
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

STDP-driven networks and the C. elegans neuronal

network

by

Quansheng Ren, Kiran M. Kolwankar, Areejit Samal, and Jürgen

Jost

Preprint no.: 26 2010





ar
X

iv
:1

00
4.

50
60

v1
  [

q-
bi

o.
N

C
] 

 2
8 

A
pr

 2
01

0
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We study the dynamics of the structure of a formal neural network wherein the strengths of
the synapses are governed by spike-timing-dependent plasticity (STDP). For properly chosen input
signals, there exists a steady state with a residual network. We compare the motif profile of such a
network with that of a real neural network of C. elegans and identify robust qualitative similarities.
In particular, our extensive numerical simulations show that this STDP-driven resulting network is
robust under variations of the model parameters.

INTRODUCTION

In any theoretical study on neuronal networks, the formal structure of the network as a directed graph is an
important ingredient which, in reality, can be rather complicated. In the last decade, statistical concepts and tools
have been developed for analyzing the large scale properties of complex networks [1–5]. On this theoretical basis,
it has been found that neural networks can exhibit scale free and small world properties [6, 7]. For a more refined
analysis and the identification of deeper properties that may or may not distinguish neuronal networks from other
classes of biological or non-biological networks, it is necessary to identify those factors that determine the structure of
neuronal networks. Naively, one might think that the structure of a neuronal network is determined genetically. But
for animals with larger brains, this would require an enormous amount of genetically encoded information. In other
words, at best the connections of a few important axons could be genetically encoded. Moreover, several experimental
findings we decribe below suggest a lack of any hard-wired programme of axon guidance. Another possible factor
could be geometric constraint since the network is embedded in a small three dimensional volume. This is likely
to affect only the long range connections and not the local structure, and in any case, this constraint seems to be
too unspecific. Therefore, we should expect that some self-organization process yields the connectivity structure of
neuronal networks. As most biological self-organization processes are triggered by external factors or signals, we
should also look here for sources of external influences. Since a neuronal network processes sensory inputs, it should
thereby adapt itself to its experiences. Hence, we are naturally led to consider learning as a key factor guiding the
self-organization of a neuronal network. The standard Hebbian paradigm tells us that learning is represented by
modifications of the strengths of the synapses between neurons. In particular, learning is local in the sense that it
depends on correlations between the activities of synaptically connected neurons. In more biological detail, we have
the learning scheme of spike timing dependent synaptic plasticity first discovered in [8], abbreviated as STDP. This
learning rule says that a synapse is strengthened when the presynaptic neuron fires shortly before the postsynaptic
one, and that it is weakened instead when this temporal order is reversed. This learning rule has received a lot of
attention in the neurobiological literature. In [9], it has been formally analyzed how this learning rule, being based
on activity correlations, in turn shapes these correlations. Again, this is a local rule, but it is then natural to expect
that the global statistical properties of neuronal networks result from the iterated application of this local rule at all
the active synapses of the network. In particular, some synapses could possibly become so weak that they will get
eliminated entirely.
The initial explorations to test this line of thinking have been encouraging [10, 11]. In [10], in order to separate

the abstract features of this learning rule from the details of its neurobiological implementation, we have considered a
simple model of coupled chaotic maps wherein the coupling stengths changed according to this learning rule. Starting
from a globally coupled network, we obtained a stationary network with a broad degree distribution in accordance
with the experimental findings for real neural networks. In [11], similar conclusions were arrived at using a continuous
Fitzugh-Nagumo model.
These developments suggest that the learning dynamics may be a relevant factor in determining the network

structure. A closer comparison is needed to confirm this conjecture. To this effect we carry out simulations with
realistic models of neural dynamics and compare the resultant network with a real one, that is, the neuronal network
of C. elegans. The neuronal network of C. elegans has been studied in detail [12, 13]. In fact, this is the only real
neuronal network where such detail is currently available, and, unfortunately, we therefore are not able to use other
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experimentally determined networks for comparison. In any case, in learning, there are various kinds of plasticities
and different kinds of connections, like, chemical synapses, gap junctions etc. Here we work with realistic neuron
models, the STDP learning rule and properly chosen input signals. We show that applying this scheme formally leads
to a network which is similar to the network in C. elegans in certain aspects.
It is known that the brain has a very dense population of synaptic connection just after the birth and most of these

connections are pruned in the course of time [14]. This type of pruning takes place even in C. elegans where the size
of the network is very small [15]. It has also been shown that the perturbed sensory activity or the mutations that
alter the calcium channels or membrane potential affect the axon outgrowth [16]. This is reflected by the irreversible
deletion of synapses whose strength falls below a certain threshold.
The plan of the paper is as follows. In section , we decribe the neuron models used, the STDP learning rule and

also the tools used to analyse the network. The present status of our knowledge of C. elegans network is recalled in
section . This section also includes a more detailed analysis of C. elegans ’ neuronal network. The main results of the
paper are presented in section ; in particular, we describe the influence of the input and of different parameters on
the final results. The paper ends with a discussion in section .

METHODS

Neuron models

Networks of neurons were modeled using the NEST Simulation Tool [17]. To show the generality of the results, two
models for neurons are utilized, i.e. the Leaky Integrate-and-Fire (LIF) model and the Hodgkin-Huxley (HH) model.
The membrane potential Vj of the conductance based LIF neuron with index j is governed by

Cm

dVj

dt
= gL(Vrest − Vj) + gj(t)(Eex − Vj) , (1)

where Cm = 200pF is the membrane capacitance, gL = 10nS is the leak conductance which is equivalent to Rm =
100MΩ where Rm is the membrane resistance, Vrest = −70mV is the resting potential (leak reversal potential),
Eex = 0mV is the excitatory reversal potential. In our simulation, we did not consider inhibitory synapses as they are
extremely rare between interneurons in the C. elegans neuronal network (see Section ). When the membrane potential
reaches the threshold value Vth = −54mV, the neuron emits an action potential, and the depolarization is reset to
the reset potential Vreset = −60mV after a refractory period τref = 1ms during which the potential is insensitive to
stimulation. The parameters given above are the same as in [18].
The dynamical equation for the Traub modified conductance based Hodgkin-Huxley model neuron is

Cm

dVj

dt
= gL(EL − Vj) + gNam

3h(ENa − Vj) + gKn4(EK − Vj) + gj(t)(Eex − Vj), (2)

where Cm = 100pF. Eex = 0mV is the excitatory reversal potential. The maximal conductances and reversal
potentials of the sodium and potassium ion channels and the leak channel used in the model are gNa = 1.0mS/mm

2
,

gK = 2.0mS/mm
2
, gL = 0.001mS/mm

2
, ENa = 48mV, EK = −82mV, and EL = −67mV respectively. The gating

variables X = m,h, n satisfy the following equation:

dX

dt
= αX(Vj)(1 −X)− βX(Vj)X, (3)

where αX and βX are given by

αm =
0.32(V + 54)

1− exp(−0.25(V + 54))
βm =

0.28(V + 27)

exp(0.2(V + 27))− 1

αh = 0.128 exp(−(V + 50)/18) βh =
4

1 + exp(−0.2(V + 27))

αn =
0.032(V + 52)

1− exp(−0.2(V + 52))
βn = 0.5 exp(−(V + 57)/40).

These parameters are taken from [19].
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The synaptic conductance gj(t) in Eq. (1) and (2) is determined by

gj(t) = gm

N
∑

j=1

wij(t)
∑

k

f(t− tkj ) , (4)

where N is the number of neurons, gm is the maximum value of the synaptic conductance, wij is the weight of the
synaptic connection from the ith neuron to the jth neuron, tkj is the timing of the kth spike of the jth neuron. Here,
we used an α-function [20] f(x) with latency (transmission delay) τd and synaptic time constant τex = 2ms:

f(t) =

{

t−τd
τ2
ex

exp(− t−τd
τex

) if t > τd

0 otherwise.
(5)

STDP

STDP is a form of experimentally observed ([8]) long-term synaptic plasticity, where synapses are modified by
repeated pairings of pre- and postsynaptic action potentials, while the sign and the degree of the modification depend
on their relative timing.
In our study, the weight of the synaptic connection wij is modified by the STDP rule. The amount of modification

is determined based on the temporal difference ∆t between the occurrence of the postsynaptic action potential and
the arrival of the presynaptic action potential,

∆t = tj − (ti + τd), (6)

where tj is the spike time of the postsynaptic neuron j, τd is the delay time of the spike transmission from neuron i
to neuron j, and ti is the spike time of the presynaptic neuron i. The weight modification ∆wij is described by the
following equations:

∆wij(∆t) =

{

λ exp(−|∆t|/τ+) if ∆t ≥ τd

−λα exp(−|∆t|/τ
−
) if ∆t < τd,

(7)

where λ = 0.0001 is the learning rate. We constrain wij within the range [0, 1], which ensures that the peak synaptic
conductance gmwij is always positive and cannot exceed the maximum value gm. In Eq. 7, α introduces a possible
asymmetry between the scale of potentiation and depression. The time constants τ+ and τ

−
control the width of

the time window. As argued in [18], in order to get a stable competitive synaptic modification, which means that
uncorrelated pre- and postsynaptic spikes produce an overall weakening of synapses, the integral of ∆wij should be
negative. A negative integral requires (ατ

−
/τ+) > 1.0.

Network Motifs

To test whether STDP plays a crucial role in the evolution of a real neuronal network, it is important to compare
the local structure between real networks and the network we obtain as a result of our simulations. We choose to look
at the occurrence of different network motifs. Network motifs are patterns (sub-graphs) that recur within the network
much more often than expected at random [21]. The characterisation of networks using network motifs has become
very common owing to the fact that different subnetworks are thought to carry out different functions in the network
and the abundance of certain subnetworks can decide the overall character of the network. In order to determine the
relative occurrence of motifs one needs to generate random versions of the network and count the number of motifs.
The question of the choice of the null model and the method used to generate random networks is important. We
use the approach and the software mfinder developed by Alon and co-workers [21, 22]. First, numbers of different
three-node subgraphs in a given network are found. Then, we compare the network to an ensemble of randomized
networks, whose number is 1000 in this study. Randomization is performed by rewiring connections in such a way
that the number of incoming edges, outgoing edges and mutual edges of each node are preserved. For each subgraph
i, the statistical significance is defined by its Z-score:

zi =
N real

i − 〈N rand
i 〉

std(N rand
i )

, (8)
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where N real
i is the frequency of subgraph i appearing in the real network, 〈N rand

i 〉 and std(N rand
i ) are the mean

and standard deviation of subgraph i’s occurrences in the ensemble of random networks. If zi > 0, subgraph i is
over-represented and is designated as a motif, while if zi < 0, it is under-represented and is designated as a anti-motif.
The significance profile (SP) of a network is the vector of Z-scores normalized to length 1:

SPi =
zi

√

∑13

i z2i

. (9)

It shows the relative significance of subgraphs and is important for comparison of networks of different sizes and
degree sequences. The software mfinder [23] has integrated all the above algorithms.
To construct random ensembles, one often uses Occam’s razor, i.e. no outcome compatible with the null hypothesis

should be preferred and all such outcomes are equally likely [24]. The approach mentioned above uses the random
ensemble with fixed degree sequence and fixed number of 2-node subgraphs for each node as the relevant null model.
We should point out here that a more conceptual approach [25, 26] leads to somewhat different null hypotheses,
as will be briefly discussed in Section . In particular, the SPs of different motifs are not independent. That is,
a change in some motif can also affect the count of another motif and hence its SP. In spite of these and many
other complications, Milo et al. [22] have discovered four superfamilies with distinct motif diagrams. The second
superfamily included signal-transduction networks, developmental transcription networks of multi-cellular organisms
and the C. elegans neuronal network. The existence of such “universality classes” of different natural as well as
artificial networks makes this approach of characterising complex networks, which are otherwise rather untractable,
very promising. Several explanations [22, 27, 28] have been proposed to explain the observed convergence of SPs of
these networks. In particular, robustness against node or link failure has been invoked a global optimization criterion
leading to such particular motif distributions as in the superfamilies. Our study provides an alternative explanation
in terms of a local self-organization rule, i.e. the common SP of the second superfamily may come from an adaptive
mechanism in cooperation with the complex structure of correlations between input signals.

C. ELEGANS NEURONAL NETWORK

In this section we discuss the neuronal network of C. elegans. It is a small sensory transduction neuronal network
that consists of sensory neurons, interneurons and motor neurons. In this study, the most recently published wiring
diagram of C. elegans [13] is used. The somatic neuronal network contains 279 neurons which are connected by 2194
directed connections implemented by one or more chemical synapses, and 514 gap junction connections consisting
of one or more electrical junctions. We point out that, in contrast to vertebrates, there are no individual variations
among different members of the species C. elegans here. As STDP can only operate in chemical synapses, we restrict
our attention to the chemical synapse network. However, one should note that the bidirectional gap connections
could influence the dynamics of neurons, which, in turn, could influence the network topology further by plasticity
mechanisms like STDP.
From fig. 1, we see that the connections both from sensory neurons to interneurons or from interneurons to motor

neurons are more numerous than the connections from interneurons to sensory neurons or from motor neurons to
interneurons respectively. On the other hand, there are rare connections between sensory neurons and motor neurons.
External signals first arrive at sensory neurons, then propagate through some interneurons and finally reach a subset
of motor neurons to generate a stimulus-induced response. Both sensory neurons and motor neurons have preferred
connections to neighboring neurons and can be divided into several clusters, which may correspond to different
functions. However, the pool of interneurons is not organized into clusters or layers. Each signal passes through a few
interneurons before it reaches motor neurons. We want to study the network structure generated by the STDP-driven
pruning process from a pool of homogeneous neurons. From this point of view, the pool of interneurons in C. elegans

is more related to our case than sensory neurons and motor neurons. There are 82 interneurons and 479 connections
between them, among which there are 122 mutual links and 357 uni-directional links. Moreover, there is only 1
inhibitory synapse between interneurons according to the latest data and a rough approximation that GABAergic
synapses are inhibitory [13]. Fig. 2 shows the triad subgraph frequency spectrum of the subnetwork of interneurons
and the whole neuronal network in C. elegans.
The SP of the C. elegans neuronal network has previously been shown in [22]. Some motif analysis of the latest

wiring diagram has also been presented in [13]. However, the local structure may be quite different for different
functional networks. Here we calculate SPs for different categories of neurons in C. elegans separately. Fig. 4 shows
the SPs of different subnetworks with only sensor neurons, only motor neurons, only interneurons, the combination
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of sensor neurons and interneurons, the combination of motor neurons and interneurons, and the whole neuronal
network respectively. Comparing these SPs, we found that the SP characteristic of C. elegans neural system reported
previously [13, 22] mainly comes from the connectivity structure of interneurons. The SP of interneurons subnetwork
shows triads 7, 9 and 10 as motifs, triads 1, 2, 4, 5 and 6 as anti-motifs, and there is less bias against cascades (triad
3). In this paper we focus on the question whether these observed motifs could be generated via self-organization
through STDP.

EVOLUTION OF NEURAL NETWORKS WITH STDP

It is known that the density of synapses in the human frontal cortex continues to increase during infancy and remains
at a very dense level. After a short stable period, synapses begin to be constantly removed, yielding a decrease in
synaptic density. This pruning process continues until puberty, when synaptic density achieves adult levels [29]. As
such a pruning of synapses that are in some sense superfluous may be a rather universal process, we study the local
structure of a network obtained by an STDP-driven pruning process, and compare it with C. elegans.

Basic phenomena

To simulate the STDP-driven pruning process, we start the simulations with an all-to-all connected network. The
neurons are stimulated by different periodic patterns repeatedly with period Tpattern. All the patterns are truncated
from Poisson spike trains with the same average rate fPoisson = 50Hz. This average firing rate corresponds to a
20ms spike interval which is consistent with the width of STDP time window. The connections between neurons are
excitatory STDP synapses. Because GABAergic synapses are extremely rare between interneurons of C. elegans, we
do not consider inhibitory synapses here.
Because of the asymmetry between the scale of potentiation and depression, most synapses are weakened during

the learning process. The peak synaptic conductances approach a bimodal distribution. Then we filter the adjacency
matrix by a small threshold: If the weight of a synapse is less than the threshold, we consider it as a pruned synapse,
i.e. there is no connections, otherwise we consider it as a winning synapse. At last, an unweighted adjacency matrix
is obtained. We analyze the local structure of the network, and compare it with C. elegans. To simulate the long
term development of neural systems, we used a small learning rate (λ = 0.0001) and simulated for more than 107ms.
All the peak synaptic conductances and the potentials of neurons are initialized with a random uniform distribution.
After development, most of the peak synaptic conductances are pushed toward zero or gm (cf. fig. 5a). We set the
threshold to g = 0.005nS, under which the synapses are seen as pruned. Fig. 5b shows the variation in the number
of links, i.e. the number of the synapses whose peak conductance is above the threshold. We see that the number
of links decreases rapidly before 106ms, and toward the end the distribution of peak synaptic conductances remains
almost constant except for tiny fluctuations, i.e. a steady-state condition is achieved. We then analyze the occurrence
of triad motifs in the resulting steady-state network.
Following the preceding approach, we study four cases with different configurations. The first case is called the

“basic configuration”, and later cases are variations of this one. For this “basic configuration”, we simulate a small
network with N = 100 LIF neurons, which is of a similar size as the subnetwork of somatic interneurons in C. elegans.
We used an asymmetric time window τ+ = 16.8ms and τ

−
= 33.7ms in STDP rule, which provides a reasonable

approximation of the synaptic modification observed in actual experiments [30]. α = 0.525 is adopted, together with
the asymmetric time window, providing a ratio A

−
τ
−
/A+τ+ = 1.05 which is the same as in [18]. Other parameters

are set as follows: the synaptic delay τd = 10ms, the maximum peak synaptic conductance gm = 0.3nS, and the
period of input patterns Tpattern = 2s. Based on the “basic configuration”, we study three variations: “Symmetric
configuration”, where the asymmetric time window is replaced with a symmetric one (τ+ = τ

−
= 20.0ms), and

α = 1.05 to preserve the ratio A
−
τ
−
/A+τ+ = 1.05; “HH model configuration”, where LIF model is replaced by the

HH model; “Large network configuration”, where the network size is enlarged to 200 neurons, and gm = 0.2nS in this
case. For every configuration, we simulate 10 times with different input patterns, different initial potential of neurons
and different initial peak synaptic conductances. We calculate the SP of every simulation and compute the average
of 10 SPs.
Fig. 6 shows the SPs of the four configurations and compares them with the C. elegans neuronal network. All the

four STDP-driven evolved network have quite similar SPs. All of them show triads 7, 9, and 10 as motifs, and triads
1, 2, 4, 5, as anti-motifs, as in the C. elegans neuronal network which belongs to the second superfamily reported
in [22]. This phenomenon does not depend on the neuron model, the symmetry of the time window or the network



6

size, and so must reflect some intrinsic characteristic of STDP. Recently, several interesting functions and dynamics
have been found to be associated with the three motifs mentioned above [31]. For example, the feedforward loop
(FFL, triad 7) has been shown to perform signal-processing tasks such as acceleration and delay of response, and the
mixed-feedforward-feedback loops (MFFL1: triad 9, and MFFL2: triad 10), where two-node feedbacks that regulate
or are regulated by a third node, have been shown to perform long- and short-term memory. These functions are
important for almost all neural computation and cognition tasks, which may give an explanation for the redundance
of these motifs in the C. elegans neuronal network. Our results show that STDP may be a potential mechanism which
could develop these important motifs.
The SP curves of STDP-driven evolved networks are quite similar to the C. elegans neuronal network, especially the

subnetwork of interneurons, but not the subnetwork of sensor neurons or moter neurons (see fig. 4). This could mean
that though STDP determines the structure of the network of interneurons, possibly other factors are important in the
case of sensory neurons. Nevertheless, there are small differences between our evolved networks and the subnetwork
of interneurons in C. elegans. As the SP is the vector of Z-scores normalized to length 1, here we only need to
consider the relative relations between triads as well as the zero axis. In STDP-driven evolved networks, triads 1, 2
and 8 have relatively lower negative SP, while triads 3 and 7 have relatively higher positive SP than the ones in the C.
elegans neuronal network. STDP tends to form feedforward structures [32, 33] and reflect the causal relations between
neurons, which could lead to more representations of cascades (triad 3) and FFL (triad 7), and less representations
of cycles (triad 8). On the other hand, there are hundreds of gap connections and other properties in the C. elegans

neuronal network, which we neglect here. The gap connections could certainly influence the dynamics of neurons,
while the latter would influence the network structure if there is a certain plasticity mechanism like STDP.
To study the similarity further, we calculated the triad frequency spectra of STDP-driven evolved networks and

compare them with the one of the C. elegans network. From fig. 7 we see that the STDP-driven evolved network of
the “basic configuration” develops a similar triad frequency spectra as that of C. elegans.

The role of neuronal inputs.

It appears that the inputs received by a neuron play an important role in determining the final network structure.
This is already borne out in the experiments [16]. We investigate this point in our simulations. Besides periodic
patterns obtained from Poisson spike trains, we also stimulate neurons with other spike trains, such as stochastic
Poisson spike trains and periodic regular patterns. In these cases, we either do not obtain a steady distribution
of peak synaptic conductances or else find a similar SP. We identify a factor that is crucial for the similarities of
the local structure between STDP-driven evolved networks and the C. elegans neuronal network: The complexity of
correlations between neuronal inputs.
There seem to be two ways to achieve a constant distribution of peak synaptic conductances through STDP: One is

to use constant temporal correlations between inputs. The other is through the repeated input of the same temporal
sequences [34]. To investigate the former case, we utilize a simple method to generate sufficiently complex temporally
correlated inputs: A non-periodic Poisson spike train, whose average firing rate is 50Hz, is randomly delayed for 100
times to generate the inputs of 100 neurons. The random delay time Td follows a uniform distribution between [1ms,
T]. We study two cases: T=20ms and T=200ms. Considering the width of time window in STDP and average spike
interval (both ≈20ms), the case of T=20ms corresponds to a high degree and a simple relation structure of temporal
correlations between neuronal inputs, while the case of T=200ms corresponds to a more complex relation structure.
From fig. 8a we see that the case of T=200ms generates an SP quite similar to that of the interneurons in C. elegans,
and the only evident difference is in Triad 12. However, in the case of T=20ms we do not obtain such a result.
This not only confirms that STDP may play a fundamental role in the formation of the local structure of neuronal
networks, but also prompts us to pay attention to the complexity of correlations between neuronal inputs.
On the other hand, this simple scheme of temporally correlated inputs did not generate a triad frequency spectrum

similar to that of C. elegans (fig. 8b and c). In the case of T=200ms, it generates more triads belonging to a
feedforward structure, i.e. cascades (triad 3), FFL (triad 7) and MFFL (triad 9 and 10), but could not generate any
subgraph of triads 6, 8 and 11. This may be because the correlation scheme we utilize here is not complex enough as
compared to real cases. In C. elegans, because of the stochastic characteristic in the environment, common stimuli
among adjacent sensory neurons and the sensory network structure, inputs of interneurons could have very complex
temporal correlations. It seems difficult to simulate the same temporal correlated neuronal inputs as in C. elegans.
However, the repeating of temporal sequences plays an alternative role in generating complicated correlated neuronal

inputs. The finite size of sequences brings out non-trival temporal correlations, which could be acumulated by repeating
input. The complexity of the non-trival correlations is determined by the input sequences. Partial information of
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FIG. 1: Adjacency matrix of the chemical synapse network with neurons grouped by category (sensory neurons, interneurons,
and motor neurons). Within each category, neurons are in anteroposterior order. The figure is reconstructed from the data
contained in [13].

sequences is transformed into a network of stronger or weaker synapses among the neurons. The evolved local network
structure reflects certain intrinsic characteristic of input sequences. The temporal sequences we used is truncated from
a Poisson process, which provides an extremely useful approximation of stochastic neuronal firing. It could provide
enough complexity in the structure of correlations between inputs, which gives rise to a similar triad frequency
spectrum as that of C. elegans (fig. 7). Otherwise, if regular sequences or simply correlated inputs are used, we do
not get similar results.
As the characteristic of correlations comes from a finite-size effect and the characteristic of input sequences, it

should not depend on other factors, such as the period of repeating. To verify this, we study two more cases: the
effect of input spikes period (the length of repeated spike sequence), and mixing with non-periodic stochastic spikes.
Fig. 9 shows the effect of input spikes period on SPs of networks with different asymmetric parameter α of STDP.

We see that the SP does not change when different periods in the range from 150ms to 9s are used confirming that
the particular SP we found does not depend on the details of the spike sequence, but the statistical characteristic
of a Poisson process. Fig. 10 shows the number of surviving links in networks with input consisting of spike trains
of different periods. For longer periods, the stochastic aspects of the spike trains play the leading role, and it is
more difficult for synapses to survive under the condition ατ

−
/τ+ > 1.0. On the other hand, for smaller periods,

the finite-size effects of the spike trains play the leading role, and it is easier for synapses to survive. The neuronal
network of C. elegans is a very sparse network. By using a large period, we could also achieve a sparse network that
has a similar number of links as in C. elegans, e.g. when Tpattern = 9s and α = 0.525.
Fig. 11 shows the effect of mixing with non-periodic stochastic spikes on SPs and the final number of links. For the

non-periodic stochastic spikes we also use Poisson processes. The average firing rate of the mixed spikes that input
to neurons are kept as 50Hz. For a spike train with mixing ratio of 50% (25%), we repeat a spike sequence that is
truncated from a 25Hz (37.5Hz) Poisson spike train, and superimpose a 25Hz (12.5Hz) Poisson spike train. We find
that the particular SP does not change in the case where we mix the periodic spike trains with non-periodic stochastic
spikes. Because of the stochastic aspect of the spike trains, when a higher mixing ratio is used, fewer links survive.

The influence of different parameters in STDP

Next, we analyze the influence of different parameters in STDP, such as the asymmetrt parameter α, the maximum
peak synaptic conductance gm and the synaptic delay τd.
Figs. 12a and 13a show the influence of the asymmetry parameter α and the maximum peak synaptic conductance

gm in STDP rule on the SPs of evolved networks respectively. From these figures, we find that the SPs do not change
significantly under parameter variations (see also figs. 12b and 13b). We see that there are some dependencies between
different motifs. For example, the forward cascade (triad 3) and the FFL (triad 7) are anti-correlated, while MFFL1
and MFFL2 (triad 9 and 10) as well as the anti-motifs triads 1 and 2 vary almost identically. As is seen from fig. 14,
the synaptic delay likewise has little influence on the SP.
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FIG. 2: Triad subgraph frequency spectrum of (a) the subnetwork of interneurons and (b) the whole network in C. elegans.
The structure corresponding to each triad ID is shown in fig. 3.

1 5 62 3 4

7 11 128 9 10 13

Triad ID Dictionary 

FIG. 3: The network structure corresponding to each triad ID.

DISCUSSION

We have studied the effect of the STDP learning rule on the network evolution systematically. The network is all-to-
all connected initially. Neurons are stimulated with spike trains, which are (partially) periodic or temporally correlated
in a more complicated way and in line with Poisson statistics. The STDP learning rule introduces the necessary
competition between synapses. As the network evolves, a stationary distribution of peak synaptic conductances is
achieved, where most synapses become weak enough to get pruned. In the STDP-driven evolved networks, three
important triads FFL, MFFL1 and MFFL2, which are important for neural computation and cognition tasks, have
been found with much higher frequency than expected from a randomized network. This implies that STDP could
be a self-organization mechanism that generates these motifs.
The particular SP we found in STDP-driven evolved networks is quite robust against parameter variations. The

characteristic of SP does not change essentially no matter what configurations are used, e.g. different neuron models,
asymmetric or symmetric time windows, different asymmetric ratios α, different maximum peak synaptic conductances
gm, different network sizes, different synaptic delays, different lengths of input sequences, and mixtures with non-
periodic Poisson spike trains. This suggests that we have found a fundamental characteristic of STDP.
Our simulations mimic the biological case wherein the brain is densely wired at the time of birth and then most

synapses are pruned in the course of development. To inspect whether STDP may play a role in the real case, we
have compared our simulation results with the C. elegans neuronal system. We have investigated the most recently
published wiring diagram of C. elegans, and analyzed the SPs of different subnetworks in the C. elegans neuronal
systems. The SPs of STDP-driven evolved networks are quite similar to those in the C. elegans neuronal network,
especially the subnetwork of interneurons. Besides, the triad frequency spectrum of STDP-driven evolved network in
certain configurations is similar to that of C. elegans. The exact role of input in deciding the network structure is not
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FIG. 4: (color online) The triad significance profile of different subnetworks in the C. elegans neuronal system. The lines
connecting the Z-score values have been added only as a visualization aid. The structure corresponding to each triad ID is
shown in fig. 3.

yet clear but it seems that some amount of complexity is needed. The sparsity of the C. elegans neuronal network
could be also achieved by the STDP-driven evolved network. These observations show that the STDP self-organization
mechanism could be a candidate to generate the local structure of C. elegans neuronal network.
In this study, we only consider STDP synapses and neglect other mechanisms such as short-term plasticity and gap

connections that are present in C. elegans. Moreover, the neuron models and parameter setting may also be different
from C. elegans. These factors all could influence the results. For example, gap connections are bi-directional in C.

elegans, and could influence the dynamics of neurons. As the STDP learning rule depends on spiking activity, the
existence of gap connections could influence the structure of an STDP-driven evolved network. The few observed
differences between the simulated networks and the C. elegans neuronal network may be due to one of these reasons.
In any case, the similarities between the two networks are striking considering the fact that such other complications
have not yet been included.
The method of motif analysis we used is based on the algorithm of Milo et al. [22], which is widely used in different

scenarios. Randomization is performed by rewiring connections. It features include: It keeps the number of incoming
edges, outgoing edges and mutual edges of each node fixed. Motifs are counted here on the basis of the number
of vertices they involve. So, for instance, triad 1 is a motif at the same level as, for instance, 7 because they both
involve 3 vertices. In particular, 1 is not counted as a submotif of 7 because 7 contains an edge that is absent in 1.
Conceptually, a problem with this approach is that such motif counts are not statistically independent. In particular,
keeping the counts for certain triads fixed may not be a good null model in statistical terms. A more principled
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FIG. 5: (color online) (a) The final distribution of peak synaptic conductances g. (b) The variation of the link numbers
of synapses whose peak conductance g is above 0.005nS or 0.295nS. The parameter values are the same as in the “basic
configuration” described in text.
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FIG. 6: (color online) Comparison of SPs for STDP-driven evolved networks and C. elegans neuronal network. (a) The SPs of
four different STDP-driven evolved networks with different configurations: (i) Basic configuration; (ii) Symmetric configuration;
(iii) HH model configuration; (iv) Large network configuration. (b) The SPs of C. elegans neuronal systems: (i) the subnetwork
of somatic interneurons, (ii) the somatic network, (iii) the whole neuronal network of the old wiring diagram in [12]. The
structure corresponding to each triad ID is shown in fig. 3.
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FIG. 7: Comparison of triad frequency spectra for STDP-driven evolved networks and C. elegans neuronal network: (a)
subnetwork of somatic interneurons in C. elegans, (b) somatic neuronal network in C. elegans, and STDP-driven evolved
networks of (c) “basic configurations”, (d) “large network configurations”, (e) “symmetric configurations”, and (f) “HH model
configurations”. The structure corresponding to each triad ID is shown in fig. 3.

approach is developed in [25, 26], based on correlations between edges, in such a manner that the motifs are arranged
in terms of the number of edges they contain, as opposed to the number of vertices involved. We cannot go into the
details, but the underlying rationale is that a network is characterized by the specific presence or absence of edges for
some fixed set of vertices, and null models therefore should be given in terms of correlations up to some given number
of edges. This, however, means that for instance, triad 1 becomes a submotif of 7 so that each occurrence of 7 also
counts as an occurrence of 1. So far, however, that approach has been developed only for undirected graphs. In any
case, when we base the comparison of SPs between our STDP-driven evolved artificial network and the C. elegans

neuronal network on that method, the similarities become much weaker. This may come about because by double
counting, the SP of triads will be perturbed if there are variations in the SPs of more complex triads. These triads
may be independent functional units when we start with a fully connected network and prune synapses according to
the STDP learning rule, as opposed to beginning with a completely unconnected set of vertices and incrementally
adding edges. It needs future work to explore this issue further.
The study suggests that the structure of a neuronal network is mostly determined by a correlation based learning

mechanism. In particular, this seems to be based on self-organization on the basis of a local rule as opposed to a
hard wired network scenario. The dynamical steady state reached also depends on the nature of the input supplied
to neurons. This work identifies the important factors that determine the structure of the network. The conclusions
might be useful in the choice of the neuronal substrate in large scale neural network simulations of the brain.



12

(a)

Traid ID

1 2 3 4 5 6 7 8 9 10 11 12 13

N
o

rm
al

iz
ed

 Z
-s

co
re

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

C. elegans
STDP with Td = 1~200 ms

STDP with Td = 1~20 ms

(b)

Triad ID

1 2 3 4 5 6 7 8 9 10 11 12 13

T
ri

ad
 S

u
b

g
ra

p
h

 C
o

u
n

t

0

200

400

600

800

1000

1200

1400
(c)

Triad ID

1 2 3 4 5 6 7 8 9 10 11 12 13

T
ri

ad
 S

u
b

g
ra

p
h

 C
o

u
n

t

0

2000

4000

6000

8000

10000

12000

14000

16000
C. elegans STDP with T d = 1~200 ms

Comparison of Significance Profiles

FIG. 8: (color online) Comparison of SPs and triad frequency spectra for the C. elegans interneuron subnetwork and STDP-
driven evolved networks with correlated stochastic inputs. The structure corresponding to each triad ID is shown in fig. 3.
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FIG. 9: (color online) The effect of input spike sequence period Tpattern on SPs of STDP-driven evolved networks with different
asymmetric parameter α of STDP rule: (a) α = 0.500, (b) α = 0.510, (c) α = 0.515. Different periods Tpattern studied are:
150ms, 1s, 2s, 5s and 9s. The structure corresponding to each triad ID is shown in fig. 3.
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FIG. 11: (color online) The SPs and the number of surviving links in networks, which receive input of spike trains mixed with
non-periodic Poisson spikes of different average firing rates: Case I, 13Hz stochastic Poisson processes & 37Hz periodic patterns
with α = 0.5; Case II, 25Hz stochastic Poisson processes and 25Hz periodic patterns with α = 0.5; Case III, 13Hz stochastic
Poisson processes & 37Hz periodic patterns with α = 0.55; and Case IV, 25Hz stochastic Poisson processes & 25Hz periodic
patterns with α = 0.55. The period of the input patterns is set to 150ms to save simulation time, while other parameters are
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SPs of networks with different α. (b) The evolution of each triad SP along with different α. The period of input patterns is
150ms, while the other parameters are as in the “basic configuration”. The structure corresponding to each triad ID is shown
in fig. 3.

FIG. 13: (color online) The influence of the maximum peak synaptic conductance gm in STDP rule on the SPs of evolved
networks. (a) The SPs of networks with different gm. (b) The evolution of each triad SP along with different gm. The period
of input patterns is 150ms, while the remaining parameters are as in the “basic configuration”. The structure corresponding
to each triad ID is shown in fig. 3.
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FIG. 14: (color online) The influence of synaptic time delay τd on the SPs of evolved networks. The period of input patterns
is 150ms, α = 0.55, while the other parameters are as in the “basic configuration”. The structure corresponding to each triad
ID is shown in fig. 3.
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