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Abstract

In this paper we present a computational method for solving a class of nonlinear Fred-

holm integro- differential equations of fractional order which is based on CAS (Cosine

And Sine) wavelets. The CAS wavelet operational matrix of fractional integration is

derived and used to transform the equation to a system of algebraic equations. some

examples are included to demonstrate the validity and applicability of the technique.
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1 Introduction

The conception of fractional calculus was first introduced in the middle of the 19th cen-

tury. The use of fractional differential and integral operators in mathematical models

has become increasingly widespread in recent years. However, it is in the past hundred

years that the most fractional problems in engineering and scientific applications have

been found. For example, the non- linear oscillation of earthquake can be modeled with

fractional derivatives [14], and the fluid- dynamic traffic model with fractional derivatives

can eliminate the deficiency arising from the assumption of continuum traffic flow [15],

therefore differential equations with fractional order have recently proved to be valuable

tools to the modeling of many physical phenomena [20, 18]. Also there are several tech-

niques for solving such equations like Adomian decomposition method [23, 19], collocation

method [22] and differential transform method [10].

Wavelets theory is a new and emerging area in mathematical research, it is very success-

fully used in signal analysis for waveform representation and segmentations, timefrequency

analysis and fast algorithms for easy implementation [9, 1]. However, the interest to the

wavelet treatment of various integral equations has recently increased due to promising

applications of this method in computational chemistry [4, 5, 6, 11, 12, 13]. The aim of

this work is to present a numerical method (CAS wavelet method) for approximating the

solution of a nonlinear fractional integro- differential equation of the second kind:

Dα
∗ f(x)− λ

∫ 1

0
k(x, t)[f(t)]qdt = g(x), q > 1, (1.1)

with these supplementary conditions:

f (i)(0) = δi, i = 0, 1, ..., r − 1, 3 r − 1 < α ≤ r, r ∈ N, (1.2)

where, g ∈ L2([0, 1)), k ∈ L2([0, 1)2) are known functions, f(x) is the unknown function,

Dα
∗ is the Caputo fractional differentiation operator and q is a positive integer.

There are several definitions of a fractional derivative of order α > 0. The two most

commonly used definitions are the Riemann- Liouville and Caputo. Each definition uses

Riemann- Liouville fractional integration and derivatives of whole order. The Riemann-

Liouville fractional integration of order α is defined as:

Jαf(x) =
1

Γ(α)

∫ x

0
(x− t)α−1f(x)dt, x > 0, J0f(x) = f(x),

and the Caputo fractional derivatives of order α is defined as Dα
∗ f(x) = Jm−αDmf(x),

where Dm is the usual integer differential operator of order m and Jm−α is the Riemann-
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Liouville integral operator of order m− α and m− 1 < α ≤ m. The relation between the

Riemann- Liouville operator and Caputo operator is given by the following lemma [20]:

Lemma 1.1. If m− 1 < α ≤ m, m ∈ N, then Dα
∗ J

αf(x) = f(x), and:

JαDα
∗ f(x) = f(x)−

m−1∑
k=0

f (k)(0+)
xk

k!
, x > 0.

The Caputo fractional derivative first computes an ordinary derivative followed by a

fractional integral to achieve the desired order of fractional derivative. The Riemann-

Liouville fractional derivative is computed in the reverse order. Therefore, the Caputo

fractional derivative allows traditional initial and boundary conditions to be included in

the formulation of the problem, but the Riemann- Liouville fractional derivative allows

initial conditions in terms of fractional integrals and their derivatives.

So we first define CAS wavelets and Block Pulse Functions and approximating a function

via them, then we introduce the operational matrix of fractional integration. After that

the method is described and the error is analyzed. Finally numerical results are shown in

figures and tables.

2 Function Approximation

In this section first we give some necessary definitions and mathematical preliminaries of

CAS wavelets and Block Pulse Functions (BPFs) which are used further in this paper.

Then function approximation via these two conceptions is introduced.

The CAS wavelets employed in this paper are defined as:

ψn,m(x) =

{
2k/2CASm(2kx− n), if n

2k
≤ x < n+1

2k
;

0, otherwise,

where:

CASm(x) = cos(2mπx) + sin(2mπx),

and n = 0, 1, ..., 2k − 1, k ∈ N ∪ {0}, m ∈ Z.
It is clear that CAS wavelets have compact support i. e:

Supp(ψn,m(x)) = {x : ψn,m(x) 6= 0} = [
n

2k
,
n+ 1

2k
].

Let us introduce the following useful notation, corresponding to CAS wavelets here:

ψ̃n,m(x) =

{
2k/2CASm(n− 2kx), if n

2k
≤ x < n+1

2k
;

0, otherwise.
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An m-set of Block Pulse Functions (BPFs) over the interval [0, T ) is defined as:

bi(x) =

{
1, if iT

m ≤ x <
(i+1)T
m ;

0, otherwise,
i = 0, 1, 2, . . . ,m− 1,

with a positive integer value for m. In this paper, it is assumed that T = 1, so BPFs are

defined over [0, 1). Now we explain some useful properties of BPFs:

• Disjointness :

bi(x)bj(x) =

{
bi(x), i = j;

0, i 6= j.
(2.1)

• Orthogonality : ∫ 1

0
bi(x)bj(x)dx =

{
1/m, i = j;

0, i 6= j.
(2.2)

• Completeness :

For every f ∈ L2([0, 1)), the sequence {bi} is complete if
∫
bif = 0 results in f = 0

almost every where. Because of completeness of {bi(x)}, , Parsevals identity holds,

i. e. we have
∫ 1

0 f
2(x)dx =

∑∞
i=0 f

2
i ‖bi(x)‖2, for every real bounded function f(x) ∈

L2([0, 1)) and:

fi = m

∫ 1

0
bi(x)f(x)dx. (2.3)

• BPFs have compact support i. e Supp(bi(x)) = [ im ,
i+1
m ].

The set of CAS wavelets forms an orthonormal basis for L2([0, 1)). This implies that any

function f(x) defined over [0, 1) can be expanded as:

f(x) =

∞∑
n=0

∑
m∈Z

cn,mψn,m(x)

∼=
2k−1∑
n=0

M∑
m=−M

cn,mψn,m(x)

= cTΨ(x),

where cn,m =< f(x), ψn,m(x) >=
∫ 1

0 f(x)ψn,m(x)dx, and < f, g > is the inner product of

the function f and g, c and Ψ are 2k(2M + 1)× 1 vectors given bye:

c = [c0,−M , c0,−M+1, . . . , c0,M , c1,−M , . . . , c1,M , . . . , c2k−1,−M , . . . , c2k−1,M ]T ,

Ψ(x) = [ψ0,−M , ψ0,−M+1, . . . , ψ0,M , ψ1,−M , . . . , ψ1,M , . . . , ψ2k−1,−M , . . . , ψ2k−1,M ].
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Notation. From now we define m′ = 2k(2M + 1), such that k, M ∈ N ∪ {0}.
Also from the orthogonality property of BPFs, it is possible to expand functions into their

Block- Pulse series [21], this means that For every f(x) ∈ L2([0, 1)) we can write:

f(x) ∼=
m−1∑
i=0

fibi(x) = fTBm(x), (2.4)

where:

f = [f0, f1, ..., fm−1]T ,

Bm(x) = [b0(x), b1(x), ..., bm−1(x)],

such that fi for i = 0, 1, ...,m− 1 are obtained by Eq. (2.3).

3 Operational Matrix of Fractional Integration

Eq. (2.4) implies that CAS wavelets can be also expanded into an m′-term BPFs as:

ψnm(x) ∼=
m′−1∑
i=0

fibi(x).

By using the properties of CAS wavelets and Eq. (2.3) we have:

fi = m′
∫ (i+1)/m′

i/m′
ψnm(x)dx

=
m′2k/2

2k/2+1mπ
{sin(2mπ(2k

i+ 1

m′
− n))− sin(2mπ(2k

i

m′
− n))

−cos(2mπ(2k
i+ 1

m′
− n)) + cos(2mπ(2k

i

m′
− n))}

=
m′

2k/2+1mπ
{ψ̃nm(

i

m′
)− ψ̃nm(

i+ 1

m′
)},

for i = n(2M + 1), ..., (n+ 1)(2M + 1)− 1 and otherwise fi = 0. Therefor we get:

ψnm(x) ∼=
m′

2k/2+1mπ
[0, 0, . . . , 0︸ ︷︷ ︸
n(2M+1)

, ψ̃nm(
i

m′
)− ψ̃nm(

i+ 1

m′
), . . . , ψ̃nm(

i+ 2M

m′
)− ψ̃nm(

i+ 2M + 1

m′
),

0, . . . , 0]Bm′(x)

where i = n(2M + 1), n = 0, 1, . . . , 2k − 1 and m = −M, . . . ,M . Therefore:

Ψ(x) = Φm′×m′Bm′(x), (3.1)
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where Φm′×m′ = Diag(Φ0,Φ1, . . . ,Φ2k−1), and Φn for n = 0, 1, . . . , 2k−1 is a (2M +1)×
(2M + 1) matrix which is introduced as:

Φn = Λ
([

Ψ̃n( i
m′ ) Ψ̃n( i+1

m′ ) . . . Ψ̃n( i+2M
m′ )

]
−
[

Ψ̃n( i+1
m′ ) Ψ̃n( i+2

m′ ) . . . Ψ̃n( i+2M+1
m′ )

])
,

where:

Λ =
m′

2k/2+1π


1
−M

1
−M+1 . . . 1

M
1
−M

1
−M+1 . . . 1

M
...

...
...

1
−M

1
−M+1 . . . 1

M

 ,

Ψ̃n(x) =
[
ψ̃n,−M (x) ψ̃n,−M+1(x) . . . ψ̃n,M (x)

]T
.

Kilicman and Al Zhour (see [16] ) have given the Block Pulse operational matrix of frac-

tional integration Fα as follows:

(JαBm′)(x) ∼= FαBm′(x), (3.2)

where:

Fα =
1

m′α
1

Γ(α+ 2)



1 ξ1 ξ2 ξ3 . . . ξm′−1

0 1 ξ1 ξ2 . . . ξm′−2

0 0 1 ξ1 . . . ξm′−3

...
...

. . .
. . .

...

0 0 . . . 0 1 ξ1

0 0 0 . . . 0 1


,

and ξk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1. Let:

(JαΨm′)(x) ∼= Pα
m′×mΨm′(x), (3.3)

where matrix Pα
m′×m′ is called the CAS wavelet operational matrix of fractional integra-

tion. Using Eqs. (3.1) and (3.2), we have:

(JαΨm′)(x) ∼= (JαΦm′×m′Bm′)(x) = Φm′×m′(JαBm′)(x) ∼= Φm′×m′FαBm′(x). (3.4)

By Eqs. (3.3)and (3.4), we get:

Pα
m′×m′Ψm′(x) ∼= Φm′×m′FαBm′(x),

therefore the CAS wavelet operational matrix of fractional integration Pα
m′×m′ is given by:

Pα
m′×m′ = Φm′×m′FαΦ−1

m′×m′ .
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4 Application of the Method

Consider Eq. (1.1), by previous section, the two variable function k(x, t) ∈ L2([0, 1))2 can

be approximated as:

k(x, t) ∼=
2k−1∑
n=0

M∑
l1=−M

2k−1∑
m=0

M∑
l2=−M

ki,jψn,l1(x)ψm,l2(t),

for i = n(2M + 1) + l1 +M + 1, j = m(2M + 1) + l2 +M + 1, or in the matrix form:

k(x, t) ∼= ΨT (x)KΨ(t), (4.1)

where K = [ki,j ] and ki,j =< ψn,l1(x), < k(x, t), ψm,l2(t) >>. Also the right hand side of

Eq. (1.1) can be written as:

g(x) ∼= gTΨ(x). (4.2)

Now, let:

Dα
∗ f(x) ∼= cTΨ(x). (4.3)

For simplicity, we can assume that δi = 0 (in the supplementary conditions (1.2)). Hence

by using lemma 1.1 and Eqs. (4.3) and (3.3) we have:

f(x) = cTPα
m′×m′Ψ(x). (4.4)

According to Eq. (3.1), from above equation we get:

f(x) = cTPα
m′×m′Φm′×m′Bm′(x).

Define:

a = [a0, a1, ..., am′−1] = cTPα
m′×m′Φm′×m′ ,

so, f(x) ∼= a Bm′(x). From the disjoint property of the BPFs, we have:

[f(x)]2 ∼= [a Bm′(x)]2

= [a0b0(x) + a1b1(x) + . . .+ am′−1bm′−1(x)]2

= a2
0b0(x) + a2

1b1(x) + . . .+ a2
m′−1bm′−1(x)

= [a2
0, a

2
1, . . . , a

2
m′−1]Bm′(x)

= ã2Bm′(x),

and it is easy to show by induction that:

[f(x)]q ∼= [aq0, a
q
1, . . . , a

q
m′−1]Bm′(x) = ãqBm′(x), (4.5)
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where:

ãq = [aq0, a
q
1, . . . , a

q
m′−1],

for all positive integers q. Using Eqs. (3.1), (4.1) and (4.5) we will have:∫ 1

0
k(x, t)[f(t)]qdt =

∫ 1

0
ΨT (x)KΨ(t)BT

m′(t)ã T
q dt

=

∫ 1

0
ΨT (x)KΦm′×m′Bm′(t)BT

m′(t)ãTq dt

= ΨT (x)KΦm′×m′

∫ 1

0
Bm′(t)BT

m′(t)ãTq dt. (4.6)

By using properties Eqs. (2.1) and (2.2), we simplify the integral part of (4.6) as:

∫ 1

0
Bm′(t)BT

m′(t)ãTq dt =

∫ 1

0
{


b0(t) O

b1(t)
. . .

O bm′−1(t)




aq0
aq1
...

aqm′−1

}dt

=

∫ 1

0
[aq0b0(t), aq1b1(t), . . . , aqm′−1bm′−1(t)]Tdt

=
1

m′
[aq0, a

q
1, . . . , a

q
m′−1]T

=
1

m′
ãq.

Thus in (4.6) we have: ∫ 1

0
k(x, t)[f(t)]qdt ∼=

1

m′
ΨT (x)KΦm′×m′ ãq. (4.7)

By substituting the approximations (4.2), (4.3) and (4.7) into (1.1) we obtain:

Ψ(x)T c− λ 1

m′
ΨT (x)KΦm′×m′ ãq ∼= Ψ(x)Tg. (4.8)

Now, by multiplying two sides of (4.8) in Ψ(x) then integration in the interval [0, 1],

according to orthonormality of CAS wavelets we get:

c− λ 1

m′
KΦm′×m′ ãq = g

which is a nonlinear system of algebraic equations. By solving this system we can obtain

the approximate solution of Eq. (1.1) according to Eq. (4.4).
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Figure 1.

5 Error Analysis

We can easily check the accuracy of the method. Since the truncated CAS wavelet series is

an approximate solution of Eq. (1.1), when the approximate functions (4.2), (4.3) and (4.7)

are substituted in Eq.(1.1), the resulting equation, (4.8), must be satisfied approximately,

that is for x ∈ [0, 1)

Rm′(x) =| Ψ(x)T c− λ 1

m′
ΨT (x)KΦm′×m′ ãq −Ψ(x)Tg |∼= 0.

If we set x = xi, then our aim is to have Rm′(xi) ≤ 10ri , where ri is any positive integer.

If we prescribe, Max{ri} = 10r, then we increase m′ as long as the following inequality

holds at each point xr:

Rm′(xi) ≤ 10r,

in other words, by increasing m′ the error function Rm′(xi) approaches zero. If Rm′(x) −→
0 when m′ is sufficiently large enough, then the error decreases.

6 Numerical Examples

To show the efficiency of the proposed method, we consider the following examples. Note

that:

‖em′(x)‖2 = (

∫ 1

0
e2
m′(x)dx)1/2 ∼= (

1

N

N∑
i=0

e2
m′(xi))

1/2,
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Figures 2.

where em′(xi) = f(xi) − fm′(xi), i = 0, 1, ..., N . f(x) is the exact solution and fm′(x) is

the approximate solution which is obtained by Eq. (4.4).

And also consider that all of the computations have been done by MATLAB 7.8.

Example 6.1. Consider the following fractional nonlinear integro- differential equation:

Dα
∗ f(x)−

∫ 1

0
xt[f(t)]2dt = 1− x

4
, 0 ≤ x < 1, 0 < α ≤ 1,

with this supplementary condition f(0) = 0. Figure 1 shows the numerical results for

k = 4, M = 1 and various 0 < α ≤ 1. The comparisons show that as α −→ 1, the

approximate solutions tend to f(x) = x, which is the exact solution of the equation in the

case of α = 1. The error in the case α = 1, for different values of k and M , is shown in

Table 1.

Example 6.2. Consider equation:

D
1
2
∗ f(x)−

∫ 1

0
xt[f(t)]4dt = g(x), 0 ≤ x < 1,

such that f(0) = 0 and g(x) = 1
Γ(1/2)(8

3

√
x3 − 2

√
x) − x

1260 . From figure 2 and table 1,

we can see the numerical solutions are in a very good agreement with the exact solution,

f(x) = x2 − x.

Example 6.3. Consider the following equation, of order α = 5
6 :

D
5
6
∗ f(x)−

∫ 1

0
xet[f(t)]2dt = g(x), 0 ≤ x < 1,

10



Figures 3.

where g(x) = 3
Γ(1/6)(2 6

√
x− 432

91
6
√
x13)+x(248e−674) , with these supplementary conditions

f(0) = f ′(0) = 0. Figure 3 shows the behavior of the numerical solutions for various k

and M , which are in agreement with the exact solution, f(x) = x − x3. The error for

different values of k and M , is shown in Table 1.

Example 6.4. Consider the following nonlinear Fredholm integro- differential equation,

of order α = 5
3 :

D
5
3
∗ f(x)−

∫ 1

0
(x+ t)2[f(t)]3dt = g(x), 0 ≤ x < 1,

where g(x) = 6
Γ(1/3)

3
√
x− x2

7 −
x
4−

1
9 , with these supplementary conditions f(0) = f ′(0) = 0.

Figure 4 shows the numerical solutions for various k and M , with the exact solution,

f(x) = x2. The error for different values of k and M , is shown in Table 1.

Examples ‖e12‖2 (k = 2, M = 1) ‖e24‖2 (k = 3, M = 1) ‖e48‖2 (k = 4, M = 1)

Example 6.1 2.7133e-003 6.8179e-004 1.6745e-005

Example 6.2 7.711e-004 2.0755e-005 5.3445e-006

Example 6.3 2.0862e-003 6.3440e-004 2.5659e-004

Example 6.4 3.5560e-003 9.0145e-004 2.2537e-005

Table 1.
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Figures 4.

7 Conclusion

In this work we derive CAS wavelet operational matrix of fractional integration, and

use it to solve a class of nonlinear Fredholm integro- differential equation of fractional

(arbitrary) order. Several examples are given to demonstrate the powerfulness of the

proposed method. The solution is convergent, even though the size of increment may

be large. Also this method can be used to obtain the numerical solutions of ordinary

nonlinear integro- differential equations. The method is in the case of the fractional

Fredholm integral equations, which is interest of current applications in computational

chemistry [2, 3, 7, 8].
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