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Faithful teleportation of an unknown state|φ〉 in Cd is considered, where a general entangled stateρ is served
as the resource. The necessary conditions of mixed states tocomplete perfect teleportation are proved. Based on
these results, the necessary and sufficient conditions of faithful teleportation channelρ in Cm ⊗ Cd andCd ⊗ Cn

are derived. It is shown that forρ in Cm ⊗ Cd, ρ must be a maximally entangled state, while forρ in Cd ⊗ Cn,
ρ must be a mixed or pure maximally entangled state. Furthermore, the sender’s measurements must be all
projectors of maximally entangled states. On the other hand, for m, n > d, we present some classes of states for
faithful teleportation.

PACS numbers: 03.65.Ud, 03.67.Mn, 42.50.-p

I. INTRODUCTION

Quantum teleportation plays an important role in quantum
information processing and can serve as an elementary op-
eration in quantum computers and in a number of quantum
communication protocols. It, employing classical communi-
cation and shared resource of entanglement, allows to transmit
an unknown quantum state from a sender to a receiver who
are spatially separated. Bennettet. al. [1] first demonstrated
teleportation of an arbitrary single qubit, through an entan-
gled channel of Einstein-Podolsky-Rosen (EPR) pair. For a
general case, it is proved that only maximally entangled pure
states inCd ⊗ Cd could faithfully teleport an arbitrary pure
state inCd[2, 3].

Moreover, multipartite states have also been introduced to
fulfill the faithful and deterministic teleportation of an un-
known state. For instance, it is shown that three-qubit GHZ
state and a class ofW states can be used for perfect telepor-
tation of one qubit state [4, 5]. Another five-qubit state was
proved to be capable of perfect teleportation of arbitrary two-
qubit state [6]. They are all maximally entangled pure states
in C2 ⊗ C2 between Alice and Bob. In addition, the tensor
products of two Bell states in [7] and the genuine four-qubit
entangled states in [8] are also used for perfect teleportation
of two-qubit states, in which the teleportation channels can be
regarded as maximally entangled states inC4 ⊗ C4 shared by
the sender and receiver. Thus, multipartite states are basically
analogous to higher dimensional bipartite states in quantum
teleportation.

In a realistic situation, however, due to the decoherence,
the pure maximally entangled states may be transformed to
mixed entangled states, which could make the teleportation
unperfect. Moreover, for the case of the teleportation channel
ρ with higher dimension other thanCd ⊗ Cd, there is no a
general result on faithful teleportation.

In this paper, we study high dimensional bipartite pure or
mixed states as the resource for perfect and deterministic tele-
portation. We investigate faithful teleportation of an arbitrary
pure state|φ〉 =

∑d
i=1αi|i〉 by using entangled stateρ in Cm⊗Cn

(m, n ≥ d). First we prove necessary conditions of mixed
states to complete perfect teleportation. Then the necessary

and sufficient conditions of faithful teleportation channelρ
in Cm ⊗ Cd andCd ⊗ Cn are obtained. We show that forρ
in Cm ⊗ Cd, either pure or mixed, it must be maximally en-
tangled. Furthermore, the sender’s measurements must be all
projectors of maximally entangled states. Forρ in Cd ⊗ Cn, it
must be pure maximally entangled state. Finally, form, n > d,
we present some classes of states for faithful teleportation.

II. TELEPORTATION OF AN ARBITRARY PURE STATE

Suppose Alice wants to teleport an unknown pure state|φ〉
to Bob. They have at disposal only a classical communication
channel and an entangled stateρ. To perform teleportation Al-
ice needs to measure her two particles: one in state|φ〉 and one
part of the entangled stateρ. She informs Bob her measure-
ment results via the classical communication channel. Then
Bob chooses a corresponding unitary transformation on the
other part of the entangled stateρ, which can transform the
state of this part to be exactly the unknown state|φ〉.

First we begin with the general case that Alice and Bob
previously share a pair of particles in a mixed stateρ inCm⊗Cn

(m, n ≥ d), and show a necessary condition ofρ to be able to
used in perfect teleportation.

Theorem 1 If mixed state ρ is the ideal resource for faithful
teleportation, and {pi, |ψi〉} is any pure state decomposition of
ρ, then every pure state |ψi〉 is the ideal resource for faithful
teleportation.

Proof. Letρ =
∑k

i=1 pi|ψi〉〈ψi|, pi ≥ 0,
∑k

i=1 pi = 1, be any pure
state decomposition ofρ. The initial state is|φ〉〈φ| ⊗ ρ. As-
sume Alice makes a complete measurement{|ψ̃ j〉〈ψ̃ j|}rj=1 with
∑r

j=1 |ψ̃ j〉〈ψ̃ j| = Ir, where{|ψ̃ j〉}rj=1 is an orthonormal basis in
C

r, Ir is ther × r identity matrix. Bob chooses unitary oper-
ationsU ( j)† on his part with respect to Alice’s measurement
result j . If ρ is the ideal resource for faithful teleportation,
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then one has

|φ〉〈φ| ⊗ ρ =
k
∑

i=1

pi|φ〉|ψi〉〈ψi|〈φ| (1)

=

r
∑

j, j′=1

q j|ψ̃ j〉U ( j)|φ〉〈φ|U ( j′)†〈ψ̃ j′ |

with
∑r

j=1 q j = 1, q j ≥ 0, j = 1, · · · , r. From Eq. (1) we
obtain

k
∑

i=1

pi〈ψ̃ j|φ〉|ψi〉〈ψi|〈φ|ψ̃ j〉 = q jU
( j)|φ〉〈φ|U ( j)† (2)

〈ψ̃ j|φ〉|ψi〉〈ψi|〈φ|ψ̃ j〉 = fi jU
( j)|φ〉〈φ|U ( j)† (3)

with
∑k

i=1
∑r

j=1 fi j = 1, fi j ≥ 0, i = 1, · · · , k, j = 1, · · · , r.
Hence we have

r
∑

j=1

〈ψ̃ j|φ〉|ψi〉〈ψi|〈φ|ψ̃ j〉 =
r
∑

j=1

fi jU
( j)|φ〉〈φ|U ( j)† (4)

for i = 1, · · · , k. Due to the completeness of{|ψ̃ j〉〈ψ̃ j|}, fi j sat-
isfies

∑r
j=1 fi j = 1 for eachi. Therefore we arrive at that every

pure state|ψi〉must be an ideal resource for faithful teleporta-
tion.

If we replace any pure state decomposition with the spectral
decomposition in the above theorem, then we will get another
necessary condition of mixed states for perfect teleportation.

Corollary 2 If mixed state ρ is the ideal resource for faithful
teleportation, then its eigenstates must be all ideal channels
for faithful teleportation.

Utilizing the necessary conditions of mixed states, we con-
sider now which kind of states inCm ⊗ Cn could be used as
perfect channel for teleportation of an unknown state|φ〉 in
C

d explicitly. Here we divide the whole discussion into four
cases.

Case i). n = d, pure states.
At first we consider pure states in casen = d. Since any

pure state|ψ〉 in Cm ⊗ Cd can be transformed into some pure
state inCd ⊗ Cd by local unitary transformations of Alice and
Bob, for this case, we only need consider a pure state|ψ〉
in Cd ⊗ Cd directly. It has been shown that only maximally
entangled pure states can be used for perfect teleportationin
C

d ⊗ Cd [2, 3], which is illustrated from optimal teleportation
fidelity. Here we give a direct proof that the maximally entan-
gled states are the only ones that fulfill faithful teleportation
mathematically.

Theorem 3 Pure state |ψ〉 in Cd ⊗ Cd is an ideal resource
for faithful teleportation of |φ〉 =

∑d
i=1αi|i〉, if and only if |ψ〉

is maximally entangled state. Furthermore, Alice’s measure-
ments must be all projectors of maximally entangled states.

Proof. Let |ψ〉 =
∑d

i, j=1 ai j|i j〉 be the entangled
pure state shared by Alice and Bob. To teleport the

unknown state|φ〉, Alice carries out complete measure-
ment {|ψst〉〈|ψst|}ds,t=1, where |ψst〉 =

∑d
p,q=1 Upq,st|pq〉 with

〈ψs′,t′ |ψs,t〉 =
∑d

p,q=1 Upq,stU∗pq,s′t′ = δs,s′δt,t′ . Then one has

|φ〉|ψ〉 =
d
∑

i, j,k=1

αia jk |i jk〉

=

d
∑

s,t=1

d
∑

i, j,k=1

αia jk|ψst〉〈ψst|i jk〉

=

d
∑

s,t=1

|ψst〉(
d
∑

i, j,k=1

U∗i j,stαia jk |k〉)

=

d
∑

s,t=1

|ψst〉AT V†st|φ〉 (5)

whereVst = (Ui j,st) andA = (ai j) are the coefficient matrices
of |ψst〉 and |ψ〉 respectively. If|ψ〉 is an ideal resource for
faithful teleportation, thenAT V†st should be unitary up to a
constant factor:

AT V†st = cstWst, (6)

and

d
∑

s,t=1

|cst|2 = 1. (7)

where Wst is unitary and 0≤ cst ≤ 1, s, t = 1, · · · , d.
Let AT

= U1Λ1V1 and V†st = U2,stΛ2,stV2,st be the sin-
gular decompositions ofAT and V†st respectively, with uni-
tary U1,V1,U2,st,V2,st, andΛ1 = diag(λ1, · · · , λd), Λ2,st =

diag(µ1,st, · · · , µd,st) . Due to normalitytrAA† = trVstV
†
st = 1,

one gets

d
∑

i=1

|λi|2 = 1, (8)

d
∑

i=1

|µi,st|2 = 1. (9)

Then from Eq. (6), we have

c2
stId = AT V†stVstA

T†

= U1Λ1V1U2,stΛ2,stΛ
†
2,stU

†
2,stV

†
1Λ
†
1U†1 (10)

and

c2
st(Λ1Λ

†
1)−1
= V1U2,stΛ2,stΛ

†
2,stU

†
2,stV

†
1 , (11)

which give rise to

|λi|−2
=

1

c2
st

|µi,st|2 (12)

and

|λi|2 =
c2

st

|µi,st|2
(13)
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by reordering{λi} and{µi,st}. From Eq. (8) and Eq. (12) we
know

1

c2
st

d
∑

i=1

|µi,st|2 =
d
∑

i=1

|λi|−2 ≤ d2.

Combining this equation with Eq. (9), one hasc2
st ≥ 1/d2 for

s, t = 1, · · · , d, which results in

c2
st =

1
d2

(14)

by taking into account Eq. (7). Inserting Eq. (14) into Eq.
(13) and using Eq. (8) we get

d
∑

i=1

1
|µi,st|2

= d2. (15)

Hence in terms of Eq. (9), Eq. (13) and Eq. (15) we obtain

|λi|2 = |µi,st|2 =
1
d

(16)

for i, s, t = 1, · · · , d, which are just the square of Schmidt
coefficients of|ψ〉 and|ψst〉 respectively. ThereforeAT

=
1√
d
Ũ

and Vst =
1√
d
Ṽst for some unitary matrices̃U and Ṽst. As

a result, we arrive at that the shared entangled state|ψ〉 and
the projective measurements{|ψst〉〈ψst |}must be all maximally
entangled states. At last,

|φ〉|ψ〉 = 1
d

d
∑

s,t=1

|ψst〉Ũst|φ〉, (17)

whereŨst = dAT V†st is determined by the shared state|ψ〉 and
the measurement operators|ψst〉〈ψst|. Experimentally, Alice
measures her particles byd2 orthonormal projectors, and tells
Bob her measurement results. Each result appears in her mea-
surements with probability1d2 . According to Alice’s measure-
ment resultst, Bob fulfills faithful teleportation by applying
unitary operationŨ†st on his part of the entangled resource.

On the other hand, if|ψ〉 is maximally entangled, then the
pure maximally entangled states have the formU1⊗U2|ψ〉with
|ψ〉 = 1√

d

∑d
i=1 |ii〉. Here we use|ψ〉 as a channel to teleport

|φ〉 =
∑d

i=1 αi|i〉. It is:

|φ〉 ⊗ |ψ〉 = 1
d

d
∑

s,t=1

|ψ̃st〉 ⊗ Ust|φ〉

with |ψ̃st〉 = 1√
d
Ust ⊗ I|ψ〉, s, t = 1, 2, · · · , d. Here {Ust} is

the basis of the unitary operators, i.e.,tr(UstU
†
s′t′ ) = dδss′δtt′

and tr(UstU
†
st) = Id. For instance, we could chooseUst =

htgs with d × d matricesh and g such thath| j〉 = |( j + 1)
mod d〉, g| j〉 = ω j| j〉, ω = exp{−2iπ/d}, s, t = 1, 2, · · · , d,
as the basis of the unitary operators to perform the perfect
teleportation.

Case ii). n = d, mixed states.
After the consideration of the pure states as the ideal chan-

nel, now we will prove which kind of mixed stateρ in Cm⊗Cd

can be used for perfect teleportation.

Theorem 4 Mixed state ρ with rank k in Cm ⊗ Cd can be
used for perfect teleportation of |φ〉 =

∑d
i=1αi|i〉, if and only

if m = kd and ρ is the mixed maximally entangled state:
ρ =

∑k
x=1 px|ψx〉〈ψx| with |ψx〉 is maximally entangled in

Hx ⊗ Cd, x = 1, · · · , k and {Hx} are orthogonal to each other.

Proof. It has been proved that the mixed maximally entan-
gled state [9] could be used for perfect teleportation. Now we
prove the counterpart. Supposeρ in Cm ⊗ Cd is the ideal re-
source for teleportation, we have known that itsk orthogonal
eigenstates{|ψi〉} are all maximally entangled by corollary 2.
In fact, they can be constituted in the following way. We as-
sume, without loss of generality,|ψ1〉 is maximally entangled
in H1 ⊗ Cd with H1 = C

d
= Span{|1〉, · · · , |d〉}. From Eq. (4)

one has

d2
∑

j=1

〈ψ̃ j|φ〉|ψ1〉〈ψ1|〈φ|ψ̃ j〉 =
d2
∑

j=1

f1 jU
( j)|φ〉〈φ|U ( j)† (18)

with f1 j = 1/d2 for j = 1, · · · , d2, and f1 j = 0 for j > d2. Here
{|ψ̃ j〉}d

2

j=1 are maximally entangled states and also constitute

orthogonal basis inCd ⊗ H1. Similarly state|ψ2〉 satisfies

2d2
∑

j=d2+1

〈ψ̃ j|φ〉|ψ2〉〈ψ2|〈φ|ψ̃ j〉 =
2d2
∑

j=d2+1

f2 jU
( j)|φ〉〈φ|U ( j)† (19)

with f2 j = 1/d2 for j = d2
+ 1, · · · , 2d2, and f2 j = 0 for

others. From the orthogonality of{|ψ̃ j〉}d
2

j=1 and{|ψ̃ j〉}2d2

j=d2+1
, we

know{|ψ̃ j〉}2d2

j=d2+1
are maximally entangled and also constitute

orthogonal basis inCd ⊗ H2, whereH2 is orthogonal toH1,
dimH2 = d. Hence|ψ2〉 is maximally entangled inH2 ⊗ Cd.
For other eigenstates|ψx〉, 2 ≤ x ≤ k, they can be treated in a
similar way,

xd2
∑

j=(x−1)d2+1

〈ψ̃ j|φ〉|ψx〉〈ψx |〈φ|ψ̃ j〉 =
xd2
∑

j=(x−1)d2+1

fx jU
( j)|φ〉〈φ|U ( j)†. (20)

{|ψ̃ j〉}xd2

j=(x−1)d2+1
, which are maximally entangled, constitute

the orthogonal basis inCd ⊗ Hx, where{Hx} are orthogonal
to each other,dimHx = d for x = 1, · · · , k. Hence|ψx〉 is max-
imally entangled inHx ⊗Cd. From the above analysis, we get
m = kd with k the rank ofρ. The probabilities of each mea-
surement result depend on the eigenvaluespi, i = 1, · · · , k.
Therefore a mixed stateρ in Cm ⊗ Cd that can be used for
faithful teleportation of|φ〉 in Cd must be a mixed maximally
entangled state.

As an example, we consider the perfect teleportation of
|φ〉 =

∑d
i=1αi|i〉 by using a mixed maximally entangled state

ρ = 1
2d ((
∑d

i=1 |ii〉)(
∑d

i=1〈ii|) + (
∑d

i=1 |d + i, i〉)(
∑d

i=1〈d + i, i|)) in
C

2d ⊗ Cd. By straightforward calculations one has

|φ〉〈φ| ⊗ ρ = 1
2d

(
∑

s,t,s′,t′
|ψ̃1

st〉〈ψ̃1
s′t′ | ⊗ Ust|φ〉〈φ|U†s′t′

+|ψ̃2
st〉〈ψ̃2

s′t′ | ⊗ Ust|φ〉〈φ|U†s′t′ ),
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where |ψ̃1
st〉 = 1√

d
Ust ⊗ I(

∑d
i=1 |i, i〉), |ψ̃2

st〉 = 1√
d
Ust ⊗

I(
∑d

i=1 |i, d + i〉), {Ust} is the basis of unitary operators inCd.

Case iii). m = d, pure or mixed states.

In this case we show which kind of states inCd ⊗ Cn are
ideal resources for teleportation.

Theorem 5 The state ρ in Cd ⊗ Cn could be used for perfect
teleportation of |φ〉 =

∑d
i=1αi|i〉, if and only if it is a maximally

entangled pure state in Cd ⊗ Cd.

Proof. Supposeρwith rankk is able to teleport|φ〉 perfectly,
then its eigenstates are all the ideal resources for teleportation
by corollary 2. If so, the first subsystems ofρ’s eigenstates
must be orthogonal to each other by the proof of theorem 4,
which means the dimension of the first subsystem ofρ is kd.
Since we are considering the case with the first subsystem of
ρ is d dimensional here, hencek = 1 andρ is maximally en-
tangled pure state.

Case iv). m, n > d, pure or mixed states.

Although we have shown necessary conditions for faithful
teleportation, there is no general result on which kind of pure
states inCm ⊗ Cn could fulfill perfect teleportation of an un-
known state inCd with m, n > d.

Here we introduce a class of states:

|ψ〉 = c1|ψ1〉 + · · · + cl|ψl〉, (21)

where|ψp〉 ∈ HA
p ⊗ HB

p is maximally entangled,{HA
p are or-

thogonal to each other,dimHA
p = dimHB

p = np ≥ d for p =

1, · · · , l,
∑l

p=1 np ≤ min{m, n} and
∑l

i=1 |ci|2 = 1. Without loss
of generality, we assume Alice’s complete measurements are
{|ψ̃st,p〉〈ψ̃st,p|}, s = 1, · · · , d, t = 1, · · · , np, p = 1, · · · , l. Here
for p = 1, · · · , l, {|ψ̃st,p〉〈ψ̃st,p|} are projectors ontoCd ⊗ HA

p .
Besides,{|ψ̃st,p〉} are maximally entangled states and they con-
stitute orthogonal basis inCd⊗HA

p for p = 1, · · · , l. Therefore,

|φ〉|ψ〉 =
1
d

l
∑

p=1

d
∑

s=1

np
∑

t=1

cp|ψ̃st,p〉Ũst,p|φ〉, (22)

where the unitary matrix̃Ust,p depends on the shared resource
state|ψ〉 and measurement operator|ψ̃st,p〉〈ψ̃st,p|. The prob-
ability of getting a result in each Alice’s measurement is
|cp|2/d2.

For example, we consider the teleportation of a qubit state
|φ〉 = α1|0〉 + α2|1〉 with nonmaximally entangled state|ψ〉 =√

a|η〉 +
√

1− a|ξ〉 with |η〉 = 1√
2
(|00〉 + |11〉) and |ξ〉 =

1√
3
(|22〉 + |33〉 + |44〉). We have

|φ〉 ⊗ |ψ〉

=

√
a

2
(

1
√

2
(|00〉 + |11〉) ⊗ U1|φ〉 +

1
√

2
(|00〉 − |11〉) ⊗ U2|φ〉

+
1
√

2
(|01〉 + |10〉) ⊗ U3|φ〉 +

1
√

2
(|01〉 − |10〉) ⊗ U4|φ〉)

+

√

1−a
6

(
1
√

2
(|02〉+ |13〉)⊗V1|φ〉+

1
√

2
(|02〉−|13〉)⊗ V2|φ〉

+
1
√

2
(|03〉 + |14〉) ⊗ V3|φ〉 +

1
√

2
(|03〉 − |14〉) ⊗ V4|φ〉

+
1
√

2
(|04〉 + |12〉) ⊗ V5|φ〉 +

1
√

2
(|04〉 − |12〉) ⊗ V6|φ〉),

whereU1,2 = |0〉〈0| ± |1〉〈1| + |2〉〈2| + |3〉〈3| + |4〉〈4|, U3,4 =

|1〉〈0| ± |0〉〈1| + |2〉〈2| + |3〉〈3| + |4〉〈4|, V1,2 = |0〉〈2| + |2〉〈0| ±
|1〉〈3|±|3〉〈1|+|4〉〈4|,V3,4 = |0〉〈3|+|3〉〈0|±|1〉〈4|±|4〉〈1|+|2〉〈2|,
V5,6 = |0〉〈4|+ |4〉〈0| ± |1〉〈2| ± |2〉〈1|+ |3〉〈3|. It is obvious that
with respect to the Alice’s measurement results, faithful tele-
portion can be realized by applying the corresponding unitary
transformationsUi, i = 1, ..., 4,V j, j = 1, ..., 6, on Bob’s part.

For mixed states inCm ⊗ Cn, we considerρ with all eigen-
states belonging to this class. From the analysis at the be-
ginning, we know that if such mixed state could be used for
perfect teleportation, then any two of its eigenstates|ξ〉 =
c1|ξ1〉 + · · · + cp|ξp〉 and |η〉 = c′1|η1〉 + · · · + c′q|ηq〉 satisfy
|ξi〉 = |η j〉, or the first subsystems of|ξi〉 and|η j〉 are orthogo-
nal for i = 1, · · · , p, j = 1, · · · , q, which means that any super-
positions of such eigenstates still belong to the class. Forin-
stance,ρ = p1|ψ1〉〈ψ1|+ p2|ψ2〉〈ψ2| with |ψ1〉 = 1

2(|00〉+ |11〉)+
1√
6
(|22〉 + |33〉 + |44〉), |ψ2〉 = 1

2(|00〉 + |11〉) + 1
2(|52〉 + |63〉),

p1 + p2 = 1, can be used for perfect teleportation of one qubit
state. Hence mixed states satisfying the above condition could
be used for faithful teleportation.

Remark. For the case of multipartite states used in per-
fect teleportation protocols, such as the faithful teleportation
of numberd qubit state in [10], if we treat them as teleporta-
tion of pure states inC2d

, then it is easy to check the shared
resources belong to this class of state (21).

III. TELEPORTATION AND ENTANGLEMENT

We next investigate the relation between the degree of en-
tanglement of teleportation channelρ and teleportation. Here
we take the well-known entanglement measure, entanglement
of formation [11].

For a pure bipartite state|ψ〉AB, entanglement of forma-
tion is defined as the partial entropy of either of the two
subsystems:E(|ψ〉AB) = −tr(ρA(B) log2 ρA(B)), whereρA(B) =

trB(A)(|ψ〉AB〈ψ|). For mixed stateρ with pure state decomposi-
tions {pi, |φ̃i〉} such thatρ =

∑

i pi|φ̃i〉〈φ̃i| with
∑

i pi = 1, the
entanglement of formation is defined as the average entangle-
ment of the pure states in the decomposition, minimized over
all pure state decompositions ofρ: E(ρ) = inf

∑

i piE(|φ̃i〉).
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It can be verified that either the maximally entangled pure
state|ψ〉 in Cd ⊗ Cd, or the mixed maximally entangled state
ρ in Ckd ⊗ Cd, the entanglement of formation isE = logd.
Furthermore, entangled states with entanglement of formation
E = logd must be pure or mixed maximally entangled states
[9]. Hence we derive that the states inCm ⊗ Cd (m ≥ d) can
be used for perfect teleportation if and only if their entangle-
ment of formation are logd. However, states havingE = logd
but not inCm ⊗ Cd (m ≥ d) may be not capable of carry-
ing out faithful teleportation of ad dimensional pure state.
As an example we considerρ0 =

1
2 |ψ1〉〈ψ1| + 1

2 |ψ2〉〈ψ2|, with
|ψ1〉 = 1√

d
(|1, 1〉+· · ·+|d, d〉), |ψ2〉 = 1√

d
(|1, d+1〉+· · ·+|d, 2d〉).

It can be verified thatE(ρ0) = log2 d and it is a maximally en-
tangled mixed state inCd ⊗ C2d . Nevertheless this state can
not be used to teleport|φ〉 faithfully. For teleportation channel
ρ in Cm ⊗ Cn with m, n > d, the entanglement of formation of
ρ presented in this paper for perfect teleportation is largerthan
or equal to logd. Therefore the above studies give the impli-
cation that the entanglement of formation for all ideal entan-
gled resources are not less than logd, which might be another
necessary condition for quantum states to be used in perfect
teleportation. But the converse is not always true, which can

be illustrated by the stateρ0 as a counterexample.

IV. CONLUSIONS

In summary, we have investigated which states inCm ⊗ Cn

(m, n ≥ d) can be used for faithful teleportation of|φ〉 in Cd

and proved the necessary conditions for such states. Further-
more, we have shown that forn = d, ρ can be used for faith-
ful teleportation if and only if it is maximally entangled and
m = kd, with k the rank ofρ. For m = d, ρ can be used
for faithful teleportation of|φ〉 if and only if it is a maximally
entangled pure state. Form, n > d, we get a class of pure
and mixed states that could be used for faithful teleportation
respectively. From the point of view of experimental imple-
mentation of quantum teleportation [12], our results may help
to understand the character of faithful teleportation and to fa-
cilitate experimental preparation of entangled resources.
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