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Abstract

An error analysis is given for convolution quadratures based on strongly A-stable Runge-
Kutta methods, for the non-sectorial case of a convolution kernel with a Laplace transform
that is polynomially bounded in a half-plane. The order of approximation depends on the
classical order and stage order of the Runge-Kutta method and on the growth exponent of the
Laplace transform. Numerical experiments with convolution quadratures based on the Radau
ITA methods are given on an example of a time-domain boundary integral operator.

1 Introduction

The numerical approximation of convolutions

/Ot k(t —7)g(T)dr, t>0, (1)

and of integral equations containing convolutions of this type is of interest in a variety of application
areas, and in particular in boundary integral equations of time-domain wave scattering problems.
Convolution quadrature methods based on numerical methods for ordinary differential equations,
such as multistep or Runge-Kutta methods, have proved very effective: they offer built-in stability,
they require only knowledge of the Laplace transform K (s) of the convolution kernel k() rather than
the kernel itself, and they yield accurate approximations also for singular or non-smooth kernels;
see the review [15], numerous references therein, and, e.g., the recent papers [2, 3, 8, 11, 18].

Numerical experiments show that Runge-Kutta based convolution quadrature methods often
outperform those based on multistep methods; see [2, 17], where numerical comparisons of con-
volution quadratures based on Radau IIA Runge-Kutta methods and on BDF multistep methods
are presented. In particular, when the Laplace transform is analytic and polynomially bounded
only in a half-space Re s > ¢, then one must resort to A-stable methods, which can have arbitrary
order in the case of Runge-Kutta methods, but which have at most order 2 in the case of multistep
methods by Dahlquist’s order barrier [6].

Most of the existing error analysis for convolution quadratures refers to methods based on
multistep methods [7, 12, 13, 14, 15]. For Runge-Kutta based convolution quadrature methods,
there is an error bound in [16] for the case of Laplace transforms that are analytic and bounded by a
negative power of |s| in a sector | arg s| < m—¢ with ¢ < 7/2. No such sectorial assumption is made
in [5], where error bounds for the application of Runge-Kutta convolution quadrature methods for
Volterra convolution equations u(t) = ug+ fot a(t—7)u(7) dr with a constant ug are obtained. This
corresponds to a convolution (1) with a kernel whose Laplace transform is K(s) = (I — A(s))™!
and with the particular case g(7) = wo.

In this paper we give an error analysis of Runge-Kutta based convolution quadrature in the
general, non-sectorial case when the Laplace transform is analytic and polynomially bounded only
in a half-space Res > ¢. This is the situation encountered in boundary integral equations for
acoustic, elastic or electro-magnetic wave problems.

In Section 2 we recall some properties of Runge-Kutta methods and turn to Runge-Kutta based
convolution quadrature in Section 3. The following Sections 4 and 5 develop the error analysis, first



for decaying Laplace transforms, then for polynomially bounded Laplace transforms. The order of
approximation depends on the classical order p of the Runge-Kutta method, on the stage order ¢,
and on the growth exponent u of the Laplace transform K (s). The paper concludes with numerical
experiments.

2 Runge-Kutta methods

An m-stage Runge-Kutta discretization of y' = f(¢,y), y(0) = yo, is given by

m
Ym‘:yn+hzaijf(tn+cjhvynj)v i=1,...,m,
=1

m
Ynt1 = Yn +h Y b ftn + cjh, Yaj),
j=1
where h is the time-step, t,, = nh, and the internal stages Y,,; and grid values y,, are approximations

to y(tn + ¢;h) and y(t,), respectively. In the following we will use the notation

A= (aij)?szl, b= (bl,bg,...,bm)T, 1= (1,1,...,1)T.

The Runge-Kutta method is said to be of (classical) order p and stage order ¢+ 1 if for sufficiently
smooth right-hand sides f

Yoi — y(cih) = O(hT™), fori=1,...,m, and y; —y(t1) = O(h*1),

as h — 0. The order and stage order are characterized in terms of the Runge-Kutta coefficients by
well-known order conditions (see [4, 9]), which in particular imply the following relation that will
be used later: for k=1,...,p,

bI(I — 2zA) L (KAF™ = F) = 0(2P7F)  as 2 —0, (2)
where ¢ = (¢¥,...,c%)T. When the Runge-Kutta method is applied to ¥ = Ay, the numerical
solution is y, = R(h\)"yp with the stability function

R(z) =14 20T (I — zA)7'1,
which satisfies, for z — 0,
R(z) —e* = O(zP1). (3)
We consider Runge-Kutta methods that are A-stable, that is, the stability function is bounded as
|R(z)] <1 for Rez <0, and I — zA is non-singular for Re z < 0. (4)
We further require that the matrix A is non-singular and
|R(iw)| <1 forall real w# 0 and R(co) =0. (5)

All the above conditions are satisfied by Radau ITA methods (with order p = 2m—1 and stage order
g = m) and Lobatto ITIC methods (with p = 2m —2 and ¢ = m —1). For these methods we have in
addition that (by,...,b,,) equals the last row of A, so that y,41 = Y, and b7 A~ = (0,...,0,1).

We end this preparatory section with recalling an explicit formula of the error of the Runge-
Kutta method when applied to ¥’ = Ay + ¢g with a polynomial function g.

Lemma 2.1. [16] The error at time t,, of the Runge-Kutta method applied to y' = \y+t'/1!, y(0) =
0 is given by

P n—1 -k

Aty)"

en = AN RN — e = hk§:7ﬁﬂkw(hmxk4—l§:<ﬁf, (6)
k=¢+1 v=1 k=0 '

with
r)(z) = R(2)"2bT (I — 2zA)~1%6™)  and 6% = Ak — F k.



3 Runge-Kutta based convolution quadrature

Let K (s) be analytic in the half-plane Re s > ¢ and for some real exponent p and constant M be
bounded by
|K(s)] < M|s|™* for Res > o. (7)

Let us for the moment assume that > 1. Then, the inverse Laplace transform

k() = / MM, tz0 (8)

~ 2mi
defines a continuous, exponentially bounded function. We are interested in computing the convo-
lution of the kernel k with a continuous function g,

u(t) = (K(0)g)(t) == /0 k(t —71)g(7)dr, t>0. 9)

The motivation for the notation K (8;)g comes from identities of the type (8; 'g)(t) = fgg(T)dT
and Ko(0y)K1(0t)g = (K2K1)(0¢)g. Substituting (8) into the convolution (9) and interchanging

integrals we obtain

uh) =g [ KOmoar (10)

where y)(t) = fg e*Mt=")g(7)dr is the solution of the initial value problem

Y =Xy+g, y(0)=0. (11)

For ;1 < 1, we instead consider K,(s) := K(s)/s" with r + u > 1 and define, for sufficiently
differentiable functions g,

) = (K@) 0= () (@0 = (4) [ bege-nan >0

with k,(t) = 2= [, LR eMK,.(\)d\. An easy calculation using partial integration shows that for
p € (0,1] formula (10) still remains valid.

Discretizing (11) with the Runge-Kutta method and substituting the result into (10), we obtain
the Runge-Kutta based convolution quadrature approximation of (9), as introduced in [16]. There
it is shown that for a Runge-Kutta method with R(co) = 0, the approximation at time ¢t = (n+1)h

obtained in this way is given by

Unp1 =bTATIRY W, (K)G,, (12)

v=0

where G,, = (g(tn + ¢ih))™, and the m x m matrix W, (K) is given as the nth coefficient of the
generating function

h;)wn(f()g" =K (A}(LO> : (13)
with
A(¢) = (A + Clle> - .
1-¢
The stage approximation Uy; ~ u(t, + ¢;h) is given by the vector U, = (Up;), via
Un = (K(8/)9), = b’ War oK) (14
v=0



Note that the composition rule (K9K1)(0:)g = K2(0;)K1(0;)g still holds for the stage approxima-
tion:
(K2K1)(9")g = K2(3,") K1(9")g.

With this notation, (12) simplifies to

Uppy = bTA! (K(@h)g)n
We have derived the above discrete convolutions via formula (10) which does not hold for © <0
even if we assume that higher-order derivatives of g are zero at t = 0. Nevertheless, the discrete
convolutions (12) and (14) still make sense for 1 < 0 and we will prove that they give a convergent
approximation to the continuous convolution. We first derive uniform error estimates for the case
p > 0 and afterwards give £? estimates of the error that hold for the whole range i € R.

4 (> error bound for p >0

In [16] an error bound of Runge-Kutta based convolution quadrature methods was given for the
case of sectorial Laplace transforms, for which a bound (7) holds not only in a half-plane, but in
a larger sector |args| < m — ¢ with ¢ < 7/2. The following result extends the error bound to the
non-sectorial case (7). Surprisingly, there is no order reduction compared to the sectorial case: the
order is min(p, g + 1 + p) when the convolution quadrature is applied to smooth functions g that
have sufficiently many vanishing derivatives at 0.

Theorem 4.1. Let K(s) be analytic for Res > o and bounded as in (7), with p > 0. Let g €
CP[0,T]. Consider a Runge-Kutta method of order p and stage order q that is A-stable and satisfies
the additional condition (5). Then, there exist hg > 0 such that, for 0 < h < hy and nh < T, the
error of the convolution quadrature (12) is bounded as

q p—1
_ < min(p,l+p) | (1) min(p,g+144) ) (p)
|, U(tn)l_C;Oh 19" (0)] + Ch IEHIQ (0)!+Og;a§>§nlg (7]
f— :q

The constants C' and hg depend only on the Runge-Kutta method, on the constants M and o in
(7), and on T. In case that p = 1 + p for some | = 0,...,q + 1, then the corresponding factor
ROInPIHL) st be replaced by hP|logh|. An analogous error bound holds for the internal stages
with p replaced by min(q + 1, p).

Proof. As in [16] we first prove the result for the case g(t) is a polynomial of degree at most p — 1;
cf. [16, Lemma 5.1]. The general case then follows by applying this result to the Peano kernel
representation of the remainder in the Taylor expansion of g at 0; for details of this step in the
proof see [16, Lemma 5.2].

The convolution quadrature error is

Up — u(ty) = K(\) ep(h,\)dA
o+iR

where e, (h,\) is the error at time ¢, of the Runge-Kutta method when applied to ¥’ = Ay +
g(t), y(0) = 0. For g(t) = t'/I!, this error is given explicitly by Lemma 2.1. We investigate the two
terms in this error separately.

Let us write A = o +iw with fixed o > 0 and note that |e"**| = ¢?™  and under our assumptions
on the stability function, |[R(hA)"| < e“™" for an arbitrary constant ¢ > 1, provided that A is
sufficiently small. For the remainder of the proof C' will denote a generic constant that is allowed
to depend on T via a factor e’ or a power of 7.



(a) We show that

O(h?), l+p>p
KA YR — ) d)\’ =< O(h?|loghl|), I+p=p

o+iR

(i) [AR] < 1: From the approximation property (3) we have that for nh < T,
|R(hRA)™ — ™| < C'(Ah)P

and hence

/ KA YR — ™) dA
o+i[—1/h,1/h]

which is bounded by the right-hand side of (15).

O(hi+H), I +p<p.

<o / AP A,
oi[—1/h,1 /]

(ii) |]\h| > 1: We now use the uniform boundedness of |[R(h)\)"| and |e™| for nh < T on the

integration contour to show that

KA L R(AA)™ — ™) dA

/aJri]R\[l /h,1/h] oHR\[—1/h,1/h]

(b) Next, we prove

<C AT AN < CRrtH

O(hP), g+1+pu>p

Z hk/ KN ri) (hyak-t IZ At” A28 { O(hP|loghl), ¢+1+p=p

k=q+1 JReA=c v=0

O(ReHH1), g+ 1+u<p.

(16)

(i) We first consider the part of the integral with |[Ah| < 1. We write again z = h\. Below we

will repeatedly require the following consequence of (3) and (5):

|

1 - R(z)]

< Const., for |z| <1, Rez = ho.

We define

and prove that
|ZR(2)"f¥)(2)] < C (n+ |z|7H*e™  for |z| <1, Rez = ho.
First, notice that

df e Y R(z
() = RO YR <

FE(2),

therefore

7(Lk+1) (Z) _ R(Z) dfék)

Next, note that
1-R(z)™ '  R(z)— R(z)™"

(0) — _
TG = TR R(z) -1
and hence ¥
n £(0) < n+l Z < chon
2R 10 ()] < IR = 1 < Coe

(17)

(18)



Hence the bound (18) holds for f7(LO). Next,

~ R(2) df

R(z) + nR(z)™™ N R(2)? — R(z)~"*!
R(z) -1 (R(z) —1)?

Hence,
|ZR(Z)nf7(Ll) (Z)| <Cy (n + ’Z|_1)60h0n’

where in the last step we have again used (17). Continuing, it is seen that ]zR(z)”*lfél)(z)\ is
bounded by a sum of terms of the form ni|z|~7 with i + j = k, from which the required result
follows.

With the above notation, the second expression in the error formula (6) can be rewritten, with
z=hA,

D -k .
G0 = WY BT - 2 A) WAy % 2R(z2)"H ().
k=q+1 k=0
With the bounds (2) and (18) we thus obtain, for [ > ¢+1 and |z| < 1 with Rez = ho and nh < T,

p -k
jenl < CRFE YT PR Y e (a2
k=q+1 k=0

< CRPIAPEL (14 nh|A) L < O RP|APTI72),
With this estimate, it follows that the integral of €,(h, A) over the segment Re A = o, [Im A| < 1/h
is bounded by

O(h?), g+1+p>p
C’hp/ A 7H - APT2 1N = ¢ O(hP|logh|), q+14+pu=p
Re A=0,|A[<1/h O(het1Hm), g+ 1+p<p.

(ii) For the part of the integral with |hA| = |z| > 1, we use |R(z)| < p < 1 to estimate
|R(2)"f ) (2)] < CpnF for |z| > 1, Rez = ho. (19)

We then obtain the bound, for nh < T,

p -1
Gl < CHIFE ST 2fFY D2 et < ORI
k=q+1 k=0

The corresponding part of the integral is thus bounded by

Chq+1/ IAT# - (AT [N = O(RITITR),
ReA=a,|A\[>1/h

This completes the proof of (16) and thus of the desired bound of |u, — u(t,)| for g(t) = t'/1!.
As mentioned in the beginning of the proof, the error bound for general smooth functions g then
follows with the Peano kernel argument of [16]. We omit the proof of the error bound for the
internal stages, which is similar. O

5 (% error bound for i <0

To obtain ¢2 error bounds, we will need to bound

" <A’(LO> - % f[} K(z/h) (zI = A(¢)) " dz  for [¢| < e,

where the contour I" encloses the eigenvalues of A(¢). This task is facilitated by the following result
proved in [16].



Lemma 5.1. We have

_ 1 A(A— )L — ¢ AT — 1AL
(1= A = AGA = 1) = (T = 24) V(T = 24)

Lemma 5.2. Assuming (7) with p < 0 and under the assumptions of Theorem 4.1 on the Runge-
Kutta method, we have that for every o > o, there exists hg >0 such that for 0 < h < hg, the
eigenvalues of A(C) lie in the half-plane Rez > ho for || < e~ and

K (49)] <cam

sup
‘C|§e_h5

The constant C' depends only on the Runge-Kutta method.

Proof. We fix ¢ with || < e™"?. Using the Cauchy representation formula and Lemma 5.1, we
have that

A(Q) 1 -1
K|—>)=— ¢ K(2/h)A(zA—-1) "dz
< h > 21771% i (20)
—1qT -1
_ %éK(z/h)l_Rw(I — AT (I - 2A) de.

The contour I' is chosen to enclose all the singularities of both integrands. We will see in a moment
that the singularities all have real part greater than ho, so that K(z/h) is defined on the contour
and satisfies the bound (7). For the first integral we can deform the contour to a contour I'y
that encloses the eigenvalues of A~!, all of which have positive real part by the assumption (4) of
A-stability. We then bound, using (7),

K(z/h)A(zA — 1) 1dz

’i_ < 2 MBI (21 = A7)V d2| < OM R,
2mi Jp, 27 Jr,
The second integrand in (20) has singularities at the eigenvalues of A~! and in addition at points
where R(z) = (~!. We consider a contour I'(r) that is composed of a circular arc |z| = r, Re z > ho
and a vertical line segment Re z = ho, |z| < r. We arbitrarily fix small p > 0 and § > 0 and note
that by condition (5), there exists 7 > 0 such that I'(r) encloses all points z with |1 — R(2)¢| < ¢
for |¢ — 1] > p. For such (, we can estimate the second contour integral in (20) over I'(r) as before
to obtain that it is bounded by C M h*.

It remains to consider ¢ near 1. Since R(0) = 1 and R'(0) = 1, the implicit function theorem
yields that for ¢ near 1, there is a unique solution w(¢) to

R(w(¢)) =¢!, w(1)=0.

We also note w’(1) = —1, so that for sufficiently small h we have Rew(¢) > ho if [¢| < ™" and
|¢—1| < p. We can then split the second integral in (20) into the contribution from the pole at w(()
and the remaining integral over the contour I'y in the right half-plane that encloses the eigenvalues
of A=! and is bounded away from the origin. The latter integral is bounded by C Mh* by the same
argument as before. The contribution from the pole at w(() is

1
- K(z/h)(I — zA) " 167 (I — 24)7! ,
i KEMU =W (e
which is again bounded by C'Mh*. O

We now give estimates for the £ error that are valid for p < 0.



Theorem 5.3. Assume (7), with n < 0, and let g(0) = ¢'(0) = --- = g (0) = 0 for r such that
r+ pu > 0. Then, under the conditions of Theorem 4.1 on the Runge-Kutta method and assuming
p > q+ 1, there exists hg > 0 such that for all 0 < h < hg and Nh <T,

N 1/2 q
(h Z iy, — u(tn)]2> <C Z Jyin (g1l p) |g(l+r‘)(0)| + Cpatitne [max ‘g(lJ+1+r) (7).
n=0 1=0 STS

The constants C' and hg depend only on the Runge-Kutta method, on the constants M and o in
(7), and on T.

Proof. We first write the error e as a sum of two terms each of which we will estimate separately:

e:=K(0)g—bTATTK(0)g=e1 +eo
with
€1 = Kr(at)g(r) - bTAilKr(@h)g(T)) €2 = bTA?lKT’(@h)g(T) - bTA?lK(@h)g7

where again K,(s) = K(s)/s".

Theorem 4.1 can be applied to bound the error e; since |K,(s)| < C|s|™*~" and r was chosen
such that r 4+ p > 0.

To estimate ey we will first need to rewrite K, (@h) g™ . By the composition rule,

K (09" = K(@")(0") 9"

Therefore

ea(tny1) = b AR Wi (K) | h W,_ (s G(T) -G, .
l

v=0 =0
The term in brackets is just the stage error of the Runge-Kutta method applied to the rth-order
differential equation y(") = ¢(") with zero initial values. It is bounded by

B, =Y W,(s)G - G, = O(hth),
=0

Using Parseval’s formula recalling (13) and applying the estimate of Lemma 5.2, we obtain

N 1/2 A N 1/2
<hz |€2(tn+1)l2> < K <§LO> H (hz IEn|2> — O(ho+1HH)
n=0 n=0

and the proof is complete. O

I¢|<e=he

6 Numerical examples

6.1 A scalar example

Let us consider the case
—p
s

T -
Clearly, K (s) is analytic in the right half-plane and bounded as |K(s)| < C|s|™* for Res > ¢ > 0.
The exact solution is

l(u(s)

K99 =Y (9, "g)(t — j),



where (9, "g)(t) = fot(t — 7)*=YT () g(7) d7 for u > 0, and 9, g = 9} (9, " "g) with r + u > 0 for
p < 0.

We approximate this convolution by the convolution quadrature based on the 3-stage Radau
ITA method (stage order ¢ = 3) with

g(t) = e 4 sinb ¢, t>0.

In the following table we show the relative 2 error up to T' = 2 divided by h**#. Since for fractional
1 we cannot easily obtain the analytical solution, instead of the exact solution we have used the
numerical solution with N = 219,

N \p=1|p=1/2|p=-1/2 | p=-1
2 0.00 0.02 0.27 0.76
4 0.04 0.04 0.18 0.68
8 0.05 0.06 0.15 0.75
16 | 0.05 0.04 0.19 0.80
32 | 0.04 0.03 0.20 0.81
64 | 0.04 0.02 0.20 0.81
128 | 0.04 0.03 0.20 0.81

These results confirm that the convergence rates we have proved are also optimal.

6.2 An operator example

Let  be a bounded subdomain of R? with boundary I'. The single layer boundary integral potential
for the equation —Au + s21 = 0 is given by

6—5|$—y|

S(s)e(x) ZZ/FZMSO(?J)dFyv z € .

Its restriction to the boundary we denote by

sl
V@M@%=/j (y)dly, z€T.

P 4
r 4m|z —y|
In [1] it is shown that the operator V(s) is invertible for Res > 0 and that its inverse is bounded
as

i

Hv_l(S)HHl/?(I‘)HH—l/?(I‘) C(U)@ for Res > o > 0. (21)
Given g(-,t) € HY2(T), let
¥ =V (0)g. (22)
Then u = S(0;)y satisfies the wave equation
Otu(z,t) = Au(x,t), (z,t) € QF x [0,T],
u(z,0) = dru(x,0) =0, z e QF,
u(z,t) = g(x,t), (x,t) €T x [0,T]

both in the interior Q= = Q and the exterior QT = R?\ Q domain.

For the special case g(x,t) = g(t) and I' = S? the unit sphere, it turns out that ¢ = K(0)g
with K(s) = 2s/(1 — e~2%), and hence a convergence rate O(h?) of a Runge-Kutta convolution
quadrature of (22) is obtained; this example was the motivation behind the set of experiments in
Section 6.1.



N 5 10 15 20 30
ey | 87x1072]1.6x1072[45%x1073[1.9%x1073 | 57x107*
order - 2.5 3.1 3.0 3.0

Table 1: Convergence of the 3-stage Radau ITA convolution quadrature of a time-domain boundary integral
operator.

In the general case, however, the bound in (21) suggests a convergence rate O(h?~1). We have
performed numerical experiments with the right-hand side

]_ _(t=azx—4 2
g(x,t) = cos (277(75 —a- x)) e ( V2 ) a=(1,0,0)T,
a non-convex domain (2 defined in [2], and a time interval of length 7" = 6. We have used a
piecewise-constant Galerkin discretization in space, with 1.4 x 10* triangular panels discretizing I'.
All the computations have been done with the techniques described in [2]. Since no analytic solution
is known we have estimated the error by

1/2

N
en = [ 2D Ien(t) = van ) Faoy |
=0

where 1y is the discrete solution obtained by convolution quadrature with time-step h = T/N,
i.e., we have compared the numerical solution with the numerical solution obtained with the time-
step halved. In order to make sure that the space discretization is not significantly affecting the
results, we have computed ey for N = 20 with a finer space discretization of 2.3 x 10* panels; this
computation gave the same result up to two digits accuracy.

The results of these numerical experiments, as documented in Table 1, suggest a convergence
order O(h?) when computing (22) using the 3-stage Radau ITA method. The 3-stage Radau ITA
method being of stage order ¢ = 3, this is one order better than our present theory is able to
predict.

This final experiment suggests that it is also of interest to consider a class of operators bounded
as

K(s) < M 2L
~ " (Res)V’
All standard boundary integral operators and operators related to transmission problems, BEM-
FEM coupling, etc., see [11], satisfy bounds of this more general form. Our present analysis does
not give more favourable estimates for this class of operators when v > 0.

Res > o.

(23)

References

[1] A. Bamberger and T. Ha-Duong. Formulation variationelle espace-temps pour le calcul par
potentiel retardé d’une onde acoustique. Math. Meth. Appl. Sci., 8:405-435 and 598-608, 1986.

[2] L. Banjai. Multistep and multistage convolution quadrature for the wave equation: Algorithms
and experiments. submitted, 2009.

[3] L. Banjai, S. Sauter. Rapid solution of the wave equation in unbounded domains. SIAM J.
Numer. Anal., 47:227-249, 2008/009.

[4] J. Butcher. The numerical analysis of ordinary differential equations. Runge-Kutta and general
linear methods. John Wiley & Sons Ltd., Chichester, 1987.

10



[5] M.P. Calvo, E. Cuesta, C. Palencia. Runge-Kutta convolution quadrature for well-posed equa-
tions with memory. Numer. Math., 107:589-614, 2007.

[6] G. Dahlquist. A special stability problem for linear multistep methods. BIT, 3:27-43, 1963.

[7] P.P.B. Eggermont, On the quadrature error in operational quadrature methods for convolutions.
Numer. Math., 62:35—48, 1992.

[8] W. Hackbusch, W. Kress, S. Sauter. Sparse convolution quadrature for time domain boundary
integral formulations of the wave equation. IMA J. Numer. Anal., 29:158-179, 2009.

[9] E. Hairer, S.P. Ngrsett, G. Wanner. Solving ordinary differential equations. I. Nonstiff problems.
Volume 8 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second
edition, 1993.

[10] E. Hairer and G. Wanner. Solving ordinary differential equations. II. Stiff and differential-
algebraic problems. Volume 14 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, second edition, 1996.

[11] A.R. Laliena and F.-J. Sayas. Theoretical aspects of the application of convolution quadrature
to scattering of acoustic waves. Numer. Math., 112(4):637-678, 2009.

[12] Ch. Lubich. Convolution quadrature and discretized operational calculus. I. Numer. Math.,
52: 129-145, 1988.

[13] Ch. Lubich. On convolution quadrature and Hille-Phillips operational calculus. Appl. Numer.
Math., 9: 187-199, 1992.

[14] Ch. Lubich. On the multistep time discretization of linear initial-boundary value problems
and their boundary integral equations. Numer. Math., 67:365—389, 1994.

[15] Ch. Lubich. Convolution quadrature revisited. BIT, 44:503-514, 2004.

[16] Ch. Lubich and A. Ostermann. Runge-Kutta methods for parabolic equations and convolution
quadrature. Math. Comp., 60(201):105-131, 1993.

[17] A. Schédle, M. Lopez-Ferndndez, Ch. Lubich. Fast and oblivious convolution quadrature.
SIAM J. Sci. Comput., 28:421-438, 2006.

[18] X. Wang, R.A. Wildman, D.S. Weile, P. Monk. A finite difference delay modeling approach
to the discretization of the time domain integral equations of electromagnetics. IEEE Trans.
Antennas and Propagation, 56:2442-2452, 2008.

11



