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In this work we develop a field-theoretic methodology, which combines the concept

of Gaussian equivalent representation for functional integrals with the continuous

Gaussian thread model of flexible polymers for solving statistical-mechanical prob-

lems of polyelectrolyte solutions. We demonstrate the applicability of the method

for systems of polyelectrolyte chains where the monomers interact via Yukawa-type

pair potential. We develop the corresponding formulas and employ them to calculate

structural and thermodynamic quantities of the polyelectrolyte system. As a specific

example, the present work focuses on the aqueous solution of hyaluronic acid with

added salts NaCl and CaCl2. Hyaluronic acid is a high molecular weight linear

polysaccharide, which has a multitude of roles in biological tissues. We conclude

that the effect of sodium chloride and calcium chloride on the osmotic properties of

hyaluronic acid solutions can be accounted for by their contributions to the ionic

strength. Nevertheless, the effects of coiling and self-association can be stimulated in
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I. INTRODUCTION

Originally introduced by Edwards1,2 and by Helfand and Tagami3, mean-field theories

for polymers, also commonly referred to as self-consistent-field theory, have been proven

useful for estimating structure and thermodynamic properties of a wide variety of polymer

systems4,5. Their applications to polyelectrolyte and ionic systems have, however, only

been rare4,6,7. This is due to the fact that the mean-field approximation is only accurate

for highly concentrated polyelectrolyte solutions, where local field fluctuations are averaged

out, due to effective screening of the electrostatic interactions surrounding the monomers4.

The mean-field approximation provides inaccurate or even qualitatively incorrect results for

polyelectrolyte solutions in the regime of low to moderate concentrations4. However, these

concentration regimes are highly relevant to biological applications. In such cases more

sophisticated techniques beyond the mean-field level of approximation are required8.

In our previous works8,11,12,14,15 we developed the such technique beyond the mean-field

level of approximation. Our approach is based on the method of the Gaussian equivalent

representation (GER) for the partition functions in the form of functional integrals9,10,13.

The goal of the present work to investigate a possibility of the appropriate description of a

polyelectrolyte solution with added univalent and divalent ions in the semidilute concentra-

tion region within our model of polyelectrolyte solution14,15, and to obtain the information

about the influence of counterions on the thermodynamic functions and configuration fea-

tures of the polyelectrolyte chains in solution. As a specific example the present work focuses

on the aqueous solution of hyaluronic acid (HA) with added salts NaCl and CaCl2. The

experimental data for osmotic pressure, which were obtained in Ref.16, are convenient and

useful object for our investigation. In the work by F.Horkay et al.16 an empirical equation of

state was obtained for the osmotic pressure in the semidilute concentration region, in terms

of two variables, the polymer concentration and the ionic strength of the added salt. The

conclusion of authors is that over the physiological ion concentration range, the effect of

the sodium chloride and calcium chloride on the osmotic properties of HA solutions is fully

accounted for by their contributions to the ionic strength.

The abundance of HA (also called Hyaluronan) and its multiple roles in biological tissues

is unique among biopolymers16,18–20. HA is a component of connective tissue whose function

is to cushion and lubricate. HA, or commercial preparations containing HA, are in use,

2



or being studied to be used, to prevent, treat or aid in the surgical repair for many the

types of problems people with connective tissue disorders tend to have such as: fractures,

hernias, glaucoma, detached retinas, osteoarthritis. HA is a primary constituent of the

extracellular matrix and also participates in a variety of cell-to-cell interactions. Among its

many functions, HA plays a critical role in cartilage, where the collagen network enmeshes

large aggrecan-HA complexes that provide resistance to compressive load17.

The repeating unit in this linear polymer is an AB disaccharide: [D−glucuronic acid (A)(β−
(1 → 3)) − 2 − (acetylamino) − 2 − deoxy − D − glucose (B)(β − (l → 4))]N , so that the

polymer contains 2N monosaccharides and N ionizable groups located on the (A) glucopy-

ranose rings of the ABAB ... structure. The distance of separation of these groups will

depend on the angles at the glycoside bonds18–20,22.

HA is joined in class of polyacids which, even when fully neutralized in water (pH is 7),

are completely ionized, or nearly so16,18. According to the criterion of Manning23,24, complete

ionization occurs for the infinite line charge model of polyelectrolytes when the charge density

parameter ξ is less than unity, where ξ is defined by ξ = λB/b, λB - Bjerum length and b

- the length per unit (electron) charge. The b must be greater than about 7Å to meet

this criterion. As b decreases below this distance, the Manning theory predicts increasing

counterion condensation in the near vicinity of the polyion, which partly shields the polyion

charge. HA is one of the few available polyions which meet the criterion for complete

ionization, because conformational calculations suggest an average ionizable site separation

of about ∼ 10Å18,21,22, depending on the energy parameters chosen to represent the molecule.

Available experimental evidence supports the assumption, based on the Manning criterion,

that hyaluronate is completely ionized in solution16,18.

HA in neutral aqueous solution, at or near a physiological concentration of NaCl, generally

behaves as a typical semi-flexible polymer molecule19. Short chains are somewhat extended,

while longer chains show evident coiling. The molecular domain of a high molecular weight

HA chain occupies a sphere, as the time average of all accessible conformations. Because

the molecular domains are quite large (but not impenetrable), HA chains interfere with each

other at even low concentrations19. However, the influence of counterions behavior on the

configuration properties of hyaluronic acid chain is not yet fully clear.

In the work15 we studied the thermodynamic response of aqueous chondroitin sulfate

solutions to changes in the monomer and added salt concentrations, using a field-theoretic
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approach beyond the mean field level of approximation. We compared our calculation results

to data from experiments as well as molecular dynamics calculations, and demonstrated

that our method provides reliable information for the osmotic pressure and entropy. By

adjusting the osmotic pressure to experimental data and analyzing the resulting effective

excluded volume parameter in various concentration regimes, we have investigated the local

electrostatic and solvent effects, influencing the condensation behavior of the counterions

onto the chondroitin sulfate chains.

HA is similar in chemical structure to chondroitin, but is typically of very high molecular

weight, ranging from 105 to more than 106Da, equivalent to ∼ 250−2500 disaccharide repeat

units, and is not sulfated. Though molecule of HA is semi-flexible chain, we’ll consider HA

chains within Gaussian thread model, inasmuch as HA chains are very long.

Our paper is organized in the following way. In the Section 2 we review the basic deriva-

tion of the field theory for flexible polymer chains, followed by the derivation of our GER

theory. We would like to stress, that a form of the potential of mean force, which con-

tains the Debye function2,4, is a new result of our present work in compare to our previous

works14,15. The derivation for the potential of mean force is took out in Appendix A. Then,

we demonstrate the applicability of the method on systems of polyelectrolyte chains, where

the monomers interact via Yukawa-type pair potential, and develop the corresponding for-

mulas, employed to calculate the structural and thermodynamic quantities considered in

this work. In Section 3 we present and discuss the results of our calculations on the example

of aqueous HA solutions at various monomer and salts concentrations by comparing them

to the osmotic pressure measurements of Horkay et al.16.

II. METHOD

Let us consider a solution composed of n polymer chains. The solvent is taken into account

implicitly. The polymer chain is described by the continuous Gaussian thread model2,4. The

grand partition function can be expressed as4,14

Ξ(z, β, V ) =
∞∑

n=0

zn

n!

n∏

i=1

∫
δ~rie

βW [~ri,Φ], (1)

where

W [~ri; Φ] = − 3

2Nb2β

∫ 1

0
ds

(
d~ri(s)

ds

)2

− N2

2

∫ 1

0
ds1

∫ 1

0
ds2

n∑

i6=j

Φ(~ri(s1) − ~rj(s2)), (2)
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N -polymerization index, b-statistical average length of segment,

β =
1

kBT
, z =

(
2πm

βh2

)3/2

eβµ

-activity. The first term in (2) is the configuration potential energy. It represents the

harmonic stretching energy of the chain. The second term describes the solvent-mediated

interactions among the segments.

To derive the basic field-theoretical representation of the grand partition function, we

introduce the segment density operator of the polymer system:

ρ(~r) =
√

βN
∫ 1

0
ds

n∑

i=1

δ(~r − ~ri(s)). (3)

We can recast the integrant exponent in the grand partition function in the form of

functional integral4,14, which results in

exp


−βN2

2

∫ 1

0
ds1

∫ 1

0
ds2

n∑

i6=j

Φ(~ri(s1) − ~rj(s2))


 =

= exp

[
−1

2
(ρΦρ) +

βNnΦ(0)

2

]
=

∫ Dφ√
det Φ

e−
1
2
(φΦ−1φ)+i(ρφ)+

βNnΦ(0)
2 =

=
∫

dµΦ[φ] : exp

[
i
√

βN
n∑

i=1

∫ 1

0
dsφ(~ri(s))

]
: Φ, (4)

where we introduced the concept of the normal product according to the given Gaussian

measure dµΦ[φ]:

: ei
√

βN
∫ 1

0
dsφ(~r(s)) :Φ= ei

√
βN

∫ 1

0
dsφ(~r(s))e

β

2
NΦ(0),

: φ(~ri(s))φ(~rj(s
′)) :Φ= φ(~ri(s))φ(~rj(s

′)) − βΦ(~ri(s) − ~rj(s
′)),

∫
dµΦ : ei

√
βN

∫ 1

0
dsφ(~r(s)) :Φ= 1.

This provides the correct account of the potential in zero, and leads to summation of so

called tadpole diagrams9,10.

Using the formula (4) one can represent the grand partition function in the form

Ξ(z, β, V ) =
∫

dµΦ[φ] exp
[
z

∫
δ~re−

3
2Nb2

∫ 1

0
ds( d~r(s)

ds )
2

: ei
√

βN
∫ 1

0
dsφ(~r(s)) :Φ

]
, (5)
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where

dµΦ[φ] =
δφ√
det Φ

exp
[
−1

2
(φΦ−1φ)

]
,

-Gaussian measure,

(φΦ−1φ) =
∫

V
d3r

∫

V
d3r′φ(~r)Φ−1(~r, ~r′)φ(~r′),

∫

V
d3rΦ(~r′, ~r)Φ−1(~r, ~r′′) = δ3(~r′ − ~r′′).

A positivity of the Fourier-transformation for the potential Φ

Φ̃(~p) =
∫

d3rΦ(~r)ei(~p ~r) > 0.

is sufficient condition for the existence of the functional integral (5).

The ordinary strategy for approximate calculation of the functional integral (5) is a mean

field approximation. However, there is multitude of cases where the mean field approach

has been found to provide either inaccurate or even qualitatively wrong results4,8.

Our aim is to obtain the equivalent representation of the functional integral, which is

suitable for any external parameters.

Let us perform the displacement of the functional variable φ → φ + ic√
β

and go over to

a new Gaussian measure dµD[φ], where c and D(x,y) are functions to be determined. The

Grand partition function takes the next form:

Ξ(z, β, V ) =

√
det D

det Φ

∫
dµD[φ]eWD , (6)

WD = −1

2
: (φ[Φ−1 − D−1]φ) : D − 1

2
(D[Φ−1 − D−1]) − i√

β
(cΦ−1φ)+

+
1

2β
(cΦ−1c) + zAe−Nc

∫
dσ[~r] : [1 + i

√
βN

∫ 1

0
dsφ(~r(s))−

−βN2

2

∫ 1

0
ds1

∫ 1

0
ds2φ(~r(s1))φ(~r(s2))] : D + W2[φ]. (7)

Functional W2[φ] is written in the form, which does not have linear and quadratic terms over

the integration variable φ(x). Our basic idea is that the main contribution to the functional
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integral is concentrated in the new quadratic Gaussian measure. It means, that the linear

and quadratic terms over the integration variable φ(x) should be absent in the integrant

exponent. Thus, we obtain two equations.

− i√
β

(cΦ−1φ) + z1i
√

βNe−Nc
∫ 1

0
ds

∫
dσ[~r]φ( ~r(s)) = 0 (8)

−1

2
(φ[Φ−1 − D−1]φ) − z1N

2βe−Nc

2

∫ 1

0
ds1

∫ 1

0
ds2

∫
dσ[~r]φ(~r(s1))φ(~r(s2)) = 0, (9)

where

dσ[~r] =
δ~r exp

[
− 3

2Nb2

∫ 1
0 ds

(
d~r(s)

ds

)2
]

∫
δ~r exp

[
− 3

2Nb2

∫ 1
0 ds

(
d~r(s)

ds

)2
] ,

z1 =
exp

[
βµ + β

2
N [Φ(0) − D(0)]

]

h3
(

β
2πm

)3/2

∫
δ~r exp


− 3

2Nb2

∫ 1

0
ds

(
d~r(s)

ds

)2

 ,

W2 = zAe−Nc
∫

dσ[~r] : e
i
√

βN
∫ 1

0
dsφ(~r(s))

2 :D,

ex
2 = ex − 1 − x − x2

2
.

The equations (8,9) connect the effective potential D(r) with temperature, activity, poly-

merization index and statistical average length of segment. These are the equations of a

self-consistency in our method.

The Eq.(8) can be written in the form

c = zβNAΦ̃(0)e−Nc. (10)

The derivation for the solution of equation (9) is took out in Appendix A. The Fourier

transformation for the function D(r) can be expressed as

D̃(q2) =
Φ̃(q2)

1 + cG(q2) Φ̃(q2)

Φ̃(0)

, (11)
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where

G(q2) =
12

q2b2
+

72

Nb4q4
(e−

Nb2q2

6 − 1) = Nf

(
Nq2b2

6

)
(12)

- Debye’s structure-factor, and

f(x) =
2

x2
(e−x − 1 + x)

- Debye function2.

This is a new result in compare to our previous works14,15. In the works14,15 we used

approximation G(q2) ≈ N , because G(0) = N and for not large N the Debye’s factor can be

written in form

G(q2) ≈ 12

q2b2
+

72

Nq4b4

(
1 − Nb2q2

6
+

N2b4q4

72
− 1

)
= N (13)

However, for large N this approximation is not sufficiently accurate. The new form of the

effective potential (11) leads to the new performance capabilities for description of polymer

chains.

The grand partition function can be written in the form

Ξ(z, β, V ) = eβPV = e−βΩ
(0)
GER

∫
dµD[φ]eW2[φ]. (14)

The linear and quadratic terms over the integration variable φ(x) are absent in W2[φ].

Therefore, we can choose W2 ≈ 0. We estimated this approximation9. The contribution of

the following terms is smaller than 10 percents in the wide region of external parameters.

The average polymer chains density can be expressed as

< ρ >=
z1

V

1

Ω0
GER

(
∂Ω0

GER

∂z1

)

β,V

.

Using the equation (10) we obtain

ρm =
c

βΦ̃(0)
− Nc2

2π(1 + cN)

∫ ∞

0

u2(q)q2dq

[1 + cu(q)]2
, (15)

where u(q) = G(q2)Φ̃(q)/Φ̃(0), and ρm =< ρ > N - average monomer densities.

The analytic expression for osmotic pressure has the following form:

P

kBT
=

2c + Nc2

2NΦ̃(0)
+

1

12π2

∫ ∞

0
dq

du(q)

dq

c2q3u(q)

[1 + cu(q)]2
, (16)
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and the pair distribution function for monomers can be written as

g(r) = exp [−βD(r)] ,

where

D(r) =
∫ d3q

(2π)3 D̃(p)ei~p~r (17)

is potential of mean force13 within our approximation (W2 = 0).

The equations (15-16) determine the equation of state for polymer solution. The osmotic

pressure as the function of the density, temperature, polymerization index and the param-

eters of the pair potential of interaction among monomers can be explored via equations

(15-16). There are different approaches for the development of an equation of state for

polymer systems described in literature14,25, however, in our work the equation of state is

derived by GER from basic conception of statistical mechanics - Gibbs distribution for grand

canonical ensemble.

III. MODEL OF POLYELECTROLYTE SOLUTION

In this section we consider a model of polyelectrolyte solution to investigate the aqueous

solution of HA with added salts. A polymer chain is described by the continuous Gaussian

thread model.

The monomers interact via a Yukawa-type of pair potential14

Φ(r; κD) = zm
2A(κD, a)

λB

β

e−κDr

r
, (18)

where

A(κD, a) =

(
exp(κDa/2)

1 + κDa/2

)2

(19)

is factor, which depends from the size and form of monomer. The parameter a is charac-

teristic size for excluded volume of monomer. The solvent is taken into account implicitly

via Bjerum length λB = z2
me2β/(4πǫ0ǫ) and Debye screening parameter κD. Hydrophobic

and attractive van der Waals non-bonded interactions are ignored because electrostatic ef-

fects have been shown to dominate in determining HA conformational and thermodynamic

properties at the ionic strengths considered (∼ 1M)22.
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The Fourier transformation for the potential of mean-force (11) has a form

βD̃(q2) =
4πz2

mA(κ, a)λB

q2 + κ2
D[1 + cG(q2)]

, (20)

where G(q2) is defined by equation (12).

The Debye screening parameter, taking into account an electroneutrality, it is possible to

write down in the form

κD =
√

4πλB(2z2
mρm + 2z2

s1
ρs1 + 2z2

s2
ρs2) (Å−1). (21)

Here the following designations are used:

zs1 = zNa = −zCl = 1, zs2 = zCa = −2zCl = 2,

ρm = NACm10−27 (Å−3) or ρm = φ103/(vHAM) ≃ 6φ/(πa3) (Å−3) - number density for

monomers and ρs = NACs10−27 (Å−3) - number density of counterions, Cm is concentration

of monomers (monomol/l), φ is volume fraction of polyelectrolyte, vHA = 0.59(cm3/g) -

specific volume of HA21, CS is concentration (M) of added salt, and NA is Avogadro constant,

λB ≃ 7Å (water at 298K). We choose the parameter a for HA as a = 10 Å21,22. The

parameter c = c(β, ρm, ρs, κD, b) is calculated via the equation (15), where

u(q2) =
G(q2)

q2 + κD
2
. (22)

The osmotic pressure is defined by equation (16). The potential of mean force can be

calculated as inverse Fourier-transformation:

D(r) =
1

2π2

∫ ∞

0
D̃(q2)

sin(qr)

r
qdq, (23)

and pair distribution function for monomers is defined as g(r) = exp[−βD(r)].

Our unique free parameter is b (b ≃ a), which defines the harmonic stretching energy (2)

and the linear charge density of polymer chain. We use the parameter b to approximate the

experimental measurements of osmotic pressure by equation (16).

IV. DISCUSSION

Here we shall investigate the thermodynamic and structure properties of aqueous HA

solution with added salts, using the experimental measurements of osmotic pressure from
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FIG. 1. Osmotic pressure for aqueous HA solution as a function of monomer concentration at

various concentrations of calcium chloride (R=8.31 J/(K mol), T=298K). Lines - approximation

of experimental data by equation P = Aφn from Ref.16, symbols - our results, Eq.16.

work by Horkay et al.16, where HA with weight-average molecular weight MW = 1.2×106 Da

was utilized. Polymerization index is defined as N = MW /m = 3× 103, where m = 400 Da

is mass of monomer unit. To obtain numerical experimental data we used A and n from

Table 1 of Ref.16.

In Fig.1 we show the osmotic pressure as a function of monomer concentration at different

concentrations of CaCl2, obtained by adjusting the GER expressions in Eqs.(15)-(16) onto

the experimental through varying the parameter b. As we can see the Eq.(16) correctly de-

scribes the experimental data. Corresponding graphs for parameter ξ = λB/b are presented

in Fig.2. Parameter ξ is less than unity and slightly depends from CaCl2 concentration,

therefore we are inclined to believe that counteions condensation is not observed. In our opin-

ion, the deviations of b from a are caused by the nonspherical form of HA monomers. These

may be related too to changes in the intrinsic properties of the polyelectrolyte molecule,

such as rigidity, due monovalent-divalent ion exchange16.

Now we can calculate the potential of mean-force, pair distribution function and entropy

using the obtained values of parameter b. In Fig.3 we show the potential of mean-force as

a function r/a for different polymerization indexes N. Function D(r) describes both intra-
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FIG. 2. Parameter ξ = λB/b as a function of monomer concentration at various concentrations of

calcium chloride.

FIG. 3. Potential of mean-force D(r) as a function r/a.

molecular and inter-molecular interactions among monomers in solution and defines the

behavior of pair distribution functions.

The monomer-monomer pair distribution functions g(r) = exp [−βD(r)] for various HA

and CaCl2 concentrations are presented in the Fig.4-6. As we can see, the increases of the
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FIG. 4. The pair distribution functions of monomers without calcium chloride.

FIG. 5. Pair distribution functions of monomers at HA concentration Cm = 0.02 monomol/l and

various concentration of calcium chloride.

concentration of both HA and salt displace the maximum of the pair distribution function

to the left. The reduction of distance to the first maximum can be explained by the increase

of a screening parameter (21) and by the decrease of the repulsion among the segments. At

that, as was noted in Ref.19, HA chains interfere with each other at even low concentrations

13



FIG. 6. Pair distribution functions of monomers at HA concentration Cm = 0.2 monomol/l and

various concentration of calcium chloride.

FIG. 7. Entropy as a function of monomer concentration (T=298K).

and their long chains show evident coiling. This is corroborated by increase of entropy with

the adds of salt. The graphs for entropy density s =
(

∂P
∂T

)
µ

at T = 298K are shown in the

Fig.7. As we can see, the adds of CaCl2 increase the entropy of the system.

At the small concentration of salt (0.1M NaCl) we can see the significant changes in
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behaviors of parameter b and entropy at polyelectrolyte concentration 0.1-0.2 monomol/l

(Fig.2 and Fig.7). In our opinion, it reflects the some reconstruction of the polymer chains

in solution.

V. CONCLUSION

In this work we have presented the field-theoretic model of polyelectrolyte solution. The

essential formulas for calculations of thermodynamic and structural functions have been

derived. As example we have considered the aqueous solution of HA with added NaCl

and CaCl2. Our conclusion is accordant to conclusion of the work16, that the changes in

thermodynamic and structural functions with increasing ionic strength is due essentially to

the change in electrostatic screening, and the valence of the counterion exerts no specific

effect on the HA molecule except through its contribution to the ionic strength.

Indeed, the full insight into the structure of polyelectrolyte system is possible via ex-

plicit multiscale examination of all presented interactions in solution4,26–28. However, the

simple analytic formulas and correlations, which derived from the basic principles of sta-

tistical mechanics, can be very useful for the successful investigation too. We have tried

to demonstrate by comparing our theoretical approach to experimental measurements that

it provides reliable results of the thermodynamic osmotic pressure and pair distribution

function for monomers.

Appendix A: Solving the equation (9)

By using Fourier transformation we can rewrite the second term in the Eq.(9) as

∫ 1

0
ds1

∫ 1

0
ds2

∫
dσ[~r]φ(~r(s1))φ(~r(s2)) =

=
∫ 1

0
ds1

∫ 1

0
ds2

∫ d3q

(2π)3

∫ d3p

(2π)3
φ̃(q)φ̃(p)

∫
dσ[~r]eiqr(s1)+ipr(s2) =

=
∫ 1

0
ds1

∫ 1

0
ds2

∫ d3q

(2π)3

∫ d3p

(2π)3
φ̃(q)φ̃(p) × (A1)

×
∫ δ~r

Cr

exp


− 3

2Nb2

∫ 1

0
dτ

(
d~r(τ)

dτ

)2

+ i~q~r(s1) + i~p~r(s2)


 ,
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where

Cr =
∫

δ~r exp


− 3

2Nb2

∫ 1

0
dτ

(
d~r(τ)

dτ

)2

 .

Now let us perform a following displacement

~r(s) → ~r(s) + ~y s + ~x (1 − s), ~r(0) = ~r(1) = 0.

The chain is beginning in the point ~x and ending in the point ~y. The integrations over ~x

and ~y should be executed.

∫ 1

0
ds1

∫ 1

0
ds2

∫
dσ[~r]φ(~r(s1))φ(~r(s2)) =

=
∫ 1

0
ds1

∫ 1

0
ds2

∫ d3q

(2π)3

∫ d3p

(2π)3
φ̃(q)φ̃(p)

∫
d3x

∫
d3y×

×
∫ δ~r

Cr

e−
3

2Nb2

∫ 1

0
dτ( d~r(τ)

dτ
+~y−~x)

2
+i~q~rs1+i~p~rs2+i(~y−~x)(~qs1+~ps2)+i~x(~q+~p).

Now the following displacement should be done:

~y → ~y + ~x.

Further we had performed the integrations over ~x and ~p:

∫ 1

0
ds1

∫ 1

0
ds2

∫
dσ[~r]φ(~r(s1))φ(~r(s2)) =

=
∫ 1

0
ds1

∫ 1

0
ds2

∫ d3q

(2π)3
φ̃2(~q)

∫
d3ye−

3
2Nb2

~y2+i~y~q(s1+s2)×

×
∫ δ~r

Cr

exp


− 3

2Nb2

∫ 1

0
dτ

(
d~r(τ)

dτ

)2

+ i~q(~r(s1) + ~r(s2))


 , (A2)

here

∫
d3y e−

3
2Nb2

~y2+i~y~q(s1+s2) =
2

9

√
6πN

3
2 b3 e−

1
6
q2(s1+s2)2Nb2 . (A3)

The integrations over all ~x and ~y should be executed in the denominator (Cr) too.

Now, let us consider the functional integral

∫ δ~r

Cr

exp


− 3

2Nb2

∫ 1

0
dτ

(
d~r(τ)

dτ

)2

+ i~q(~r(s1) + ~r(s2))


 =

16



=
∫ δ~r

Cr

exp
[
−1

2
(~rA−1~r) + ( ~J~r)

]
=

e
1
2
( ~JA ~J)

2
9

√
6πN

3
2 b3

, (A4)

where ~r(0) = ~r(1) = 0 ,

(~rA−1~r) =
∫ 1

0
dτ1

∫ 1

0
dτ2~r(τ1)A

−1(τ1, τ2)~r(τ2),

( ~J~r) =
∫ 1

0
dτ ~J(τ)~r(τ),

A−1(τ1, τ2) = − 3

2Nb2

d2

dτ 2
1

δ(τ1 − τ2), (A5)

~J(τ) = i~q [δ(τ − s1) + δ(τ − s2)] , (A6)

A(τ1, τ2) =
2Nb2

3

[
−|τ1 − τ2|

2
+

τ1 + τ2

2
− τ1τ2

]
, (A7)

∫ 1

0
dτ ′A−1(τ1, τ

′)A(τ ′, τ2) = δ(τ1 − τ2). (A8)

So, we obtain

e
1
2
( ~JA ~J) = e−

q2Nb2

6 [|s1−s2|−(s1−s2)2]. (A9)

The second term of the equation (9) gets the following form:
∫ 1

0
ds1

∫ 1

0
ds2

∫
dσ[~r]φ(~r(s1))φ(~r(s2)) =

=
∫ d3q

(2π)3
|φ̃(q)|2

∫ 1

0
ds1

∫ 1

0
ds2e

−Nq2b2

6
|s1−s2| =

=
1

N

∫ d3q

(2π)3
|φ̃(q)|2G(q2), (A10)

where G(q2) is so-called Debye’s structure-factor:

G(q2) =
12

q2b2
+

72

Nb4q4
(e−

Nb2q2

6 − 1). (A11)

On the other hand the first term in Eq.(9) can be written in the form

(φ[D−1 − Φ−1]φ) =
∫ d3q

(2π)3
|φ̃(q)|2[D̃−1(q2) − Φ̃−1(q2)], (A12)

Thus, the solution of the equation(9) can be expressed for Fourier transformation of the

function D as

D̃(q2) =
Φ̃(q2)

1 + cG(q2) Φ̃(q2)

Φ̃(0)

. (A13)
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