
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

Generalized Cross Approximation for 3d-tensors

by

Kishore Kumar Naraparaju, and Jan Schneider

Preprint no.: 29 2010

Generalized Cross Approximation for 3d-tensors

Kishore Kumar Naraparaju, Jan Schneider

Max Planck Institute for Mathematics

in the Sciences, Leipzig

Abstract

In this article we present a generalized version of the Cross Approximation for 3d- ten-
sors. The given tensor a ∈ R

n×n×n is represented as a matrix of vectors and 2d adaptive
Cross Approximation is applied in a nested way to get the tensor decomposition. The main
focus lies on theoretical issues of the construction such as the desired interpolation property
or the explicit formulas for the vectors in the decomposition. The computational complexity
of the proposed algorithm is shown to be linear in n.

AMS Subject Classification: 41A80,41A63,15A69
Keywords: Adaptive Cross Approximation, tensor decompositon, pivot strategy, maximum
norm

1 Introduction

The approximation of multidimensional arrays (tensors) generated by the evaluation of functions

by some tensor product structures is nowadays one of the major issues in numerical analysis. It

has many applications in areas like chemometrics, electronical engineering, quantum chemistry,

etc. A thorough survey by T. G. Kolda and B. W. Bader in [9] provides an overview of higher

order tensor decompositions. The general aim when working with these large objects is to

reduce the computational complexity significantly. For the latest developements in this area,

one can look at [3, 6, 7, 8, 11].

The main focus of this paper is on the method of Cross Approximation. It is one of the

methods that proved its success in low dimensions, see [2] also for references to other methods.

It was introduced for d = 2 by Bebendorf in [1] as adaptive cross approximation (ACA), with

forerunners by Tyrtyshnikov and others (see for instance [5]). It uses only a small portion of the

original array entries for the corresponding approximation and constructs a sum of products of

one-dimensional restrictions of a two-dimensional function

f(x, y) ∼

k
∑

i,j=1

cijf(xi, y)f(x, yj)

with points xi, yj and coefficients cij . This procedure has a lot of advantages, for instance the

so-called rank and interpolation properties, see [12], where the algorithm was called CA2D.

Therefore, it is desirable to extend the method to functions of more than two variables. This

was done in different ways, see for instance [3, 10]. A natural extension of the bivariate method

to functions of three or four variables is proposed in [2] and can be seen as nested ACA.

In the present article we will investigate another version of three-dimensional Cross Approxi-

mation. Let us briefly explain the basic idea of our approach to approximate a 3d-tensor, which

also works in case d = 4, where it was originally born, but that is outside the scope of this

paper.

We consider a tensor a ∈ R
n×n×n generated by a function f(x, y, z) defined on [0, 1]3, where

1

the grid in each direction consists of n points, i.e., we have aijk = f(x(i), y(j), z(k)) for

1 ≤ i, j, k ≤ n. The main motivation is to save as much as possible from the nice proper-

ties of CA2D, such as rank and interpolation properties mentioned above. We follow the simple

idea of interpreting a as matrix

a =







A11 · · · A1n
...

...
An1 · · · Ann






,

where all the entries Aµν = (aµν1, . . . , aµνn) are now vectors of length n for all 1 ≤ µ, ν ≤ n.

Looking at a as matrix to approximate, we can immediately apply CA2D. Since the entries are

now vectors, we have to use an appropriate kind of multiplication, so we rely our method on the

pointwise (or Hadamard) product, denoted by ⊙. We choose Auv as our first pivot and define

the first approximation to a = a(0) by

a(1) =







A
(1)
11 · · · A

(1)
1n

...
...

A
(1)
n1 · · · A

(1)
nn






with A(1)

µν = Auν ⊙Aµv ⊙ inv(Auv) (1)

for all 1 ≤ µ, ν ≤ n, where inv(A) denotes the vector of pointwise inverted entries of A. This,

of course, is only allowed, if

min
1≤k≤n

|auvk| > 0,

or in other words: there must not a single entry be equal 0. In the language of functions formula

(1) reads as

f (1)(x, y, z) =
f(x1, y, z)f(x, y1, z)

f(x1, y1, z)
(2)

for fixed pivot coordinates (x1, y1) with the restriction f(x1, y1, z) 6= 0 for all z ∈ [0, 1]. That is

a strong restriction for the pivot element and we treat it within our discussion concerning the

pivot strategy in section 3. One can easily see that the remainder

r(1) = a− a(1) (3)

contains a cross of 0-vectors. That is the first step on the way to the interpolation property.

Let’s go on with this idea in a more compact notation and define recursively for 1 ≤ t ≤ T

a(t) =







A
(t)
11 · · · A

(t)
1n

...
...

A
(t)
n1 · · · A

(t)
nn






with A(t)

µν = R(t−1)
utν

⊙R(t−1)
µvt

⊙ inv(R(t−1)
utvt

)

for all 1 ≤ µ, ν ≤ n (R is here always a vector and denotes an entry in r, which is the error

matrix of vectors), where we always chose R
(t−1)
utvt as t-th pivot with

min |R(t−1)
utvt

| = min
1≤k≤n

|r
(t−1)
utvtk

| > 0

in order to ensure pointwise multiplication. That gives the remainder

r(T) = a− s(T) = a−
T
∑

t=1

a(t),

2

which in entry-wise notation looks like

R(T)
µν = Aµν −

T
∑

t=1

R(t−1)
utν

⊙R(t−1)
µvt

⊙ inv(R(t−1)
utvt

) (4)

and because of its recursive character we have

R(T)
µν = R(T−1)

µν −R(T−1)
uT ν ⊙R(T−1)

µvT
⊙ inv(R(T−1)

uT vT
). (5)

On the level of functions this looks like

r(T)(x, y, z) = r(T−1)(x, y, z)−
r(T−1)(xT , y, z)r

(T−1)(x, yT , z)

r(T−1)(xT , yT , z)
, (6)

where we can see that the scheme follows the same structure as CA2D. More general, we realize

that (6) is an example for incremental approximation as it is called in [2]. This procedure results

in the approximation

f(x, y, z) ∼

T
∑

t=1

gt(x, z)ht(y, z), (7)

with special functions gt, ht that are still two-dimensional and therefore another approximation

by CA2D is required to get the complete decomposition (i.e to represent f as a sum of products

of one dimensional functions). This is done with a linear complexity in n. Explicit formulas are

derived for the vectors in the tensor decomposition. The details of the complete algorithm are

described in section 3.

In Section 2, basics of the adaptive cross approximation in two dimensions are discussed. The

explicit formulas for the vectors in the decomposition of a 3d-tensor for the existing algorithm

from [2] are also deduced. In Section 3, the proposed algorithm is derived and its computational

complexity is discussed. The details of the pivot strategy are shown. Finally, in Section 4 we

present a few numerical examples to show the efficiency of the method.

2 Preliminaries

In this section we want to settle the theoretical background for our method. For simplicity we

start again with the two-dimensional case. Let f : [0, 1]2 −→ R, then the recursion R0(x, y) =

f(x, y) and

Rk(x, y) = Rk−1(x, y)−
Rk−1(x, yk)Rk−1(xk, y)

Rk−1(xk, yk)
for k ∈ N, (8)

with points xk, yk chosen such that Rk−1(xk, yk) 6= 0, is the heart of CA2D, compare [1, 12]. It

gives the remainder after k iteration steps of the approximation Sk(x, y) = f(x, y) − Rk(x, y).

If we set uk(x) = Rk−1(x, yk) and vk(y) = Rk−1(xk, y), then using (8) we get

Sk(x, y) = f(x, y)−Rk(x, y)

= f(x, y)−

(

Rk−1(x, y)−
uk(x)

uk(xk)
vk(y)

)

...

= f(x, y)−

(

R0(x, y)−
u1(x)

u1(x1)
v1(y)− · · · −

uk(x)

uk(xk)
vk(y)

)

=

k
∑

i=1

ui(x)

ui(xi)
vi(y), (9)

3

where we realize that it has the desired tensor product structure of separated variables. By a

similar calculation one can even derive the explicit formulas

uk(x) = f(x, yk)−
k−1
∑

l=1

ul(x)

ul(xl)
vl(yk) (10)

and

vk(y) = f(xk, y)−
k−1
∑

l=1

ul(xk)

ul(xl)
vl(y), (11)

see also [2].

Now we turn to the three-dimensional case. As mentioned in the Introduction, in [2] Bebendorf

proposed a natural way to extend the above procedure to functions f(x, y, z). Here we restrict

the domain of definition to [0, 1]3. Let us start with the following recursion to describe his

method: R0(x, y, z) = f(x, y, z) and

Rk(x, y, z) = Rk−1(x, y, z)−
Rk−1(x, yk, zk)

Rk−1(xk, yk, zk)
Rk−1(xk, y, z) for k ∈ N, (12)

where the analogy to (8) is obvious and the points xk, yk, zk are chosen such that

Rk−1(xk, yk, zk) 6= 0. We set uk(x) = Rk−1(x, yk, zk) and Vk(y, z) = Rk−1(xk, y, z), so we get

analogously to the above calculation

Sk(x, y, z) = f(x, y, z)−Rk(x, y, z)

= f(x, y, z)−

(

R0(x, y, z)−
u1(x)

u1(x1)
V1(y, z)− · · · −

uk(x)

uk(xk)
Vk(y, z)

)

=
k

∑

i=1

ui(x)

ui(xi)
Vi(y, z), (13)

where in contrast to (9) the functions Vi are still two-dimensional. We will now investigate the

explicit formulas for uk and Vk. In analogy to (10) and (11) we get

uk(x) = f(x, yk, zk)−
k−1
∑

l=1

ul(x)

ul(xl)
Vl(yk, zk) (14)

and

Vk(y, z) = f(xk, y, z)−

k−1
∑

l=1

ul(xk)

ul(xl)
Vl(y, z). (15)

Since Vk are bivariate functions the complexity can not be reduced to be linear in n while working

with them directly. That is why Bebendorf ([2]) uses the following recursion: R0(x, y, z) =

f(x, y, z) and

Rk(x, y, z) = Rk−1(x, y, z)−
Rk−1(x, yk, zk)

Rk−1(xk, yk, zk)
A(Rk−1)(xk, y, z) for k ∈ N, (16)

where he substitutes the functions Vk(y, z) = Rk−1(xk, y, z) by their approximations via ACA,

denoted byA(Rk−1)(xk, y, z). In each iteration step k = 1, 2, . . . of the recursion (16) he performs

a two-dimensional Cross Approximation for the function Vk with k′ steps in the inner loop.

Since that separates the variables y and z it gives the desired tensor product structure of the

4

approximant. Now we also investigate the explicit formulas for this relation. For the inner

recursion we introduce the following notation: r
(k)
0 (y, z) = Vk(y, z) and

r
(k)
k′ (y, z) = r

(k)
k′−1(y, z)−

r
(k)
k′−1(y, z

(k)
k′)

r
(k)
k′−1(y

(k)
k′ , z

(k)
k′)

r
(k)
k′−1(y

(k)
k′ , z) for k′ ∈ N, (17)

with points y
(k)
k′ , z

(k)
k′ chosen such that r

(k)
k′−1(y

(k)
k′ , z

(k)
k′) 6= 0. Then, following the usual scheme,

we set v
(k)
k′ (y) = r

(k)
k′−1(y, z

(k)
k′) and w

(k)
k′ (z) = r

(k)
k′−1(y

(k)
k′ , z) and get

s
(k)
k′ (y, z) = Vk(y, z)− r

(k)
k′ (y, z)

=

k′
∑

µ=1

v
(k)
µ (y)

v
(k)
µ (y

(k)
µ)

w(k)
µ (z) (18)

for the inner approximation of Vk. Also here we can get the following explicit formulas:

v
(k)
k′ (y) = Vk(y, z

(k)
k′)−

k′−1
∑

j=1

v
(k)
j (y)

v
(k)
j (y

(k)
j)

w
(k)
j (z

(k)
k′) (19)

and

w
(k)
k′ (z) = Vk(y

(k)
k′ , z)−

k′−1
∑

j=1

v
(k)
j (y

(k)
k′)

v
(k)
j (y

(k)
j)

w
(k)
j (z). (20)

But these equalities take only the ongoing inner approximation into account and not all the

previous steps, but that can be merged and be described explicitly: Starting with the formulas

(14), (19) and (20) and substituting Vk with its representation (15) while the functions Vl from

all the previous steps are substituted with its inner approximations (18), we end up with the

final constructive formulas for the functions uk(x), v
(k)
k′ (y) and w

(k)
k′ (z)

uk(x) = f(x, yk, zk)−
k−1
∑

l=1

ul(x)

ul(xl)

k′
∑

µ=1

v
(l)
µ (yk)

v
(l)
µ (y

(l)
µ)

w(l)
µ (zk) (21)

v
(k)
k′ (y) = f(xk, y, z

(k)
k′)−

k−1
∑

l=1

ul(xk)

ul(xl)

k′
∑

µ=1

v
(l)
µ (y)

v
(l)
µ (y

(l)
µ)

w(l)
µ (z

(k)
k′)−

k′−1
∑

j=1

v
(k)
j (y)

v
(k)
j (y

(k)
j)

w
(k)
j (z

(k)
k′) (22)

w
(k)
k′ (z) = f(xk, y

(k)
k′ , z)−

k−1
∑

l=1

ul(xk)

ul(xl)

k′
∑

µ=1

v
(l)
µ (y

(k)
k′)

v
(l)
µ (y

(l)
µ)

w(l)
µ (z)−

k′−1
∑

j=1

v
(k)
j (y

(k)
k′)

v
(k)
j (y

(k)
j)

w
(k)
j (z), (23)

which can be used directly to implement the method. Putting (18) also into (13), we finally see

that the original function f is approximated by

f(x, y, z) ∼
k

∑

i=1

ui(x)

ui(xi)

k′
∑

µ=1

v
(i)
µ (y)

v
(i)
µ (y

(i)
µ)

w(i)
µ (z) (24)

within this concept.

5

3 Our approach

3.1 The outer loop

As indicated in the Introduction (formula (6)) we follow a different way to generalize the re-

cursion (8) for three-dimensional functions. To describe this we start with the recursion for the

outer loop, it reads as R0(x, y, z) = f(x, y, z) and

Rk(x, y, z) = Rk−1(x, y, z)−
Rk−1(x, yk, z)Rk−1(xk, y, z)

Rk−1(xk, yk, z)
, (25)

for k ∈ N. This again is a possible analogue to (8), where the points xk, yk are chosen such

that Rk−1(xk, yk, z) 6= 0, for all z ∈ [0, 1]. Setting Uk(x, z) = Rk−1(x, yk, z) and Vk(y, z) =

Rk−1(xk, y, z) and following the same kind of calculation we have already done several times

before, we get

Sk(x, y, z) = f(x, y, z)−Rk(x, y, z) =

k
∑

i=1

Ui(x, z)

Ui(xi, z)
Vi(y, z) (26)

with

Uk(x, z) = f(x, yk, z)−
k−1
∑

l=1

Ul(x, z)

Ul(xl, z)
Vl(yk, z) (27)

and

Vk(y, z) = f(xk, y, z)−

k−1
∑

l=1

Ul(xk, z)

Ul(xl, z)
Vl(y, z). (28)

Now both Uk and Vk are still two-dimensional and have to be approximated by CA2D again

in order to ensure linear complexity in the problem size n. This will be explained in the next

subsection.

Now, for a moment, we keep the point of view, that calculations with the matrices Uk, Vk would

not be to expensive and we are focusing on the accuracy of the approximation (26), in other

words, we use the exact matrices and not their approximations to end up with a structure like

(7). Then we can preserve some of the nice properties of CA2D (compare [12]), mentioned in

the Introduction and state their analogues here. We start with the interpolation property using

the vector-wise notation introduced before:

Proposition 3.1 Whenever µ ∈ {u1, . . . , uT } or ν ∈ {v1, . . . , vT } we have

R(T)
µν = 0.

Proof For T = 1 formula (3) gives the assertion. Now, by induction, assume that R
(T−1)
µν = 0,

whenever µ ∈ {u1, . . . , uT−1}. Then we find by (5)

R(T)
utν

= R(T−1)
utν

−R(T−1)
uT ν ⊙R(T−1)

utvT
⊙ inv(R(T−1)

uT vT
) = 0− 0 (29)

for 1 ≤ t ≤ T − 1. Furthermore, we have

R(T)
uT ν = R(T−1)

uT ν −R(T−1)
uT ν ⊙R(T−1)

uT vT
⊙ inv(R(T−1)

uT vT
)

= R(T−1)
uT ν −R(T−1)

uT ν = 0.

Since the same arguments hold for ν instead of µ the proposition is proved.

2

6

Remark 3.2 In the language of functions this looks more familiar to us and also more readable,

i.e., RT (x, y, z) = f(x, y, z) − ST (x, y, z) = 0 for all z ∈ [0, 1] whenever x ∈ {x1, . . . , xT } or

y ∈ {y1, . . . , yT }, compare with Proposition 3.1 in [12].

This interpolation property is the point we are most interested in preserving within our concept.

We will come back to this task in the next subsection.

Now we want to prove the analogue to the so-called rank property of CA2D as it is stated in

Proposition 3.2 in [12].

Proposition 3.3 If the function f can be written in the form

f(x, y, z) =
T
∑

t=1

gt(x, z)ht(y, z), (30)

with arbitrary functions gt, ht, then the above procedure gives f − ST = 0 on the whole cube

[0, 1]3.

In the case, where T in the formula above is the smallest possible number of summands for such

a representation, we say that f has (x, y)-separation rank T .

Proof We will prove that Rθ = f − Sθ has (x, y)-separation rank T − θ for θ ∈ {0, 1, . . . , T}

by induction. For θ = 0 there is nothing to prove, so let for θ < T the function Rθ have

(x, y)-separation rank T − θ. For fixed z ∈ [0, 1] we define

V = Vz = span{Rθ(·, y, z) : y ∈ [0, 1]}

and

V ′ = V ′
z = span{Rθ+1(·, y, z) : y ∈ [0, 1]}.

We know that dimV = T − θ and want to show dimV ′ = T − (θ + 1). For each y ∈ [0, 1] we

have by construction

Rθ+1(·, y, z) = Rθ(·, y, z)−
Rθ(·, yθ+1, z)Rθ(xθ+1, y, z)

Rθ(xθ+1, yθ+1, z)

and verify that both terms on the right hand-side belong to V , hence V ′ ⊂ V . In partic-

ular Rθ(·, yθ+1, z) ∈ V , but because its value at the point xθ+1 does not vanish, whereas

Rθ+1(xθ+1, y, z) = 0 for all y ∈ [0, 1], there is no representation of Rθ(·, yθ+1, z) as a linear

combination of functions Rθ+1(·, y, z), hence Rθ(·, yθ+1, z) /∈ V ′. It follows dimV ′ < dimV and

because those dimensions can differ at most by one, we get dimV ′ = dimV − 1 = T − θ − 1.

Now we know that for all y ∈ [0, 1] we have for Rθ+1(·, y, z) ∈ V ′ a representation

Rθ+1(x, y, z) =

T−θ−1
∑

t=1

αt(y, z)ϕt(x, z) (31)

with coefficients αt and basis functions ϕt. So we conclude that Rθ+1 has (x, y)-separation rank

T − (θ + 1).

2

Remark 3.4 It is obvious that condition (30) is crucial for some kind of rank property because

it coincides with the structure of the approximant given in (26).

7

These properties could easily be verified by numerical experiments. When implementing those

kind of methods one always has to think about an appropriate pivot strategy, see [1, 12]. In

this outer loop we have to fix the coordinates xk, yk in each step, compare (25). We choose

them completely randomly, except for the first one, where we always set x1 = 1/2, y1 = 1/2.

Of course, for all k = 1, 2, . . . we have to ensure that

Rk−1(xk, yk, z) 6= 0 for all z ∈ [0, 1], (32)

but if that accidently fails we just try another random point. If this condition cannot be satisfied

by any choice of pivots, the algorithm stops. As a consequence of this random pivot strategy the

number of possible iterations may vary. Still we mainly focus on the accuracy of the method,

therefore we test it on small grids only (n = 129). Table 3.1 illustrates that the outcome is not

always satisfactory.

f g h

err iter err iter err iter

5, 82e− 13 12 1, 24e− 02 10 2, 84e− 01 1
2, 37e− 13 10 2, 39e− 02 10 2, 84e− 01 1
5, 01e− 13 10 1, 78e− 02 10 2, 84e− 01 1
2, 08e− 13 12 2, 09e− 02 11 2, 84e− 01 1
8, 94e− 13 12 2, 15e− 02 11 2, 84e− 01 1

Table 3.1: Outer loop with random pivots

Here we used the following notation:

f(x, y, z) = 1/(1 + x+ y + z),

g(x, y, z) = exp(−10
√

(x− 1/2)2 + (y − 1/2)2 + (z − 1/2)2) and

h(x, y, z) = exp(−xyz).

The column labelled ”err” shows the maximum error

max
x,y,z∈[0,1]3

|Rk(x, y, z)|

after the corresponding number of iterations, which column is labelled by ”iter”. We see that for

f the method produces a very accurate approximant. For g the number of possible steps is too

small to reach a better accuracy, where for h the algorithm stops after the first iteration already,

because there are no points x2, y2 such that R1(x2, y2, z) 6= 0 for all z ∈ [0, 1]. Therefore, we

have to find a way to circumvent condition (32). Our way to do that is very simple. Since we are

interested in accuracy up to ε = 10−16, we just substitute all entries in the pivot vector having

absolute value smaller than ε by ε. Of course, we do that only, if no pivot that fulfills condition

(32) can be found. In that case we choose as pivot the vector with the largest maximum

norm and substitute all entries that are too small. Now the algorithm stops when a prescribed

maximum error ε0 = 10−13 is reached. Table 3.2 shows the satisfactory consequence of the

supplemented pivot strategy, where we used the same notation as before.

Here the accuracy is fine in all three cases because the algorithm can run long enough to reach

a small error. The deterministic outcome for h grounds on the fact that by the above strategy

the pivots after the first step are always found as the vector with the largest entry.

8

f g h

err iter err iter err iter

8, 82e− 14 14 1, 50e− 14 24 3, 12e− 15 9
8, 68e− 14 14 8, 29e− 15 24 3, 12e− 15 9
7, 02e− 14 13 7, 44e− 14 23 3, 12e− 15 9
4, 82e− 14 11 6, 53e− 14 23 3, 12e− 15 9
6, 58e− 14 11 2, 60e− 14 24 3, 12e− 15 9

Table 3.2: Outer loop with refined pivot strategy

In terms of accuracy and stability we could be satisfied with the results shown in Table 3.2,

but of course the question arises, what happens if we increase the grid size enormously. Then

working with the exact matrices generated by Uk and Vk is not cheap anymore because the

complexity involves n2. That is why we add in each step of the outer loop an inner loop which

approximates the corresponding matrix by a sum of products of vectors via CA2D, as will be

described in the sequel.

3.2 Adding the inner loops

The modified recursion for the outer loop now reads as R0(x, y, z) = f(x, y, z) and

Rk(x, y, z) = Rk−1(x, y, z)−
A(Rk−1)(x, yk, z)A(Rk−1)(xk, y, z)

A(Rk−1)(xk, yk, z)
, (33)

for k ∈ N, where the points xk, yk are chosen such that

|A(Rk−1)(xk, yk, z)| ≥ c
(k)
min > 0, for all z ∈ [0, 1], (34)

and A(g) denotes again the approximation of the two-dimensional function g by CA2D. In

contrast to (25) we perform here in each step k = 1, 2, . . . the approximation of the bivariate

error functions Rk−1(x, yk, z) and Rk−1(xk, y, z) within k
′ steps of an inner loop. For simplicity

we keep k′ to be constant for our theoretical investigations.

One of our main questions was about the interpolation property. How much of it is preserved

now in this nested application of CA2D ? The answer is given by the following Proposition.

Proposition 3.5 Let J ⊂ {1, . . . , k′}. If z
(i)
j = ẑ

(i)
j = z∗j for all i = 1, . . . , k and all j ∈ J , then

Ri(x, y, z
∗
j) = 0 for i = 1, . . . , k and j ∈ J,

whenever x ∈ {x1, . . . , xi} or y ∈ {y1, . . . , yi}.

This interesting result tells us the following: If one chooses for all the outer loops some of

the pivot coordinates (maybe all) in z-direction to be equal in both inner loops , say equal to

z∗j , then one gets vanishing errors on the crosses of the outer pivot coordinates on the faces

determined by those z∗j .

Proof The proof follows the same idea as used for Proposition 3.1. First we check that for

i = 1 we have

R1(x1, y, z
∗
j) = f(x1, y, z

∗
j)−

A(f)(x1, y1, z
∗
j)A(f)(x1, y, z

∗
j)

A(f)(x1, y1, z∗j)

= f(x1, y, z
∗
j)−A(f)(x1, y, z

∗
j) = 0

9

because of the 2d-interpolation property in the inner loop. Then, by induction, we assume that

Ri−1(x, y, z
∗
j) = 0 for all x ∈ {x1, . . . , xi−1}. Now for those x we find

Ri(x, y, z
∗
j) = Ri−1(x, y, z

∗
j)−

A(Ri−1)(x, yi, z
∗
j)A(Ri−1)(xi, y, z

∗
j)

A(Ri−1)(xi, yi, z∗j)

= 0−Ri−1(x, yi, z
∗
j)
Ri−1(xi, y, z

∗
j)

Ri−1(xi, yi, z∗j)
= 0

because of our induction assumption. Here we used the 2d-interpolation property again for the

inner approximations. It remains to check the case x = xi, but that is easy, since

Ri(xi, y, z
∗
j) = Ri−1(xi, y, z

∗
j)−

A(Ri−1)(xi, yi, z
∗
j)A(Ri−1)(xi, y, z

∗
j)

A(Ri−1)(xi, yi, z∗j)

= Ri−1(xi, y, z
∗
j)−Ri−1(xi, y, z

∗
j) = 0,

by the same 2d-interpolation argument. Since the analogue way is possible for y instead of x

the proof is finished.

2

Remark 3.6 Proposition 3.5 seems to suggest a preferred pivoting strategy in z-direction for

the inner loops, namely, to keep as many z-coordinates for the pivots as possible from the first

inner loops to all the succeeding loops. But that might not always be the best choice. So, what

happens if we violate the condition in the previous result ? It turns out that the following weaker

version is still true:

For i = 1, . . . , k let Ji ⊂ {1, . . . , k′}. If z
(i)
j = ẑ

(i)
j for each particular i = 1, . . . , k and all j ∈ J ,

then

Ri(x, y, z
(i)
j) = 0 for i = 1, . . . , k and j ∈ Ji,

whenever

x = xµ ∈ {x1, . . . , xi} with z
(i)
j ∈ Jµ

or

y = yν ∈ {y1, . . . , yi} with z
(i)
j ∈ Jν .

Propostion 3.5 and Remark 3.6 show that it is at least partially possible to preserve the inter-

polation property of CA2D. What about the rank property ? As indicated in Remark 3.4 it is

determined by the structure of the approximant constructed in our method. This structure is

given by the following Theorem.

Theorem 3.7 Let the function f(x, y, z) be given on [0, 1]3. Then the above procedure generated

by the recursion (33) produces after k steps in the outer and k′ steps in each inner loop the

approximation

Sk(x, y, z) =
k

∑

i=1

k′
∑

µ2=1

k′
∑

µ1=1

u
(i)
µ1(x)

u
(i)
µ1(x

(i)
µ1)

·
v
(i)
µ2 (y)

v
(i)
µ2 (y

(i)
µ2)

·
w

(i)
µ1 (z)ŵ

(i)
µ2 (z)

k′
∑

ν=1

u
(i)
ν (xi)

u
(i)
ν (x

(i)
ν)
w

(i)
ν (z)

, (35)

where

u
(i)
µ1 (x)=f(x, yi, z

(i)
µ1

)−
i−1
∑

l=1

k′

∑

m=1

u(l)
m (x)

u
(l)
m (x

(l)
m)
w

(l)
m (z

(i)
µ1)

k′

∑

ν=1

u
(l)
ν (xl)

u
(l)
ν (x

(l)
ν)
w

(l)
ν (z

(i)
µ1)

·
k′

∑

µ=1

v
(l)
µ (yi)

v
(l)
µ (y

(l)
µ)

ŵ(l)
µ (z(i)µ1

)−

µ1−1
∑

j=1

u
(i)
j (x)

u
(i)
j (x

(i)
j)

w
(i)
j (z(i)µ1

), (36)

10

v
(i)
µ2 (y)=f(xi, y, ẑ

(i)
µ2

)−

i−1
∑

l=1

k′

∑

m=1

u(l)
m (xi)

u
(l)
m (x

(l)
m)
w

(l)
m (ẑ

(i)
µ2)

k′

∑

ν=1

u
(l)
ν (xl)

u
(l)
ν (x

(l)
ν)
w

(l)
ν (ẑ

(i)
µ2)

·

k′

∑

µ=1

v
(l)
µ (y)

v
(l)
µ (y

(l)
µ)

ŵ(l)
µ (ẑ(i)µ2

)−

µ2−1
∑

j=1

v
(i)
j (y)

v
(i)
j (y

(i)
j)

ŵ
(i)
j (ẑ(i)µ2

), (37)

w
(i)
µ1 (z)=f(x

(i)
µ1
, yi, z)−

i−1
∑

l=1

k′

∑

m=1

u(l)
m (x(i)

µ1
)

u
(l)
m (x

(l)
m)
w

(l)
m (z)

k′

∑

ν=1

u
(l)
ν (xl)

u
(l)
ν (x

(l)
ν)
w

(l)
ν (z)

·
k′

∑

µ=1

v
(l)
µ (yi)

v
(l)
µ (y

(l)
µ)

ŵ(l)
µ (z)−

µ1−1
∑

j=1

u
(i)
j (x

(i)
µ1)

u
(i)
j (x

(i)
j)

w
(i)
j (z) (38)

and

ŵ
(i)
µ2 (z)=f(xi, y

(i)
µ2
, z)−

i−1
∑

l=1

k′

∑

m=1

u(l)
m (xi)

u
(l)
m (x

(l)
m)
w

(l)
m (z)

k′

∑

ν=1

u
(l)
ν (xl)

u
(l)
ν (x

(l)
ν)
w

(l)
ν (z)

·
k′

∑

µ=1

v
(l)
µ (y

(l)
µ2)

v
(l)
µ (y

(l)
µ)

ŵ(l)
µ (z)−

µ2−1
∑

j=1

v
(i)
j (y

(i)
µ2)

v
(i)
j (y

(i)
j)

ŵ
(i)
j (z) (39)

for µ1, µ2 = 1, . . . , k′ and the inner pivots x
(i)
µ1 , y

(i)
µ2 , z

(i)
µ1 , ẑ

(i)
µ2 .

Remark 3.8 From formula (35) we see that the total rank of the approximation is k(k′)2,

provided that k′ is constant for each inner loop. In our numerical examples we will see, that it

is possible to decrease the number of inner iterations for higher outer loops.

Proof The proof follows the same idea as for the explicit formulas at the end of section 2.

Formula (33) has the structure of (25) where we now substitute Ui(x, z) = Ri−1(x, yi, z) and

Vi(y, z) = Ri−1(xi, y, z) in each outer loop i = 1, . . . , k by their approximations via CA2D in

an inner loop with k′ steps. First we concentrate on the inner loop to decompose Ui. For the

corresponding recursion we introduce the following notation r
(i)
0 (x, z) = Ui(x, z) and

r(i)µ1
(x, z) = r

(i)
µ1−1(x, z)−

r
(i)
µ1−1(x, z

(i)
µ1)

r
(i)
µ1−1(x

(i)
µ1 , z

(i)
µ1)

r
(i)
µ1−1(x

(i)
µ1
, z) for µ1 = 1, . . . , k′. (40)

Setting u
(i)
µ1(x) = r

(i)
µ1−1(x, z

(i)
µ1) and w

(i)
µ1 (z) = r

(i)
µ1−1(x

(i)
µ1 , z) we get for the inner approximation

of Ui

s(i)µ1
(x, z) = Ui(x, z)− r(i)µ1

(x, z) =

µ1
∑

m=1

u
(i)
m (x)

u
(i)
m (x

(i)
m)

w(i)
m (z) (41)

with

u(i)m (x) = Ui(x, z
(i)
m)−

m−1
∑

j=1

u
(i)
j (x)

u
(i)
j (x

(i)
j)

w
(i)
j (z(i)m) (42)

and

w(i)
m (z) = Ui(x

(i)
m , z)−

m−1
∑

j=1

u
(i)
j (x

(i)
m)

u
(i)
j (x

(i)
j)

w
(i)
j (z). (43)

Now we do the same calculations for the decomposition of the function Vi and end up with

ŝ(i)µ2
(y, z) = Vi(y, z)− r̂(i)µ2

(y, z) =

µ2
∑

µ=1

v
(i)
µ (y)

v
(i)
µ (y

(i)
µ)

ŵ(i)
µ (z) (44)

11

for µ2 = 1, . . . , k′, where r̂
(i)
µ2 (y, z), v

(i)
µ (y) and ŵ

(i)
µ (z) are defined analog to (40), furthermore,

v(i)µ (y) = Vi(y, ẑ
(i)
µ)−

µ−1
∑

j=1

v
(i)
j (y)

v
(i)
j (y

(i)
j)

ŵ
(i)
j (ẑ(i)µ) (45)

and

ŵ(i)
µ (z) = Vi(y

(i)
µ , z)−

µ−1
∑

j=1

v
(i)
j (y

(i)
µ)

v
(i)
j (y

(i)
j)

ŵ
(i)
j (z). (46)

Now we just have to put everything together. Starting with formula (26) and inserting for

Ui and Vi their approximations s
(i)
µ1 with µ1 = k′ from (41) and ŝ

(i)
µ2 with µ2 = k′ from (44)

respectively, we arrive at (35). To get formulas (36) and (38) we start with (42) and (43) with

m = µ1, insert for Ui its representation (27) with i = k and substitute there the functions Ul

and Vl from the former steps by its approximations s
(i)
µ1 with i = l and µ1 = k′ from (41) and

ŝ
(i)
µ2 with i = l and µ2 = k′ from (44) respectively. Analogously we get (37) and (39), by taking

(45) and (46), inserting (28) and finally substitute Ul and Vl as before. That finishes the proof.

2

Remark 3.9 Looking at formula (35) shows us, that in order to prove a rank property, as indi-

cated in Remark 3.4, the condition would be very restrictive. So, in contrast to the interpolation

property we don’t claim now that something worth to be called rank property holds here.

The complete procedure is described in the following Algorithm.

Algorithm 1 (The Generalized Cross Approximation)

1: Choose the pivot strategy for the outer loop (i.e xi, yi for i = 1, .., k)
2: do nk = 1, ..., k (outer loop)

3: for nk = 1

3a: Consider U1, V1 and obtain u
(1)
j , w

(1)
j , v

(1)
j and ŵ

(1)
j for j = 1, . . . , k′ by applying

CA2D.

4: for nk 6= 1

5: do mk = 1, ..., k′ (inner loop)

5a: for mk = 1

Choose pivot points in the inner loop (x
(nk)
1 , y

(nk)
1 , z

(nk)
1 and ẑ

(nk)
1).

Obtain the vectors u
(nk)
1 , w

(nk)
1 , v

(nk)
1 and ŵ

(nk)
1 .

5b: for mk 6= 1

Choose pivot points in the inner loop (x
(nk)
j , y

(nk)
j , z

(nk)
j and ẑ

(nk)
j for j = 2, .., k′).

Obtain the vectors u
(nk)
j , w

(nk)
j , v

(nk)
j and ŵ

(nk)
j for j = 2, .., k′.

6: end do (inner loop).

7: end do (outer loop).

The pivot strategy for the outer loop and inner loops in the Step 1, Step 5a and 5b is de-

scribed later in this section. Since we know the pivot points x1 and y1 and the pivot points

in the first inner loop, the vectors u(1)j , w
(1)
j , v

(1)
j and ŵ

(1)
j in the step 3a of the Algorithm 1 can

be obtained easily by using CA2D with linear complexity in n (look at (10) and (11)). The

12

vectors u
(nk)
i , w

(nk)
i , v

(nk)
i and ŵ

(nk)
i in step 5a and 5b can be easily obtained from the equations

(34),(35),(36) and (37). Since these equations involve Unk, Vnk (Unk, Vnk to be evaluated at

some fixed points), we need the information from all the previous outer loops. These can be

implemented efficiently and inexpensively in the algorithm during the computation. The com-

putational complexity of the algorithm is discussed below.

Error analysis

In [2] Bebendorf developed a systematic machinery to analyze the error behavior in the frame-

work of incremental approximations gradually, even for nested algorithms. The fundamental

relation for all these methods is the recursion r0[f] = f and

rk[f] = rk−1[f]−
rk−1[f](xk)

lk(xk)
lk

with functions lk at our disposal such that lk(xk) 6= 0. The remainder rk[f] can be connected

to the error

Ek[f] = f −







f(x1)
...

f(xk)







T

Ψk

of a linear approximation in an arbitrary system Ψk = [ψ1, . . . , ψk]
T of continuous functions.

Fortunately, our method fits into this framework and we can exploit his results, where we partly

adapt the notation now.

For fixed y, z ∈ [0, 1]2 we set ri[fyz] = Ri(·, y, z) (from formula (25)), li = ri−1[fyz] for i =

1, . . . , k. Furthermore, we define

Mk =













l1(x1) · · · · · · l1(xk)

0
. . .

...
...

. . .
. . .

...
0 · · · 0 lk(xk)













and ξ(k) =M−1
k







l1
...
lk






.

The terms entering the estimates are finally set as

σk = sup
x∈[0,1]

k
∑

i=1

|ξ
(k)
i (x)| and σ̃i,j = sup

x∈[0,1]

j
∑

ν=i

|ξ̃(j)ν (x)| (σ̃1,0 = 0)

for i, j = 1, . . . , k, where the ξ̃’s and corresponding M̃ ’s are given by substituting l with its

approximation l̃ in the lines above, for more explanation see [2].

After all these notational adaptions we can state:

Theorem 3.10 Let ε > 0 be sufficiently small and we assume

sup
(x,z)∈[0,1]2

|Ri−1(x, yi, z)−A(Ri−1)(x, yi, z)| ≤ ε (47)

sup
(y,z)∈[0,1]2

|Ri−1(xi, y, z)−A(Ri−1)(xi, y, z)| ≤ ε (48)

for i = 1, . . . , k. Then

|Rk(x, y, z)| ≤ (1 + σk) max
τ∈{x,x1,...,xk}

∥

∥Ek[fτ]
∥

∥

∞,[0,1]2
+ ckε (49)

13

for (x, y, z) ∈ [0, 1]3. Here

ck = σ̃1,k + 2

k
∑

j=1

(σ̃1,j−1 + 1)

k
∏

i=j

(c
(i)
piv + 1)(σ̃i,k + 1), with c

(i)
piv = sup

y,z

|A(Ri−1)(xi, y, z)|

c
(i)
min

.

The proof follows the same lines as for Theorems 2 and 3 in [2] with further adaptions according

to the notation there.

Pivot strategy

The accuracy and efficiency of the Cross Approximation rely on the pivot strategy. There are

different ways of choosing the pivot points and we did not make to much effort to find something

optimal. As explained from the beginning the choice of pivot points are such that condition

(34) holds, where we follow the same substituting strategy as explained before Table 3.2. While

in section 3.1 the algorithm produced completely random pivots during the performance for the

outer loop, here we updated the error on the diagonal after each step k of the outer loop and

found the position of the maximum entry in modulus for the coordinates xk+1, yk+1. In the

inner loops we basically follow the partial pivoting strategy, compare [1] or [12]. For the matrix

U1 we choose x
(1)
1 , . . . , x

(1)
k′ randomly and find the positions of the maximum error entry after

each iteration in the corresponding z-depending vectors. According to Proposition 3.5 we keep

those z
(1)
1 , . . . , z

(1)
k′ as inner pivot coordinates for all the succeeding matrices to approximate.

In the other direction (either x or y) again we find the position of the maximum error entry

in the corresponding vectors as next pivot coordinate. These error vectors have to be updated

at each iteration step, which can be implemented in the algorithm with a linear complexity in n.

Computational complexity

As explained earlier, the approximation has been constructed in two steps. k′ inner loops are

involved in each of the k outer loops. The first outer loop requires O(n(k′)2) operations (Step

3a: Only two adaptive Cross Approximations in two dimensions are involved). Further, k′

inner loops require O(n(l − 1)(k′)2) arithmetic operations in each outer loop l = 2, 3, ..k (Step

5a and 5b). Therefore O(nk2(k′)2) arithmetic operations are required to construct the complete

approximation. So the complexity is linear in n.

4 Numerical results

To show the performance of the proposed algorithm, here we present a few numerical examples,

where we always used a AMD Opteron 8220 with 2800 MHz and 256 GB RAM where the code

was written in Fortran 90.

In contrast to our theoretical investigations in the previous section, now we allow the number

k′ of inner steps to vary from one outer iteration to another and denote it by k′1, . . . k
′
k. The

stopping criterion for the inner loop now reads as

∥

∥

∥

∥

∥

∥

u
(i)
k′
i

u
(i)
k′
i

(x
(i)
k′
i

)

∥

∥

∥

∥

∥

∥

∞

· ‖w
(i)
k′
i

‖∞ < ε(i),

14

where the inner precision ε(i) is up to our choice. Mainly because of symmetry of our test

functions for i = 1, . . . , k we always run k′i inner iterations to decompose both Ui and Vi.

Let us consider n = 501 uniformly divided points on the interval [0, 1] in each direction. A

tensor is generated by the function on the uniform grid (tensor product of the n grid points in

each direction on the interval [0, 1]). Our pivot strategy is described in the previous section.

The approximation is obtained and the error of the approximation is calculated in the maximum

norm. As explained earlier, we rely our algorithm on the pointwise (or Hadamard) product and

therefore we are sometimes forced to use a substituting strategy. In those cases we replaced the

entries which are less than or equal to 5.0e-16 by 9.0e-16.

The tables below show (from left to right) the iteration step k, the corresponding error bound for

the stopping criterion of the inner loop ε(k), the resulting numbers of inner iterations k′1, . . . k
′
k,

the relative approximation error in the maximum norm and the time (measured in seconds)

needed to compute the tensor decomposition plus the time taken for partial pivoting.

Example 1: Consider the smooth three dimensional function

f(x, y, z) =
1

1 + x+ y + z
on [0, 1]3

from section 3.1. As expected the result is very satisfactory and one can observe a signifi-

cant decrease in the number of inner iterations, which results in a smaller rank of the final

decomposition compared with k(k′)2.

k ε(k) k′1, . . . , k
′
k error time

1 9e-02 2 8.333e-02 0
2 5e-03 3,2 2.32129e-03 0.009
3 5e-04 4,3,2 4.03437e-05 0.01
4 1e-05 5,4,3,2 7.942e-07 0.029
5 1e-06 6,5,4,3,1 1.6383e-07 0.05
6 1e-07 6,5,5,4,2,2 3.4534e-09 0.069
7 1e-09 7,7,6,5,4,3,1 4.2992e-11 0.119
8 5e-12 9,8,8,6,6,5,3,2 1.76025e-13 0.25

Table 4.3: Approximation error of f for different k

Example 2: Now we consider

h(x, y, z) = e−xyz on [0, 1]3

as it was called in section 3.1. There we had to use the substituting strategy after the first

iteration in each step to get a good approximation. The following table shows that it is also

working very well here. The decreasing inner ranks are also visible.

15

k ε(k) k′1, . . . , k
′
k error time

1 0.1 3 0.284 0
2 5e-02 3,2 6.778e-02 0.009
3 5e-03 4,3,2 5.55114e-04 0.019
4 5e-04 4,4,3,1 6.8267e-05 0.038
5 1e-05 5,4,4,3,1 3.2136e-06 0.049
6 1e-07 6,5,5,4,4,2 4.445e-08 0.088
7 1e-09 7,6,6,5,4,4,1 3.297e-10 0.149
8 2.5e-11 8,7,7,7,5,6,4,1 5.133e-11 0.248

Table 4.4: Approximation error of h for different k

Example 3: Now we consider the function

g(x, y, z) = exp(−10
√

(x− 1/2)2 + (y − 1/2)2 + (z − 1/2)2) on [0, 1]3,

using the same notation as in section 3.1. Here we see that for better approximations one needs

large ranks because of the bad smoothness behavior in the neighborhood of the center of the

domain, which also results in a more irregular behavior of the inner ranks.

k ε(k) k′1, . . . , k
′
k error time

1 0.1 3 0.12685 0
2 5e-02 3,2 6.016e-02 0.009
3 5e-03 6,4,2 2.931249e-02 0.019
4 3e-03 6,4,4,6 1.2158e-02 0.04
5 4e-05 12,11,7,9,11 6.312e-03 0.25
6 5e-06 12,11,7,9,11,4 3.2983e-03 0.32

Table 4.5: Approximation error of g for different k

Example 4: Now we consider the function

ψ(x, y, z) =
1

0.01 + x+ y + z
on [0, 1]3,

which shows how the method works close to singularities. Here again one needs larger ranks

for better precision and the decrease of the inner ranks is very slow.

k ε(k) k′1, . . . , k
′
k error time

1 0.9 4 9.01662e-02 0
2 0.4 5,3 2.533e-02 0.009
3 0.3 6,3,3 8.4734e-03 0.019
4 4e-03 9,7,7,7 4.3482e-03 0.089
5 3e-03 9,7,7,7,7 1.091e-03 0.139
6 5e-04 10,7,7,7,7,7 6.222e-04 0.26
7 3e-05 12,11,10,9,10,9,9 3.455e-04 0.76

Table 4.6: Approximation error of ψ for different k

16

Conclusions

As mentioned in the very beginning, the original idea was born in four dimensions, where one

can interpret a 4d-tensor as matrix of matrices and apply CA2D to this matrix. The result-

ing approximation would be a sum of products of 3d-tensors and one would have preserved

the corresponding interpolation and rank properties again. But since linear complexity with

respect to the system size n has highest priority, now even two more levels of nested Cross

Approximations would be neccessary. A simpler way was proposed by Bebendorf in [2] (which

is the four-dimensional analog to the method discussed in section 2), where he even presented

an error analysis. The explicit formulas for the building blocks in his method are also possible

to derive by our procedure used in sections 2 and 3.

The quality of our numerical results is of the same kind as those presented in [2] and [10]. But

we believe that our more symmetric format together with the obtained theoretical results give

another perspective for the extension to higher dimensional problems and applications, see [7].

As described in section 3, to ensure that the pointwise product with 1/Rk−1(xk, yk, z) for all

z ∈ [0, 1] is well defined, we had to impose a substituting strategy, which proved to work fine

in practice. To find a theoretical justification for it is still an open problem.

Acknowledgements. The authors thank Prof. W. Hackbusch (MPI for Mathematics in the

Siences, Leipzig) and Prof. M. Bebendorf (University of Bonn) for valuable discussions.

References

[1] Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. (2000) 86:

565-589.

[2] Bebendorf, M.: Adaptive Cross Approximation of Multivariate Functions. to appear in

Constr. Approx. 2010.

[3] Espig, M., Grasedyck, L. and Hackbusch, W.: Black Box low tensor-rank approximation

using fiber-crosses. Constr. Approx. (2009) 30: 557-597.

[4] Espig, M.: Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen

Dimension. Ph.D thesis, University of Leipzig, Germany 2007.

[5] Goreinov, S.A., Tyrtyshnikov E.E. and Zamarashkin, N.L.: A theory of pseudoskeleton

approximations. Lin. Alg. Appl. 261, 1-21 (1997).

[6] Hackbusch, W. and Kühn, S.: A new scheme for the tensor representation. Preprint 2/2009,

MPI MIS Leipzig, Germany, 2009.

[7] Khoromskij, B.N.: Tensors-structured Numerical Methods in Scientific Computing: Survey

on Recent Advances. Preprint 21/2010, MPI MIS Leipzig, Germany, 2010.

[8] Khoromskij, B.N. and Khoromskaia, V.: Multigrid tensor approximation of function related

tensors. SIAM J. Sci. Computing, 31(4), 3002-3026, 2009.

17

[9] Kolda, T.G. and Badar, B.W.: Tensor decomposition and applications. SIAM Review,

51(3), 2009.

[10] Oseledets, I.V., Savostianov D.V. and Tyrtyshnikov, E.E.: Tucker dimensionality reduction

of three-dimensional arrays in lienar time. SIAM J. Matrix Anal. Appl. 30(3): 939-956,

2008.

[11] Oseledets, I.V and Tyrtyshnikov, E.E.: TT-Cross approximation for multidimensional ar-

rays. Lin. Alg. Appl. 432(1), 2010, 70-88.

[12] Schneider, J.: Error estimates for two-dimensional Cross Approximation. to appear in Jour.

Approx. Theo. 2010.

18

