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1 Introduction

The logarithmic Sobolev inequality (LSI) – introduced by Gross [Gro75] – is a powerful
tool for studying spin systems. It implies exponential convergence to equilibrium of the
naturally associated diffusion process and also characterizes the rate of convergence
(cf. [SZ92a, SZ92b, SZ95, Yos00, Zeg96] and Remark 1.6). Therefore an appropriate
scaling of the LSI constant in the system size indicates the absence of phase transitions.
The LSI is also useful to deduce the hydrodynamic limit (see [Kos01, GOVW09]).

In this article we consider a large system of real-valued unbounded spins. The Hamil-
tonian of the system is given by a Ginzburg-Landau type potential and a two-body in-
teraction (see (2)). The quadratic interaction is not restricted to finite range. Any two
spins of the system are allowed to interact. Because Kawasaki dynamics conserves the
mean spin of the system, we work with the canonical ensemble.

Even if there is no interaction term in the Hamiltonian, there is a long-range interaction
due to the conservation of the mean spin. Therefore it was a challenge to establish the
LSI for the canonical ensemble in the case of a non-interacting quadratic Hamiltonian
(cf. [LY93] for discrete spin and [LPY02, Cha03, GOVW09] for continuous spin). The
main difficulty was to attain the optimal scaling behavior of the LSI constant in the
system size. In [Yau96] this result was generalized to weak interaction of finite range
for bounded discrete spin values (see also [CMR02]). In this article we show that the
LSI also holds for unbounded continuous spin values with weak two-body interaction.
The LSI constant is uniform in the boundary data and scales optimal in the system size.
Compared to the discrete case we have to deal with new technical difficulties due to the
fact that the spin values and the range of interaction are unbounded. Because we apply
the two-scale approach [GOVW09], deriving the hydrodynamic limit should also work.
However, this is omitted in this article. Our approach is independent of the geometrical
structure of the system. Hence in contrast to existing results on the hydrodynamic limit
(cf. [GPV88, Yau91]) there is no restriction to lattices of certain dimensions or nearest
neighbor interaction. For the proof of the main result we also establish a generalized
version of the local Cramér theorem [GOVW09], where the single-site potentials have
an additional linear term and depend on the site.

Recently, Felix Otto and the author of this article derived in [MO10a] the LSI for a
class of non-interacting quartic Hamiltonians that also contains the classical Ginzburg-
Landau potential (x2 − 1)2. Again, the scaling behavior of the LSI constant is optimal
in the system size. It is a natural question if one could extend their result to weak
interaction. Our approach allows only bounded perturbations of quadratic Hamiltoni-
ans because we use the two-scale criterion for LSI [GOVW09, Theorem 3], which is
restricted to this class of Hamiltonians (cf. Remark 2.2).

The paper is organized in the following way. We present the main result in Section 1.1
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and its proof in Section 2. The local Cramér theorem is discussed in Section 3. A short
appendix contains basic facts about the LSI.

1.1 Basic setting and main result

We consider the following type of spin system. Let Λ be an arbitrary set of sites that
are indexed by {1, . . . , N}, N ∈ N. Note that we do not make any assumption on the
geometrical structure of Λ. To each site i ∈ {1, . . . , N} we assign a real value xi ∈ R

called the spin. A vector x = (x1, . . . , xN) ∈ R
N represents a configuration of the spin

system. The energy of a configuration is given by the Hamiltonian H(x) ∈ R. In our
case there are three contributions to the Hamiltonian:

• for each site i ∈ {1, . . . , N} a Ginzburg-Landau type single-site potential ψi :
R → R that satisfies

ψi(x) =
1

2
x2 + δψi(x) and ‖δψi‖C2(R) ≤ c1 <∞, (1)

uniformly in i ∈ {1, . . . , N};

• a two-body interaction given by a real-valued symmetric matrixM = (mij)N×N ∈
R
N×N with zero diagonal mii = 0;

• a linear term given by the real-valued vector s ∈ R
N , which models the depen-

dence on the boundary data (see also Remark 1.8).

Explicitly, the Hamiltonian of the system is given by

H (x) :=
N∑

i=1

ψi(xi) +
1

2

N∑

i,j=1

mijxixj +
N∑

i=1

sixi. (2)

Note that in contrast to [GOVW09] we do not consider homogeneous single-site poten-
tials ψi = ψ, i ∈ {1, . . . , N} (cf. Remark 1.7). Note that |mij| determines the strength
of the interaction between the spin xi and xj . The sign of mij determines if the interac-
tion is repulsive or attractive. To avoid phase transition, it is natural to assume that the
interaction is small in a certain sense.

Definition 1.1 (Condition of smallness). The interaction matrix M satisfies the small-

ness condition CS(ε) with ε > 0, if for all x, y ∈ R
N

N∑

i,j=1

xi |mij| xj ≤ ε
N∑

i=1

x2
i .
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Remark (Alternative condition of smallness I). Note that CS(ε) is weaker than a con-

dition Yoshida used in [Yos01] i.e.

max
j=1...N

N∑

i=1

|mij| ≤ ε and mij = 0, if |i− j| ≥ R,

for some fixedR ∈ N. There is an obvious difference between both conditions: the CS(ε)
allows infinite range of interaction and Yoshida’s condition not. Even if we allow infinite

range of interaction in Yoshida’s condition, we will give an example to distinguish both

conditions. Let us consider the interaction matrix M = (mij)N×N given by

mij =





ε
2
√
N
, if i = 1 and j 6= 1,

ε
2
√
N
, if j = 1 and i 6= 1,

0, else.

Let us consider the condition CS(ε). By Cauchy-Schwarz we have

N∑

j=1

|xj| ≤
(

N∑

j=1

1

) 1
2
(

N∑

j=1

|xj|2
) 1

2

=
√
N

(
N∑

j=1

|xj|2
) 1

2

.

Then direct calculation reveals that

N∑

i,j=1

xi |mij| xj =
ε√
N

|x1|
N∑

j=1

|xj|

≤ ε |x1|
(

N∑

j=1

|xj|2
) 1

2

≤ ε

N∑

j=1

|xj|2,

which yields that the matrix M satisfies CS(ε).
Considering Yoshida’s condition one sees directly that

max
j=1...N

N∑

i=1

|mij| =
ε

2

(√
N − 1√

N

)
.

This bound is not uniform in the system size N .

Remark (Alternative condition of smallness II). Unfortunately, we cannot use the small-

ness condition
N∑

i,j=1

ximijxj ≤ ε
N∑

i=1

x2
i , (C̃S(ε))
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which would be sensitive to competing interaction (more precisely, to changes in the

sign of mij). Obviously the condition CS(ε) implies C̃S(ε). The best ε̃ satisfying C̃S(ε)
is given by

ε̃ = sup
x∈RN

〈Mx, x〉
〈x, x〉 ,

where 〈·, ·〉 denotes the standard scalar product on R
N . By Lagrange multipliers one

sees that

ε̃ = max {λ ≥ 0 , λ ∈ σ(M)} ,
where σ(M) denotes the spectrum of M . By the same argument the best ε satisfying

CS(ε) is given by

ε = max
{
λ ≥ 0, λ ∈ σ(M̃)

}
,

where M̃ denotes the matrix with entries |mij|, i, j ∈ {1, . . . , N}. Let us illustrate

the difference between both conditions with an example of three interacting sites. We

consider two interaction matrices given by (cf. Figure 1)

M1 =




0 ε −ε
ε 0 ε

−ε ε 0


 and M2 =




0 ε ε
ε 0 ε
ε ε 0


 .

Direct calculation reveals that

σ(M1) = {−2ε, ε, ε} and σ(M2) = {−ε,−ε, 2ε} ,

which implies that M1 satisfies C̃S(ε) and M2 satisfies C̃S(2ε). However, on the level of

the condition CS the interaction matrices M1 and M2 are indistinguishable. We have to

work with the smallness condition CS(ε), because of an application of the criterion of

Otto & Reznikoff (see Section 2.2) and of a covariance estimate (see Section 2.3.2).

The grand canonical ensemble µgc is a probability measure on R
N given by

µgc(dx) :=
1

Z
exp (−H(x)) dx.

Here and later on, Z denotes a generic normalization constant. The Kawasaki dynamics
conserves the mean spin m = 1

N

∑N
i=1 xi of an initial configuration x ∈ R

N . Therefore
we want to restrict the system to the N − 1 dimensional hyper-plane XN,m defined by

XN,m :=

{
x ∈ R

N | 1

N

N∑

i=1

xi = m

}
.
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x1

x2x3
ε

ε−ε

x1

x2x3
ε

εε

Figure 1: Competing vs. uniform interaction

We equip XN,m with the standard scalar product and norm induced by R
N i.e.

〈x, x̃〉 :=
N∑

i=1

xix̃i and |x| =
M∑

i=1

x2
i .

The restriction of µgc to XN,m is called canonical ensemble µ i.e.

µ(dx) :=
1

Z
1{ 1

N

PN
i=1 xi=m} exp (−H(x)) H(dx). (3)

Here and later on, H denotes the Hausdorff measure in the appropriate dimension. Note
that the canonical ensemble µ depends on the system size N ∈ N and the mean spin
m ∈ R.

Definition 1.2 (LSI). Let X be an Euclidean space. A Borel probability measure µ on

X satisfies the LSI with constant ̺ > 0 (in short: LSI(̺) ), if for all functions f ≥ 0

Ent (fµ|µ) :=

∫
f log f dµ−

∫
fdµ log

(∫
fdµ

)
≤ 1

2̺

∫ |∇f |2
f

dµ. (4)

Here ∇ denotes the gradient determined by the Euclidean structure of X .

Remark 1.3 (Gradient on XN,m). If we choose in Definition 1.2 X = XN,m, we can

calculate |∇f |2 in the following way: Extend the function f : XN,m → R to be constant

on the direction normal to XN,m, then

|∇f |2 =
N∑

i=1

|∂xi
f |2.

Now, we are able to state the main result of this article.
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Theorem 1.4. Assume that the Hamiltonian H is given by (2) and that the single-site

potentials ψi satisfy (1) with a constant c1 < ∞ independent of the system size N ∈ N,

the mean spinm ∈ R, and the boundary data s ∈ R
N . Then there exist ε > 0 and ̺ > 0

depending only on c1 such that:

If the interaction matrix M satisfies CS(ε), then the canonical ensemble µ satisfies

LSI(̺) independent of N , m, and s.

In the next remark we explain in which sense the scaling behavior of Theorem 1.4 is
optimal in the system size.

Remark 1.5 (From Glauber to Kawasaki). The bound on the right hand side of (4) is

given in terms of the Glauber dynamics in the sense that we have endowed XN,m with

the standard Euclidean structure inherited from R
N . By the discrete Poincaré inequal-

ity one can recover the bound for the Kawasaki dynamics (cf. [Cap03] or [GOVW09,

Remark 15]) in the sense that one endows XN,m with the Euclidean structure coming

from the discrete H−1-norm. More precisely, let A denote the discrete second-order

difference operator. For example for a one-dimensional lattice A is given by

A :=




2 −1 0 · · · 0
−1 2 −1 · · · 0

0 · · · −1 2 −1
0 · · · 0 −1 2



.

On the d-dimensional lattice we consider a cube Λ with side lengthW and total number

of sites N . Caputo showed in [Cap03] that there exists a constant C depending only on

the dimension d such that

|∇f |2 ≤ CW 2|
√
A∇f |2.

Thus if a measure µ satisfies LSI(̺), then for all functions f ≥ 0

Ent (fµ|µ) ≤ CW 2

2̺

∫ |
√
A∇f |2
f

dµ.

The diffusive scaling behavior in W is optimal (cf. [Yau96]).

In the next remark we explain what is meant by Kawasaki Dynamics and how the LSI
is connected to exponential convergence to equilibrium.

Remark 1.6 (Convergence to equilibrium). The Kawasaki dynamics on XN,m is given

by the stochastic differential equation

dXt = −A∇H(Xt) dt+
√

2A dBt,
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where Bt denotes a standard Brownian motion on R
N . If the process Xt is distributed

as ftµ, then ft satisfies the time-evolution

d

dt
(ftµ) = ∇ · (A∇ftµ) .

Using this equation one sees that

d

dt
Ent (ftµ|µ) = −1

2

∫ |
√
A∇f |2
f

dµ.

Hence it follows from Gronwall’s Lemma and Remark 1.5 that if µ satisfies LSI(̺), then

Ent (ftµ|µ) ≤ exp
(
−CW−2̺

)
Ent (f0µ|µ)

with a constant C, that depends only on the dimension of the lattice.

There are several criteria for the LSI (cf. Appendix A), but none of them applies to our
situation:

• The Tensorization Principle for LSI does not apply because of the interaction
M 6= 0.

• The criterion of Bakry-Emery does not apply because the single-site potentials
ψi are allowed to be non-convex.

• The criterion of Holley-Stroock does not help because we want the LSI constant
̺ to be independent of the system size N .

• The criterion of Otto & Reznikoff does not help because of the restriction to the
hyper-plane XN,m.

Therefore new tools are needed. The most common approach to LSI for Kawasaki dy-
namics is the Lu-Yau martingale method [LY93, LPY02, Cha03]. Using this method
Landim, Panizo & Yau [LPY02] proved Theorem 1.4 in the special case M = 0 for the
Kawasaki bound. An adaptation of this approach by Chafaï [Cha03] led to the stronger
bound for Glauber Dynamics. Providing a new technique – called the two-scale ap-
proach – Grunewald, Otto, Westdickenberg (former Reznikoff) and Villani [GOVW09]
reproduced Theorem 1.4 for M = 0. We will follow their approach, but our setting dif-
fers in two aspects: On the one hand we consider inhomogeneous single-site potentials
(i.e. ψi depends on the site i) and on the other hand –and more fundamentally– we allow
for interaction M 6= 0. These differences lead to new technical difficulties, which are
dealt with using the following ideas (see also Section 2.1):

• the interaction between blocks is controlled by the covariance estimate of [MO10b];
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• the convexification of the coarse-grained Hamiltonian with interaction is achieved
by a conditioning technique (that artificially reduces the system size) and a non-
standard perturbation argument;

• the local Cramér theorem (cf. [GOVW09, Proposition 31]) is generalized to Hamil-
tonians with inhomogeneous single-site potentials and linear terms.

In our argument we want to point out the proof of Lemma 2.12 which contains crucial
estimates to deal with unbounded spin values and unbounded range of interaction. If
the spin values and the range of interaction are bounded, the proof of Lemma 2.12
would be a lot easier (cf. comments after (30)). As a consequence one would not have
to generalize the local Cramér theorem. Therefore Lemma 2.12 is the interesting step
compared to the discrete and bounded case (cf. [Yau96, CMR02]).

The proof of the main result (Theorem 1.4) is structured in the following way. In Sec-
tion 2.1 we outline the two-scale approach. The proof of the main result is given directly
after we formulated the two-scale criterion for LSI (see Theorem 2.1), which is the main
tool of our argument. In the remaining part of Chapter 2 we verify the ingredients of the
two-scale criterion. The microscopic LSI and the macroscopic LSI are deduced in Sec-
tion 2.2 and Section 2.3 respectively. For the proof of the macroscopic LSI we need a
generalized version of the local Cramér theorem, which we state and prove in Section 3.

Remark 1.7 (Homogeneous single-site potentials). Let us consider the situation of ho-

mogeneous single-site potentials. More precisely, assume that for i ∈ {1, . . . N} the

single site-potential ψi(x), x ∈ R is given by

ψi(x) := ψ(x) :=
1

2
x2 + δψ(x), and ‖δψ‖C2 ≤ c1.

Then the proof of Theorem 1.4 would be exactly the same as for inhomogeneous single-

site potentials except of one detail: one has to generalize local Cramér theorem (cf. The-

orem 3.1 or Corollary 3.2) only to Hamiltonians of the form

Hh(x) :=
K∑

i=1

1

2
x2
i + sixi + δψ(xi).

and not to Hamiltonians of the form

Hih(x) :=
K∑

i=1

1

2
x2
i + sixi + δψi(xi).

However, the argument for the generalized local Cramér theorem is almost the same for

Hamiltonians given by Hh or Hih. Therefore we decided to state the main result in the

more general case of inhomogeneous single-site potentials.
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In the next remark we explain that the dependence on the boundary data can be ex-
pressed by adding a linear term to the Hamiltonian H .

Remark 1.8 (Introducing boundary data). We start with a system of N sites and a

Hamiltonian that just consists of single-site potentials and interaction i.e.

H (x1, . . . , xN) :=
N∑

i=1

ψi(xi) +
1

2

N∑

i,j=1

mijxixj.

To model the dependence on the boundary data, we embed the original system into a

larger system of Ñ ≥ N spins, Ñ ∈ N. Because the indexing of the sites is arbitrary, we

can assume that the new sites are indexed by the set {N + 1, . . . , Ñ}. The new system

has the Hamiltonian

H̃ (x1, . . . xÑ) :=
Ñ∑

i=1

ψi(xi) +
1

2

Ñ∑

i,j=1

mijxixj,

where the real numbers mji = mij , i ∈ {1, . . . , Ñ}, j ∈ {N + 1, . . . Ñ}, express

the interaction with the additional sites {N + 1, . . . , Ñ}. We consider the new grand

canonical ensemble µ̃gc on R
Ñ associated to H̃ ,

µ̃gc(dx) :=
1

Z
exp

(
−H̃(x)

)
dx.

We fix the values of the new spins xi, i ∈ {N,N + 1, . . . , Ñ}, that now play the role of

the boundary data of the original system. Hence, we restrict µ̃gc to the space
{
y ∈ R

Ñ | yi = xi, N + 1 ≤ i ≤ Ñ
}
≈ R

N

and denote the restriction as

µb(dx) :=
1

Z
1{yi=xi, N+1≤i≤Ñ} exp

(
−H̃(x)

)
H(dx).

Changing the normalization constant Z one can cancel all terms of the Hamiltonian H̃
that are independent of (x1, . . . , xN). Therefore µb can be considered as a measure on

R
N with density

µb(dx) =
1

Z
exp (−Hb(x)) dx,

where Hb(x), x ∈ R
N , is given by

Hb (x) :=
N∑

i=1

ψi(xi) +
1

2

N∑

i,j=1

mijxixj +
N∑

i=1




Ñ∑

j=N+1

mijxj




︸ ︷︷ ︸
=:si

xi.

This calculation shows that in our setup the dependence on the boundary data can be

modelled by adding a linear term to the Hamiltonian.
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2 Proof of the main result

2.1 The two-scale approach

In this section we will explain the two-scale approach, point out the new difficulties
arising from the interaction, and explain how they are solved. Our presentation is based
on Subsection 2.1 and 5.1 of [GOVW09], which we recommend for better understand-
ing. We decompose the spin system into L blocks each containing K sites. Therefore
N = KL. The index set of the l-th block, l ∈ {1, . . . , L} is given by (cf. Figure 2)

B(l) := {(l − 1)K + 1, . . . , l}.

Hence a configuration x ∈ XN,m of the spin system can be written as

x = (x1, . . . , xL), with xl := (xi)i∈B(l). (5)

Note that the block decomposition is entirely arbitrary and has no geometric signifi-
cance. The coarse-graining operator P : XN,m → XL,m =: Y assigns to each block its
mean spin i.e.

P (x) :=


 1

K

∑

i∈B(1)

xi , . . . ,
1

K

∑

i∈B(L)

xi


 .

We endow Y with the scalar product

〈y, z〉Y :=
1

L

L∑

i=1

yizi, for y, z ∈ Y. (6)

Let P ∗ : Y → XN,m denote the adjoint operator of P . Note that due to the special
Euclidean structure of Y we have

P ∗ =
1

L
P t,

where P t denotes the transpose of P . The orthogonal projection of XN,m on kerP is
given by Id−NP ∗P , which can be seen using the identity

PNP ∗ = IdY . (7)

Hence we can decompose x ∈ XN,m into a macroscopic profile and a microscopic
fluctuation i.e.

x = (NP ∗P )x︸ ︷︷ ︸
∈(kerP )⊥

+ (Id−NP ∗P )x︸ ︷︷ ︸
∈ kerP

.
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x1

B(1) B(L)

xN

Figure 2: Block decomposition of the spin system

The coarse graining also induces a natural decomposition of measures. Recall that µ
denotes the canonical ensemble given by (3) associated to the Hamiltonian H and the
mean spin m. Let µ̄ := P#µ be the push forward of µ under P and let µ(dx|y) denote
the conditional measure of x given Px = y. Then by disintegration

µ(dx) = µ(dx|y)µ̄(dy). (8)

This equation has to be understood in a weak sense i.e. for any test function ξ

∫
ξ dµ =

∫

Y

(∫

{Px=y}
ξ µ(dx|y)

)
µ̄(dy).

By the Coarea Formula one can determine the density of µ̄(dy) as

µ̄(dy) = exp(−NH̄(y)) dy,

where the coarse-grained Hamiltonian H̄ is given by

H̄(y) := − 1

N
log

∫

{Px=y}
exp(−H(x)) H(dx). (9)

The coarse-grained Hamiltonian H̄(y) represents the energy of a macroscopic profile y.
Overall, we observe the system at two different scales:

• the microscopic scale µ(dx|y) considers all fluctuations of the system around a
macroscopic profile y ∈ Y , and

• the macroscopic scale µ̄(dy) considers the macroscopic profiles and neglects all
fluctuations.

We want to apply the two-scale criterion for LSI (see [GOVW09, Theorem 3]) to derive
the LSI for µ. In our setting the two-scale criterion becomes

Theorem 2.1 (Two-scale criterion). Assume that the Hamiltonian H is given by (2) and

that the single-site potentials ψi satisfy (1) with a constant c1 < ∞ independent of the

system size N ∈ N, the mean spin m ∈ R, and the boundary data s ∈ R
N . Assume

that:

12



(i) There is ̺ > 0 such that for all N , m, s, and y ∈ Y the conditional measures

µ(dx|y) satisfy LSI(̺).

(ii) There is λ > 0 such that for all N , m, and s the marginal µ̄ satisfies LSI(λN ).

Then µ satisfies LSI( ˆ̺ ) with ˆ̺ independent of N , m, and s.

Remark. The two-scale criterion in [GOVW09] also contains an explicit representation

of the LSI constant ˆ̺ in terms of ̺, λ, and a constant κ, which represents the strength of

the coupling between the microscopic and macroscopic scale. However, for our purpose

it is just important that ˆ̺ is independent of the system size N , the mean spin m, and the

boundary data s.

Remark 2.2. In the introduction we mentioned the question of generalizing the main

result (Theorem 1.4) to quartic Hamiltonians H i.e.

H (x) :=
N∑

i=1

(
x4
i

4
+ δψi(xi)

)
+

1

2

N∑

i,j=1

mijxixj +
N∑

i=1

sixi,

where the functions δψi(xi) : R → R satisfy the uniform bound

sup
x∈R

|δψ′′
i (x)| ≤ c1 <∞.

Our approach does not cover that case because Theorem 2.1 (or [GOVW09, Theorem

3]) cannot be applied to quartic Hamiltonians. The reason is that κ = ∞ in that

case (see the last remark and [MO10a]). In [MO10a] this problem is avoided by an

adaptation of the two-scale criterion [GOVW09, Theorem 3] to the quartic case. The

adapted two-scale criterion is formulated only for coarsening of pairs and the main

result of [MO10a] is established by an iteration of dyadic coarsening. This approach

cannot be transferred to the interactive case directly, because the iteration is based on

a product structure which is lost due to non-zero interaction.

The ingredients (i) and (ii) of Theorem 2.1 are deduced in Section 2.2 and Section 2.3 re-
spectively. Provided these ingredients are satisfied, the proof of the main result (see The-
orem 1.4) is just an application of the two-scale criterion (see Theorem 2.1).

Proof of Theorem 1.4. We carry out the coarse-graining procedure with a large but fixed
block size K ≥ K0, where K0 is determined by Proposition 2.4 below. Note that K0

is independent of the system size N , the mean spin m, and the boundary data s. The
ingredients of the two-scale criterion of Theorem 2.1, namely the microscopic LSI and
the macroscopic LSI, are verified by Proposition 2.3 and Corollary 2.5 respectively.
Then Theorem 1.4 follows directly from an application of Theorem 2.1.
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Now, we will discuss how the ingredients of Theorem 2.1 are verified. The microscopic
LSI follows directly from an application of the Otto & Reznikoff criterion for LSI (see
Subsection 2.2). Difficulties arise deducing the macroscopic LSI (see Subsection 2.3).
We follow the strategy of [GOVW09] and want to show that H̄ is uniformly convex if
the block size K is large enough and the interaction ε is small enough. The uniform
convexity of H̄ would yield the macroscopic LSI by the criterion of Bakry-Emery (see
Theorem A.3). Due to the interaction between blocks we lose the product structure
of µ̄ (cf. [GOVW09, (63) ]), that was crucial for the argument of [GOVW09]. As a
consequence, the off-diagonal entries hln, l 6= n , of the Hessian of H̄ become non trivial
(see (16)). However, applying a new covariance estimate [MO10b] yields sufficient
control of hln in terms of ε (see Subsection 2.3.2).

The main difficulty of the proof is encountered when checking the positivity of the
diagonal elements hll of the Hessian of H̄ . It is not possible to transfer the positivity
of hll from the case of ε = 0 to the case of small ε by a simple perturbation argument.
The reason is that due to the loss of the product structure, hll will depend on all spins
of system. In the case ε = 0 the diagonal elements hll depend only on the spins of
the l-th block, which has size K. Hence one could not choose ε independent from
the system size N and the LSI constant would depend on N . We avoid this problem by
conditioning on all spins except of a single block (see Subsection 2.3.3). This procedure
artificially reduces the system size to the number K and introduces new boundary data,
which is expressed by an additional linear term in the Hamiltonian (cf. Remark 1.8).
Independently, we observe that for ε = 0 the positivity of hll for largeK is untouched by
a linear term (cf. Remark 3.3). Therefore we are able to apply a perturbation argument
to transfer the positivity of hll to small ε depending only on K and c1 and not on the
system size N (see Lemma 2.11 and Lemma 2.12).

2.2 Microscopic LSI

In this subsection we will prove the following statement.

Proposition 2.3 (Microscopic LSI). Assume that the Hamiltonian H is given by (2) and

that the single-site potentials ψi satisfy (1) with a constant c1 < ∞ independent of the

system size N ∈ N, the mean spin m ∈ R, and the boundary data s ∈ R
N . Then there

is ε > 0 independent of N , m, s, and y ∈ Y (depending only on the block size K and

c1) such that:

If M satisfies CS(ε), then the conditional measures µ(dx|y) given by (8) satisfy LSI(̺)

with ̺ > 0 independent of N , m, s and y (depending only on K, c1, and ε).

Proof of Proposition 2.3. The statement follows from a direct application of the crite-
rion for LSI of Otto & Reznikoff (see Theorem A.4 in the appendix or Theorem 1 in
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[OR07]). We check the first requirement of Theorem A.4. Recall that for a given con-
figuration x ∈ R

N the spins inside the block B(l) are denoted by xl := (xi)i∈B(l). For a
fixed y = (y1, . . . , yL) ∈ Y we define

Xl :=



x

l ∈ R
B(l) | 1

K

∑

i∈B(l)

xi = yl



 , l ∈ {1, . . . , L}.

Because of the block decomposition (5) we have

{x ∈ R
N | Px = y} = X1 × . . .×XL.

Hence we can decompose a configuration x ∈ X as

x = (x1, . . . , xL) with xi ∈ Xi.

For convenience, the spins outside the block B(l) are denoted by x̄l := (xi)i/∈B(l). Dis-
integration of the microscopic measure µ(dx|y) with respect to xl yields

µ(dx|y) = µ(dxl|x̄l, y) µ̄(dx̄l|y),

where µ(dxl|x̄l, y) and µ̄(dx̄l|y) denotes the conditional measure and the correspond-
ing marginal respectively (cf. Figure 3 below). More precisely, we have for all test
functions ξ : {Px = y} → R

∫
ξ(x)µ(dx|y) =

∫ ∫
ξ(xl, x̄l)µ(dxl|x̄l, y)µ̄(dx̄l|y). (10)

For the first requirement of Theorem A.4 we have to show that on Xl, 1 ≤ l ≤ L, the
conditional measures

µ(dxl|x̄l, y)
satisfy the LSI( ˜̺) with constant ˜̺> 0 independent of N , m, s, y, l and x̄l. For this pur-
pose let us have a closer look at the Hamiltonian of the conditional measure µ(dxl|x̄l, y).
For an arbitrary vector s∗ ∈ R

B(l) we define the Hamiltonian H(xl|M, s∗) by

H(xl|M, s∗)
(1)
=
∑

i∈B(l)

ψi(xi) +
1

2

∑

i,j∈B(l)

mijxixj +
∑

i∈B(l)

s∗ixi.
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The definition (2) of the Hamiltonian H yields

H(x) =
N∑

i=1

ψi(xi) +
1

2

N∑

i,j=1

mijxixj +
N∑

i=1

sixi

=
∑

i∈B(l)

ψi(xi) +
1

2

∑

i,j∈B(l)

mijxixj +
∑

i∈B(l)


si +

∑

j /∈B(l)

mijxj


xi

+
∑

i/∈B(l)

ψi(xi) +
1

2

∑

i,j /∈B(l)

mijxixj +
∑

i/∈B(l)

sixi

= H
(
xl|M, sc

)
+
∑

i/∈B(l)

ψi(xi) +
1

2

∑

i,j /∈B(l)

mijxixj +
∑

i/∈B(l)

sixi,

where the vector sc = sc(s,M, x̄l) ∈ R
B(l) is defined by

sc,i := si +
∑

j /∈B(l)

mijxj for i ∈ B(l).

Because one can cancel all terms that are independent of xl = (xi)i∈B(l) with terms
of the normalization constant Z, the effective Hamiltonian of the conditional measure
µ(dxl|x̄l, y) is given by H(xl|M, sc). More precisely,

µ(dxl|x̄l, y) =
1

Z
1{ 1

K

P

i∈B(l) xi=yl} exp
(
−H(xl|M, sc)

)
H(dx).

Note that the dependence of H(xl|M, sc) on yl is hidden in the condition

xl ∈ Xl =



x

l ∈ R
B(l) | 1

K

∑

i∈B(l)

xi = yl



 .

Using the assumption (1) on the single-site potentials ψi we can rewrite H(xl|M, sc) as

H(xl|M, sc) =
∑

i∈B(l)


x

2
i

2
+


si +

∑

j /∈B(l)

mijxj


xi


+

1

2

∑

i,j∈B(l)

mijxixj

︸ ︷︷ ︸
=:H1(xl|M,sc)

+
∑

i∈B(l)

δψi(xi)

︸ ︷︷ ︸
=:H2(xl|M,sc)

.

Using CS(ε) it follows that
∑

i,j∈B(l)

mijxixj ≤ ε|xl|2.
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Hence if ε is small enough, then H1(x
l|M, sc) is a uniformly strictly convex func-

tion with constant λ ≥ 1
4
. By the assumption (1) on the functions δψi it follows that

H2(x
l|M, sc) is a bounded function satisfying

∣∣∣∣∣ sup
xl∈Xl

H2(x
l|M, sc) − inf

xl∈Xl

H2(x
l|M, sc)

∣∣∣∣∣ ≤ K max
i∈{1,...,N}

| sup δψi − inf δψi| ≤ 2Kc1.

Therefore by a combination of the criterion of Bakry & Emery (see Theorem A.3)
and of the criterion of Holley & Stroock (see Theorem A.2), the conditional measures
µ(dxl|x̄l, y) satisfy a uniform LSI with constant

˜̺ = exp (−2Kc1)
1

4
.

Note that ˜̺ is independent of N , m, s, y, l and x̄l (depending only on the block size K
and the constant c1 given by (1)).
Now, we verify the remaining ingredients of the criterion of Otto & Reznikoff. For
n,m ∈ {1, . . . , L} let Mnm denote the K ×K matrix

Mnm = (mij)i∈B(n), j∈B(m).

Let ‖Mnm‖ be defined as the operator norm of Mnm as a bilinear form i.e.

‖Mnm‖ = max





∑

i∈B(n), j∈B(m)

ximijyj
|x| |y|

∣∣∣∣ x ∈ R
B(n), ỹ ∈ R

B(m)



 .

Let the matrix A = (anm)K×K be defined by the elements

anm =

{
˜̺, if n = m,

−‖Mnm‖, if n 6= m,
n,m ∈ {1, . . . , K} . (11)

We have to show that A satisfies for some ̺ > 0 independent of N , m,s, y, l and x̄l

A ≥ ̺ Id

in the sense of quadratic forms. For the rest of the proof let C < ∞ denote a generic
constant that depends only on K. Firstly, we will show that

(‖Mnm‖)L×L ≤ Cε Id . (12)

in the sense of quadratic forms. Because of the equivalence of norms in a finite dimen-
sional vector space we have for n,m ∈ {1, . . . , L}

‖Mnm‖ ≤ C
∑

i∈B(n),j∈B(m)

|mij|.
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For any vector x ∈ R
L we have

L∑

n,m=1

xn ‖Mnm‖ xm
CS(ε)
≤ C

L∑

n,m=1

∑

i∈B(n),j∈B(m)

|xn| |mij| |xm|

CS(ε)
≤ Cε

L∑

n=1

x2
n.

This inequality already yields (12). Because ˜̺ depends only on the block size K and c1,
we can choose ε small independent of N and y such that

A = ˜̺Id− (‖Mnm‖)L×L + diag (‖M11‖, . . . , ‖MLL‖)
≥ ˜̺ Id− (‖Mnm‖)L×L
≥ (˜̺− Cε) Id

≥ ̺ Id, (13)

for some ̺ > 0 depending only onK, c1, and ε. Hence we can apply the criterion of Otto
& Reznikoff and get that the conditional measures µ(dx|y) satisfy LSI(̺) uniformly in
N , m, s, and y, if the strength of interaction ε is small enough.

2.3 Macroscopic LSI

In this section we will derive the macroscopic LSI. More precisely, we will prove that
H̄ becomes uniformly convex for large K and small ε.

Proposition 2.4. Assume that the Hamiltonian H is given by (2) and that the single-site

potentials ψi satisfy (1) with a constant c1 < ∞ independent of the system size N ∈ N,

the mean spin m ∈ R, and the boundary data s ∈ R
N . Let H̄ denote the coarse-

grained Hamiltonian defined by (9) and let HessY H̄ denote the Hessian of H̄ w.r.t. the

Euclidean structure 〈·, ·〉Y on Y given by (6). Then there exists K0 ∈ N depending only

on c1 such that:

If the block size K ≥ K0 and the interaction matrix M satisfies CS(ε), then there are

constants λ > 0 and C <∞ independent of N , m, and s (depending only on K and c1)

such that for all y ∈ Y
HessY H̄(y) ≥ (λ− Cε) Id

in the sense of quadratic forms.

By the definition (9) of H̄ we have µ̄(dy) = exp(−NH̄(y))H(dy). Hence the macro-
scopic LSI is a direct consequence of Proposition 2.4 and the criterion of Bakry &
Emery (see Theorem A.3), if we choose ε small enough. More precisely, we have
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Corollary 2.5 (Macroscopic LSI). Assume that the Hamiltonian H is given by (2) and

that the single-site potentials ψi satisfy (1) with a constant c1 < ∞ independent of the

system size N ∈ N, the mean spin m ∈ R, and the boundary data s ∈ R
N . Choose a

fixed block sizeK ≥ K0 whereK0 is given by Proposition 2.4. Consider the marginal µ̄
defined by (8). Then there exist ε > 0 and λ > 0 independent ofN ,m, and s (depending

only on K and c1) such that:

If the interaction matrix M satisfies CS(ε), then µ̄ satisfies LSI(λN ).

The proof of Proposition 2.4 consists of three steps. In the next subsection we will
deduce a formula for the elements of HessY H̄ . In Subsection 2.3.2 we will show that
the off-diagonal elements of HessY H̄ are small in a certain sense (cf. Lemma 2.8). In
Subsection 2.3.3 we will show that the diagonal elements of HessY H̄ are uniformly
positive for large K and small ε (cf. Lemma 2.10).

Proof of Proposition 2.4. We decompose the HessY H̄(y) into its diagonal matrix and
its remainder i.e.

HessY H̄(y) = diag
((

HessY H̄(y)
)
11
, . . . ,

(
HessY H̄(y)

)
LL

)

+
[
HessY H̄(y) − diag

((
HessY H̄(y)

)
11
, . . . ,

(
HessY H̄(y)

)
LL

)]

Then a combination of Lemma 2.8 and Lemma 2.10 from below yields the statement.

2.3.1 Formula for the elements of the Hessian of H̄

Before we derive the formula for the elements of the Hessian of H̄ , we will deduce an
alternative representation of the coarse-grained Hamiltonian H̄ .

Lemma 2.6. Assume that the Hamiltonian H and the coarse-grained Hamiltonian H̄
are given by (2) and (9) respectively. For x ∈ {Px = 0} and y ∈ Y let HM(x, y) be

defined by

HM(x, y) :=
1

2
〈x, (Id +M)x〉 + 〈x,MNP ∗y〉 + 〈s, x〉 +

N∑

i=1

δψi(xi + (NP ∗)i).

Then

H̄(y) =
1

2
〈y, (Id +PMNP ∗)y〉Y +〈Ps, y〉Y−

1

N
log

∫

{Px=0}
exp (−HM(x, y)) H(dx),

(14)
where the scalar product 〈·, ·〉Y is given by (6)
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Proof of Lemma 2.6. Because Hamiltonian of our system is given by (2) it follows that

H(x+NP ∗y) =
1

2
〈NP ∗y, (Id +M)NP ∗y〉 + 〈x, (Id +M)NP ∗y〉

+
1

2
〈x, (Id +M)x〉 + 〈s, x〉 + 〈s,NP ∗y〉 +

N∑

i=1

δψi(xi + (NP ∗y)i).

Because x ∈ kerP , we have 〈x,NP ∗y〉 = 0. Additionally, note that

〈s,NP ∗y〉 = N 〈Ps, y〉Y .
Hence the equality from above yields

H(x+NP ∗y) =
1

2
N 〈y, (Id +PMNP ∗)y〉Y +N 〈Ps, y〉Y +HM(x, y), (15)

where we used the definition of HM(x, y) from above. Note that by (7) we have
{
x ∈ R

N | Px = y
}

=
{
x ∈ R

N | Px = PNP ∗y
}

=
{
x ∈ R

N | P (x−NP ∗y) = 0
}
.

This identity yields by the translation x 7→ x−NP ∗y that

H̄(y)
(9)
= − 1

N
log

∫

{Px=y}
exp (−H(x)) H(dx)

(9)
= − 1

N
log

∫

{Px=0}
exp (−H(x+NP ∗y)) H(dx).

Applying the representation of H(x+NP ∗y) from above implies (14).

From now on we will use the standard notation that for a probability measure ν

covν(f, g) :=

∫ (
f −

∫
fdν

)(
g −

∫
gdν

)
and varν(f) := covν(f, f).

The following representation of the Hessian of H̄ follows from differentiation of (14).

Lemma 2.7. Assume that the Hamiltonian H and the coarse-grained Hamiltonian H̄
are given by (2) and (9) respectively. Recall that the conditional measures µ(dx|y) are

defined by (8). For 1 ≤ l, n ≤ L we have

(
HessY H̄(y)

)
ln

= δln + δln
1

K

∫ ∑

i∈B(l)

δψ′′
i (xi)µ(dx|y) +

1

K

∑

i∈B(l), j∈B(n)

mij

− 1

K
covµ(dx|y)


∑

j∈B(l)

(
N∑

i=1

mijxi

)
+ δψ′

j (xj) ,
∑

j∈B(n)

(
N∑

i=1

mijxi

)
+ δψ′

j (xj)


 .

(16)
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Proof of Lemma 2.7. Let ∇̄ denote the gradient w.r.t. to the scalar product 〈·, ·〉Y given
by (6) and let ∇ denote the gradient w.r.t. the standard scalar product 〈·, ·〉. Then we
have ∇̄ = L∇. Differentiation of (14) yields

∇̄H̄(y) = L∇H̄(y) = (Id +PMNP ∗)y + Ps+
1

K

∫
∇HM(x, y)µM(dx),

where µM denotes the probability measure associated to HM , namely

µM(dx) := Z−1δ (Px = 0) exp(−HM(x, y))H(dx).

A second differentiation yields that for 1 ≤ l, n ≤ L

(
HessY H̄(y)

)
ln

= L
d2

dyldyn
H̄(y)

= δln + (PMNP ∗)ln +
1

K

∫
d2

dyldyn
HM(x, y)µM(dx)

− 1

K
covµM

(
d

dyl
HM ,

d

dyn
HM

)
. (17)

Let us consider each term successively. Note that

(PMNP ∗)ln =
1

K

∑

i∈B(l), j∈B(n)

mij.

For the next term we get by differentiation that

d

dyl
HM(x, y) =

∑

j∈B(l)

(
N∑

i=1

mijxi

)
+ δψ′

j (xj + (NP ∗y)j) .

Another differentiation combined with the fact

j ∈ B(n) ⇒ (NP ∗y)j = yn

yields that
d2

dyndyl
HM(x, y) = δln

∑

j∈B(l)

δψ′′
j (xj + (NP ∗y)j) .

Because adding constants does not change covariances, we can write the fourth term as

covµM

(
d

dyl
HM ,

d

dyn
HM

)

= covµM


 d

dyl
HM +

∑

j∈B(l)

N∑

i=1

mij(NP
∗y)i ,

d

dyn
HM +

∑

j∈B(n)

N∑

i=1

mij(NP
∗y)i


 .
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Applying these identities to (17) yields

(
HessY H̄(y)

)
ln

= δln +
1

K

∑

i∈B(l), j∈B(n)

mij +
1

K
δln

∫ ∑

i∈B(l)

δψ′′
i ((x+NP ∗y)i)µM(dx)

− 1

K
covµM (dx)

(
∑

j∈B(l)

(
N∑

i=1

mij(x+NP ∗y)i

)
+ δψ′

j ((x+NP ∗y)j) ,

∑

j∈B(n)

(
N∑

i=1

mij(x+NP ∗y)i

)
+ δψ′

j ((x+NP ∗y)j)

)
.

This identity already yields (16) by the translation x 7→ x+NP ∗y. More precisely, we
apply the fact that for any measurable function ξ

∫
ξ(x+NP ∗y)µM(dx)

(15)
=

∫
{Px=0} ξ(x+NP ∗y) exp (−HM(x, y))H(dx)

∫
{Px=0} exp (−HM(x, y))H(dx)

(15)
=

∫
{P (x+NP ∗y)=PNP ∗y} ξ(x+NP ∗y) exp (−H(x+NP ∗y))H(dx)

∫
{P (x+NP ∗y)=PNP ∗y} exp (−H(x+NP ∗y))H(dx)

(7)
=

∫
{Px=y} ξ(x) exp (−H(x))H(dx)
∫
{Px=y} exp (−H(x))H(dx)

(15)
=

∫
ξ(x)µ(dx|y),

where we canceled in the second step the term

exp

(
−1

2
N 〈y, (Id +PMNP ∗)y〉Y −N 〈Ps, y〉Y

)

with the denominator.

2.3.2 Estimation of the off-diagonal elements of the Hessian of H̄

In this section we will show, that the off-diagonal elements of the Hessian of H̄ are
controlled by ε. Explicitly, we will prove the following statement.

Lemma 2.8. Assume that the Hamiltonian H and the coarse-grained Hamiltonian H̄
are given by (2) and (9) respectively. Additionally, assume that the single-site potentials
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ψi satisfy (1) with a constant c1 < ∞ independent of the system size N ∈ N, the mean

spin m ∈ R, and the boundary data s ∈ R
N .

If the interaction matrix M satisfies CS(ε), then there is a constant 0 ≤ C < ∞ inde-

pendent of N , m, and s (depending only on the block size K and c1) such that

HessY H̄(y) − diag
((

HessY H̄(y)
)
11
, . . . ,

(
HessY H̄(y)

)
LL

)
≥ −Cε Id .

This lemma is not obvious. Considering (16) one has to estimate for example the co-
variance

covµ(dx|y)


∑

j∈B(l)

δψ′
j (xj),

∑

j∈B(n)

δψ′
j (xj)


 for 1 ≤ l 6= n ≤ L.

It is not clear how to exploit the control CS(ε) on this term. The key observation is that
the first function depends only on spins of the block B(l), whereas the second function
depends only on spins of block B(n). One hopes that the covariance is decaying in the
distance of the blocks, if ε is small enough. For this purpose we apply the covariance
estimate [MO10b, Theorem 1], which connects the smallness condition CS(ε) to decay
of covariances. For convenience, we state [MO10b, Theorem 1] as the next theorem.

Theorem 2.9 (Covariance estimate of [MO10b]). Let dµ := 1
Z

exp(−H(x))dx be a

probability measure on a direct product of Euclidean spaces X = X1 × · · · ×XL. We

assume that

• the conditional measures µ(dxl|xn ∈ Xn n 6= l) on Xl, l ∈ {1, . . . , L}, satisfy a

uniform SG( ˜̺) (see Definition A.5).

• the numbers κln satisfy

κln := max
x

|∇l∇nH(x)| ≤ C <∞

uniformly in 1 ≤ l 6= n ≤ L; here | · | denotes the operator norm of a bilinear

form.

• the matrix A = (aij)L×L defined by

aij =

{
̺i if i = j,

−κij else

is strictly positive definite.

Then for any function f and g

covµ(f, g) ≤
L∑

l,n=1

A−1
ln

(∫
|∇lf |2 dµ

) 1
2
(∫

|∇ng|2 dµ
) 1

2

.
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Now, we can proceed to the proof of Lemma 2.8.

Proof of Lemma 2.8. Because of (16) we can write

HessY H̄(y) − diag
((

HessY H̄(y)
)
11
, . . . ,

(
HessY H̄(y)

)
LL

)
= W1 +W2,

where the matrix W1 is given by

(W1)ln =

{
1
K

∑
i∈B(l),j∈B(n)mij, if 1 ≤ n 6= l ≤ L,

0, if l = n,

and the elements of the matrix W2 are defined for 1 ≤ n 6= l ≤ L by

(W2)ln = − 1

K
covµ(dx|y)

(
∑

j∈B(l)

(
N∑

i=1

mijxi

)
+ δψ′

j (xj) ,
∑

j∈B(n)

(
N∑

i=1

mijxi

)
+ δψ′

j (xj)

)

and for l = n by

(W2)ln = 0.

Firstly, we will estimate W1. Using CS(ε) we have for any vector x ∈ R
L

L∑

l,n=1

xl(W1)lnxn ≥ − 1

K

L∑

l,n=1

|xl| |xn|
∑

i∈B(l),j∈B(n)

|mij|

≥ −ε
L∑

l=1

x2
l .

The last estimate shows that
W1 ≥ −ε Id

in the sense of quadratic forms. The estimation of W2 is a little bit more subtle. By
bilinearity of the covariance the matrix W2 can be rewritten as

W2 = W3 +W4 +W5 +W6,

where the elements of the matrices W1, . . . ,W6 are defined for 1 ≤ l ≤ L by

(W3)ll = 0 (W4)ll = 0 (W5)ll = 0 (W6)ll = 0
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and for 1 ≤ l 6= n ≤ L by

(W3)ln = − 1

K
covµ(dx|y)

(
∑

j∈B(l)

(
N∑

i=1

mijxi

)
,
∑

j∈B(n)

(
N∑

i=1

mijxi

))
,

(W4)ln = − 1

K
covµ(dx|y)

(
∑

j∈B(l)

δψ′
j (xj) ,

∑

j∈B(n)

δψ′
j (xj)

)
,

(W5)ln = − 1

K
covµ(dx|y)

(
∑

j∈B(l)

(
N∑

i=1

mijxi

)
,
∑

j∈B(n)

δψ′
j (xj)

)
,

(W6)ln = − 1

K
covµ(dx|y)

(
∑

j∈B(l)

δψ′
j (xj) ,

∑

j∈B(n)

(
N∑

i=1

mijxi

))
.

The main tool for the estimation of W3, . . . ,W6 is the covariance estimate of Theo-
rem 2.9. We estimate each matrix separately and start with W3. Because the LSI(̺)
implies the SG(̺) (cf. Lemma A.6), the hypotheses of the criterion of Otto & Reznikoff
(cf. Theorem A.4) are stronger than the hypotheses of Theorem 2.9. In the proof of
Proposition 2.3 we applied Theorem A.4 to the measure µ(dx|y). Hence we can apply
Theorem 2.9 to the measure µ(dx|y) and get for 1 ≤ l 6= n ≤ L the estimate

−(W3)ln =
1

K
covµ(dx|y)

(
∑

j∈B(l)

(
N∑

i=1

mijxi

)
,
∑

j∈B(n)

(
N∑

i=1

mijxi

))

≤
L∑

s1,s2=1

(
A−1

)
s1s2


 ∑

i∈B(l),j∈B(s1)

m2
ij




1
2

 ∑

i∈B(n),j∈B(s2)

m2
ij




1
2

,

where the matrix A is defined as in (11). By equivalence of norms in finite dimensional
vector spaces we get from the last estimate that

−(W3)ln ≤ C

L∑

s1,s2=1

‖Mls1‖
(
A−1

)
s1s2

‖Ms2n‖.

Here and later on in this proof 0 < C < ∞ denotes a generic constant depending only
on K and c1. Before we can continue the estimation of W3, . . . ,W6 we need some basic
estimates for A. Using the Neumann representation of A−1 one sees that

diag
((
A−1

)
11
, . . . ,

(
A−1

)
LL

)
≥ 1

˜̺
Id, (18)
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in the sense of quadratic forms. Because for sufficiently small ε (cf. (13))

A ≥ ˜̺ Id− (‖Mln‖)L×L > 0,

it follows that

A−1 ≤
(
˜̺ Id− (‖Mln‖)L×L

)−1
=

1

˜̺

∞∑

k=0

(
(‖Mln‖)L×L

˜̺

)k
. (19)

A combination of (18), (19) and (12) yields

A−1 − diag
((
A−1

)
11
, . . . ,

(
A−1

)
LL

) CS(ε)
≤ 1

˜̺

∞∑

k=1

(
(‖Mln‖)L×L

˜̺

)k

CS(ε)
≤ 1

˜̺

ε

˜̺− ε
Id (20)

and

(‖Ms1s2‖)L×LA−1 (‖Ms1s2‖)L×L ≤ 1

˜̺

∞∑

k=2

(
(‖Mln‖)L×L

˜̺

)k
≤ 1

˜̺

ε2

˜̺− ε
Id . (21)

Now, we turn back to the estimation of W3. It follows from (21) that

−W3 ≤ (‖Ms1s2‖)L×LA−1 (‖Ms1s2‖)L×L ≤ Cε,

for a generic constant C <∞ that depends only on K and c1.
Let us turn to the estimation of W4. By an application of Theorem 2.9 we have for
1 ≤ l 6= n ≤ L

−(W4)ln ≤
(
A−1

)
ln

max
i∈{1,...,N}

max
x∈R

|δψ′′
i (x)|2

≤ C
(
A−1

)
ln
.

Hence (20) yields

−W4 ≤ A−1 − diag
((
A−1

)
11
, . . . ,

(
A−1

)
LL

)
≤ Cε.

With an argument of the same type one can also estimate the matrices W5 and W6 as

−W5 −W6 ≤ Cε,

which together with the estimates of W3 and W4 yields

−W2 ≤ Cε.
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2.3.3 Estimation of the diagonal elements of the Hessian of H̄

In this section we will deduce the strict positivity of the diagonal elements of the Hessian
of H̄ for sufficiently large block sizes K and sufficiently small interaction ε. More
precisely, we will show the following statement.

Lemma 2.10. Assume that the Hamiltonian H and the coarse-grained Hamiltonian H̄
are given by (2) and (9) respectively. Additionally, assume that the single-site potentials

ψi satisfy (1) with a constant c1 < ∞ independent of the system size N ∈ N, the mean

spin m ∈ R, and the boundary data s ∈ R
N . Then there exist K0 ∈ N depending only

on c1 such that:

If the block size K ≥ K0 and the interaction matrix M satisfies CS(ε), then there are

constants λ > 0 and C <∞ independent of N , m, and s (depending only on K and c1)

such that for all 1 ≤ l ≤ L and y ∈ Y
(
HessY H̄(y)

)
ll
≥ λ− Cε.

Therefore it holds

diag
((

HessY H̄(y)
)
11
, . . . ,

(
HessY H̄(y)

)
LL

)
≥ (λ− Cε) Id

in the sense of quadratic forms.

For the proof of Lemma 2.10 we use a conditioning technique, which allows to apply
a perturbation argument for small ε independent of N , m, and s. Let us consider an
arbitrary but fixed block B(l), 1 ≤ l ≤ L. Recall that for a given configuration x ∈ R

N

the spins inside the block B(l) are denoted by xl := (xi)i∈B(l) and the spins outside the
block B(l) are denoted by x̄l := (xi)i/∈B(l) (cf. Figure 3). As in the proof of Proposi-
tion 2.3 disintegration of the microscopic measure µ(dx|y) with respect to xl yields

µ(dx|y) = µ(dxl|x̄l, y) µ̄(dx̄l|y),

where µ(dxl|x̄l, y) and µ̄(dx̄l|y) denotes the conditional measure and the corresponding
marginal respectively (cf. (10)). In the proof of Proposition 2.3 we have shown that the
conditional measures µ(dxl|x̄l, y) are given by

µ(dxl|x̄l, y) =
1

Z
1{ 1

K

P

i∈B(l) xi=yl} exp
(
−H(xl|M, sc)

)
H(dx), (22)

B(1)

x̄lx̄l xl

B(L)B(l)

xxxx x x x x

Figure 3: Conditioning on spins outside of the block B(l)
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where the sc and H(xl|M, sc) are defined by

sc,i := si +
∑

j /∈B(l)

mijxj for i ∈ B(l) (23)

and by

H(xl|M, s∗) :=
∑

i∈B(l)

ψi(xi) +
1

2

∑

i,j∈B(l)

mijxixj +
∑

i∈B(l)

s∗ixi (24)

for an arbitrary vector s∗ ∈ R
B(l). We introduce the coarse-grained Hamiltonian of

H(xl|M, s∗) as usual i.e. for yl ∈ R

H̄(yl|M, s∗) := − 1

K
log

∫

{ 1
K

P

i∈B(l) xi=yl}
exp

(
−H(xl|M, s∗)

)
H(dxl). (25)

The next lemma shows that uniform positivity of

d2

dy2
l

H̄(yl|M, s∗)

yields uniform positivity of (HessY H̄(y))ll for small ε . This observation is one of the
main insights in order to apply a perturbation argument for small ε independent of the
system size N . The advantage of H̄(yl|M, s∗) over H̄(y) is that in (25) one integrates
only over sites of the block B(l), whereas in the definition (9) of the coarse-grained
Hamiltonian H̄(y) one integrates over all sites of the spin system.

Lemma 2.11. Assume that the Hamiltonian H and the coarse-grained Hamiltonian H̄
are given by (2) and (9) respectively. Additionally, assume that the single-site potentials

ψi satisfy (1) with a constant c1 < ∞ independent of the system size N ∈ N, the mean

spin m ∈ R, and the boundary data s ∈ R
N . The vector sc and the Hamiltonian

H(xl|M, sc) are given by (23) and (24) respectively. Then:

If the interaction matrix M satisfies CS(ε), then for all 1 ≤ l ≤ L and y ∈ Y

(HessY H̄(y))ll ≥
∫

d2

dy2
l

H̄(yl|M, sc)µ̄(dx̄l|y) − Cε,

where the constant C <∞ is independent of N , m, and s (depending only on the block

size K and c1).

The proof of Lemma 2.11 consists of two steps. In the first step we show that the
disintegration (10) yields the identity

(
HessY H̄(y)

)
ll

=

∫
d2

dy2
l

H̄(yl|M, sc) µ̄(dx̄l|y)

− 1

K
varµ̄(dx̄l|y)



∫ ∑

j∈B(l)

(
N∑

i=1

mijxi

)
+ δψ′

j(xj) µ(dxl|x̄l, y)


 . (26)
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In the second step we show that the variance term on the right hand side can be estimated
by using the covariance estimate of Theorem 2.9 as

1

K
varµ̄(dx̄l|y)



∫ ∑

j∈B(l)

(
N∑

i=1

mijxi

)
+ δψ′

j(xj) µ(dxl|x̄l, y)


 ≤ Cε. (27)

We will state the full proof of Lemma 2.11 in the next subsection. The next lemma
provides the last remaining ingredient of the proof of Lemma 2.10 which is the uniform
positivity of d2

dy2
l

H̄(yl|M, s∗).

Lemma 2.12. Assume that the single-site potentials ψi satisfy (1) with a constant c1 <
∞ independent of the system size N ∈ N, the mean spin m ∈ R, and the boundary data

s ∈ R
N . Then there is K0 ∈ N such that:

If the block size K ≥ K0 and the interaction matrix M satisfies CS(ε), then there are

constants λ > 0 and C <∞ independent of N , m, and s (depending only on K and c1)

such that for all 1 ≤ l ≤ L, yl ∈ R, and s∗ ∈ R
B(l)

d2

dy2
l

H̄(yl|M, s∗) ≥ λ− Cε. (28)

Let us explain the main idea of the proof of Lemma 2.12. If the block size K is large
enough, the generalized local Cramér theorem (cf. Corollary 3.2 and Remark 3.3) yields

d2

dy2
l

H̄(yl|0, s̃) ≥ λ > 0 (29)

for all yl ∈ R and s̃ ∈ R
B(l). The strategy is to derive (28) from (29) by a perturbation

argument. More precisely, we will show that for a clever choice of s̃ = s̃(s∗) ∈ R
B(l)

∣∣∣∣
d2

dy2
l

H̄(yl|M, s∗) − d2

dy2
l

H̄(yl|0, s̃)
∣∣∣∣ ≤ Cε, (30)

for all yl and s∗. The constant C < ∞ just depends on K and c1. For the proof of
Lemma 2.10 it is crucial that the last inequality holds uniformly in s∗ ∈ R

B(l). Because
we consider unbounded spins with quadratic interaction, the latter is a difficult task
and leads to the specific choice of s̃ = s̃(s∗) given by (41). It would be a lot easier
to derive (30) for bounded spin-values with finite-range interaction. In this case one
could also deduce the estimate (30) for the choice s̃ = 0. Then the standard version
of the local Cramér theorem [GOVW09, Proposition 31] would be sufficient for the
perturbation argument at least for homogeneous single-site potentials ψi = ψ. The
reason is that [GOVW09, Proposition 31] already yields

d2

dy2
l

H̄(yl|0, 0) ≥ λ > 0

in this case. We will state the full proof of Lemma 2.12 in the next subsection.
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Proof of Lemma 2.10. The desired statement follows directly from a combination of
Lemma 2.11 and Lemma 2.12.

Proof of auxiliary results

Proof of Lemma 2.11. Let us deduce the identity (26). Recall that by Lemma 2.7 we
have

(
HessY H̄(y)

)
ll

= 1 +
1

K

∑

i,j∈B(l)

mij +
1

K

∫ ∑

j∈B(l)

δψj(xj)
′′µ(dx|y)

− 1

K
varµ(dx|y)


∑

j∈B(l)

(
N∑

i=1

mijxi

)
+ δψ′

j(xj)


 .

Applying the disintegration rule (10) to variances yields that for an arbitrary func-
tion f(x) = f(xl, x̄l)

varµ(dx|y)(f(x))

=

∫
varµ(dxl|x̄l,y)(f(xl, x̄l)) µ̄(dx̄l|y) + varµ̄(dx̄l|y)

(∫
f(xl, x̄l)µ(dxl|x̄l, y)

)
.

An application of the last identity to

f(x) =
∑

j∈B(l)

(
N∑

i=1

mijxi

)
+ δψ′

j(xj)

and the disintegration rule (10) yield the identity

(
HessY H̄(y)

)
ll

=

∫ [∫ 
1 +

1

K

∑

i,j∈B(l)

mij +
1

K

∫ ∑

j∈B(l)

δψj(xj)
′′


µ(dxl|x̄l, y)

− 1

K
varµ(dxl|x̄l,y)


∑

j∈B(l)

(
N∑

i=1

mijxi

)
+ δψ′

j(xj)



]
µ̄(dx̄l|y)

− 1

K
varµ̄(dx̄l|y)



∫ ∑

j∈B(l)

(
N∑

i=1

mijxi

)
+ δψ′

j(xj) µ(dxl|x̄l, y)


 .
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Note that the Hamiltonian H(xl|M, s∗) defined by (24) has the same structure as the
Hamiltonian H(x) given by (2). Therefore an application of Lemma 2.7 yields that

d2

dy2
l

H̄(yl|M, sc) = 1 +
1

K

∑

i,j∈B(l)

mij +
1

K

∫ ∑

j∈B(l)

δψ′′
j (xj)µ(dxl|x̄l, y)

− 1

K
varµ(dxl|x̄l,y)


∑

j∈B(l)


∑

i∈B(l)

mijxi


+ δψ′

j(xj)




= 1 +
1

K

∑

i,j∈B(l)

mij +
1

K

∫ ∑

j∈B(l)

δψ′′
j (xj)µ(dxl|x̄l, y)

− 1

K
varµ(dxl|x̄l,y)


∑

j∈B(l)

(
N∑

i=1

mijxi

)
+ δψ′

j(xj)


 , (31)

where we applied in the second step the fact that adding constants does not change the
variance. Finally, the desired identity (26) follows from the last two equations.
It remains to derive the estimate (27) of the variance term of the right hand side of (26).
By Young’s inequality

1

K
varµ̄(dx̄l|y)



∫ ∑

j∈B(l)

(
N∑

i=1

mijxi

)
+ δψ′

j(xj) µ(dxl|x̄l, y)




≤ 2

K
varµ̄(dx̄l|y)



∫ ∑

j∈B(l)

N∑

i=1

mijxi µ(dxl|x̄l, y)




+
2

K
varµ̄(dx̄l|y)



∫ ∑

j∈B(l)

δψ′
j(xj) µ(dxl|x̄l, y)


 . (32)

Let us consider the first term of the right hand side of (32). By the disintegration
rule (10) we have for any function ξ(x̄l)

∫
ξ(x̄l)µ̄(dx̄l|y) =

∫
ξ(x̄l)

∫
1 µ(dxl|x̄l, y)

︸ ︷︷ ︸
=1

µ̄(dx̄l|y)

=

∫
ξ(x̄l) µ(dx|y).
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It follows that

2

K
varµ̄(dx̄l|y)



∫ ∑

j∈B(l)

N∑

i=1

mijxi µ(dxl|x̄l, y)




=
2

K
varµ(dx|y)



∫ ∑

j∈B(l)

N∑

i=1

mijxi µ(dxl|x̄l, y)


 .

Therefore an application of the covariance estimate of Theorem 2.9 (cf. proof of Lemma 2.8)
yields

2

K
varµ̄(dx̄l|y)



∫ ∑

j∈B(l)

N∑

i=1

mijxi µ(dxl|x̄l, y)




≤ 2

̺K

L∑

s1,s2=1

(
A−1

)
s1s2



∫ ∑

k∈B(s1)

∣∣∣∣∣∣
d

dxk

∫ ∑

j∈B(l)

N∑

i=1

mijxi µ(dxl|x̄l, y)

∣∣∣∣∣∣

2

µ̄(dx̄l|y)




1
2

×



∫ ∑

k∈B(s2)

∣∣∣∣∣∣
d

dxk

∫ ∑

j∈B(l)

N∑

i=1

mijxi µ(dxl|x̄l, y)

∣∣∣∣∣∣

2

µ̄(dx̄l|y)




1
2

. (33)

It follows from the definition xl = (xk)k∈B(l) that for k ∈ B(l)

d

dxk



∫ ∑

j∈B(l)

N∑

i=1

mijxi µ(dxl|x̄l, y)


 = 0. (34)

Using the definition (24) of H(xl|M, sc) we see by direct calculation that for k /∈ B(l)

∣∣∣∣∣∣
d

dxk

∫ ∑

j∈B(l)

N∑

i=1

mijxi µ(dxl|x̄l, y)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

j∈B(l)

mkj − covµ(dxl|x̄l,y)


∑

j∈B(l)

N∑

i=1

mijxi
d

dxk
H(xl|M, sc)



∣∣∣∣∣∣

≤
∑

j∈B(l)

|mkj| +

∣∣∣∣∣∣
covµ(dxl|x̄l,y)


∑

j∈B(l)

N∑

i=1

mijxi ,
∑

s∈B(l)

mksxs



∣∣∣∣∣∣
.
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From now on, let C < ∞ denote a generic constant depending only on K and c1.
Because µ(dxl|x̄l, y) satisfies LSI( ˜̺) with ˜̺> 0 depending only on K and c1 (cf. proof
of Proposition 2.3), an application of Lemma A.6 yields

∣∣∣∣∣∣
d

dxk

∫ ∑

j∈B(l)

N∑

i=1

mijxi µ(dxl|x̄l, y)

∣∣∣∣∣∣

CS(ε)
≤ C


∑

j∈B(l)

m2
kj




1
2

+
1

˜̺


 ∑

i,j∈B(l)

m2
ij




1
2

︸ ︷︷ ︸
≤C‖Mll‖


∑

j∈B(l)

m2
kj




1
2

CS(ε)
≤

(
C +

C

˜̺
ε

)
 ∑

j∈B(l)

m2
kj




1
2

. (35)

A combination of the estimates (33), (34) and (35) yields the estimate of the first term
on the right hand side of (32). More precisely,

2

K
varµ̄(dx̄l|y)



∫ ∑

j∈B(l)

N∑

i=1

mijxi µ(dxl|x̄l, y)




≤ C

L∑

s1,s2=1

(
A−1

)
s1s2


 ∑

i∈B(s1), j∈B(l)

m2
ij




1
2

 ∑

i∈B(s2), j∈B(l)

m2
ij




1
2

≤ C
L∑

s1,s2=1

(
A−1

)
s1s2

‖Mls1‖ ‖Ms2l‖
(21)
≤ Cε.

The second term on the right hand side of (32), namely

2

K
varµ̄(dx̄l|y)



∫ ∑

j∈B(l)

δψ′
j(xj) µ(dxl|x̄l, y)


 ,

can be estimated with the same argument as we used for the first term. The only different
ingredient is the estimation of
∣∣∣∣∣∣
d

dxk

∫ ∑

j∈B(l)

δψ′
j(xj) µ(dxl|x̄l, y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
covµ(dxl|x̄l,y)


∑

j∈B(l)

δψ′
j(xj) ,

∑

s∈B(l)

mksxs



∣∣∣∣∣∣

≤ C

˜̺


∑

j∈B(l)

m2
kj




1
2

,
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where we applied the estimate of Lemma A.6 and the uniform bound (1) of the functions
δψi.

Proof of Lemma 2.12. Because the estimate (29) follows directly from the generalized
local Cramér theorem (cf. Corollary 3.2 and Remark 3.3), it is only left to deduce the
estimate (30). Let ν(dxl|M, s∗) denote the Gibbs measure on



x

l ∈ R
B(l)

∣∣∣∣
1

K

∑

i∈B(l)

xi = yl





associated to the Hamiltonian H(dxl|M, s∗). More precisely,

ν(dxl|M, s∗) =
1

Z
1{ 1

K

P

i∈B(l) xi=yl} exp(−H(dxl|M, s∗)H(dxl).

The same reason as for (31) yields that

d2

dy2
l

H̄(yl|M, s∗) = 1 +
1

K

∑

i∈B(l), j∈B(l)

mij +

∫
1

K

∑

j∈B(l)

δψ′′
j (xj) ν(dx

l|M, s∗)

− 1

K
varν(dxl|B,s∗)


∑

j∈B(l)


∑

i∈B(l)

mijxi


+ δψ′

j(xj)




= 1 +
1

K

∑

i∈B(l), j∈B(l)

mij +

∫
1

K

∑

j∈B(l)

δψ′′
j (xj) ν(dx

l|M, s∗)

− 1

K
varν(dxl|B,s∗)


 ∑

i,j∈B(l)

mijxi


− 1

K
varν(dxl|B,s∗)


∑

j∈B(l)

δψ′
j(xj)




− 2

K
covν(dxl|B,s∗)


 ∑

i,j∈B(l)

mijxi ,
∑

j∈B(l)

δψ′
j(xj)


 .

An application of this formula to H̄(yl|0, s̃) with arbitrary s̃ ∈ R
B(l) yields

d2

dy2
l

H̄(yl|0, s̃) = 1 +

∫
1

K

∑

j∈B(l)

δψ′′
j (xj) ν(dx

l|0, s̃) − 1

K
varν(dxl|0,s̃)


∑

j∈B(l)

δψ′
j(xj)


 .
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It follows from the last two equations that

∣∣∣∣
d2

dy2
l

H̄(yl|M, s) − d2

dy2
l

H̄(yl|0, s̃)
∣∣∣∣ ≤

1

K

∣∣∣∣∣∣

∑

i,j∈B(l)

mij

∣∣∣∣∣∣

+
1

K

∣∣∣∣∣∣
varν(dxl|M,s∗)


 ∑

i,j∈B(l)

mijxi



∣∣∣∣∣∣

+
2

K

∣∣∣∣∣∣
covν(dxl|M,s∗)


 ∑

i,j∈B(l)

mijxi , δψ
′
j(xj)



∣∣∣∣∣∣

+
1

K

∣∣∣∣∣∣

∫ ∑

j∈B(l)

δψ′′
j (xj) ν(dx

l|M, s∗) −
∫ ∑

j∈B(l)

δψ′′
j (xj) ν(dx

l|0, s̃)

∣∣∣∣∣∣

+
1

K

∣∣∣∣∣∣
varν(dxl|M,s∗)


∑

j∈B(l)

δψ′
j(xj)


− varν(dxl|0,s̃)


∑

j∈B(l)

δψ′
j(xj)



∣∣∣∣∣∣

=: T1 + T2 + T3 + T4 + T5.

By the same argument as in the proof of Proposition 2.3 it follows that the measure
ν(dxl|M, s∗) satisfies LSI( ˜̺) with ˜̺ > 0 depending only on K and c1. Therefore by
using the CS(ε) and the basic covariance estimate of Lemma A.6 it is easy to deduce

T1 + T2 + T3 ≤ Cε

for a constant C <∞ depending only on K and c1.

The interesting part is the estimation of T4 and T5, for which the right choice of s̃ =
s̃(s∗) ∈ R

B(l) plays an important role. Therefore let us motivate how to choose s̃ =
s̃(s∗) for a given vector s∗ ∈ R

B(l). Let ξ be an arbitrary bounded function (think of
ξ = δψi). Then the structure of T4 and T5 is given by

∣∣∣∣
∫
ξ(xl) ν(dxl|M, s∗) −

∫
ξ(xl) ν(dxl|0, s̃)

∣∣∣∣ .

We want to estimate this term uniformly in the unbounded parameters yl ∈ R and
s∗ ∈ R

B(l). Therefore let us take a closer look at the dependence of
∫
ξ(xl) ν(dxl|M, s∗) =

∫

{ 1
K

P

i∈B(l) xi=yl}
ξ(xl)

1

Z
exp

(
−H(xl|M, s∗)

)
H(dxl) (36)

35



on the parameters yl and s∗. On the block B(l) we define the coarse-graining operator
Pl : R

B(l) → R by

Plx
l =

1

K

∑

i∈B(l)

xi.

As for the original coarse-graining operator P we have the identity

PlKP
t
l = IdRB(l) ,

where P t
l denotes the transpose of P . Using the last identity we see that the orthogonal

projection Π of R
B(l) on kerPl = {Plxl = 0} is given by

Π = Id−KPlP t
l . (37)

The dependence of the integration space on yl is abolished by the translation x 7→
x−KP t

l yl, which maps




1

K

∑

i∈B(l)

xi = yl



 =

{
Plx

l = yl
}
→
{
Plx

l = 0
}

=





1

K

∑

i∈B(l)

xi = 0



 .

Using the definition (24) of H(xl|M, s∗) we get by direct calculation that

H(xl +KP t
l yl|M, s∗)

=
1

2

〈
xl, (Id +Mll)x

l
〉

+
〈
s∗ + (Id +Mll)KP

t
l yl, x

l
〉

+
∑

i∈B(l)

δψi(xi + yl)

+
1

2

〈
KP t

l yl, (Id +Mll)KP
t
l yl
〉

+
〈
s∗, KP t

l yl
〉
.

Because we can cancel all terms that are independent of xl with terms of the normaliza-
tion constant Z, the translation x 7→ x − KP t

l yl applied to the right hand side of (36)
yields the identity
∫
ξ(xl)ν(dxl|M, s∗) =

1

Z

∫

{Plxl=0}
ξ(xl +KP t

l yl)×

exp


−1

2

〈
xl, (Id +Mll)x

l
〉
−
〈
s∗ +MllKP

t
l yl, x

l
〉
−
∑

i∈B(l)

δψi(xi + yl)


H(dxl),

(38)

where we used the fact that
〈
KP ∗

l yl, x
l
〉

= 0 for xl ∈
{
Plx

l = 0
}

. Note that in (38) only
the linear term

〈
s∗ +MllKP

t
l yl, x

l
〉

depends on the parameters yl and s∗. The idea is
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to get rid of this term by a second translation xl 7→ xl + v, which leaves the integration
space {Plxl = 0} invariant. The key observation is that for any xl ∈

{
Plx

l = 0
}

and z ∈ R
B(l)

〈
z, xl

〉
=
〈
Πz, xl

〉
,

where the orthogonal projection Π : R
B(l) → {Plxl = 0} is defined by (37). Hence we

can rewrite the Gaussian part of the Hamiltonian in (38) as

1

2

〈
xl, (Id +Mll)x

l
〉

+
〈
s∗ +MllKP

t
l yl, x

l
〉

=
1

2

〈
xl, (Id +ΠMll)x

l
〉

+ 〈(Πs∗ + ΠMllKP
t
l yl)︸ ︷︷ ︸

∈{Plxl=0}
, xl〉.

Note that if M satisfies CS(ε) with ε < 1, then the map (Id +ΠMll) :
{
Plx

l = 0
}
→{

Plx
l = 0

}
is invertible. We define v by

v = (Id−ΠMll)
−1(Πs∗ + ΠMllKP

t
l yl). (39)

It follows from v ∈
{
Plx

l = 0
}

that the transformation xl 7→ xl + v leaves the integra-
tion space

{
Plx

l = 0
}

invariant. Direct calculation using the definition of v yields

1

2

〈
xl − v, (Id +Mll)(x

l − v)
〉

+
〈
s∗ +MllKP

t
l yl, x

l − v
〉

=
1

2

〈
xl − v, (Id +ΠMll)(x

l − v)
〉

+ 〈(Πs∗ + ΠMllKP
t
l yl) , x

l − v〉

=
1

2

〈
xl, (Id +ΠMll)x

l
〉
− 〈(Πs∗ + ΠMllKP

t
l yl) , v〉 +

1

2
〈v, (Id +ΠMll)v〉 .

Because we can cancel all terms that are independent of xl with terms of the normaliza-
tion constant Z, the transformation xl 7→ xl + v applied to the right hand side of (38)
yields

∫
ξ(xl) ν(dxl|M, s∗) =

∫

{Plxl=0}
ξ(xl +NP ∗yl − v)

× 1

Z
exp


−1

2

〈
xl, (Id +Mll)x

l
〉
−
∑

i∈B(l)

δψi(xi + yl − vi)


H(dxl). (40)

Note that we have gained compactness by this representation: The unbounded parame-
ters yl and s∗ only enter (40) as an argument of the bounded functions ξ and δψi. This
observation is crucial for the estimation of T4 and T5. The calculation also reveals that
it is natural to choose

s̃(s∗) = Πs∗ + ΠMllKP
t
l yl =

(
Id−KP t

l Pl
) (
s∗ +MllKP

t
l yl
)

(41)
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in d2

dy2
l

H̄(yl|0, s̃). The reason is that carrying out the two translations from above yields

∫
ξ(xl) ν(dxl|0, s̃) =

∫

{ 1
K

P

i∈B(l) xi=0}
ξ(xl +KP t

l yl − v)

× 1

Z
exp


−1

2

〈
xl, xl

〉
−
∑

i∈B(l)

δψi(xi + yl − vi)


H(dxl). (42)

Note that the right hand side of (40) and (42) coincide except of the interaction term〈
xl,Mllx

l
〉
. The latter is very helpful to apply a perturbation argument for the uniform

estimation of T4 and T5, because they have the same structure as
∣∣∣∣
∫
ξ(xl) ν(dxl|M, s∗) −

∫
ξ(xl) ν(dxl|0, s̃)

∣∣∣∣ .

Now, we deduce the uniform estimation of T4 and T5. Let us choose s̃ = s̃(s∗) as
in (41). Firstly, we estimate the term

T4 =
1

K

∣∣∣∣∣∣

∫ ∑

j∈B(l)

δψ′′
j (xj) ν(dx

l|M, s∗) −
∫ ∑

j∈B(l)

δψ′′
j (xj)ν(dx

l|0, s̃)

∣∣∣∣∣∣
.

For 0 ≤ λ ≤ 1 we define the probability measure νλ on
{
Plx

l = 0
}

by

νλ(dx
l) :=

1

Z
exp


−1

2

〈
xl, (Id +λMll)x

l
〉
−
∑

j∈B(l)

δψj (xj + yl − vj)


 H(dxl),

where the vector v is defined by (39). Applying the translation xl 7→ xl−KP t
l yl + v on

the integrals of T4 yields (cf. (38), (40), and (42))

T4 =
1

K

∣∣∣∣∣∣

∫ ∑

j∈B(l)

δψ′′
j (xj + yl − vj) ν1(dx

l) −
∫ ∑

j∈B(l)

δψ′′
j (xj + yl − vj) ν0(dx

l)

∣∣∣∣∣∣

≤ 1

K
sup

0≤λ≤1

∣∣∣∣∣∣
d

dλ

∫ ∑

j∈B(l)

δψ′′
j (xj + yl − vj) νλ(dx

l)

∣∣∣∣∣∣
. (43)

Because M satisfies CS(ε), we may assume w.l.o.g. that

−1

2
Id ≤Mll ≤

1

2
Id . (44)
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LetC <∞ denote a generic constant depending only onK and c1. By direct calculation
we get that for any 0 ≤ λ ≤ 1∣∣∣∣∣
d

dλ

∫ ∑

j∈B(l)

δψ′′
j (xj + yl − vj) νλ(dx

l)

∣∣∣∣∣

=
1

2

∣∣∣∣∣covνλ(dxl)


∑

j∈B(l)

δψ′′
j (xj + yl − vj) ,

〈
xl,Mllx

l
〉


∣∣∣∣∣

=
1

2

∣∣∣∣∣

∫ 
 ∑

j∈B(l)

δψ′′
j (xj + yl − vj) −

∫
δψ′′

j (xj + yl − vj) νλ(dx
l)


 〈

xl,Mllx
l
〉
νλ(dx

l)

∣∣∣∣∣

≤ K max
j∈B(l)

sup
x∈R

∣∣δψ′′
j (x)

∣∣
∫ ∣∣〈xl,Mllx

l
〉∣∣ νλ(dxl)

CS(ε)
≤ Kc1 ε

∫
{Plxl=0}

∣∣xl
∣∣2 exp

(
−1

2

〈
xl, (Id +λMll)x

l
〉
−
∑

j∈B(l) δψj (xj + yl − vj)
)

H(dx)

∫
{Plxl=0} exp

(
−1

2
〈xl, (Id +λMll)xl〉 −

∑
j∈B(l) δψj (xj + yl − vj)

)
H(dx)

.
(44)
≤ K c1 ε exp

(
K max

j∈B(l)

(
sup
x
δψj(x) − inf

x
δψj(x)

))

×

∫
{Plxl=0}

∣∣xl
∣∣2 exp

(
−1

2

〈
xl, xl

〉)
H(dx)

∫
{Plxl=0} exp

(
−3

2
〈xl, xl〉

)
H(dx)

≤ C ε. (45)

A combination of (43) and (45) yields the estimate

T4 ≤ C ε.

The same argument also yields

T5 =
1

K

∣∣∣∣∣∣
varν(dxl|M,s∗)


∑

j∈B(l)

δψ′
j(xj)


− varν(dxl|0,s̃)


∑

j∈B(l)

δψ′
j(xj)



∣∣∣∣∣∣
≤ C ε.

There is only one difference compared to the estimation of T4. It is the identity
∣∣∣∣∣
d

dλ
varνλ(dxl)


∑

j∈B(l)

δψ′
j(xj + yl − vj)



∣∣∣∣∣

=

∣∣∣∣∣
d

dλ

∫ 
 ∑

j∈B(l)

δψ′
j(xj + yl − vj) −

∫
δψ′

j(xj + yl − vj) νλ(dx
l)




2

νλ(dx
l)

∣∣∣∣∣.
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Because

∫ 
 d

dλ


∑

j∈B(l)

δψ′
j(xj + yl − vj) −

∫
δψ′

j(xj + yl − vj) νλ(dx
l)




2
 νλ(dx

l)

= −2

∫ 
 ∑

j∈B(l)

δψ′
j(xj + yl − vj) −

∫
δψ′

j(xj + yl − vj) νλ(dx
l)


 νλ(dx

l)

× d

dλ

∫ ∑

j∈B(l)

δψ′
j(xj + yl − vj) νλ(dx

l)

= 0,

it follows by direct calculation that
∣∣∣∣∣
d

dλ
varνλ(dxl)


∑

j∈B(l)

δψ′
j(xj + yl − vj)



∣∣∣∣∣

=

∣∣∣∣∣

∫ 
 ∑

j∈B(l)

δψ′
j(xj + yl − vj) −

∫
δψ′

j(xj + yl − vj) νλ(dx
l)




2 [
d

dλ
νλ(dx

l)

]∣∣∣∣∣

=

∣∣∣∣∣covνλ(dxl)




∑

j∈B(l)

δψ′
j(xj + yl − vj) −

〈
δψ′

j(xj + yl − vj)
〉
νλ(dxl)




2

,
〈
xl,Mllx

l
〉


∣∣∣∣∣.

However, the covariance term on the right hand side can be estimated as in (45). There-
fore we have deduced (30) uniformly in yl ∈ R and s∗ ∈ R

B(l), which completes the
proof of Lemma 2.12.

3 Generalized local Cramér theorem

In this section we generalize the local Cramér theorem [GOVW09, Proposition 31]
to a broader class of Hamiltonians. We recommend to read Section 5.4 and 5.5 of
[GOVW09] for better understanding of this section. In the first step (cf. Theorem 3.1)
we deduce the local Cramér theorem for Hamiltonians of the form

H(x) :=
K∑

i=1

1

2
x2
i + δψi(xi). (46)

The difference to [GOVW09] is that the non-convex functions

δψi : R → R
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are allowed to depend on the site i ∈ {1, . . . , N}. In the second step (cf. Corollary 3.2)
we extend the local Cramér theorem to Hamiltonians that also contain a linear term
given by a vector s ∈ R

K , namely

H(x) :=
K∑

i=1

1

2
x2
i + sixi + δψi(xi). (47)

Corollary 3.2 is one of the main ingredients to derive the macroscopic LSI (cf. Proposi-
tion 2.4, Lemma 2.12 and Remark 3.3). The coarse-grained Hamiltonian ofH is defined
by

H̄(m) := ψK(m) := − 1

K
log

∫

XK,m

exp (−H (x)) H (dx) , (48)

where the hyper-plane XK,m is given by

XK,m :=

{
x ∈ R

K | 1

K

K∑

i=1

xi = m

}
.

Let ϕK(m) be defined as the Cramér transform of exp(−H(x)) (cf. [GOVW09, (73)]).
More precisely,

ϕK(m) := sup
σ∈R

(
σm− 1

K
log

∫

RK

exp

(
−H(x) +

K∑

i=1

σxi

)
dx

)
. (49)

By elementary properties of the Legendre transform for every m ∈ R there exits a
unique σm ∈ R such that

ϕK(m) = σmm− ϕ∗
K(σm). (50)

It is also well-known that σm is determined by the equation

m =
d

dσ
ϕ∗
K(σm). (51)

The first generalization of the local Cramér theorem is

Theorem 3.1 (Local Cramér theorem). Let H be defined by (46) and assume that the

functions δψi : R → R, i ∈ {1, . . . , N}, satisfy the uniform bound (1) i.e.

‖δψi‖C2 ≤ c1 <∞, i ∈ {1, . . . , K}.

Then the function ϕK is strictly convex independent of K, and

‖H̄(m) − ϕK(m)‖C2 → 0 as K → ∞.

The convergence depends only on c1.
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The following heuristic argument shows that this generalization of the local Cramér
theorem [GOVW09, Proposition 31] is not surprising. By Cramér’s representation (see
[GOVW09, (125)] and Lemma 3.4) the proof of [GOVW09, Proposition 31] relies on
a local central limit theorem for the independent random variables Xi, i ∈ {1, . . . , K},
identically distributed as (cf. [GOVW09, (74)])

Z−1 exp

(
σmxi −

x2
i

2
− δψ(xi)

)
dxi.

However, for the classical central limit theorem it is not important that the random
variables Xi are identically distributed. It suffices that the expectation and variance of
Xi is uniformly bounded. The latter is true for the independent random variables Xi

distributed as (cf. Lemma 3.4)

Z−1 exp

(
σmxi −

x2
i

2
− δψi(xi)

)
dxi,

if the functions δψi satisfy the uniform bound (1). As a consequence we can apply
the same strategy as for [GOVW09, Proposition 31]. We just have to pay attention
that every step does not rely on the specific form of δψi but on the uniform bound (1).
Because the complete proof of Theorem 3.1 is a bit lengthy, we will state the details in
the next section. The second generalization of local Cramér theorem is

Corollary 3.2. For an arbitrary vector s ∈ R
K let H be defined by (47) and assume

that the functions δψi : R → R, i ∈ {1, . . . , N}, satisfy the uniform bound (1) i.e.

‖δψi‖C2 ≤ c1 <∞, i ∈ {1, . . . , K}.

Then the function ϕK is strictly convex independent of K and s. It holds that

‖H̄(m) − ϕK(m)‖C2 → 0 as K → ∞.

The convergence depends only on c1.

Again, this generalization of the local Cramér theorem is intuitively clear: A linear
term should not influence the local Cramér theorem by the equivalence of ensembles
(see [GOVW09]). The proof is also straightforward. Corollary 3.2 follows from Theo-
rem 3.1 by a linear transformation.

Proof of Corollary 3.2. Let the Hamiltonian H be defined by (47). We get rid of the
linear term 〈s, x〉 in the coarse-grained Hamiltonian H̄ by the linear transformation
x 7→ x+ s. More precisely, let

H̃(x) :=
K∑

i=1

x2
i

2
+ δψi(xi − si).
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Then direct calculation shows that

H(x) = H̃(x+ s) − 1

2
〈s, s〉 ,

which yields by the transformation x 7→ x+ s that

H̄(m) = − 1

K
log

∫

XK,m

exp (−H (x)) H (dx)

= − 1

K
log

∫

X
K,m+ 1

K

PK
i=1

si

exp
(
−H̃ (x)

)
H (dx)

︸ ︷︷ ︸
=:ψ̃K(m+ 1

K

PK
i=1 si)

− 1

2K
〈s, s〉 .

Applying Theorem 3.1 to ψ̃K(m+ 1
K

∑K
i=1 si) yields

∥∥∥∥∥H̄(m) +
1

2K
〈s, s〉 − ϕ̃K

(
m+

1

K

K∑

i=1

si

)∥∥∥∥∥
C2

→ 0, for K → ∞,

where ϕ̃K is the Cramér transform of exp(−H̃(x)) defined by (49). Then Corollary 3.2
follows from

ϕ̃K

(
m+

1

K

K∑

i=1

si

)

= sup
σ∈R

(
σ

(
m+

1

K

K∑

i=1

si

)
− 1

K
log

∫

RK

exp

(
−H̃(x) +

K∑

i=1

σxi

)
dx

)

= sup
σ∈R

(
σm− 1

K
log

∫

RK

exp

(
−H(x) +

K∑

i=1

σxi

)
dx

)
+

1

2K
〈s, s〉

= ϕK(m) +
1

2K
〈s, s〉 ,

where we used the identity

− 1

K
log

∫

RK

exp

(
−H̃(x) +

K∑

i=1

σxi

)
dx

= − 1

K
log

∫

RK

exp

(
−H̃(x+ s) +

K∑

i=1

σ(xi + si)

)
dx

= − σ

K

K∑

i=1

si −
1

K
log

∫

RK

exp

(
−H̃(x+ s) +

1

2
〈s, s〉 +

K∑

i=1

σxi

)
dx+

1

2K
〈s, s〉

= − σ

K

K∑

i=1

si −
1

K
log

∫

RK

exp

(
−H(x) +

K∑

i=1

σxi

)
dx+

1

2K
〈s, s〉 .
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Remark 3.3. By Corollary 3.2 it follows that there is K0 ∈ N and λ > 0 such that for

all K ≥ K0 and m ∈ R

d2

dm2
H̄(m) ≥ λ.

This observation shows that the convexification of a non-interacting coarse-grained

Hamiltonian is untouched by a linear term and inhomogeneous single-site potentials

ψi that satisfy (1).

Proof of Theorem 3.1

Except of small adjustments, the argument for Theorem 3.1 is the same as for the local
Cramér theorem of [GOVW09]. Therefore some elements of the proof may also be
found in [Fel71, Chapter XVI], [KL99, Appendix 2], [GPV88, Section 3] and [LPY02,
p. 752 and Section 5].

We show that ϕK is strictly convex independent of K. Note that by (49) the function
ϕK is the Legendre transform of

ϕ∗
K(σ) :=

1

K
log

∫

RK

exp

(
K∑

i=1

σxi −
x2
i

2
− δψi(xi)

)
dx.

Because the Legendre transform of a strictly convex function is also strictly convex, it
suffices to show that ϕ∗

K(σ) is strictly convex. This fact follows from the decomposition
of ϕ∗

K(σ) into

ϕ∗
K(σ) =

1

K

K∑

i=1

log

∫

R

exp

(
σxi −

x2
i

2
− δψi(xi)

)
dxi

︸ ︷︷ ︸
=:ϕ∗

K,i
(σ)

=
1

K

K∑

i=1

ϕ∗
K,i(σ) (52)

and the observation that by Lemma 3.7 from below the functions ϕ∗
K,i are uniformly

strictly convex in i ∈ {1, . . . , K}.

Let us consider now the convergence of |ϕK(m)−ψK(m)|. The next lemma represents
the difference (ϕK(m) − ψK(m)) in the same way as [GOVW09, (120)].

Lemma 3.4. Assume that Xi, i ∈ {1, . . . , K}, are independent random variables dis-

tributed as

dµσm,i := exp

(
−ϕ∗

K,i(σm) + σmxi −
x2
i

2
− δψi(xi)

)
dxi,
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where σm is given by (51). For i ∈ {1, . . . , K} we define mi = mi(σm) ∈ R by

mi =
d

dσ
ϕ∗
K,i(σm). (53)

Additionally, let the random variable X be defined as

X := K− 1
2

K∑

i=1

Xi −mi.

The density of X with respect to the Lebesgue measure is denoted by d
dL1 gK,m(ξ). Then

d

dL1
gK,m(0) = exp(KϕK(m) −KψK(m)). (54)

Proof of Lemma 3.4. Using (52), (51), and (53) we can decompose m into

m =
d

dσ
ϕ∗
K(σm) =

1

K

K∑

i=1

d

dσ
ϕ∗
K,i(σm) =

1

K

K∑

i=1

mi. (55)

The density d
dL1 gK,m(ξ) of X at ξ = 0 can be written as

d

dL1
gK,m(0) =

∫
n

K−
1
2

PK
i=1 xi−mi=0

o

exp

(
K∑

i=1

−ϕ∗
K,i(σm) + σmxi −

x2
i

2
− δψi(xi)

)
H(dx).

By (52) and (55) we get

d

dL1
gK,m(0) =

∫

{P

i=1 xi=Km}
exp

(
−Kϕ∗

K(σm) +Kσmm−
(

K∑

i=1

x2
i

2
+ δψi(xi)

))
H(dx).

Using (50) the right hand side becomes

d

dL1
gK,m(0) =

exp (KϕK(m))

∫

{PK
i=1 xi=Km}

exp

(
−

K∑

i=1

x2
i

2
+ δψi(xi)

)
H(dx).

Now, applying the definition (48) of ψK(m) yields the desired formula.
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Note that Theorem 3.1 is proved once we established the following bounds

1

C
≤
∣∣∣∣
d

dL1
gK,m(0)

∣∣∣∣ ≤ C and

∣∣∣∣
d2

dm2

d

dL1
gK,m(0)

∣∣∣∣ ≤ C

for a constant 0 < C < ∞ independent of K and m (cf. [GOVW09, (121) ]). Because
the density of a sum of independent random variables is the product of the densities, an
application of the Inversion Lemma (see for example [Shi96]) to (54) yields

d

dL1
gK,m(0) =

1

2π

∫

R

ΠK
i=1hi(mi, K

− 1
2 ξ) dξ,

where the function hi(mi, ξ) is defined as

hi(mi, ξ) :=

∫

R

exp

(
−iξmi + iξx− ϕ∗

K,i(σm) + σmx−
x2

2
− δψi(x)

)
dx. (56)

Note the representation of d
dL1 gK,m(0) from above is the analog of [GOVW09, (122)]

and that
hi(mi, ξ) = h(mi, ξ),

where h(mi, ξ) is defined as in [GOVW09, (126)] (one has to set δψ = δψi). Hence it
suffices to deduce the following estimates:

1

C
≤
∣∣∣∣
∫

R

ΠK
i=1hi(mi, K

− 1
2 ξ) dξ

∣∣∣∣ ≤ C (57)

and ∣∣∣∣
d2

dm2

∫

R

ΠK
i=1hi(mi, K

− 1
2 ξ) dξ

∣∣∣∣ ≤ C, (58)

where the constant 0 < C <∞ is independent of K and m.

The inequalities (57) and (58) are established by the same argument as in the proof of
[GOVW09, Proposition 31]. The latter works fine because all steps in [GOVW09] do
not rely on the particular form of the non-convexity δψi. They just require a uniform
bound on ‖δψi‖C2 , i ∈ {1, . . . , K}. For the sake of completeness, we outline all steps
in full detail below.

From now on let C <∞ denote a generic constant independent of K and m. We verify
(57) and (58) by splitting the integrals into ”inner” and ”outer” integrals. On the one
hand we will show that there exists δ > 0 and K0 ∈ N such that for all K ≥ K0 and all

46



m ∈ R
∣∣∣∣
∫

K−
1
2 |ξ|≤δ

ΠK
i=1hi(mi, K

− 1
2 ξ) dξ

∣∣∣∣ ≤ C, (59)

Re

∫

K−
1
2 |ξ|≤δ

ΠK
i=1hi(mi, K

− 1
2 ξ) dξ ≥ 1

C
, (60)

∣∣∣∣
d2

dm2

∫

K−
1
2 |ξ|≤δ

ΠK
i=1hi(mi, K

− 1
2 ξ) dξ

∣∣∣∣ ≤ C. (61)

On the other hand we will show that for any δ > 0

lim
K↑∞

∫

K−
1
2 |ξ|≥δ

ΠK
i=1hi(mi, K

− 1
2 ξ) dξ = 0, (62)

lim
K↑∞

d2

dm2

∫

K−
1
2 |ξ|≥δ

ΠK
i=1hi(mi, K

− 1
2 ξ) dξ = 0. (63)

Firstly, we will consider the limits (62) and (63) for the ”outer” integrals. Note that
(62) and (63) is the analog of [GOVW09, (137) and (138)]. The next lemma is the ana-
log statement of [GOVW09, Lemma 39], which was the essential ingredient to deduce
[GOVW09, (137) and (138)].

Lemma 3.5. Let functions hi, i ∈ {1, . . . , K}, be defined by (56). Then for any δ > 0
there exists a positive constant Cδ such that for all i ∈ {1, . . . , K}, |ξ| > δ and m ∈ R

(i) |hi(mi, ξ)| ≤
1

1 + |ξ|
Cδ

,

(ii)

∣∣∣∣
d

dm
hi(mi, ξ)

∣∣∣∣ ≤ Cδ |ξ|,

(iii)

∣∣∣∣
d2

dm2
hi(mi, ξ)

∣∣∣∣ ≤ Cδ |ξ|2,

where mi(m) ∈ R is given by (53).

The proof of Lemma 3.5 is given in the next subsection. Provided Lemma 3.5 holds,
(62) and (63) can be deduced in exactly the same way as [GOVW09, (137) and (138)].

Let us consider the ”inner” integrals (59), (60), and (61) which are the analog of [GOVW09,
(134),(135) and (136)]. As in [GOVW09, (139)] we have that for all i ∈ {1, . . . , K}
and mi ∈ R

hi(mi, 0) = 1,
d

dξ
hi(mi, 0) = 0 and

− d2

dξ2
hi(mi, 0) =

∫
(x−mi)

2µσm,i(dx) > 0.
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According to Lemma 3.7 from the next subsection we have the uniform bound

1

C
≤
∫

(x−mi)
2µσm,i(dx) ≤ C for all i ∈ {1, . . . , K}.

By using the lower bound and Taylor’s theorem one can show the existence of functions
h2,i(mi, ξ), i ∈ {1, . . . , K} defined on a uniform δ-neighborhood of ξ = 0 such that for
all i ∈ {1, . . . , K} and mi ∈ R (cf. [GOVW09, (141)])

hi(mi, ξ) = exp
(
−ξ2h2,i(mi, ξ)

)
(64)

and
1

C
≤ h2,i(mi, 0) ≤ C. (65)

The next lemma is the analog of [GOVW09, Lemma 40] and provides strong control on
the functions h2,i and its derivatives. We will prove it in the next subsection.

Lemma 3.6. There exists δ > 0 and C < ∞ such that for all i ∈ {1, . . . , K}, |ξ| ≤ δ,
and mi

(i)

∣∣∣∣
d

dξ
h2,i(mi, ξ)

∣∣∣∣ ≤ C, (ii)

∣∣∣∣
d

dm
h2,i(mi, ξ)

∣∣∣∣ ≤ C, (iii)

∣∣∣∣
d2

dm2
h2,i(mi, ξ)

∣∣∣∣ ≤ C,

where mi(m) ∈ R is given by (53).

Now, we are able to verify (59) with the same argument as for [GOVW09, (134)]. It
holds that for any |ξ̃| ≤ δ and mi (cf. [GOVW09, (139)])

Reh2,i(mi, ξ̃) ≥
1

C
, (66)

uniformly in i ∈ {1, . . . , K}. Thus we can estimate by using (64) and (66) that for
K− 1

2 |ξ| ≤ δ

∣∣∣∣
∫

K−
1
2 |ξ|≤δ

ΠK
i=1hi(mi, K

− 1
2 ξ) dξ

∣∣∣∣ ≤
∫

K−
1
2 |ξ|≤δ

exp

(
−ξ

2

K

K∑

i=1

h2,i(mi, K
− 1

2 ξ)

)
dξ

≤
∫

K−
1
2 |ξ|≤δ

exp

(
−ξ

2

C

)
dξ

≤ C.

The argument for (61) is almost the same as for [GOVW09, (135)]. By (64) we have

ΠK
i=1hi(mi, K

− 1
2 ξ) = exp

(
−ξ

2

K

K∑

i=1

h2,i(mi, K
− 1

2 ξ)

)
,
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which yields the identity

d2

dm2
ΠK
i=1hi(mi, K

− 1
2 ξ) = −ξ

2

K

K∑

i=1

d2

dm2

(
h2,i(mi, K

− 1
2 ξ)
)

exp

(
−ξ

2

K

K∑

i=1

h2,i(mi, K
− 1

2 ξ)

)

+
ξ4

K2

(
K∑

i=1

d

dm

(
h2,i(mi, K

− 1
2 ξ)
))2

exp

(
−ξ

2

K

K∑

i=1

h2,i(mi, K
− 1

2 ξ)

)
.

By using the estimates of Lemma 3.6 we get

d2

dm2
ΠK
i=1hi(mi, K

− 1
2 ξ) ≤ Cδ

(
ξ2 + ξ4

)
exp

(
−ξ

2

K

K∑

i=1

h2,i(mi, K
− 1

2 ξ)

)
.

This inequality and (66) yields

∣∣∣∣
d2

dm2

∫

{K−
1
2 |ξ|≤δ}

ΠK
i=1hi(mi, K

− 1
2 )ξ) dξ

∣∣∣∣

≤ C

∫

{K−
1
2 |ξ|≤δ}

(
ξ2 + ξ4

)
exp

(
−ξ

2

C

)
dξ ≤ C.

Finally, we verify the last remaining estimate (60). The argument is essentially the same
as for [GOVW09, (141)]. We introduce h3,i, i ∈ {1, . . . , K} via

h2,i(mi, ξ̂) = h2,i(mi, 0) + ξ̂h3,i(mi, ξ̂),

which according to Taylor and Lemma 3.6 i) satisfies

sup
|ξ̂|≤δ

|h3,i(mi, ξ̂)| ≤ sup
|ξ̂|≤δ

∣∣∣∣
d

dξ̂
h2,i(mi, ξ̂)

∣∣∣∣ ≤ C, (67)

uniformly in i ∈ {1, . . . , K}. By the definition of h3,i and (65) we have

∣∣∣∣∣exp

(
−ξ2 1

K

K∑

i=1

h2,i(mi, K
− 1

2 ξ)

)
− exp

(
−ξ2 1

K

K∑

i=1

h2,i(mi, 0)

)∣∣∣∣∣

= exp

(
−ξ2 1

K

K∑

i=1

h2,i(mi, 0)

)∣∣∣∣∣exp

(
−K− 1

2 ξ3 1

K

K∑

i=1

h3,i(mi, K
− 1

2 ξ)

)
− 1

∣∣∣∣∣

≤ exp

(
−ξ

2

C

) ∣∣∣∣∣exp

(
−K− 1

2 ξ3 1

K

K∑

i=1

h3,i(mi, K
− 1

2 ξ)

)
− 1

∣∣∣∣∣ .
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We apply the fact

| exp(z) − 1| =

∣∣∣∣∣

∞∑

j=1

zj

j!

∣∣∣∣∣ ≤
∞∑

j=1

|z|j
j!

= exp (|z|) − 1

to

z = −K− 1
2 ξ3 1

K

K∑

i=1

h3,i(mi, K
− 1

2 )

and conclude from the last estimate that
∣∣∣∣∣exp

(
−ξ2 1

K

K∑

i=1

h2,i(mi, K
− 1

2 ξ)

)
− exp

(
−ξ2 1

K

K∑

i=1

h2,i(mi, 0)

)∣∣∣∣∣

≤ exp

(
−ξ

2

C

) ∣∣∣∣∣exp

(
K− 1

2 |ξ|3 1

K

K∑

i=1

|h3,i(mi, K
− 1

2 ξ)|
)

− 1

∣∣∣∣∣ .

If K− 1
2 |ξ| ≤ δ, we can continue the last estimation using (67) as

∣∣∣∣∣exp

(
−ξ2 1

K

K∑

i=1

h2,i(mi, K
− 1

2 ξ)

)
− exp

(
−ξ2 1

K

K∑

i=1

h2,i(mi, 0)

)∣∣∣∣∣

≤ exp

(
−ξ

2

C

)(
exp

(
Cδξ2

)
− 1
)
.

Hence we get as in [GOVW09, (144)] that for δ sufficiently small
∣∣∣∣∣

∫

{K−
1
2 |ξ|≤δ}

exp

(
−ξ2 1

K

K∑

i=1

h2,i(mi, K
− 1

2 ξ)

)
− exp

(
−ξ2 1

K

K∑

i=1

h2,i(mi, 0)

)
dξ

∣∣∣∣∣

≤
∣∣∣∣
∫

R

exp

(
−ξ2

(
1

C
− Cδ

))
− exp

(
−ξ

2

C

)
dξ

∣∣∣∣

≤ C


 1√

1
C
− Cδ

− 1√
1
C




≤ Cδ.
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By (65) we have
∫

{K−
1
2 |ξ|≤δ}

exp

(
−ξ2 1

K

K∑

i=1

h2,i(mi, 0)

)
dξ

≥
∫

{K−
1
2 |ξ|≤δ}

exp

(
−ξ

2

C

)
dξ

=

∫

R

exp

(
−ξ

2

C

)
dξ −

∫

{K−
1
2 |ξ|≥δ}

exp

(
−ξ

2

C

)
dξ

≥ C

√
1

C
− C exp

(
−Kδ

2

C

)
.

Finally, the last two estimates yield

Re

∫

{K−
1
2 |ξ|≤δ}

ΠK
i=1hi(mi, K

− 1
2 ξ) dξ

= Re

∫

{K−
1
2 |ξ|≤δ}

exp

(
−ξ2 1

K

K∑

i=1

h2,i(mi, K
− 1

2 ξ)

)
dξ

≥ C

√
1

C
− C exp

(
−Kδ

2

C

)
− Cδ

≥ C > 0,

if δ is sufficiently small and K is sufficiently large. Hence we verified (60), which
completes the proof of Theorem 3.1.

Proof of auxiliary lemmas

In this section we will state the proof of Lemma 3.5 and Lemma 3.6. The next statement
is the analog of [GOVW09, Lemma 41].

Lemma 3.7. Assume that the functions δψi : R → R, i ∈ {1, . . . , N}, satisfy the

uniform bound (1) i.e.

‖δψi‖C2 ≤ c1 <∞, i ∈ {1, . . . , K}.
Consider the change of variables

mi(σ) =
d

dσ
ϕ∗
K,i(σ),

where ϕ∗
K,i(σ) is defined by (52). The corresponding measure µσ,i is defined by

dµσ,i := exp

(
−ϕ∗

K,i(σ) + σxi −
x2
i

2
− δψi(xi)

)
dxi.

Note that
∫

R
xµσ,i = mi. Then:
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(i) The first two derivatives of mi are related to the moments of µσ,i as:

d

dσ
mi =

d2

dσ2
ϕ∗
K,i =

∫

R

(x−mi)
2 µσ,i(dx),

d2

dσ2
mi =

d3

dσ3
ϕ∗
K,i =

∫

R

(x−mi)
3 µσ,i(dx).

(ii) The moments of µσ,i satisfy the bounds

1

C
≤
∫

R

(x−mi)
2 µσ,i(dx) ≤ C,

∣∣∣∣
∫

R

(x−mi)
3 µσ,i(dx)

∣∣∣∣ ≤ C,

∫

R

(x−mi)
4 µσ,i(dx) ≤ C,

uniformly in i and mi.

(iii) The second derivatives of the inverse map are bounded uniformly in i and mi:∣∣∣∣
d2

dm2
i

σ

∣∣∣∣ ≤ C.

(iv) The map is close to the identity uniformly in i and mi: |σ −mi| ≤ C.

We do not state the proof of Lemma 3.7 because one could copy the proof [GOVW09,
Lemma 41] using the uniform bound (1). From Lemma 3.7 we are able to deduce the
next statement, which is the only new ingredient of the proof of Lemma 3.5 & 3.6
compared to the proof of [GOVW09, Lemma 39 & 40].

Lemma 3.8. Assume that the functions δψi : R → R, i ∈ {1, . . . , N}, satisfy the

uniform bound (1) i.e.

‖δψi‖C2 ≤ c1 <∞, i ∈ {1, . . . , K}.
Consider change of variables

mi(σ) =
d

dσ
ϕ∗
K,i(σ),

where ϕ∗
K,i(σ) is defined by (52). For m ∈ R let σm ∈ R be defined by (51). Then:

(i)

∣∣∣∣
d

dm
σm

∣∣∣∣ ≤ C, (ii)

∣∣∣∣
d2

dm2
σm

∣∣∣∣ ≤ C,

(iii)

∣∣∣∣
d

dm
mi(σm)

∣∣∣∣ ≤ C, (iv)

∣∣∣∣
d2

dm2
mi(σm)

∣∣∣∣ ≤ C,

uniformly in i and m.
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Proof of Lemma 3.8. Argument for (i): It suffices to show the uniform bound

0 <
1

C
≤
∣∣∣∣
d

dσ
m

∣∣∣∣ ≤ C. (68)

By (51) and (52) we have

d

dσ
m =

d2

dσ2
ϕ∗
K(σm) =

1

K

K∑

i=1

d2

dσ2
ϕ∗
K,i(σm).

Applying Lemma 3.7 (i) & (ii) yields the estimate (68).
Argument for (ii): By direct calculation we have

d2

dm2
σm =

d

dm

(
d

dσ
m(σm)

)−1

=

[
d

dσ

(
d

dσ
m(σm)

)−1
]

d

dm
σm

=

[
−
(
d

dσ
m(σm)

)−2
d2

dσ2
m(σm)

]
d

dm
σm.

By the uniform bound (68) and Lemma 3.8 (i) it suffices to show
∣∣∣∣
d2

dσ2
m

∣∣∣∣ ≤ C.

By (51) and (52) we have

d2

dσ2
m =

d3

dσ3
ϕ∗
K(σm) =

1

K

K∑

i=1

d3

dσ3
ϕ∗
K,i(σm).

The desired bound follows from Lemma 3.7 (i) & (ii).
Argument for (iii): By the definition of mi we have

d

dm
mi(σm) =

d

dm

(
d

dσ
ϕ∗
K,i(σm)

)
=

d2

dσ2
ϕ∗
K,i(σm)

d

dm
σm.

The desired estimate follows from Lemma 3.7 (i) & (ii) and Lemma 3.8 (i).
Argument for (iv): By the definition of mi it holds

d2

dm2
mi(σm) =

d2

dσ2
ϕ∗
K,i(σm)

d2

dm2
σm +

d3

dσ3
ϕ∗
K,i(σm)

(
d

dm
σm

)2

.

The desired estimate follows from a combination of Lemma 3.7 (i) & (ii) and Lemma 3.8
(i) & (ii).
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Now, we can proceed to the proof of Lemma 3.5 and Lemma 3.6.

Proof of Lemma 3.5. Note that [GOVW09, Lemma 41] was the crucial ingredient in the
proof of [GOVW09, Lemma 39]. Therefore we can show by using Lemma 3.8 in the
same way as [GOVW09, Lemma 41] that for any δ > 0 there exists a positive constant
Cδ such that for all i ∈ {1, . . . , K}, |ξ| > δ, and mi ∈ R

(i) |hi(mi, ξ)| ≤
1

1 + |ξ|
Cδ

,

(ii)

∣∣∣∣
d

dmi

hi(mi, ξ)

∣∣∣∣ ≤ Cδ |ξ|,

(iii)

∣∣∣∣
d2

dm2
i

hi(mi, ξ)

∣∣∣∣ ≤ Cδ |ξ|2,

This statement differs from [GOVW09, Lemma 39] in one aspect: The bound Cδ is
uniform in i. Note that the last statement almost yields Lemma 3.5 except of one detail:
Instead of considering derivatives w.r.t m it considers derivatives w.r.t. mi. It follows
that the statement (i) of Lemma 3.5 is already verified.
The statement (ii) of Lemma 3.5 follows from a combination of the identity

d

dm
hi(mi, ξ) =

d

dmi

hi(mi, ξ)
d

dm
mi,

the estimate (ii) from above, and Lemma 3.8 (iii).
The statement (iii) of Lemma 3.5 follows from a combination of the identity

d2

dm2
hi(mi, ξ) =

d2

dm2
i

hi(mi, ξ)

(
d

dm
mi

)2

+
d

dmi

hi(mi, ξ)
d2

dm2
mi,

the estimate (iii) from above, Lemma 3.8 (iii) & (iv), and Lemma 3.5 (ii).

Proof of Lemma 3.6. Note that [GOVW09, Lemma 41] was the crucial ingredient in the
proof of [GOVW09, Lemma 40]. Therefore we can show by using Lemma 3.8 in the
same way as [GOVW09, Lemma 41] that there exists δ > 0 and C < ∞ such that for
all i ∈ {1, . . . , K}, |ξ| ≤ δ, and mi ∈ R

(i)

∣∣∣∣
d

dξ
h2,i(mi, ξ)

∣∣∣∣ ≤ C,

(ii)

∣∣∣∣
d

dmi

h2,i(mi, ξ)

∣∣∣∣ ≤ C,

(iii)

∣∣∣∣
d2

dm2
i

h2,i(mi, ξ)

∣∣∣∣ ≤ C.

The last statement already yields Lemma 3.6 by the same consideration as in the proof
of Lemma 3.5.
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A Basic facts about the LSI

In this section we quote some basic facts about the LSI, that are needed in our arguments.
For a general introduction to LSI we refer to [Led01, Roy99, GZ03]. There are several
standard criteria for LSI. The Tensorization principle shows that LSI is compatible with
products (cf. [Gro75]).

Theorem A.1 (Tensorization principle). Let µ1 and µ2 be probability measures on Eu-

clidean spaces X1 and X2 respectively. If µ1 and µ2 satisfy LSI(̺1) and LSI(̺2) respec-

tively, then the product measure µ1 ⊗ µ2 satisfies LSI(min{̺1, ̺2}).

The next criterion contains how the LSI behaves under perturbations (cf. [HS87]). Note
that it is not well suited for high dimensions.

Theorem A.2 (Criterion of Holley & Stroock). Let µ be a probability measure on the

Euclidean space X and let δψ : X → R be a bounded function. Let the probability

measure µ̃ be defined as

µ̃(dx) =
1

Z
exp (−δψ(x)) µ(dx).

Then µ̃ satisfies LSI( ˜̺) with

˜̺ = ̺ exp (− (sup δψ − inf δψ)) .

The criterion of Bakry & Émery connects the convexity of the Hamiltonian to the LSI
constant (cf. [BE85, OV00]).

Theorem A.3 (Criterion of Bakry & Émery). Let X be a n-dimensional Euclidean

space and let H ∈ C2(X). The probability measure µ on X is defined via

µ(dx) =
1

Z
exp (−H(x)) dx.

If there is a constant ̺ > 0 such that for all x, v ∈ X

〈v,HessH(x)v〉 ≥ ̺|v|2,

then µ satisfies LSI(̺).

More recently, Otto & Reznikoff [OR07] deduced a criterion that is capable to deal with
certain non-convex Hamiltonians in high dimensions.

Theorem A.4 (Criterion of Otto & Reznikoff). Let dµ := 1
Z

exp(−H(x)) dx be a

probability measure on a direct product of Euclidean spaces X = X1 × · · · ×XM . We

assume that
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• the conditional measures µ(dxl|xn ∈ Xn n 6= l), 1 ≤ l 6= n ≤ M , satisfy a

uniform LSI with constant ̺l > 0,

• the numbers κln satisfy

κln := |∇l∇nH(x)| ≤ C <∞,

uniformly in 1 ≤ l 6= n ≤ M ; here | · | denotes the operator norm of a bilinear

form.

• the matrix A = (aij)M×M defined by

aij =

{
̺i if i = j,

−κij else,

satisfies in the sense of quadratic forms

A ≥ ̺ Id for a constant ̺ > 0.

Then µ satisfies LSI(̺).

One can understand Theorem A.4 as a comparison principle. Via the matrix A, a Gaus-
sian measure µA(dx) = exp(−〈x,Ax〉) dx is associated to the original Gibbs measure
µ(dx) = exp(−H(x)) dx. Because for Gaussian measures the property of positive defi-
niteness of A and the LSI are equivalent (see for example [OR07]), the criterion of Otto
& Reznikoff becomes:

Theorem. If µA satisfies LSI(̺), then also µ does.

Due to this example one could hope that µ inherits further features from µA. Theo-
rem 2.9 shows that this happens for covariances (cf. [MO10b]). In the proof of the main
result we also need the linearized version of the LSI, which is known as spectral gap
inequality (SG).

Definition A.5. A probability measure µ satisfies SG(̺), ̺ > 0, if for all functions f

varµ(f) :=

∫ (
f −

∫
f dµ

)2

dµ ≤ 1

̺

∫
|∇f |2 dµ.

We need the following well-known facts about SG.

Lemma A.6.

• If µ satisfies LSI(̺), then µ also satisfies SG(̺).

• If µ satisfies SG(̺), then for all functions f and g

covµ(f, g) ≤
1

̺

(∫
|∇f |2 dµ

) 1
2
(∫

|∇g|2 dµ
) 1

2

.
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