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Faithful teleportation of an unknown stdi in C¢ is considered, where a general entangled gtégeserved
as the resource. The necessary conditions of mixed statesiplete perfect teleportation are proved. Based on
these results, the necessary anfiisient conditions of faithful teleportation changein C™ @ C¢ andC® ® C"
are derived. It is shown that fgrin C™ ® CY, p must be a maximally entangled state, while fdn C? ® C",
p must be a mixed or pure maximally entangled state. Furthexnmbe sender’s measurements must be all
projectors of maximally entangled states. On the other hfaman, n > d, we present some classes of states for
faithful teleportation.

PACS numbers: 03.65.Ud, 03.67.Mn, 42.50.-p

I. INTRODUCTION and stfficient conditions of faithful teleportation channel
in C"® CY andCY ® C" are obtained. We show that fpr

nln C™® CY, either pure or mixed, it must be maximally en-

Quantum teleportation plays an important role in quantu angled. Furthermore, the sender's measurements must be al

information processing and can serve as an elementary o rojectors of maximally entangled states. pon C% & C", it
eration in quantum computers and in a number of quanturR ) Y 9 ' '

communication protocols. It, employing classical communi must be pure maximally entangled state._FlnaIIym;)n > d
cation and shared resource of entanglement, allows tatians we present some classes of states for faithful teleportatio
an unknown quantum state from a sender to a receiver who

are spatially separated. Bennettt al. [1] first demonstrated
teleportation of an arbitrary single qubit, through an anta
gled channel of Einstein-Podolsky-Rosen (EPR) pair. For a
general case, it is proved that only maximally entanglee pur
states inCY ® CY could faithfully teleport an arbitrary pure
state inC9[2, 3]. Suppose Alice wants to teleport an unknown pure sigte

Moreover, multipartite states have also been introduced té0 Bob. They have at disposal only a classical communication
fulfill the faithful and deterministic teleportation of amu  channeland an entangled statélo perform teleportation Al-
known state. For instance, it is shown that three-qubit GHZCe needs to measure her two particles: one in §tatnd one
state and a class & states can be used for perfect telepor-part of the entangled state She informs Bob her measure-
tation of one qubit state [4, 5]. Another five-qubit state wasment results via the classical communication channel. Then
proved to be capable of perfect teleportation of arbitrary-t ~Bob chooses a corresponding unitary transformation on the
qubit state [6]. They are all maximally entangled pure state Other part of the entangled state which can transform the
in C2 @ C2 between Alice and Bob. In addition, the tensor state of this part to be exactly the unknown state

products of two Bell states in [7] and the genuine four-qubit  First we begin with the general case that Alice and Bob
entangled states in [8] are also used for perfect telepontat previously share a pair of particles in a mixed staiteCM@C"

of tWO-QUbit states, in which the teleportation channelsioa (m n> d), and show a necessary COﬂditiOfmb be able to
regarded as maximally entangled state€r® C* shared by  ysed in perfect teleportation.

the sender and receiver. Thus, multipartite states aredibsi
analogous to higher dimensional bipartite states in quantu

teleportation. Theorem 1 If mixed state p is the ideal resource for faithful
In a realistic situation, however, due to the decoherenceeleportation, and {pi, i)} is any pure state decomposition of
the pure maximally entangled states may be transformed tg, then every pure state |y;) is the ideal resource for faithful
mixed entangled states, which could make the teleportatiofel eportation.
unperfect. Moreover, for the case of the teleportation okan
p with higher dimension other thafi ® C9, there is no a
general result on faithful teleportation. Proof. Leto = T pilwi)wil, pi > 0, £, pi = 1, be any pure
In this paper, we study high dimensional bipartite pure orStateé decomposition gf. The initial state igp) (¢ ® p. As-
mixed states as the resource for perfect and determiredgic t SUMe Alice makes a complete measurenigni(yjl}j_, with
portation. We investigate faithful teleportation of anitdyy X1 W)Wl = I+, where{ly};_; is an orthonormal basis in
pure statég) = Zid:l ajli) by using entangled stgten C"®C"  C', I, is ther x r identity matrix. Bob chooses unitary oper-
(mn > d). First we prove necessary conditions of mixedationsU!T on his part with respect to Alice’s measurement
states to complete perfect teleportation. Then the negessaresult . If p is the ideal resource for faithful teleportation,

II. TELEPORTATION OF AN ARBITRARY PURE STATE



then one has unknown state|¢), Alice carries out complete measure-
) ment {ly«)¥slil,_;, wherelys) = 9. Upgslpa) with
DX@l®p = > PIOWDWI ()  Wsels) = Xpe UpaaUpgse = dssdue. Then one has
I= d
> alipuPiexgiut ;| W) = ) adik
i1 |Jdk—1 |
with ¥'_,0; = 1,95 2 0, ) = 1,---,r. From Eq. (1) we = Z Z aiajklys)(Wlijk)y
obtain st=1i,j,k=1
. d d
. . . . = U’ qaiaiK
D pdlewikelds) = g UPlg)alu 2 Z "”S‘Xi,j,zk;l i 2l)
i=1 N N _ _ d
Wikl = fiUDIg)elu D (3) - ZWS()ATV'S"M) (5)
st=

with 24 3 fij = 1, fij 2 0,i = L.+ k j = 1,--- 1. _ .
Hence we have whereVy = (Uij«) andA = (a;) are the cofficient matrices
of [w«) and |y) respectively. Ifly) is an ideal resource for

r r . . .
~ ~ i faithful teleportation, therATV), should be unitary up to a
=1 =1
_ L. ATV = cgWg, (6)
fori = 1,---,k. Due to the completeness @f;)(yil}, fi; sat-
isfieszgzl fij = 1 for eachi. Therefore we arrive at that every and
pure statey;) must be an ideal resource for faithful teleporta- d
tion. O Z legl? = 1. @)
If we replace any pure state decomposition with the spectral St=1

decomposition in the above theorem, then we will get another

necessary condition of mixed states for perfect teleiortat ~ Where Ws is unitary and 0< ¢« < 1, st = 1,---.d.
Let AT = UiA1V; and V) = UagAz4Vag be the sin-

Corollary 2 If mixed state p is the ideal resource for faithful ~ gular decompositions oA” and V{, respectively, with uni-

teleportation, then its eigenstates must be all ideal channels  tary U1,V1, Uzs Vo, andAg = diag(ds, -, Ag), Asg =

for faithful teleportation. diag(uis, - - »pd.g) - Due to normalitytr AAT = trVgVy, = 1,

one gets
Utilizing the necessary conditions of mixed states, we con- 9

sider now which kind of states iB™ ® C" could be used as

perfect channel for teleportation of an unknown stabein Z A2 = 1, (8)
C9 explicitly. Here we divide the whole discussion into four i
cases. d

Casei). n = d, pure states. Z isl? = 1 (9)

At first we consider pure states in case- d. Since any
pure statey) in C™ ® CY can be transformed into some pure
state inCY ® CY by local unitary transformations of Alice and
Bob, for this case, we only need consider a pure dtate
in CY ® CY directly. It has been shown that only maximally
entangled pure states can be used for perfect teleporiation
Cc9®CY[2, 3], which is illustrated from optimal teleportation
fidelity. Here we give a direct proof that the maximally entan
gled states are the only ones that fulfill faithful teleptiaia Cst(AlAl) 1 =ViUsgAs StAngzistvi (11)
mathematically.

Then from Eq. (6), we have
ATV VAT
UiA1ViUzeAzgA) JUS VIATUT  (10)

C§|d

which give rise to
Theorem 3 Pure state |y) in C4 @ CY is an ideal resource 1
for faithful teleportation of |¢) = Zid:l ailiy, if and only if |y) A2 = —2|,ui,st|2 (12)
is maximally entangled state. Furthermore, Alice's measure- Cst
ments must be all projectors of maximally entangled states. and
c&

Proof. Let |¢) = le 1&jlij) be the entangled
i, 2

2 _
pure state shared by Alice and Bob. To teleport the il =

(13)



by reordering 4} and{ui.«}. From Eq. (8) and Eq. (12) we
know

d d
1 -
Z D sl = ) <
st =1

i=1
Combining this equation with Eq. (9), one hes> 1/d? for
st=1,---,d, whichresults in
1
2
by taking into account Eq. (7). Inserting Eq. (14) into Eq.
(13) and using Eq. (8) we get

cg = (14)

1 j—

d?.
| 1

d
(15)
=

Hence in terms of Eq. (9), Eq. (13) and Eq. (15) we obtain

5 (16)
fori,st = 1,---,d, which are just the square of Schmidt

codficients ofly) and|y ) respectively. Therefora™ = %U

andVyg = %\L for some unitary matricesl andVg. As
a result, we arrive at that the shared entangled $tatand
the projective measuremeifig (¥ «|} must be all maximally
entangled states. At last,

il = i s =

1 -
o) = 5 > W) Usle).

st=1

(17)

whereUg = dATV{, is determined by the shared st and
the measurement operatdys:)(¥«|. Experimentally, Alice
measures her particles by orthonormal projectors, and tells

3

Theorem 4 Mixed state p with rank k in C™ ® C% can be
used for perfect teleportation of |¢) = Zid:1 ajliy, if and only
if m = kd and p is the mixed maximally entangled state:
p = Yoea Pl with [y is meximally entangled in
Hy® CY9, x=1,---,kand {Hy} are orthogonal to each other.

Proof. It has been proved that the mixed maximally entan-
gled state [9] could be used for perfect teleportation. Nawv w
prove the counterpart. Suppgsén C™® CY is the ideal re-
source for teleportation, we have known thatktsrthogonal
eigenstategy;)} are all maximally entangled by corollary 2.
In fact, they can be constituted in the following way. We as-
sume, without loss of generalityy;) is maximally entangled
in Hy ® €9 with H; = €Y = San{|1),---,|d)}. From Eq. (4)
one has

d? d?

Z<‘Z’j|¢>|l//1><l//1|<¢|12/j> = Z f,UDg)pUDT (18)
j=1 j=1

with f; = 1/d?for j = 1,--- ,d? andfy; = Ofor j > d?. Here
{|J/j>}‘j‘il are maximally entangled states and also constitute
orthogonal basis it ® H;. Similarly statey.) satisfies

2d? 2d?
DT edwalelin = > fuDgxeludt (19)
j=d2+1 j=d2+1

with fj = 1/d? for j = d® + 1,---,2d? and fp; = O for
others. From the orthogonality (}{b,—)}‘j’il and{|zp,—)}]?g22+l, we
know{h,Zp}J?ﬂj12+1 are maximally entangled and also constitute

orthogonal basis itt® ® H,, whereH, is orthogonal toH;,
dimH, = d. Hencely») is maximally entangled i, ® CY.
For other eigenstatdsy), 2 < X < k, they can be treated in a

Bob her measurement results. Each result appears in her megmilar way,

surements with probabilith%. According to Alice’s measure-
ment resultst, Bob fulfills faithful teleportation by applying
unitary operatiorUL on his part of the entangled resource.
On the other hand, if/) is maximally entangled, then the
pure maximally entangled states have the far@U-|y) with
) = % Zid:l lii). Here we uséy) as a channel to teleport

16y = 39, aili). Itis:

d
1 ~
D @) =5 > i) ® Usld)
st=1

with [gg) = %Ug ® ), st = 1,2,---,d. Here{Ug} is
the basis of the unitary operators, i.E(,UgUQt,) = d6ss St
andtr(UgUQ) = lq. For instance, we could choosky =
h'g® with d x d matricesh andg such thath|j) = |(j + 1)
modd), glj) = '|}), v = expl-2ix/d}, st = 1,2,---,d,
as the basis of the unitary operators to perform the
teleportation.

Caseii). n = d, mixed states.

After the consideration of the pure states as the ideal chan-

nel, now we will prove which kind of mixed statein C"® CY
can be used for perfect teleportation.

Eerfec% o

xd? xd?

DT el = > HUDiexglu Dt (20)

j=(x-1)d2+1 j=(x-1)d2+1

{|¢Z,—>}}‘gzxfl)d2+l, which are maximally entangled, constitute

the orthogonal basis i ® Hy, where{H,} are orthogonal
to each otheimHy = dforx=1,--- , k. Henceyy) is max-
imally entangled irHy ® CY. From the above analysis, we get
m = kd with k the rank ofp. The probabilities of each mea-
surement result depend on the eigenvalpes = 1,--- ,k.
Therefore a mixed state in C™ ® CY that can be used for
faithful teleportation ofg) in C¢ must be a mixed maximally
entangled state. O

As an example, we consider the perfect teleportation of
|p) = Zidzl aili) by using a mixed maximally entangled state
2a((SL ISyl + (S 1d + L D)(ELy(d +1.1D) in
® CY. By straightforward calculations one has
1
2d

2Nl ® Uglp)BIUL,),

9Xdl@p= oo( > WaXisl® Uslg)lUl,

st,s,v



where [gY) = %Ugop 1L, 0L,0)), W) = %ugaa %(|22>+|33>+|44>). We have

|(Zid:1 li,d + 1)), {Ug} is the basis of unitary operators@s.

T . 16 @ )
Caseiii). m=d, pureor mixed states. Va

1 1
In this case we show which kind of statesGf @ C" are = 7(%000) +11) ® Uslg) + $(|00> - 1D) ® Ual¢)
ideal resources for teleportation. 1 1
+—(01) + |10)) ® U + —(0D) - |10)) @ U
\/i(l ) +110)) ® Uz|¢) \/§(| ) —110)) ® Uslg))

1-a, 1 1
Theorem 5 The state p in C% ® C" could be used for perfect *y T($(|02>+|13))®V1|¢>+$(|02>—|13>) ® Valg)
teleportation of |¢) = Zi":&aﬂi),ifand onlyifitisamaximally 1 1
entangled pure state in C% @ C9. +$(IO3> +]14) ® Vslg) + $(IO3> —[14)) ® Valg)

+%2(|04> +12) ® Vslg) + %2004) - 112)) ® Vel#)).

Proof. Supposg with rankkis able to telepotiip) perfectly,
then its eigenstates are all the ideal resources for telgpmm ~ whereU, = [0)0] = |1)(1] + [2)(2] + [3)(3] + |4){(4], Uz4 =
by corollary 2. If so, the first subsystems @§ eigenstates |1)(0| + [0)(1] + [2){2] + |3)}(3| + |4)(4], V1.2 = |0)(2| + [2){0] +
must be orthogonal to each other by the proof of theorem 41)(3|+[3)(1|+|4)(4], V34 = [0)(3|+|3)(0]£|1){4|+|4)1|+|2){2],
which means the dimension of the first subsysterp isfkd. Vs = |0)(4] + |4)(0] + |1)(2| + |2)(1]| +|3)(3|. It is obvious that
Since we are considering the case with the first subsystem afith respect to the Alice’s measurement results, faithdid-t
p is d dimensional here, hende= 1 andp is maximally en-  portion can be realized by applying the corresponding unita
tangled pure state. ([l transformationd);, i = 1,...,4,Vj, j = 1,...,6, on Bob’s part.
For mixed states i€™ ® C", we considep with all eigen-
states belonging to this class. From the analysis at the be-
Although we have shown necessary conditions for faithfulginning, we know that if such mixed state could be used for
teleportation, there is no general result on which kind atpu perfect teleportation, then any two of its eigenstdtgs=
states inC™ @ C" could fulfill perfect teleportation of an un- Cilé1) + -+ + Cplép) and ) = cilm) + -+ + Cylng) satisfy
known state irC? with m,n > d. i) = Inj), or the first subsystems @) and|n;) are orthogo-
nalfori=1,---,p,j =1,---,q, which means that any super-
positions of such eigenstates still belong to the class.ir~or
stancep = Pylya )Wl + Pal2) (ol With y1) = 3(100)+|11)+
W) = Calgn) + - - + Gilun), 21) (22 +133) +144), ly2) = 3(100) + |11)) + 5(52) +163)),
p1 + p2 = 1, can be used for perfect teleportation of one qubit
state. Hence mixed states satisfying the above conditioluco
where|yp) € Hﬁ ® Hf} is maximally entangled{,Hﬁ are or-  be used for faithful teleportation.

Caseiv). m,n > d, pure or mixed states.

Here we introduce a class of states:

thogonal to each othed,imHQ = dimHE =ny,>dforp-= Remark. For the case of multipartite states used in per-
1,1, lezl np < min{m, n} andZ!:1 lc|? = 1. Without loss ~ fect teleportation proto<_:o|s, su_ch as the faithful telégaon
of generality, we assume Alice’s complete measurements a@f humberd qubit state in [10], if we treat them as teleporta-
1spyFspll,s=1,---,d,t=1---,np, p=1,---,1. Here  tion of pure states it?’, then it is easy to check the shared
forp=1,---,1, {lfsp)¥spl} are projectors ont@® ® Hp.  resources belong to this class of state (21).
Besides{h}st,p)} are maximally entangled states and they con-
stitute orthogonal basis d®Hf}for p=1,---,l. Therefore,
I11. TELEPORTATION AND ENTANGLEMENT
oo d - - We next investigate the relation between the degree of en-
oM = d pz_; ; ; ColY/sp)Ust.pld). (22) tanglement of telegportation channpetnd teleportatio?l. Here

we take the well-known entanglement measure, entanglement
of formation [11].

where the unitary matriis , depends on the shared resource  FOr @ pure bipartite statfif)as, entanglement of forma-
state|y) and measurement operaigt, p) (s pl. The prob-  tion is defined as the partial entropy of either of the two
ability of getting a result in each Alice’s measurement isSUPSYSteMSE(l)as) = —tr(oa®) 100, pa@)), Wherepag) =
|cp|2/d2. trB(A)(llp)AB~<¢|). For mixed state v!|th pure state decomposi-
. . _ tions{pi, I¢i)} such thap = 3;; pilgiX¢il with 3 pi = 1, the

For example, we consider the teleportation of a qubit stat@ntanglement of formation is defined as the average entangle
1#) = 1|0) + a»|1) with nonmaximally entangled stal) =  ment of the pure states in the decomposition, minimized over
Vap) + V1-al¢) with ) = %(IO()) +[11) and|é) =  all pure state decompositions@f E(o) = inf 3 piE(1éi)).



It can be verified that either the maximally entangled purebe illustrated by the staj® as a counterexample.

stately) in C? ® CY, or the mixed maximally entangled state

pin C¥® CY, the entanglement of formation & = logd.
Furthermore, entangled states with entanglement of foomat

E = logd must be pure or mixed maximally entangled states

[9]. Hence we derive that the statesGff ® C¢ (m > d) can
be used for perfect teleportation if and only if their entang
ment of formation are lod. However, states havirtg = logd
but not inC™® CY (m > d) may be not capable of carry-
ing out faithful teleportation of @ dimensional pure state.
As an example we considps = 31 )XWl + 22X (Wal, with
W1) = {1 D+ +d d)), ) = J5(11, d+ 1)+ +(d, 20)).

It can be verified thaE(pg) = log, d and it is a maximally en-
tangled mixed state iG9 ® C?. Nevertheless this state can
not be used to telepojet) faithfully. For teleportation channel
pin C™® C" with m, n > d, the entanglement of formation of
p presented in this paper for perfect teleportation is lattggm

or equal to logl. Therefore the above studies give the impli-

cation that the entanglement of formation for all ideal enta
gled resources are not less thandpgvhich might be another

necessary condition for quantum states to be used in perfetD875081,

IV. CONLUSIONS

In summary, we have investigated which state€'Ths C"
(m.n > d) can be used for faithful teleportation g in C¢
and proved the necessary conditions for such states. Furthe
more, we have shown that far= d, p can be used for faith-
ful teleportation if and only if it is maximally entangled @én
m = kd, with k the rank ofp. Form = d, p can be used
for faithful teleportation of¢) if and only if it is a maximally
entangled pure state. Far,n > d, we get a class of pure
and mixed states that could be used for faithful telepanati
respectively. From the point of view of experimental imple-
mentation of quantum teleportation [12], our results mdp he
to understand the character of faithful teleportation anfhi
cilitate experimental preparation of entangled resources

Acknowledgments This work is supported by the NSFC
NSFC 10871227, KZzZ200810028013 and

teleportation. But the converse is not always true, whiagh ca PHR201007107 and NSF of Beijing 1092008.

[1] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, AsPeanel
W. K. Wootters, Phys. Rev. Leff0, 1895(1993).

[2] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Riy.
60, 1888(1999).

[3] S. Albeverio, S. M. Fei, and W. L. Yang, Phys. Rev. 86,
012301(2002).

[4] A. Karlsson,
4394(1998).

[5] P. Agrawal, and A. Pati, Phys. Rev. Z4, 062320(2006).

[6] S. Muralidharan, and P. K. Panigrahi, Phys. Rev7A,032321
(2008).

[7] G. Rigolin, Phys. Rev. A71, 032303 (2005).

and M. Bourennane, Phys. Rev. A8,

[8] Y. Yeo, and W. K. Chua, Phys. Rev. Le#6, 060502 (2006).
[9] Z. G. Li, M. J. Zhao, S. M. Fei, H. Fan, and W. M. Liu, arxiv:
0906.5445.

[10] C. VY. Cheung, and Z. J. Zhang, Phys. Rev. 89, 022327
(2009).

[11] W. K. Wootters, Phys. Rev. Le80, 2245 (1998).

[12] D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurterdak
Zeilinger, Nature (LondonB90, 575 (1997); D. Boschi, S.
Branca, F. De. Martini, L. Hardy, and S. Popescu, Phys. Rev.
Lett. 80, 1121 (1998).



