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Abstract

An error analysis is given for convolution quadratures based on strongly A-stable Runge-
Kutta methods, for the non-sectorial case of a convolution kernel with a Laplace transform
that is polynomially bounded in a half-plane. The order of approximation depends on the
classical order and stage order of the Runge-Kutta method and on the growth exponent of the
Laplace transform. Numerical experiments with convolution quadratures based on the Radau
IIA methods are given on an example of a time-domain boundary integral operator.

1 Introduction

The numerical approximation of convolutions

∫ t

0
k(t− τ) g(τ) dτ, t > 0, (1)

and of integral equations containing convolutions of this type is of interest in a variety of application
areas, and in particular in boundary integral equations of time-domain wave scattering problems.
Convolution quadrature methods based on numerical methods for ordinary differential equations,
such as multistep or Runge-Kutta methods, have proved very effective: they offer built-in stability,
they require only knowledge of the Laplace transformK(s) of the convolution kernel k(t) rather than
the kernel itself, and they yield accurate approximations also for singular or non-smooth kernels;
see the review [15], numerous references therein, and, e.g., the recent papers [2, 3, 8, 11, 18].

Numerical experiments show that Runge-Kutta based convolution quadrature methods often
outperform those based on multistep methods; see [2, 17], where numerical comparisons of con-
volution quadratures based on Radau IIA Runge-Kutta methods and on BDF multistep methods
are presented. In particular, when the Laplace transform is analytic and polynomially bounded
only in a half-space Re s ≥ σ, then one must resort to A-stable methods, which can have arbitrary
order in the case of Runge-Kutta methods, but which have at most order 2 in the case of multistep
methods by Dahlquist’s order barrier [6].

Most of the existing error analysis for convolution quadratures refers to methods based on
multistep methods [7, 12, 13, 14, 15]. For Runge-Kutta based convolution quadrature methods,
there is an error bound in [16] for the case of Laplace transforms that are analytic and bounded by a
negative power of |s| in a sector | arg s| ≤ π−ϕ with ϕ < π/2. No such sectorial assumption is made
in [5], where error bounds for the application of Runge-Kutta convolution quadrature methods for
Volterra convolution equations u(t) = u0 +

∫ t
0 a(t−τ)u(τ) dτ with a constant u0 are obtained. This

corresponds to a convolution (1) with a kernel whose Laplace transform is K(s) = (I − A(s))−1

and with the particular case g(τ) ≡ u0.
In this paper we give an error analysis of Runge-Kutta based convolution quadrature in the

general, non-sectorial case when the Laplace transform is analytic and polynomially bounded only
in a half-space Re s ≥ σ. This is the situation encountered in boundary integral equations for
acoustic, elastic or electro-magnetic wave problems.

In Section 2 we recall some properties of Runge-Kutta methods and turn to Runge-Kutta based
convolution quadrature in Section 3. The following Sections 4 and 5 develop the error analysis, first
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for decaying Laplace transforms, then for polynomially bounded Laplace transforms. The order of
approximation depends on the classical order p of the Runge-Kutta method, on the stage order q,
and on the growth exponent µ of the Laplace transform K(s). The paper concludes with numerical
experiments.

2 Runge-Kutta methods

An m-stage Runge-Kutta discretization of y′ = f(t, y), y(0) = y0, is given by

Yni = yn + h

m∑

j=1

aijf(tn + cjh, Ynj), i = 1, . . . ,m,

yn+1 = yn + h
m∑

j=1

bjf(tn + cjh, Ynj),

where h is the time-step, tn = nh, and the internal stages Yni and grid values yn are approximations
to y(tn + cih) and y(tn), respectively. In the following we will use the notation

A = (aij)
m
i,j=1, b = (b1, b2, . . . , bm)T , 1 = (1, 1, . . . , 1)T .

The Runge-Kutta method is said to be of (classical) order p and stage order q+ 1 if for sufficiently
smooth right-hand sides f

Y0i − y(cih) = O(hq+1), for i = 1, . . . ,m, and y1 − y(t1) = O(hp+1),

as h→ 0. The order and stage order are characterized in terms of the Runge-Kutta coefficients by
well-known order conditions (see [4, 9]), which in particular imply the following relation that will
be used later: for k = 1, . . . , p,

bT (I − zA)−1(kAck−1 − ck) = O(zp−k) as z → 0, (2)

where ck = (ck1, . . . , c
k
m)T . When the Runge-Kutta method is applied to y′ = λy, the numerical

solution is yn = R(hλ)ny0 with the stability function

R(z) = 1 + zbT (I − zA)−1
1,

which satisfies, for z → 0,
R(z) − ez = O(zp+1). (3)

We consider Runge-Kutta methods that are A-stable, that is, the stability function is bounded as

|R(z)| ≤ 1 for Re z ≤ 0, and I − zA is non-singular for Re z ≤ 0. (4)

We further require that the matrix A is non-singular and

|R(iω)| < 1 for all real ω 6= 0 and R(∞) = 0. (5)

All the above conditions are satisfied by Radau IIA methods (with order p = 2m−1 and stage order
q = m) and Lobatto IIIC methods (with p = 2m−2 and q = m−1). For these methods we have in
addition that (b1, . . . , bm) equals the last row of A, so that yn+1 = Ynm and bTA−1 = (0, . . . , 0, 1).

We end this preparatory section with recalling an explicit formula of the error of the Runge-
Kutta method when applied to y′ = λy + g with a polynomial function g.

Lemma 2.1. [16] The error at time tn of the Runge-Kutta method applied to y′ = λy+tl/l!, y(0) =
0 is given by

en = λ−l−1(R(hλ)n − enhλ) −

p∑

k=q+1

hk
n−1∑

ν=1

r
(k)
n−1−ν(hλ)λk−l−1

l−k∑

κ=0

(λtν)
κ

κ!
, (6)

with
r(k)
n (z) := R(z)nzbT (I − zA)−1δ(k) and δ(k) = Ack−1 − ck/k.
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3 Runge-Kutta based convolution quadrature

Let K(s) be analytic in the half-plane Re s ≥ σ and for some real exponent µ and constant M be
bounded by

|K(s)| ≤M |s|−µ for Re s ≥ σ. (7)

Let us for the moment assume that µ > 1. Then, the inverse Laplace transform

k(t) =
1

2πi

∫

σ+iR
eλtK(λ) dλ, t ≥ 0, (8)

defines a continuous, exponentially bounded function. We are interested in computing the convo-
lution of the kernel k with a continuous function g,

u(t) =
(
K(∂t)g

)
(t) :=

∫ t

0
k(t− τ) g(τ) dτ, t ≥ 0. (9)

The motivation for the notation K(∂t)g comes from identities of the type (∂−1
t g)(t) =

∫ t
0 g(τ)dτ

and K2(∂t)K1(∂t)g = (K2K1)(∂t)g. Substituting (8) into the convolution (9) and interchanging
integrals we obtain

u(t) =
1

2πi

∫

σ+iR
K(λ) yλ(t) dλ, (10)

where yλ(t) =
∫ t
0 e

λ(t−τ)g(τ)dτ is the solution of the initial value problem

y′ = λy + g, y(0) = 0. (11)

For µ ≤ 1, we instead consider Kr(s) := K(s)/sr with r + µ > 1 and define, for sufficiently
differentiable functions g,

u(t) =
(
K(∂t)g

)
(t) :=

(
d

dt

)r (
Kr(∂t)g

)
(t) =

(
d

dt

)r ∫ t

0
kr(τ) g(t− τ) dτ, t > 0,

with kr(t) = 1
2πi

∫
σ+iR e

λtKr(λ) dλ. An easy calculation using partial integration shows that for
µ ∈ (0, 1] formula (10) still remains valid.

Discretizing (11) with the Runge-Kutta method and substituting the result into (10), we obtain
the Runge-Kutta based convolution quadrature approximation of (9), as introduced in [16]. There
it is shown that for a Runge-Kutta method with R(∞) = 0, the approximation at time t = (n+1)h
obtained in this way is given by

un+1 = bTA−1h
n∑

ν=0

Wn−ν(K)Gν , (12)

where Gn = (g(tn + cih))
m
i=1 and the m ×m matrix Wn(K) is given as the nth coefficient of the

generating function

h

∞∑

n=0

Wn(K)ζn = K

(
∆(ζ)

h

)
, (13)

with

∆(ζ) =

(
A+

ζ

1 − ζ
1bT

)−1

.

The stage approximation Uni ≈ u(tn + cih) is given by the vector Un = (Uni)
m
i=1 via

Un =
(
K(∂t

h)g
)
n

:= h
n∑

ν=0

Wn−ν(K)Gν . (14)
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Note that the composition rule (K2K1)(∂t)g = K2(∂t)K1(∂t)g still holds for the stage approxima-
tion:

(K2K1)(∂t
h)g = K2(∂t

h)K1(∂t
h)g.

With this notation, (12) simplifies to

un+1 = bTA−1
(
K(∂t

h)g
)
n
.

We have derived the above discrete convolutions via formula (10) which does not hold for µ ≤ 0
even if we assume that higher-order derivatives of g are zero at t = 0. Nevertheless, the discrete
convolutions (12) and (14) still make sense for µ ≤ 0 and we will prove that they give a convergent
approximation to the continuous convolution. We first derive uniform error estimates for the case
µ > 0 and afterwards give ℓ2 estimates of the error that hold for the whole range µ ∈ R.

4 ℓ∞ error bound for µ > 0

In [16] an error bound of Runge-Kutta based convolution quadrature methods was given for the
case of sectorial Laplace transforms, for which a bound (7) holds not only in a half-plane, but in
a larger sector | arg s| ≤ π − ϕ with ϕ < π/2. The following result extends the error bound to the
non-sectorial case (7). Surprisingly, there is no order reduction compared to the sectorial case: the
order is min(p, q + 1 + µ) when the convolution quadrature is applied to smooth functions g that
have sufficiently many vanishing derivatives at 0.

Theorem 4.1. Let K(s) be analytic for Re s ≥ σ and bounded as in (7), with µ > 0. Let g ∈
Cp[0, T ]. Consider a Runge-Kutta method of order p and stage order q that is A-stable and satisfies
the additional condition (5). Then, there exist h0 > 0 such that, for 0 < h ≤ h0 and nh ≤ T , the
error of the convolution quadrature (12) is bounded as

|un − u(tn)| ≤ C

q∑

l=0

hmin(p,l+µ)|g(l)(0)| + Chmin(p,q+1+µ)




p−1∑

l=q+1

|g(l)(0)| + max
0≤τ≤tn

|g(p)(τ)|


 .

The constants C and h0 depend only on the Runge-Kutta method, on the constants M and σ in
(7), and on T . In case that p = l + µ for some l = 0, . . . , q + 1, then the corresponding factor
hmin(p,l+µ) must be replaced by hp| log h|. An analogous error bound holds for the internal stages
with p replaced by min(q + 1, p).

Proof. As in [16] we first prove the result for the case g(t) is a polynomial of degree at most p− 1;
cf. [16, Lemma 5.1]. The general case then follows by applying this result to the Peano kernel
representation of the remainder in the Taylor expansion of g at 0; for details of this step in the
proof see [16, Lemma 5.2].

The convolution quadrature error is

un − u(tn) =

∫

σ+iR
K(λ) en(h, λ) dλ

where en(h, λ) is the error at time tn of the Runge-Kutta method when applied to y′ = λy +
g(t), y(0) = 0. For g(t) = tl/l!, this error is given explicitly by Lemma 2.1. We investigate the two
terms in this error separately.

Let us write λ = σ+iω with fixed σ > 0 and note that |enhλ| = eσnh, and under our assumptions
on the stability function, |R(hλ)n| ≤ ecσnh for an arbitrary constant c > 1, provided that h is
sufficiently small. For the remainder of the proof C will denote a generic constant that is allowed
to depend on T via a factor ecσT or a power of T .
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(a) We show that

∣∣∣∣
∫

σ+iR
K(λ)λ−l−1(R(hλ)n − enhλ) dλ

∣∣∣∣ =





O(hp), l + µ > p
O(hp| log h|), l + µ = p
O(hl+µ), l + µ < p.

(15)

(i) |λh| ≤ 1: From the approximation property (3) we have that for nh ≤ T ,

|R(hλ)n − enhλ| ≤ C(λh)p

and hence
∣∣∣∣∣

∫

σ+i[−1/h,1/h]
K(λ)λ−l−1(R(hλ)n − enhλ)dλ

∣∣∣∣∣ ≤ Chp

∫

σ+i[−1/h,1/h]
|λ|p−µ−l−1|dλ|,

which is bounded by the right-hand side of (15).
(ii) |λh| ≥ 1: We now use the uniform boundedness of |R(hλ)n| and |enhλ| for nh ≤ T on the

integration contour to show that
∣∣∣∣∣

∫

σ+iR\[−1/h,1/h]
K(λ)λ−l−1(R(hλ)n − enhλ)dλ

∣∣∣∣∣ ≤ C

∫

σ+iR\[−1/h,1/h]
|λ|−µ−l−1|dλ| ≤ Chµ+l.

(b) Next, we prove

∣∣∣∣∣∣

p∑

k=q+1

hk

∫

Re λ=σ
K(λ)

n−1∑

ν=0

r
(k)
n−1−ν(hλ)λk−l−1

l−k∑

κ=0

(λtν)
κ

κ!
dλ

∣∣∣∣∣∣
=





O(hp), q + 1 + µ > p
O(hp| log h|), q + 1 + µ = p
O(hq+1+µ), q + 1 + µ < p.

(16)
(i) We first consider the part of the integral with |λh| ≤ 1. We write again z = hλ. Below we

will repeatedly require the following consequence of (3) and (5):

|z|

|1 −R(z)|
≤ Const., for |z| ≤ 1, Re z = hσ. (17)

We define

f (k)
n (z) :=

n∑

ν=0

R(z)−ννk

and prove that

|zR(z)nf (k)
n (z)| ≤ Ck (n+ |z|−1)k echσn for |z| ≤ 1, Re z = hσ. (18)

First, notice that

df
(k)
n

dz
(z) = −R′(z)

n∑

ν=0

R(z)−ν−1νk+1 = −
R′(z)

R(z)
f (k+1)

n (z),

therefore

f (k+1)
n (z) = −

R(z)

R′(z)

df
(k)
n

dz
(z).

Next, note that

f (0)
n (z) =

1 −R(z)−n−1

1 −R(z)−1
=
R(z) −R(z)−n

R(z) − 1

and hence

|zR(z)nf (0)
n (z)| ≤ |R(z)n+1 − 1|

|z|

|1 −R(z)|
≤ C0 e

chσn.
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Hence the bound (18) holds for f
(0)
n . Next,

f (1)
n (z) = −

R(z)

R′(z)

df
(0)
n

dz
(z) = −

R(z) + nR(z)−n

R(z) − 1
+
R(z)2 −R(z)−n+1

(R(z) − 1)2
.

Hence,
|zR(z)nf (1)

n (z)| ≤ C1 (n+ |z|−1)echσn,

where in the last step we have again used (17). Continuing, it is seen that |zR(z)n−1f
(1)
n (z)| is

bounded by a sum of terms of the form ni|z|−j with i + j = k, from which the required result
follows.

With the above notation, the second expression in the error formula (6) can be rewritten, with
z = hλ,

ẽn = hl+1
p∑

k=q+1

bT (I − zA)−1δ(k)zk−l−1
l−k∑

κ=0

zκ

κ!
· zR(z)n−1f

(κ)
n−1(z).

With the bounds (2) and (18) we thus obtain, for l ≥ q+1 and |z| ≤ 1 with Re z = hσ and nh ≤ T ,

|ẽn| ≤ C hl+1
p∑

k=q+1

|z|p−k|z|k−l−1
l−k∑

κ=0

|z|κ(n+ |z|−1)κ

≤ C hp|λ|p−l−1 (1 + nh|λ|)l−q−1 ≤ C hp|λp−q−2|.

With this estimate, it follows that the integral of ẽn(h, λ) over the segment Reλ = σ, |Imλ| ≤ 1/h
is bounded by

Chp

∫

Re λ=σ,|λ|≤1/h
|λ|−µ · |λ|p−q−2 |dλ| =





O(hp), q + 1 + µ > p
O(hp| log h|), q + 1 + µ = p
O(hq+1+µ), q + 1 + µ < p.

(ii) For the part of the integral with |hλ| = |z| ≥ 1, we use |R(z)| ≤ ρ < 1 to estimate

|R(z)nf (k)
n (z)| ≤ Ck n

k for |z| ≥ 1, Re z = hσ. (19)

We then obtain the bound, for nh ≤ T ,

|ẽn| ≤ Chl+1
p∑

k=q+1

|z|k−l−1
l−1∑

κ=0

|z|κ nκ ≤ Chq+1|λ|−1.

The corresponding part of the integral is thus bounded by

Chq+1

∫

Re λ=σ,|λ|≥1/h
|λ|−µ · |λ|−1 |dλ| = O(hq+1+µ).

This completes the proof of (16) and thus of the desired bound of |un − u(tn)| for g(t) = tl/l!.
As mentioned in the beginning of the proof, the error bound for general smooth functions g then
follows with the Peano kernel argument of [16]. We omit the proof of the error bound for the
internal stages, which is similar.

5 ℓ2 error bound for µ ≤ 0

To obtain ℓ2 error bounds, we will need to bound

K

(
∆(ζ)

h

)
=

1

2πi

∮

Γ
K(z/h) (zI − ∆(ζ))−1 dz for |ζ| ≤ e−heσ,

where the contour Γ encloses the eigenvalues of ∆(ζ). This task is facilitated by the following result
proved in [16].
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Lemma 5.1. We have

(zI − ∆(ζ))−1 = A(zA− I)−1 −
ζ

1 −R(z)ζ
(I − zA)−1

1bT (I − zA)−1.

Lemma 5.2. Assuming (7) with µ ≤ 0 and under the assumptions of Theorem 4.1 on the Runge-
Kutta method, we have that for every σ̃ > σ, there exists h0 > 0 such that for 0 < h ≤ h0, the
eigenvalues of ∆(ζ) lie in the half-plane Re z ≥ hσ for |ζ| ≤ e−heσ and

sup
|ζ|≤e−heσ

∥∥∥∥K
(

∆(ζ)

h

)∥∥∥∥ ≤ CM hµ.

The constant C depends only on the Runge-Kutta method.

Proof. We fix ζ with |ζ| ≤ e−heσ. Using the Cauchy representation formula and Lemma 5.1, we
have that

K

(
∆(ζ)

h

)
=

1

2πi

∮

Γ
K(z/h)A(zA− I)−1dz

−
1

2πi

∮

Γ
K(z/h)

ζ

1 −R(z)ζ
(I − zA)−1

1bT (I − zA)−1dz.

(20)

The contour Γ is chosen to enclose all the singularities of both integrands. We will see in a moment
that the singularities all have real part greater than hσ, so that K(z/h) is defined on the contour
and satisfies the bound (7). For the first integral we can deform the contour to a contour Γ1

that encloses the eigenvalues of A−1, all of which have positive real part by the assumption (4) of
A-stability. We then bound, using (7),

∣∣∣
1

2πi

∮

Γ1

K(z/h)A(zA− I)−1dz
∣∣∣ ≤

1

2π

∮

Γ1

M |z/h|−µ ‖(zI −A−1)−1‖ |dz| ≤ CM hµ.

The second integrand in (20) has singularities at the eigenvalues of A−1 and in addition at points
where R(z) = ζ−1. We consider a contour Γ(r) that is composed of a circular arc |z| = r, Re z ≥ hσ
and a vertical line segment Re z = hσ, |z| ≤ r. We arbitrarily fix small ρ > 0 and δ > 0 and note
that by condition (5), there exists r > 0 such that Γ(r) encloses all points z with |1 − R(z)ζ| ≤ δ
for |ζ − 1| > ρ. For such ζ, we can estimate the second contour integral in (20) over Γ(r) as before
to obtain that it is bounded by CMhµ.

It remains to consider ζ near 1. Since R(0) = 1 and R′(0) = 1, the implicit function theorem
yields that for ζ near 1, there is a unique solution w(ζ) to

R(w(ζ)) = ζ−1, w(1) = 0.

We also note w′(1) = −1, so that for sufficiently small h we have Rew(ζ) ≥ hσ if |ζ| ≤ e−heσ and
|ζ−1| ≤ ρ. We can then split the second integral in (20) into the contribution from the pole at w(ζ)
and the remaining integral over the contour Γ1 in the right half-plane that encloses the eigenvalues
of A−1 and is bounded away from the origin. The latter integral is bounded by CMhµ by the same
argument as before. The contribution from the pole at w(ζ) is

−
1

R′(z)
K(z/h)(I − zA)−1

1bT (I − zA)−1
∣∣∣
z=w(ζ)

,

which is again bounded by CMhµ.

We now give estimates for the ℓ2 error that are valid for µ ≤ 0.
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Theorem 5.3. Assume (7), with µ ≤ 0, and let g(0) = g′(0) = · · · = g(r)(0) = 0 for r such that
r + µ > 0. Then, under the conditions of Theorem 4.1 on the Runge-Kutta method and assuming
p ≥ q + 1, there exists h0 > 0 such that for all 0 < h < h0 and Nh ≤ T ,

(
h

N∑

n=0

|un − u(tn)|2
)1/2

≤ C

q∑

l=0

hmin(q+1+µ,l+r+µ)|g(l+r)(0)| + Chq+1+µ max
0≤τ≤T

|g(q+1+r)(τ)|.

The constants C and h0 depend only on the Runge-Kutta method, on the constants M and σ in
(7), and on T .

Proof. We first write the error e as a sum of two terms each of which we will estimate separately:

e := K(∂t)g − bTA−1K(∂t
h)g = e1 + e2

with

e1 := Kr(∂t)g
(r) − bTA−1Kr(∂t

h)g(r), e2 := bTA−1Kr(∂t
h)g(r) − bTA−1K(∂t

h)g,

where again Kr(s) = K(s)/sr.
Theorem 4.1 can be applied to bound the error e1 since |Kr(s)| ≤ C|s|−µ−r and r was chosen

such that r + µ > 0.
To estimate e2 we will first need to rewrite Kr(∂t

h)g(r). By the composition rule,

Kr(∂t
h)g(r) = K(∂t

h)(∂t
h)−rg(r).

Therefore

e2(tn+1) = bTA−1h
n∑

ν=0

Wn−ν(K)

(
h

ν∑

l=0

Wν−l(s
−r)G

(r)
l −Gν

)
.

The term in brackets is just the stage error of the Runge-Kutta method applied to the rth-order
differential equation y(r) = g(r) with zero initial values. It is bounded by

Eν =

ν∑

l=0

Wν−l(s
−r)G

(r)
l −Gν = O(hq+1).

Using Parseval’s formula recalling (13) and applying the estimate of Lemma 5.2, we obtain

(
h

N∑

n=0

|e2(tn+1)|
2

)1/2

≤ eeσT sup
|ζ|≤e−heσ

∥∥∥∥K
(

∆(ζ)

h

)∥∥∥∥

(
h

N∑

n=0

|En|
2

)1/2

= O(hq+1+µ)

and the proof is complete.

6 Numerical examples

6.1 A scalar example

Let us consider the case

Kµ(s) =
s−µ

1 − e−s
.

Clearly, K(s) is analytic in the right half-plane and bounded as |K(s)| ≤ C|s|−µ for Re s ≥ σ > 0.
The exact solution is

Kµ(∂t)g =
∞∑

j=0

(∂−µ
t g)(t− j),
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where (∂−µ
t g)(t) =

∫ t
0 (t− τ)µ−1/Γ(µ) g(τ) dτ for µ > 0, and ∂−µ

t g = ∂r
t (∂

−µ−r
t g) with r+ µ > 0 for

µ ≤ 0.
We approximate this convolution by the convolution quadrature based on the 3-stage Radau

IIA method (stage order q = 3) with

g(t) = e−0.4t sin6 t, t ≥ 0.

In the following table we show the relative ℓ2 error up to T = 2 divided by h4+µ. Since for fractional
µ we cannot easily obtain the analytical solution, instead of the exact solution we have used the
numerical solution with N = 210.

N µ = 1 µ = 1/2 µ = −1/2 µ = −1

2 0.00 0.02 0.27 0.76
4 0.04 0.04 0.18 0.68
8 0.05 0.06 0.15 0.75
16 0.05 0.04 0.19 0.80
32 0.04 0.03 0.20 0.81
64 0.04 0.02 0.20 0.81
128 0.04 0.03 0.20 0.81

These results confirm that the convergence rates we have proved are also optimal.

6.2 An operator example

Let Ω be a bounded subdomain of R
3 with boundary Γ. The single layer boundary integral potential

for the equation −∆û+ s2û = 0 is given by

S(s)ϕ(x) :=

∫

Γ

e−s|x−y|

4π|x− y|
ϕ(y)dΓy, x ∈ Ω.

Its restriction to the boundary we denote by

V (s)ϕ(x) :=

∫

Γ

e−s|x−y|

4π|x− y|
ϕ(y)dΓy, x ∈ Γ.

In [1] it is shown that the operator V (s) is invertible for Re s > 0 and that its inverse is bounded
as

‖V −1(s)‖H1/2(Γ)→H−1/2(Γ)C(σ)
|s|2

Re s
for Re s ≥ σ > 0. (21)

Given g(·, t) ∈ H1/2(Γ), let
ψ = V −1(∂t)g. (22)

Then u = S(∂t)ψ satisfies the wave equation

∂2
t u(x, t) = ∆u(x, t), (x, t) ∈ Ω± × [0, T ],

u(x, 0) = ∂tu(x, 0) = 0, x ∈ Ω±,

u(x, t) = g(x, t), (x, t) ∈ Γ × [0, T ]

both in the interior Ω− = Ω and the exterior Ω+ = R
3 \ Ω domain.

For the special case g(x, t) = g(t) and Γ = S
2 the unit sphere, it turns out that ψ = K(∂t)g

with K(s) = 2s/(1 − e−2s), and hence a convergence rate O(hq) of a Runge-Kutta convolution
quadrature of (22) is obtained; this example was the motivation behind the set of experiments in
Section 6.1.
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N 5 10 15 20 30

eN 8.7 × 10−2 1.6 × 10−2 4.5 × 10−3 1.9 × 10−3 5.7 × 10−4

order – 2.5 3.1 3.0 3.0

Table 1: Convergence of the 3-stage Radau IIA convolution quadrature of a time-domain boundary integral
operator.

In the general case, however, the bound in (21) suggests a convergence rate O(hq−1). We have
performed numerical experiments with the right-hand side

g(x, t) = cos

(
1

2
π(t− α · x)

)
e
−

“
t−α·x−4

√

2

”
2

, α = (1, 0, 0)T ,

a non-convex domain Ω defined in [2], and a time interval of length T = 6. We have used a
piecewise-constant Galerkin discretization in space, with 1.4× 104 triangular panels discretizing Γ.
All the computations have been done with the techniques described in [2]. Since no analytic solution
is known we have estimated the error by

eN =


h

N∑

j=0

‖ψN (tj) − ψ2N (tj)‖
2
H−1/2(Γ)




1/2

,

where ψN is the discrete solution obtained by convolution quadrature with time-step h = T/N ,
i.e., we have compared the numerical solution with the numerical solution obtained with the time-
step halved. In order to make sure that the space discretization is not significantly affecting the
results, we have computed eN for N = 20 with a finer space discretization of 2.3× 104 panels; this
computation gave the same result up to two digits accuracy.

The results of these numerical experiments, as documented in Table 1, suggest a convergence
order O(h3) when computing (22) using the 3-stage Radau IIA method. The 3-stage Radau IIA
method being of stage order q = 3, this is one order better than our present theory is able to
predict.

This final experiment suggests that it is also of interest to consider a class of operators bounded
as

|K(s)| ≤M
|s|−µ

(Re s)ν
, Re s > σ. (23)

All standard boundary integral operators and operators related to transmission problems, BEM-
FEM coupling, etc., see [11], satisfy bounds of this more general form. Our present analysis does
not give more favourable estimates for this class of operators when ν > 0.
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