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Abstract

In this paper a numerical method based on least-squares approximation is proposed for elliptic interface

problems in two dimensions, where the interface is smooth. The underlying method is spectral element

method. In the least-squares formulation a functional is minimized as defined in (4.1). The jump in the

solution and its normal derivative across the interface are enforced (in an appropriate Sobolev norm) in

the functional. The solution is obtained by solving the normal equations using preconditioned conjugate

gradient method. Essentially the method is nonconforming, so a block diagonal matrix is constructed as

a preconditioner based on the stability estimate where each diagonal block is decoupled. A conforming

solution is obtained by making a set of corrections to the nonconforming solution as in [24] and an error

estimate in H1-norm is given which shows the exponential convergence of the proposed method.
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1 Introduction

Many problems in engineering are characterized by elliptic partial differential equations with discontinu-

ous coefficients, steady state heat diffusion, electro static, multiphase and porous flow problems are the few

examples. An interface problem is a special case of an elliptic partial differential equation with discontinu-

ous coefficients. Such interface problems arise in different situations, for example, in heat conduction or in

elasticity problems where the domain of definition is composed of different materials.

In the solution of the elliptic boundary value problems singularities may occur, when the boundary is not

smooth or the boundary is smooth yet one or more of the given data of the problem are not smooth. The latter

type of singularity typically arises in interface problems. The solution of the interface problem for the elliptic

partial differential equation has interface singularity at the points which are either the intersection of interfaces

or the intersection of interfaces with the boundary of the domain. For these interface problems the solution

will also have singular behavior at the points where the interfaces cross each other.

When the interface is smooth enough the solution of the interface problem is also very smooth in the in-

dividual regions but the global regularity is low. Due to lack of the global regularity many standard finite

difference algorithms do not apply for interface problems. Immersed-interface method in the framework of

finite difference method has some disadvantages [21]. An immersed-interface finite element methods for ellip-

tic interface problems have been introduced in [10, 20, 21]. The basic idea of an immersed-interface method is

to incorporate the jump conditions in constructing basis functions. The jump conditions are enforced through

∗Email: narapara@mis.mpg.de,†me.raju@gmail.com
†The work of this author was supported by Department of Atomic Energy, India.
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the construction of special finite element basis function that satisfies the homogeneous interface conditions.

Optimal convergent rates (O(h) in H1norm) have been obtained with linear finite elements.

In the early 70′s the elliptic interface problem was addressed by Babuska [1] in the framework of finite ele-

ment method. The interface problem was formulated as an equivalent minimization problem with all boundary

and jump conditions incorporated in the cost functions. The elliptic interface problem has also been studied by

Kellogg in [14, 15]. He considered the interface problem for Poisson equation in two independent variables.

In [3], two different finite element methods have been considered. First one is fitted mesh method in which

the interface is approximated by the sides of isoparametric elements in the discretization. The interface should

be approximated accurately to get optimal rates of convergence in these methods. Second one is unfitted mesh

method, which is based on a mesh which is independent of the interface. In both cases optimal convergence

rates (in h) have been obtained. Only linear finite elements have been studied in most of the conforming finite

element methods. In [22] a conforming higher order finite element method has been analyzed for the elliptic

interface problems.

Most existing methods are basically conforming finite element methods and require the triangulations in

different sub-regions to be matching on the interface. This may pose serious restrictions when the physical

solutions of the interface problems are of different scales in different subregions. The nonconforming methods

like mortar finite element method and discontinuous Galerkin methods are good alternatives to relax such

restrictions. In [13] Huang and Zuo proposed mortar finite element method for elliptic interface problems. The

optimal L2 and H1 error estimates were (when the interface is of arbitrary shape but smooth) achieved even

though the regularity of the true solution is low. In [18] the interface problems have also been studied based

on the techniques of mortar finite element method and dual Lagrange multipliers.

The interface problem has also been studied in the framework of least-squares finite element method. The

obvious advantages of this class of methods is that the discrete problems are symmetric and positive definite.

In [7] the interface problems are recast into a first order formulation and suitable least-squares formulation

is applied and the method is nonconforming. A first order system least-squares method (FOSLS) has been

proposed in [4, 5] for the interface problems. A discontinuous Galerkin method for interface problems has

been proposed in [12]. They enforce the discontinuities in the solution and in its normal derivatives along the

interfaces weakly in the DG formulation provided that the triangulation of the domain is fitted to the interface.

Optimal convergent rates (in h) in L2 norm have been obtained. In [23] unfitted DG method is studied to the

interface problems. An error estimate (in H1 and L2 norm) have been obtained in both h and p.
In [8, 16] a nonconforming hp/spectral element method has been proposed. They proposed an expo-

nentially accurate method for elliptic problems with mixed Neumann and Dirichlet boundary conditions on

nonsmooth domains. A geometric mesh is used in the neighbourhood of the corners and the auxiliary map of

the form z = lnζ is introduced to remove the singularities at the corners. In the remaining part of the domain

usual Cartesian coordinate system is used.

In this paper a least-squares spectral element method is proposed for elliptic interface problems with the

smooth interface, in the same lines as the method proposed in [8, 16, 17]. The given domain is discretized

into finite number of subdomains so that the division matches along the interface. The interface is resolved

exactly using blending elements[11]. Higher order spectral elements are used to approximate the solution. The

spectral elements are sum of tensor products of polynomials of degree W in each variable and the spectral

element functions are nonconforming. The extension of the method to elliptic interface problems with the

nonsmooth solutions is an ongoing work.

In the least-squares formulation of the method, a solution is sought which minimizes the sum of the squares

of a squared norms of the residuals in the partial differential equation and the sum of the residuals in the bound-

ary conditions in fractional Sobolev norms and the sum of the jumps in the value and its normal derivatives of

the function across the interface in appropriate fractional Sobolev norms and enforce the continuity along the

inter element boundaries by adding a term which measures the sum of the squares of the jump in the function

and its derivatives in fractional Sobolev norms (4.1). The solution is obtained by solving the normal equations

2



using preconditioned conjugate gradient method. The integrals involved in the residual computations are eval-

uated efficiently. An error estimate in H1 norm (if the solution is continuous across the interface) is derived.

If the given data is analytic, the proposed method is shown to be exponentially accurate.

The rest of the paper is organized as follows: In Section 2 the required function spaces and the elliptic

interface problem are defined. The discretization of the domain is given in Section 3 along with the stability

estimate. In Section 4 the numerical scheme is described which is based on the stability estimate and the error

estimate is given. Finally in Section 5 numerical results are presented for various examples.

2 Elliptic Interface problems

Let Ω and Ω1(Ω1 ⊂ Ω) be bounded domains with boundaries ∂Ω = Γ and Γ0 respectively. Assume that

the boundary Γ0 is smooth. Further, let Ω2 = Ω \ Ω1. Let u1 = u |Ω1
and u2 = u |Ω2

.
Denoting Hk(Ωi), the usual Sobolev space of integer order k with the norm ‖.‖k,Ωi

as given below,

‖ui(x, y)‖
2

k,Ωi
=

∫

Ωi

∑

α1+α2≤k

∣

∣∂α1

x ∂α2

y ui(x, y)
∣

∣

2
dx dy for i = 1, 2.

Let

‖u(x, y)‖2k,Ω1∪Ω2
= ‖u1(x, y)‖

2

k,Ω1
+ ‖u2(x, y)‖

2

k,Ω2
.

Further, let

‖ui‖
2

s,J =

∫

J
u2i (x)dx+

∫

J

∫

J

|ui(x)− ui(x
′)|2

|x− x′|1+2s dx dx′ for i = 1, 2,

denote the fractional Sobolev norm of order s, where 0 < s < 1. Here J denotes an interval contained in R.
Now consider the following interface problem

Lu = −∇.(β∇u) = f in Ω1 ∪ Ω2,

u = g on Γ, (2.1)

which satisfies the interface conditions

[u] = q0,
[

β
∂u

∂n

]

= q1 on Γ0, (2.2)

where n = (n1, n2) is a unit outward normal vector to the interface Γ0 and [v] denotes the jump of a quantity

v across the interface Γ0, i.e., [v](x) = v1(x)− v2(x), x ∈ Γ0.
The coefficient β in (2.1) is piecewise constant, i.e.,

β =

{

β− in Ω1,

β+ in Ω2.
(2.3)

The interface problem (2.1-2.3) is well posed as the solution u satisfies the following regularity estimate [6].

THEOREM 2.1 :- If f ∈ L2(Ω), q0 ∈ H3/2(Γ0), q1 ∈ H1/2(Γ0) and g ∈ H3/2(Γ), then the solution

u ∈ H2(Ω1 ∪ Ω2) and

‖u‖
2,Ω1∪Ω2

≤ C
(

‖f‖
0,Ω + ‖g‖

3/2,Γ + ‖q0‖3/2,Γ0
+ ‖q1‖1/2,Γ0

)

. (2.4)

Remark 1 :- If q0 = 0 on the interface Γ0, the solution of the interface problem belongs to H1(Ω).
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3 Discretization and the stability estimate

Considered the circular domain Ω1 such that Ω1 ⊂ Ω, where Ω is square whose boundary is Γ = ∪4
i=1Γ

i

as shown in Figure 1, for brevity. Let Ω2 = Ω \Ω1 and the interface is Γ0 which is smooth as shown in Figure

1. The results presented are applicable to arbitrary smooth interfaces also.

Now the domain Ω1 and Ω2 are partitioned into finite number of quadrilateral subdomains (elements)

Ω1
1,Ω

2
1, ...,Ω

p
1 and Ω1

2,Ω
2
2, ...,Ω

q
2 such that the subdomain divisions match on the interface. The division of the

domain into quadrilaterals is more general as a triangle can be further subdivided into three quadrilaterals by

joining midpoints of the sides of the triangle to the center of the triangle.

Γ

Γ

Γ

Γ

1

2

3

1

1

.

4
Ω

Ω
2

Γ
0

Ω
1

Ω
p

1

Ω
1

2

.

3

Ω
1

.

Ω
2

2

Ω
1

2

Ω
2

q

Figure 1: The discretization and the domain Ω.

Define an analytic map M l
i from the master square S = (−1, 1)2 to Ωl

i by (see [2, 11])

x = X l
i(ξ, η),

y = Y l
i (ξ, η), i = 1, 2.

Here and in the rest of this section l = 1, ..., p for i = 1 and l = 1, ..., q for i = 2.
Define the spectral element functions

{

ũli
}

i
as the tensor product of polynomials1 of degree W in each

variable ξ and η as

ũli(ξ, η) =

W
∑

r=0

W
∑

s=0

tir,sξ
rηs

Then
{

uli
}

i
are given by

uli(x, y) = ũli

(

(M l
i )

−1
)

.

Stability Estimate

Let J l
i (ξ, η) be the Jacobian of the mapping M l

i (ξ, η) from S = (−1, 1)2 to Ωl
i for i = 1, 2. Now

∫

Ωl
i

∣

∣

∣Luli

∣

∣

∣

2

dxdy =

∫

S

∣

∣

∣Luli

∣

∣

∣

2

J l
i dξdη.

Define Ll
iũ

l
i = Luli

√

J l
i . Then

∫

Ωl
i

∣

∣

∣Luli

∣

∣

∣

2

dxdy =

∫

S

∣

∣

∣Ll
iũ

l
i

∣

∣

∣

2

dξdη

1Lagrangian interpolating polynomials defined at Gauss-Legendre-Lobatto quadrature points in [−1, 1]2.
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where

Ll
iũ = Al

iũξξ + 2Bl
iũξη + Cl

iũηη +Dl
iũξ + E l

i ũη + F l
i ũ for i = 1, 2.

Here some notations are given which are needed to define the functional for the stability estimate.

Ω

Ω

γ

 2

 2

  m

  n

M

M
 2

m

 2

n

S

S

η = 1

η=−1

 s

Ω Ωn

1
2

m

γ
s

M

M

ξ =
 1

ξ=
−

1S S

m

 2

 1

 n

(a) (b) Along the interface Inter element boundary

Figure 2: The elements with common edges

Let γs be a side common to the two adjacent elements Ωm
i and Ωn

i , i = 1, 2 (as shown in Fig. 2(a) for

i = 2). Assume that γs is the image of η = −1 under the mapping Mm
i which maps S to Ωm

i and also the

image of η = 1 under the mapping Mn
i which maps S to Ωn

i . By chain rule

(umi )x = (ũmi )ξ ξx + (ũmi )η ηx, and

(umi )y = (ũmi )ξ ξy + (ũmi )η ηy.

Then the jumps along the inter-element boundaries are defined as

‖[ui]‖
2

0,γs
= ‖ũmi (ξ,−1)− ũni (ξ, 1)‖

2

0,I
,

‖[(ui)x]‖
2

1/2,γs
= ‖(umi )x(ξ,−1)− (uni )x(ξ, 1)‖

2

1/2,I
, and

‖[(ui)y]‖
2

1/2,γs
= ‖(umi )y(ξ,−1)− (uni )y(ξ, 1)‖

2

1/2,I
.

Here and in what follows, I is an interval (−1, 1).
As the division of the domain into subdomains match along the interface, we define the jump across the

interface by taking it (a part of interface) as the common edge. Consider the elements Ωn
1 and Ωm

2 (as shown

in Fig. 2(b)) which have the common edge γs ⊆ Γ0. Let γs be the image of ξ = 1 under the mapping Mn
1

which maps S to Ωn
1 and also the image of ξ = −1 under the mapping Mm

2 which maps S to Ωm
2 . Define

‖[u]‖23
2
,γs

= ‖u1 − u2‖
2
3

2
,γs

= ‖ũm1 (−1, η)− ũn2 (1, η)‖
2

0,I
+

∥

∥

∥

∥

∂ũm1
∂T

(−1, η)−
∂ũn2
∂T

(1, η)

∥

∥

∥

∥

2

1/2,I

,

∂u1

∂T and ∂u2

∂T are the tangential derivatives of u1 and u2 respectively. Let n = (n1, n2) be the unit outward

normal to the interface Γ0. From the given data β = β− in Ω1 and β = β+ in Ω2, then

∥

∥[β ∂u
∂n ]
∥

∥

2
1

2
,γs

=

∥

∥

∥

∥

β−∂u1
∂n

− β+∂u2
∂n

∥

∥

∥

∥

2

1

2
,γs

=

∥

∥

∥

∥

β−∂ũm1
∂n

(−1, η)− β+∂ũn2
∂n

(1, η)

∥

∥

∥

∥

2

1/2,I

.

Now along the boundary Γ = ∪4
j=1Γ

j , let γs ⊆ Γj(for some j) be the image of ξ = 1 under the mapping Mm
2

which maps S to Ωm
2 . Then

‖u2‖
2

0,γs
+

∥

∥

∥

∥

∂u2
∂T

∥

∥

∥

∥

2

1/2,γs

= ‖ũm2 (1, η)‖2
0,I +

∥

∥

∥

∥

∂ũm2
∂T

(1, η)

∥

∥

∥

∥

2

1/2,I

.

Let ΠW =
({

ũk1(ξ, η)
}

k
,
{

ũ
l

2(ξ, η)
}

l

)

be the space of spectral element functions. Now define the functional

V
W ({

ũk1(ξ, η)
}

k
,
{

ũ
l

2(ξ, η)
}

l

)

as
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V
W
({

ũk1(ξ, η)
}

k
,
{

ũ
l

2(ξ, η)
}

l

)

=

p
∑

k=1

∥

∥

∥(Lk
1)ũ

k
1(ξ, η)

∥

∥

∥

2

0,S

+

q
∑

l=1

∥

∥

∥(Ll
2)ũ

l
2(ξ, η)

∥

∥

∥

2

0,S

+
2
∑

i=1

∑

γs⊆Ωi

(

‖[ui]‖
2

0,γs
+ ‖[(ui)x]‖

2

1/2,γs
+ ‖[(ui)y]‖

2

1/2,γs

)

+
∑

γs⊆Γ0

(

‖[u]‖2
3/2,γs

+

∥

∥

∥

∥

[β
∂u

∂n
]

∥

∥

∥

∥

2

1

2
,γs

)

+
∑

γs⊆Γ

‖u2‖
2

0,γs
+

∥

∥

∥

∥

∂u2
∂T

∥

∥

∥

∥

2

1/2,γs

.

THEOREM 3.1 :- For W large enough there exists a constant C > 0 such that

p
∑

k=1

∥

∥

∥
ũk1(ξ, η)

∥

∥

∥

2

2,S

+

q
∑

l=1

∥

∥

∥
ũl2(ξ, η)

∥

∥

∥

2

2,S

≤ C(lnW )2V
W
({

ũk1(ξ, η)
}

k
,
{

ũ
l

2(ξ, η)
}

l

)

.

Proof: By the Lemma 3.2 there exists
{{

ṽk1 (ξ, η)
}

k
,
{

ṽ
l

2(ξ, η)
}

l

}

(where ṽk1 = 0 on Γ0 for all k =

1, 2, .., p, ṽ
l

2 = 0 on Γ0 for all l = 1, 2, .., q) such that wi = ui + vi ∈ H2(Ωi) for i = 1, 2. Moreover

w1 = u1 and w2 = u2 on the interface Γ0. Hence by the regularity result stated in Section 2

‖w1‖
2

2,Ω1
+ ‖w2‖

2

2,Ω2
≤ C

(

‖L1w1‖
2

0,Ω1
+ ‖L2w2‖

2

0,Ω2
+ ‖w2‖

2

3/2,Γ + ‖[w]‖2
3/2,Γ0

+

∥

∥

∥

∥

[β
∂w

∂n
]

∥

∥

∥

∥

2

1/2,Γ0

)

.

The rest of the proof follows from the Lemma 3.1 and Lemma 3.2.

Lemma 3.1 :- Let
{{

ũk1(ξ, η)
}

k
,
{

ũ
l

2(ξ, η)
}

l

}

∈ ΠW . Then there exists
{{

ṽk1 (ξ, η)
}

k
,
{

ṽ
l

2(ξ, η)
}

l

}

(where

ṽk1 = 0 on Γ0 for all k = 1, 2, .., p, ṽ
l

2 = 0 on Γ0 for all l = 1, 2, .., q) such that vk1 , v
l
2 ∈ H2(S), for

k = 1, 2, .., p, l = 1, 2, .., q and u1 + v1 ∈ H2(Ω1), u2 + v2 ∈ H2(Ω2). Moreover the estimate

p
∑

k=1

∥

∥

∥
ṽk1 (ξ, η)

∥

∥

∥

2

2,S

+

q
∑

l=1

∥

∥

∥
ṽl2(ξ, η)

∥

∥

∥

2

2,S

≤ C(lnW )2





2
∑

i=1

∑

γs⊆Ωi

(

‖[ui]‖
2

0,γs
+ ‖[(ui)x]‖

2

1/2,γs
+ ‖[(ui)y]‖

2

1/2,γs

)



 .

Lemma 3.2 :- Let wi = ui + vi ∈ H
2

(Ωi) for i = 1, 2. Here
{{

ũk1(ξ, η)
}

k
,
{

ũ
l

2(ξ, η)
}

l

}

∈ Π
W

and
{{

ṽk1 (ξ, η)
}

k

{

ṽ
l

2(ξ, η)
}

l

}

is as defined in Lemma 3.1. Then the estimate

‖w2‖
2
3

2
,Γ ≤ C(lnW )2





∑

γs⊆Γ

‖u2‖
2

0,γs
+

∥

∥

∥

∥

∂u2
∂T

∥

∥

∥

∥

2

1

2
,γs

+
2
∑

γs⊆Ωi,i=1

(

‖[ui]‖
2

0,γs
+ ‖[(ui)x]‖

2

1

2
,γs

+ ‖[(ui)y]‖
2

1

2
,γs

)



 .

Proof of the Lemma 3.1 and Lemma 3.2 easily follows from the Lemma 7.1 and Lemma 7.2 of [8].

4 Numerical Technique

Define f1 = f |Ω1
and f2 = f |Ω2

. Let J l
1(ξ, η) be the Jacobian of the mapping M l

1(ξ, η) from S =
(−1, 1)2 to Ωl

1 for l = 1, 2, ..., p. Let f l
1(ξ, η) = f1(M

l
1(ξ, η)) and define

F l
1(ξ, η) = f l

1(ξ, η)
√

J l
1(ξ, η),

for l = 1, 2, ..., p. Similarly one can define F k
2 (ξ, η) for k = 1, 2, ..., q.
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As defined earlier u1 = u |Ω1
and u2 = u |Ω2

, so the boundary condition u = g on Γ in the discrete

form will be u2 = g on Γj ∩ ∂Ωm
2 . Let Γj ∩ ∂Ωm

2 = cm2 be the image of the mapping Mm
2 of S onto Ωm

2

corresponding to the side ξ = 1 and

om2 (η) = g(Mm
2 (1, η)),

where −1 ≤ η ≤ 1.
On an interface Γ0 we have [u] = q0 and [β ∂u

∂n ] = q1. Let γs ⊆ Γ0 be the image of ξ = 1 under the

mapping Mn
1 which maps S to Ωn

1 and also the image of ξ = −1 under the mapping Mm
2 which maps S to

Ωm
2 . Let

lm,n
0 (η) = q0(−1, η) = q0(1, η) for − 1 ≤ η ≤ 1.

Similarly one can define

lm,n
1 (η) = q1(−1, η) = q1(1, η) for − 1 ≤ η ≤ 1.

Define the functional

r
W
({

ũk1(ξ, η)
}

k
,
{

ũ
l

2(ξ, η)
}

l

)

=

p
∑

k=1

∥

∥

∥(Lk
1)ũ

k
1(ξ, η)− F k

1 (ξ, η)
∥

∥

∥

2

0,S

+

q
∑

l=1

∥

∥

∥(Ll
2)ũ

l
2(ξ, η)− F l

2(ξ, η)
∥

∥

∥

2

0,S

+
2
∑

i=1

∑

γs⊆Ωi

(

‖[ui]‖
2

0,γs
+ ‖[(ui)x]‖

2

1/2,γs
+ ‖[(ui)y]‖

2

1/2,γs

)

+
∑

γs⊆Γ0

(

‖[u]− lm,n
0 ‖

2

3/2,γs
+

∥

∥

∥

∥

[β
∂u

∂n
]− lm,n

1

∥

∥

∥

∥

2

1/2,γs

)

+
∑

γs⊆Γ

(

‖u2 − om2 (η)‖2
0,γs

+

∥

∥

∥

∥

(

∂u2
∂T

)

−

(

∂om2
∂T

)∥

∥

∥

∥

2

1/2,γs

)

. (4.1)

The approximate solution is chosen as the unique
{{

z̃k1 (ξ, η)
}

k
,
{

z̃
l

2(ξ, η)
}

l

}

∈ ΠW , which minimizes

the functional r
W
(
{

ũk1(ξ, η)
}

k
,
{

ũ
l

2(ξ, η)
}

l
) over all

{{

ũk1(ξ, η)
}

k
,
{

ũ
l

2(ξ, η)
}

l

}

.
The minimization problem leads to a system of equations of the form

AZ = h. (4.2)

Here A is symmetric, positive definite matrix and the vector Z is composed of the values of spectral element

functions at Gauss-Legendre-Lobatto points. The system (4.2) is solved using preconditioned conjugate gra-

dient method (PCGM). Since the method is nonconforming, there is no set of common boundary values to

be obtained. The residuals in the normal equations can be computed efficiently and inexpensively [25]. In

each iteration of the PCGM the jumps in the value of the function and its derivatives along the inter element

boundaries as well as along the interface in the minimization, are carried out by interchanging the function

and its derivative values between each element. An efficient preconditioner has been used which is proposed

in [9] for the matrix A so that the condition number of the preconditioned system is as small as possible. The

condition number of the preconditioned system is O((lnW )2). The preconditioner is a block diagonal matrix,

where each diagonal block is constructed using the separation of variable technique (A.1). The solution is

obtained to an exponential accuracy using O(W lnW ) iterations of the PCGM.

After obtaining a nonconforming solution by solving the normal equations using PCGM a set of corrections

are made to the solution similar to Lemma 4.57 of [24], so that the corrected solution is conforming. Then the

following error estimate holds:

THEOREM 4.1 :- For W large enough

‖u− z‖
1,Ω ≤ C e−bW ,
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where C and b are constants and z is the corrected solution.

The proof is given in (A.2).

Note: The computational procedure of the integrals arising in the symmetric formulation are similar to the

one given in the appendix of [25].

5 Numerical Results

The relative error ‖e‖ER is defined as ‖e‖ER =
‖e‖E
‖u‖E

, where ‖.‖E denotes energy norm (H1-norm). In

all of the examples degree of the approximating polynomial is denoted by 2W, ’iters’ means the total number

of iterations required to compute the solution using PCGM and ’error’ means uex − unum. For Ex’s 5.1-5.3

the discretization of the domain is as defined in Section 3.

Example 5.1 : Consider the following interface problem on a domain which is a square Ω = [−1, 1]2 with a

circle centered at the origin of radius s as an interface.

−▽ .(▽βu) = f in Ω,

u = g on ∂Ω.

where

β =

{

1 if r < s,

p if r ≥ s.

Let the solution u satisfies the interface conditions

[u] = 0 and [β
∂u

∂n
] = 0.

The data is chosen such that the given interface problem has the exact solution

u(x, y) =

{

rα if r < s,
rα

p +
(

1− 1

p

)

sα if r ≥ s.

where r =
√

x2 + y2 and α = 2. Here we choose the radius of the circle s = 1/2. Note that the exact solution

satisfies above defined interface conditions.

The conforming solution is obtained for various values of p and the relative error ‖e‖ER in percent, the

iterations are tabulated in Table 1 and Table 2.

p = 5 p = 10 p = 50

W ‖e‖ER % iters ‖e‖ER % iters ‖e‖ER % iters

2 1.03482E+01 6 3.18875E+01 7 4.27347E+01 12

3 1.937462E-00 16 1.529332E-00 27 1.395556E-00 37

4 3.623503E-01 22 9.286868E-02 35 1.622266E-01 73

5 2.172657E-02 37 3.962240E-02 55 3.547243E-02 129

6 2.058583E-03 48 2.521481E-03 67 2.223661E-03 162

7 1.631193E-04 59 1.645520E-04 88 2.831054E-04 265

8 2.470227E-05 73 2.731148E-05 114 1.262566E-05 304

9 2.542338E-06 86 2.724790E-06 139 2.403579E-06 384

Table 1: The relative error in percent and iterations for different W

2For the simplicity of the programming W is assumed to be uniform.
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p = 100 p = 500

W ‖e‖ER % iter ‖e‖ER % iter

2 2.576707E+01 16 4.268661E+01 16

3 1.472354E-00 46 1.5222003E-00 78

4 2.6243884E-01 103 1.3855314E-01 215

5 2.1261933E-02 154 1.8194082E-02 308

6 2.4964483E-03 208 1.2277585E-03 439

7 2.6893833E-04 314 2.8411281E-04 601

8 1.6674588E-05 412 2.6438164E-05 770

9 2.6689012E-06 530 3.7427644E-06 985

Table 2: The relative error in percent and iterations for p = 100, 500

In Fig. 3 the exact and the numerical solution are drawn at the same number of nonuniform grid points for

p = 500 and W = 7, the grid points are shown in dots. In Fig. 4 the error in the solution is plotted for p = 500
and W = 7.

Figure 3: Exact and numerical solution at same number of grid points

The log of relative error against W is drawn in Fig. 5 for p = 100, 500. The relation is almost linear. This

shows the exponential accuracy of the method.

Figure 4: Error in the solution

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 2  3  4  5  6  7  8  9

L
O

G
 O

F
 R

E
L
A

T
IV

E
 E

R
R

O
R

W

p-100
p-500

Figure 5: Log of relative error vs. W

Example 5.2 : Consider the Laplace’s equation ∇2u = 0 on a square domain Ω = [−1, 1]2 with the interface

as a circle x2 + y2 = 1/4. The jump conditions along the interface are

[u] = 0 and [un] = 2.

This example can be considered as a problem where there is a singular source term along the interface, and

the exact solution is given by

u(x, y) =

{

1, x2 + y2 < 1/4,

1 + log(2
√

x2 + y2), x2 + y2 ≥ 1/4.

The exterior boundary conditions are derived from the exact solution.
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This problem has been addressed in [19, 27]. They have used IIM, EJIIM and shown the second order

accuracy (in h) in max norm. Table 3 contains the values of relative error in percentage and iterations against

W, the degree of the approximating polynomial. The exact and the numerical solution at the same number of

nonuniform grid points (shown as dots) are in Figure 6 for W = 12.

W ‖e‖ER % iters

3 8.82794929E-00 13

4 1.14312663E-00 22

5 6.15649980E-01 27

6 1.58996531E-01 30

7 8.52831452E-02 33

8 2.53598439E-02 41

9 1.29475910E-02 43

10 4.08932952E-03 48

11 2.03647852E-03 50

12 6.65588003E-04 54

Table 3: Relative error in percentage and the number of iteration against W

Figure 6: Exact solution and the numerical solution

Figure 7: Error plot for the results in Ex. 5.2
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Figure 8: Log of relative error vs. W

The graph shown in Figure 7 is the pointwise error for the degree of the approximating polynomial W =
12. In Figure 8 the plot of log of relative error against W is drawn, which is a straight line as W increases,

shows the exponential convergence of the method.

Example 5.3 : Consider the Laplace’s equation ∇2u = 0 on a square domain Ω = [−1, 1]2 with the interface

as a circle x2 + y2 = 1/4.
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The exact solution is

u(x, y) =















2x

ρ+ 1 + s2(ρ− 1)
, r < s,

x(ρ+ 1)− s2(ρ− 1)x/r2

ρ+ 1 + s2(ρ− 1)
, r ≥ s,

and the diffusion coefficient is

β =

{

β−, r < s,

β+, otherwise.

Here ρ = β−/β+ is the contrast ratio, r =
√

x2 + y2 and s is the radius of the interface. Hence the jump

conditions are

[u] = 0 and [βun] = 0.

This example can be considered as a composite material problem with piecewise constant coefficients. The

exterior boundary conditions are derived from the analytical solution.

This problem has been addressed in [27], shown that EJIIM is second order accurate ( in h) in max norm.

The problem is solved for high contrast ratio’s, likely ρ = 1/5000 and ρ = 5000. Chosen s = 1/2 in both the

cases. In Table 4 and Table 5 the results containing the relative error and iterations against W for ρ = 1/5000
and ρ = 5000 are given.

W ‖e‖ER % iters

3 6.8613422E+01 56

4 1.7514331E+01 101

5 3.0852021E+00 213

6 4.5581811E-01 281

7 1.6298455E-01 374

8 6.8485556E-02 424

9 2.9545968E-02 524

10 1.2798077E-02 594

11 5.4965594E-03 670

12 2.3688017E-03 751

Table 4: Results for ρ = 1/5000

W ‖e‖ER % iters user time

3 1.9965679E+01 72 1.100068

4 6.61212224E-00 139 3.344209

5 1.90708701E-00 170 10.52066

6 6.28637729E-01 261 22.65742

7 2.39188629E-01 351 44.05475

8 9.96239378E-02 440 77.71285

9 4.27909532E-02 497 132.2283

10 1.8498735E-02 606 194.4122

11 7.9577535E-03 708 323.2722

12 3.43214350E-03 820 443.9918

Table 5: Results for ρ = 5000

Figure 9: Numerical solution and the error plot for ρ = 1/5000

The graphs of approximate solution and the error for W = 12 are given in Fig. 9 for ρ = 1/5000 and in

Fig. 10 for ρ = 5000.
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Figure 10: Numerical solution and the error plot for ρ = 5000

In Table 5, in addition the user time(on screen time) in seconds is given as it shows the time taken for the

computations are few minutes. The computations are performed on an intel dual-core processor machine with

2GB RAM. The same is true for the rest of the examples too. Fig. 11 shows the log of the relative error against

W for the both cases that is ρ = 1/5000 and ρ = 5000.
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Figure 11: Log of the relative error against W
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Figure 12: The domain and its discretization

Example 5.4 : Consider the following interface problem on the domain Ω = [−1, 1]2 with homogeneous

interface conditions

−▽ .(▽βu) = f in Ω,

u = g on ∂Ω.

where

β =

{

β− if y < x2,

β+ if y ≥ x2.

This example is an interface problem with curved interface. The interface is a parabola y = x2, as shown in

Fig. 12.

Chosen the data from the analytical solution

u =















(y − x2)2 − 5(y − x2)

β−
if y < x2,

(y − x2)2 − 5(y − x2)

β+
if y ≥ x2.

The discretization of the domain into eight quadrilateral elements are shown in Fig. 12. The discretization

matches along the interface. Two cases have been considered, in the first case the problem is solved with β− =
10 and β+ = 1. In Table 6 the relative error and the iteration count against different values of approximating

polynomial order W are given. In the second case β− = 1 and β+ = 10 is taken and the results are provided

in Table 7.
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W ‖e‖ER % iters

2 2.836438E+01 11

3 8.873654E+00 34

4 1.619525E-01 59

5 1.020317E-02 86

6 1.743856E-03 107

7 1.470459E-04 141

8 1.208095E-05 171

9 1.580360E-06 199

Table 6: Results for Case I

W ‖e‖ER % iters

2 1.6920600E+01 21

3 4.7569957E+00 49

4 1.9445176E-01 93

5 1.6722458E-02 112

6 1.5500771E-03 150

7 1.1095496E-04 191

8 1.4425672E-05 219

9 1.0296398E-06 258

Table 7: Results for Case II

In Fig. 13 the analytical and numerical solutions are shown at the same number of nonuniform grid points

for Case I and W = 9. In Fig. 14 the error in the solution is plotted for Case I and W = 9. Fig. 15 shows the

log of the relative error against W for both the cases.

Figure 13: Exact and Numerical solution for the results in Case I

Figure 14: Error graph
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Example 5.5 : Consider the following problem on the domain Ω = [0, 1]2 with the interface as a straight line,

as shown in Fig. 16.

−▽ .(▽βu) = f in Ω,

u = g on ∂Ω.
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where

β =

{

1 in Ω1,

p in Ω2.

1

Ω

Ω

2

interfae along
the line 
 y=0.5

(1,0)

(1,1)(0,1)(1,1)(0,1)

(1,0) (0,0)(0,0)
(a) (b)

Figure 16: (a) The domain Ω with an interface at y = 0.5 (b) Discretization of the domain

The solution u satisfies the following homogeneous interface conditions at y = 0.5

u(x, 0.5−) = u(x, 0.5+)

∂u

∂y
(x, 0.5−) = p

∂u

∂y
(x, 0.5+)

Choose the data such that the interface problem has the exact solution

u =

{

ex
(

y2 + (p− 1)y
)

in Ω1,

ex
(

y2 + (p−1

2
)
)

in Ω2.

Here the function f is given by

f =

{

ex
(

y2 + (p− 1)y + 2
)

in Ω1,

pex
(

y2 + (p+3

2
)
)

in Ω2.

Divided the given domain as shown in Fig. 16(b) such that the discretization matches along the interface. The

numerical solution is obtained for different values of p. The percentage in the relative error in H1-norm and

the number of iterations are tabulated in Table 8 and Table 9 against W. The error decays exponentially for all

values of p. It has been noted that the number of iterations increases as the value of p increases, this is because

of the approximation of high jumps in the minimization.

p = 2 p = 10 p = 50

W ‖e‖ER % iters ‖e‖ER % iters ‖e‖ER % iters

2 2.382418E+00 12 1.627861E+00 18 2.107910E+00 23

3 2.942283E-01 20 2.1180927E-01 35 1.579566E-01 50

4 2.9571251E-02 30 2.4031170E-02 52 2.319688E-02 72

5 2.3427500E-03 41 2.5334644E-03 70 1.223032E-03 103

6 2.9779650E-04 49 1.9665916E-04 89 1.957943E-04 129

7 3.0149553E-05 59 2.3130516E-05 112 2.374531E-05 160

8 2.4204794E-06 73 2.373925E-06 132 2.488801E-06 193

9 6.7775744E-08 85 2.1233162E-07 156 1.782141E-07 226

Table 8: The relative error in percent, iterations against W for p = 2, 10, 50.
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p = 100 p = 500

W ‖e‖ER % iters ‖e‖ER % iters

2 2.202174E+00 24 2.281236E+00 29

3 2.1526836E-01 52 1.407257E-01 65

4 2.522699E-02 77 1.542423E-02 99

5 2.0123253E-03 108 1.467398E-03 135

6 2.6720418E-04 138 1.238593E-04 173

7 2.251335E-05 177 9.795864E-06 221

8 9.2210359E-07 222 1.739342E-06 266

9 1.6312305E-07 257 1.761961E-07 314

Table 9: The relative error in percent, iterations against W for p = 100, 500.

The results shows the efficiency of the method. In Fig. 17 the log of relative error against the degree of the

polynomial W is drawn for p = 100 and p = 500. The relation is almost linear. This shows the exponential

accuracy of the proposed method.
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Figure 17: Plot for the result in Ex. 5.5
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Figure 18: Plot for the result in Ex. 5.6

Example 5.6 : Consider the interface problem as in Ex. 5.5, such that the solution u satisfies the nonhomo-

geneous interface conditions at y = 0.5

u(x, 0.5−) = u(x, 0.5+)

∂u

∂y
(x, 0.5−)− p

∂u

∂y
(x, 0.5+) = −ex.

Chosen the exact solution as

u =

{

ex
(

y2 + 2(p− 1)y + 0.5
)

in Ω1,

ex
(

y2 + y + (p− 1)
)

in Ω2,

which satisfies the interface conditions. Here the function f is given by
{

ex
(

y2 + 2(p− 1)y + 2.5
)

in Ω1,

pex
(

y2 + y + (p+ 1)
)

in Ω2.

The discretization of the domain is as in Ex. 5.5. The relative error ‖e‖ER in percent and the number of

iterations for various values of p are shown in Table 10.

Fig. 18 shows the graph of log of relative error against the degree of polynomial approximation W for

p = 100 and p = 500. The relation is almost linear, showing the exponential convergence.
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p = 10 p = 100 p = 500

W ‖e‖ER % iters ‖e‖ER % iters ‖e‖ER % iters

2 1.724767E+00 18 2.235594E+00 25 2.288274E+00 29

3 1.916471E-01 36 1.629614E-01 54 1.687104E-01 64

4 1.438651E-02 57 2.477020E-02 77 1.534507E-02 99

5 1.066419E-03 74 1.518970E-03 109 1.006158E-03 137

6 1.685558E-04 92 1.093721E-04 145 1.298757E-04 180

7 8.027572E-06 119 1.573942E-05 182 1.537620E-05 218

8 1.196847E-06 139 9.268662E-07 223 1.029490E-06 269

9 1.622942E-07 158 1.256157E-07 258 2.123501E-07 312

Table 10: The relative error in %, iterations against W

Conclusions The method is non-conforming and exponentially accurate. The interface is resolved exactly

using blending elements. The proposed preconditioner is decoupled block diagonal with optimal condition

number and easily invertible on each element. A small data has to be interchanged in between the elements

for each iteration of the PCGM and the residuals in the normal equations can be obtained efficiently and

inexpensively. The proposed method is efficient even the jump in the coefficient is large. The numerical results

shows that large differences in the coefficients leads to increase in the number of iterations of the PCGM but

the time required for these computations are of few minutes. The method is applicable to arbitrary smooth

interfaces too and the method can be extended to the singular case which is ongoing work.
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A Appendix

A.1 Preconditioner

In (4.2) A is symmetric, positive definite matrix and

VW
({

ũk1(ξ, η)
}

k
,
{

ũl2(ξ, η)
}

l

)

= UTAU.

Define the quadratic form

UW
({

ũk1(ξ, η)
}

k
,
{

ũl2(ξ, η)
}

l

)

=

p
∑

k=1

∥

∥

∥
ũk1

∥

∥

∥

2

2,S
+

q
∑

l=1

∥

∥

∥
ũl2

∥

∥

∥

2

2,S
.

Then for W large enough the following estimate holds

UW
({

ũk1(ξ, η)
}

k
,
{

ũl2(ξ, η)
}

l

)

≤ c (lnW )2 VW
({

ũk1(ξ, η)
}

k
,
{

ũl2(ξ, η)
}

l

)

. (A.1)

Here c is a constant.

Using the trace theorem for Sobolev spaces, the following inequality

VW
({

ũk1(ξ, η)
}

k
,
{

ũl2(ξ, η)
}

l

)

≤ k UW
({

ũk1(ξ, η)
}

k
,
{

ũl2(ξ, η)
}

l

)

, (A.2)

holds. Here k is a constant.
Hence using (A.1) and (A.2) it follows that there exists a constant K such that

1

K
VW

({

ũk

1
(ξ, η)

}

k
,
{

ũl

2
(ξ, η)

}

l

)

≤ UW
({

ũk

1
(ξ, η)

}

k
,
{

ũl

2
(ξ, η)

}

l

)

≤ K (lnW )
2
VW

({

ũk

1
(ξ, η)

}

k
,
{

ũl

2
(ξ, η)

}

l

)

.

Thus the two forms VW
({

ũk1(ξ, η)
}

k
,
{

ũl2(ξ, η)
}

l

)

and UW
({

ũk1(ξ, η)
}

k
,
{

ũl2(ξ, η)
}

l

)

are spectrally equiv-

alent. We can use the quadratic form UW
({

ũk1(ξ, η)
}

k
,
{

ũl2(ξ, η)
}

l

)

which consists of a decoupled set of

quadratic forms on each element as a preconditioner for A.
Here it is enough to consider the quadratic form B (ṽ) = ‖ṽ‖2

2,S . It can be shown that C (ṽ) is spectrally

equivalent to B (ṽ) which can be diagonalized using separation of variables similarity as shown in [9].

So the quadratic form UW
({

ũk1(ξ, η)
}

k
,
{

ũl2(ξ, η)
}

l

)

has a decoupled diagonal representation where each

diagonal corresponds to the H2−norm of the spectral element function representation on a particular element

which is mapped onto the square S.

A.2 Error estimate

Let u ∈ Hs(Ω1∪Ω2), with the norm ‖u‖s,Ω1∪Ω2
as defined earlier and f ∈ Ht(Ω). Without loss of generality

assume that g, q0 and q1 to be zero. The result presented below is also true for the interface problems with

non-homogeneous data.

THEOREM A.1 :- Let U l
i (ξ, η) =u(M l

i (ξ, η)) for (ξ, η) ∈ S, l = 1, .., p if i = 1 and l = 1, 2, .., q

if i = 2, and
{{

z̃k1 (ξ, η)
}

k
,
{

z̃
l

2(ξ, η)
}

l

}

∈ ΠW which minimizes r

W
(
{

ũk1(ξ, η)
}

k
,
{

ũ
l

2(ξ, η)
}

l
) over all

{{

ũk1(ξ, η)
}

k
,
{

ũ
l

2(ξ, η)
}

l

}

.
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Then for W large enough the estimate

p
∑

k=1

∥

∥

∥(z̃k1 (ξ, η)− Uk
1 (ξ, η))

∥

∥

∥

2

2,S
+

q
∑

l=1

∥

∥

∥(z̃l2(ξ, η)− U l
2(ξ, η))

∥

∥

∥

2

2,S
≤ Cse

2sW−2s+8 lnW (I)+Cte
2tW−2t+8 (II)

holds, where I =

p
∑

k=1

∥

∥Uk
1 (ξ, η)

∥

∥

2

s,S
+

q
∑

l=1

∥

∥U l
2(ξ, η)

∥

∥

2

s,S
and II =

p
∑

k=1

∥

∥F k
1 (ξ, η)

∥

∥

2

t,S
+

q
∑

l=1

∥

∥F l
2(ξ, η)

∥

∥

2

t,S
.

The proof is similar to the analysis given in [2, 26]. Here, briefly few main steps of the proof are described.

Using the results on approximation theory given in [2], there exists a polynomial Φl
i(ξ, η) of degree W in

each variable separately such that
∥

∥

∥
U l
i (ξ, η)− Φl

i(ξ, η)
∥

∥

∥

2

2,S
≤ CsW

−2s+8
∥

∥

∥
U l
i

∥

∥

∥

2

s,S
,

W > s, l = 1, 2, .., p if i = 1 and l = 1, 2, .., p if i = 2. Where Cs = C1e
2s.

Consider the set of functions
{{

Φk
1(ξ, η)

}

k
,
{

Φl
2(ξ, η)

}

l

}

. Then the estimate

r

W
(
{

Φk
1(ξ, η)

}

k
,
{

Φl
2(ξ, η)

}

l
) ≤ CsW

−2s+8 lnW (I) + CtW
−2t+8 (II)

holds.

Since
{{

z̃k1 (ξ, η)
}

k
,
{

z̃
l

2(ξ, η)
}

l

}

minimizes r
W
(
{

ũk1(ξ, η)
}

k
,
{

ũ
l

2(ξ, η)
}

l
), the estimate

r

W
(
{

z̃k1 (ξ, η)
}

k
,
{

z̃
l

2(ξ, η)
}

l
) ≤ CsW

−2s+8 lnW (I) + CtW
−2t+8 (II)

holds. Using the stability estimate (Theo. 3.1),

p
∑

k=1

∥

∥

∥
(z̃k1 (ξ, η)− Φk

1(ξ, η)
∥

∥

∥

2

2,S
+

q
∑

l=1

∥

∥

∥
(z̃l2(ξ, η)− Φl

2(ξ, η)
∥

∥

∥

2

2,S
≤ CsW

−2s+8 lnW (I) + CtW
−2t+8 (II).

(A.3)

Then it easy to show that

p
∑

k=1

∥

∥

∥
Uk
1 (ξ, η)− Φk

1(ξ, η)
∥

∥

∥

2

2,S
+

q
∑

l=1

∥

∥

∥
U l
2(ξ, η)− Φl

2(ξ, η)
∥

∥

∥

2

2,S
≤ CsW

−2s+8 lnW (I) + CtW
−2t+8 (II).

(A.4)

Using the above estimates (A.3) and (A.4),

p
∑

k=1

∥

∥

∥
Uk
1 (ξ, η)− z̃k1 (ξ, η)

∥

∥

∥

2

2,S
+

q
∑

l=1

∥

∥

∥
U l
2(ξ, η)− z̃l2(ξ, η)

∥

∥

∥

2

2,S
≤ CsW

−2s+8 lnW (I) + CtW
−2t+8 (II). �

With the proper choices of s and t, sterling’s formula and by Remark 2, one can prove that there exists a

constant b > 0 such that
p
∑

k=1

∥

∥

∥
Uk
1 (ξ, η)− z̃k1 (ξ, η)

∥

∥

∥

2

2,S
+

q
∑

l=1

∥

∥

∥
U l
2(ξ, η)− z̃l2(ξ, η)

∥

∥

∥

2

2,S
≤ Ce−bW .

Hence the proof of Theorem 4.1.

Remark 2 :- If f and u are analytic, then there exists constants C and d such that
∥

∥

∥U l
i

∥

∥

∥

2

s,S
≤ (Cdss!)2 and

∥

∥

∥F l
i

∥

∥

∥

2

t,S
≤ (Cdtt!)2

for l = 1, 2, .., p if i = 1 and l = 1, 2, .., q if i = 2.
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