+1 are different,

unlessH(Si,k, Sj,k) = 1.

Proof of Lemma 4.Let G0
n−b be any Gray code for(n − b) bits. Such a Gray code

is a matrix of size2n−b × (n − b), where every two consecutive rows have Hamming

distance one to each other, and the collection of all rows is{0, 1}n−b. Obviously any

permutation of columns of this Gray code has the same properties. LetGi
n−b be the

cyclic permutation of columnsi positions to the left.

Now defineSi :=











bin(i)
... G

imod(n−b)
n−b

bin(i)











, i.e. the firstb bits of the vectorSi,k

contain theb-bit binary representation ofi. The rest of the bits contain thek-th row in

the Gray codeG0
n−b for arrays of lengthn − b cyclically shiftedi positions to the left.

The cyclic permutation makes that every two sequences of vectors Si andSj, i 6= j

change the same bit in the same row (in this case they also do inevery row) only if the

value of the first part bin(i) and bin(j) of the two sequences differs in only one entry (in

the first entry).

Every two consecutive vectors in a sequence given in Lemma 4 differ in only one

entry and this entry can be located in almost any position{1, . . . , n}. In contrast, for the

sequences given in Theorem 3 of Le Roux & Bengio (2010) that entry can be located

only in a subset of{1, . . . , n} of cardinalityn/2.
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In the Lemma above, for any row, every one ofn−b entries is flipped by exactly two

sequences. Regard that the attempt to produce2n instead of2(n−b) sequences with the

properties 1-2 of the Lemma (and flips in all entries) would correspond to the following:

Set











S1

...

S2n











= Gn, i.e., the sequences to be overlayed are portions of the sameGray

code. In this case it is difficult to achive that condition 3. is satistfied, i.e., that ifSi and

Sj flip the same bit in the same row, thenH(Si,k, Sj,k) = 1. The condition 3. however

is essential for the use of Theorem 2 of Le Roux & Bengio (2010). Most common

Gray codes flip some entries more often than other entries andcan be discarded. Oher

sequences referred to astotally balanced Gray codesflip all entries equally often and

exist whenevern is a power of2, but still a strong cyclicity condition would be required.

On account of this we say that the sequences given in Lemma 4 allow optimal use of

Theorem 2 of Le Roux & Bengio (2010).

The following Lemma 5 is a transcription of Lemma 1 in Le Roux &Bengio (2010)

with replacements of indices according to our construction. The proof is an obvious

transcription which we omit here. Denote byhi a state vector of the units in the hidden

layeri, and denote byh0 a visible state.

Lemma 5. Letp∗ be an arbitrary distribution on{0, 1}n. Consider a DBN with2
n

a
+ 1

layers and the following properties:

1. ∀i ∈ {0, . . . , a − 1} the top RBM betweenh
2
n

a and h
2
n

a
−1 assigns probability

∑

k p∗(Si,k) to Si,1,

2. ∀i ∈ {0, . . . , a − 1}, ∀k ∈ {1, . . . , 2n

a
− 1}

P (h
2
n

a
−(k+1) = Si,k+1|h

2
n

a
−k = Si,k) =

∑

2
n

a

t=k+1 p∗(Si,t)
∑

2n

a

t=k p∗(Si,t)
,

P (h
2
n

a
−(k+1) = Si,k|h

2
n

a
−k = Si,k) =

p∗(Si,k)
∑

2n

a

t=k p∗(Si,t)
,

3. ∀k ∈ {1, . . . , 2n

a
− 1} the DBN provides

P (h
2
n

a
−(k+1) = u|h

2
n

a
−k = u) = 1, ∀u 6∈ ∪i{Si,k}.
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Such a DBN hasp∗ as its marginal visible distribution.

We conclude this section with the proof of Theorem 3 and some remarks:

Proof of Th. 3.The proof is analogous to the Proof of Theorem 4 in Le Roux & Ben-

gio (2010). We just need to show the existence of a DBN with theproperties of the

DBN described in Lemma 5. In view of Theorem 1 it is possible toachive that the top

RBM assigns arbitrary probability to the collection of vectorsSi,1, i ∈ {0, . . . , a − 1},

whenever it can be arranged in pairs of neighbouring vectors(or from Corollary 2, if all

vectors are equal in a set of entries). This requirement is met for Si,1, i ∈ {0, . . . , a−1}

of Lemma 4, (e.g. choosing a Gray code whose first element is(0, . . . , 0) or (1, . . . , 1)).

The subsequent layers are just like in the Proof of Theorem 4 in Le Roux & Bengio

(2010). They are possible in consideration of the mantainedvalidity of Theorem 2

in Le Roux & Bengio (2010) using the sequences provided in Lemma 4 of the present

paper. The only difference is that by our definition ofSi, i ∈ {0, . . . , a − 1}, at each

layern − b bit flips (with correct probabilities) occur, instead ofn
2
.

In the paper Le Roux & Bengio (2010) the authors overlayedn sequences of sharing

steps (Theorem 3 in that paper) for the construction of a universal DBN approximator.

In principle an overlay of more such sequences is possible. This is what we exploit

in our proof, (the sequences given in Lemma 4). Apparently, the overlay of more se-

quences was not realized in that paper because for the initialization of these sequences,

(property 1. in Lemma 1 in that paper), the authors use Theorem 2 of Le Roux & Ben-

gio (2008), which only allows to assign arbitrary probability to n vectors. Our result

Theorem 1 overcomes this difficulty and allows to initializeup to2(n + 1) sequences,

which we use to obtain property 1. in Lemma 5.

Conclusion

We have shown that a Deep Belief Network (DBN) with2
n

2(n−b)
, b ∼ log n, hidden

layers of sizen is capable of approximating any distribution on{0, 1}n arbitrarily well

as its marginal visible distribution. (This confirms a conjecture presented in Le Roux &

Bengio (2010)). The number of layers2
n

2(n−b)
is of order2n

2n
. This DBN has 2n

2(n−b)
n2 +

2n

2(n−b)
n + n parameters, which is of ordern2n

2
.
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Furthermore, we have shown that a Restricted Boltzmann Machine (RBM) with
2n

2
− 1 hidden units is capable of approximating any distribution on {0, 1}n arbitrarily

well as its marginal visible distribution. This RBM has2n

2
n + 2n

2
parameters, which is

of ordern2n

2
.

Our results improve all to date known bounds on the minimal size of universal DBN

and RBN approximators. Our construction already exploits Theorem 2 in Le Roux &

Bengio (2010) exhaustively, and therefore a construction using similar ideas will not

allow improvements. We still do not know if our results represent the minimal sufficient

size for universal DBN and RBN approximators, but we have reasons to belive that they

do. This is subject of our ongoing research, Montufar & Ay (2010).
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