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We investigate the nonlocality of Schmidt-correlated (SC) states, and present analytical expres-
sions of the maximum violation value of Bell inequalities. It is shown that the violation of Clauser-
Horne-Shimony-Holt (CHSH) inequality is necessary and sufficient for the nonlocality of two-qubit
SC states, whereas the violation of the Svetlichny inequality is only a sufficient condition for the gen-
uine nonlocality of three-qubit SC states. Furthermore, the relations among the maximum violation
values, concurrence and relative entropy entanglement are discussed.

I. INTRODUCTION

Einstein, Podolsky, and Rosen (EPR) [1] believed that
the results of measurements on a local subsystem of a
composite physical system which can be predicted with
certainty would be determined by the local variables of
the subsystems. However, the violation of Bell inequal-
ity [2] rules out all putative local hidden-variable (LHV)
theories, and indicates that quantum nonlocality of en-
tangled states is one of the most profound characters in-
herent in quantum mechanics. Moreover, Clauser, Horne,
Shimony and Holt derived the well-known CHSH inequal-
ity, which provides a way of experimental testing of the
LHV model [3].

Actually the nonlocality is intimately related to quan-
tum entanglement. It is shown that the CHSH inequal-
ity is satisfied for every separable pure two-qubit state,
but violated for all entangled pure two-qubit states, with
the amount of violation increasing with the entanglement
[4, 5]. Nevertheless, this conclusion is not true for mixed
entangled states, as Werner presented a mixed entangled
state satisfying the CHSH inequality [6]. Hence CHSH
inequality is just a necessary, but not sufficient condition
for separability of two-qubit states. Starting with the
Bell and CHSH inequalities, many Bell type inequalities
are also proposed with respect to different quantum sys-
tems [7]. For three-qubit system, Svetlichny introduced
an inequality whose violation is a sufficient condition for
genuine tripartite nonlocality [8]. Ghose et al. further de-
rived the analytical expressions of violation of Svetlichny
inequality for states in Greenberger, Horne and Zeilinger
(GHZ) class [9]. However it is still intractable to deter-
mine whether a given state, especially mixed state, vio-
lates a certain Bell inequality or not, as one has to find
the mean value of the related Bell operators for suitable
observables [10].

As an important class of mixed states from a quan-
tum dynamical perspective, Schmidt-correlated (SC)
states have been paid much attention to [11–14]. Just
as Khasin et al. [15] proposed, the bipartite SC
states naturally appear in a system dynamics with ad-
ditive integrals of motion. In fact, SC states ρ =
∑N−1

m,n=0 amn|m · · ·m〉〈n · · ·n|, ∑N−1
m=0 amm = 1, are de-

fined as the mixtures of pure states, sharing the same

Schmidt basis [11, 14]. The SC states exhibit some el-
egant properties. For example, for any local quantum
measurement on SC states, the result does not depend
on which party the measurement is performed. Moreover,
their separability is determined by the positivity of par-
tial transposition [14]. In this paper we investigate the vi-
olation of the CHSH inequality and Svetlichny inequality
for SC states. By presenting an analytical expression of
the maximum expectation value Fmax of CHSH inequal-
ity for two-qubit systems, we show that whether an SC
state violates CHSH inequality is equivalent to whether it
is entangled. For three-qubit systems, we give an analyt-
ical expression of the maximum expectation value Smax
of the Svetlichny inequality, and prove that there exist
genuine entangled SC states which obey Svetlichny in-
equality. Furthermore, the relations between Fmax and
concurrence [16], Smax and relative entropy entanglement
[17] for SC states are derived. At last we illustrate Fmax
and Smax are not monotonic under local operations and
classical communications (LOCC) by explicit examples.

This paper is organized as follows: in section II, we
introduce the CHSH inequality and investigate the max-
imum expectation value Fmax for two-qubit SC states.
Then the relation between Fmax and concurrence is pro-
vided. In Sec. III, the maximum expectation value Smax
of the Svetlichny inequality and its relation to the rel-
ative entropy entanglement are studied for three-qubit
SC states. Finally, we conclude with a summary of our
results in Sec. IV.

II. TWO-QUBIT SC STATES

The well-known CHSH inequality is shown to be both
necessary and sufficient for the separability of a two-
qubit pure state. The corresponding Bell operator for
the CHSH inequality is given by

F = AB +AB′ +A′B −A′B′, (1)

where the observables A = ~a · ~σ and A′ = ~a′ · ~σ are
associated with the first qubit, B = ~b · ~σ and B′ = ~b′ · ~σ
are associated with the second qubit, while ~a, ~a′, ~b and
~b′ are unit vectors, ~σ = (σx, σy, σz) with σx, σy, σz the
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Pauli matrices. |〈ψ|F |ψ〉| ≤ 2 holds if and only if the
pure state |ψ〉 is separable.

For any mixed two-qubit state ρ, the expectation value
F (ρ) = Tr(ρF ) satisfies

|F (ρ)| ≤ 2 (2)

if ρ admits local hidden variable model. Violation of the
inequality (2) implies that the state ρ is entangled. Let
Fmax(ρ) = maxA,A′,B,B′ F (ρ) be the maximal value of
F (ρ) under all possible observables A, A′, B and B′.
One can then decide whether a state ρ is entangled in
terms of the maximum expectation value.

To find the maximum expectation value
Fmax for a given state ρ, we define ~a =
(sin θa cosφa, sin θa sinφa, cos θa), and similarly for

the unit vectors ~a′, ~b and ~b′. In addition, we define

unit vectors ~d, ~d′ such that ~b + ~b′ = 2~d cosφ and
~b−~b′ = 2~d′ sinφ. Thus

~d · ~d′=cos θd cos θd′ +sin θd sin θd′ cos(φd − φd′) = 0. (3)

Set D = ~d ·~σ and D′ = ~d′ ·~σ, the expectation value F (ρ)
can be written as

F (ρ) = 〈AB〉 + 〈AB′〉 + 〈A′B〉 − 〈A′B′〉 (4)

= 〈A(B +B′)〉 + 〈A′(B −B′)〉
= 2(〈AD〉 cosφ+ 〈A′D′〉 sinφ)

≤ 2(〈AD〉2 + 〈A′D′〉2)1/2,

where we have used the fact that

x cos θ + y sin θ ≤ (x2 + y2)1/2, (5)

with the equality holding when tan θ = y/x.
For a two-qubit SC state ρ1:

ρ1 = a1|00〉〈00|+a2|00〉〈11|+a∗2|11〉〈00|+ a4|11〉〈11|,

with a1, a4 ≥ 0, a1 + a4 = 1 and a1a4 ≥ |a2|2. The first
term in Eq. (4) with respect to this mixed state ρ1 turns
out to be

〈AD〉 = cos θa cos θd + 2(Re(a2) cos(φa + φd)

−Im(a2) sin(φa + φd)) sin θa sin θd

≤ {cos2 θd + 4[Re(a2) cos(φa + φd)

−Im(a2) sin(φa + φd)]
2 sin2 θd}1/2

≤
[

cos2 θd + 4|a2|2 sin2 θd
]1/2

=
[

(1 − 4|a2|2) cos2 θd + 4|a2|2
]1/2

, (6)

where the inequality (5) has been taken into account.
From Eq. (4) and Eq. (6) we have

F (ρ1) ≤ 2[(1 − 4|a2|2)(cos2 θd+cos2 θd′)+8|a2|2]1/2

≤ 2[1 + 4|a2|2]1/2. (7)

Here we have employed the fact that the maximum
of cos2 θd + cos2 θd′ is 1 according to Eq. (3). The

equality in Eq. (7) holds when ~a = ~z, ~a′ = ~x,
~b = sinφ cosφd ~x + sinφ sinφd ~y + cosφ~z and ~b′ =
− sinφ cosφd ~x− sinφ sinφd ~y+cosφ~z with tanφ = 2|a2|
and tanφd = −Re(a2)

Im(a2)
. Therefore, we obtain

Fmax(ρ1) = 2{1 + 4|a2|2}1/2. (8)

Furthermore, the maximum expectation value
Fmax(ρ1) has a direct relation with its concurrence
[16], which is an entanglement measure. The con-
currence for a bipartite pure state |ψ〉 is defined by

C(|ψ〉) =
√

2(1 − Trρ2
A), where the reduced density

matrix ρA is given by ρA = TrB(|ψ〉〈ψ|). The concur-
rence is then extended to mixed states ρ by the convex
roof, C(ρ) ≡ min{pi,|ψi〉}

∑

i piC(|ψi〉), for all possible
ensemble realizations ρ =

∑

i pi|ψi〉〈ψi|, where pi ≥ 0
and

∑

i pi = 1. For the state ρ1 one has C(ρ1) = 2|a2|.
Hence we get

Fmax(ρ1) = 2[1 + C2(ρ1)]
1/2, (9)

which shows that Fmax(ρ1) increases monotonically with
C(ρ1).

The violation of the CHSH inequality has also rela-
tions to the dense coding, which uses previously shared
entangled states to send possibly more information than
classical information encoding. The capacity of dense
coding for a given shared bipartite state ρAB is given by
χ = log2 dA + S(ρA) − S(ρ), with S(ρ) = −tr(ρ log2 ρ)
[18]. ρ is useful for dense coding if its capacity is larger
than log2 dA. It is straightforwardly verified that for two-
qubit SC state ρ1,

χ = 1 − a1 log1 a1 − a4 log1 a4

+(
1+

√

1−4a1a4+4|a2|2
2

log2

1+
√

1−4a1a4+4|a2|2
2

+
1−

√

1−4a1a4+4|a2|2
2

log2

1−
√

1−4a1a4+4|a2|2
2

),

which also increases monotonically with the maximum
expectation value Fmax(ρ1) for given a1 and a4. Hence
one has the following equivalent statements for the SC
state ρ1: (i) it is entangled, (ii) it’s concurrence is greater
than zero; (iii) it violates CHSH inequality; (iv) it is
useful for dense coding.

Now we generalize two-qubit SC state ρ1 to mixed state
ρ2

ρ2 =b1|00〉〈00|+ b2|01〉〈01|+ b3|10〉〈10|
+b4|11〉〈11| + c1|00〉〈11|+ c∗1|11〉〈00| (10)

with bi ≥ 0, i = 1, 2, 3, 4,
∑4

i=1 bi = 1, b1b4 ≥ |c1|2. Nev-
ertheless by similar calculation we can get its maximum
expectation value

Fmax(ρ2)=2{(b1 + b4 − b2 − b3)
2 + 4|c1|2}1/2, (11)

which can be obtained by ~a = ~z, ~a′ = ~x,
~b = sinφ cosφd~x + sinφ sin φd~y + cosφ~z and ~b′ =
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− sinφ cosφd~x − sinφ sinφd~y + cosφ~z with tanφ =
2|c1|

b1+b4−b2−b3 and tanφd = −Re(c1)
Im(c1)

.

Although the amount of maximum violation of CHSH
inequalities increases with the entanglement for the SC
states, the maximum expectation value Fmax is not a le-
gitimate entanglement measure for two-qubit states, be-
cause it does not decrease monotonically under LOCC.
For example, considering a transverse noise channel [19]
operating on Bell state |ψ〉 = 1√

2
(|00〉 + |11〉), the out-

put state takes the following form, ρ3 =
∑

i,j=1,2Ki ⊗
Kj|ψ〉〈ψ|K†

i ⊗ K†
j , where the Kraus operators K1 and

K2 denote the transverse noise channel,

K1 =

(

γ 0
0 1

)

, K2 =

(

0 0
ω 0

)

, (12)

with time-dependent parameters γ = exp(−Γt/2), ω =
√

1 − γ2. By a simplification, the final state, ρ3 =
1
2 [γ4|00〉〈00|+γ2(|00〉〈11|+ |11〉〈00|)+ (1+ω4)|11〉〈11|+
γ2ω2(|01〉〈01|+ |10〉〈10|)], is just of the form in Eq. (10).
Therefore the maximum expectation value of ρ3 is given
by

Fmax(ρ3) = 2{(2γ4 − 2γ2 + 1)2 + γ4}1/2. (13)

It is obvious that the maximum expectation value Fmax
is not a monotonic function of γ from Eq. (13). Hence
it is not monotonic with time under LOCC, i.e., Fmax
is not a legitimate entanglement measure. On the other
hand, we can obtain the concurrence of ρ3, C(ρ3) = γ4,
is monotonic with γ. For t > 0.265805/Γ, ρ3 does not
violate the CHSH inequality (see FIG. 1). Thus, CHSH
inequality can not detect entanglement of such states,
though in fact some of these states are distillable [22], as
shown in the experimental demonstration of the ”hidden
nonlocality” in [23].
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FIG. 1: Dashed line: Fmax(ρ3) versus Γt. Solid line: concur-
rence C(ρ3) versus Γt.

III. THREE-QUBIT SC STATES

For three-qubit SC states, we take into account the
Svetlichny inequality. The Svetlichny operator is defined
by

S = ABC +ABC′ +AB′C −AB′C′

+A′BC −A′BC′ −A′B′C −A′B′C′,

where observables A = ~a ·~σ and A′ = ~a′ ·~σ are associated
with the qubit 1, B = ~b · ~σ and B′ = ~b′ · ~σ with qubit
2, and C = ~c · ~σ and C′ = ~c′ · ~σ with qubit 3. If a the-
ory is consistent with a hybrid model of nonlocal-local
realism, then the expectation value for any three-qubit
state is bounded by Svetlichny inequality: |S(ρ)| ≤ 4,
where S(ρ) = Tr(Sρ) is the expectation value of S with
respect to state ρ. In this section we are going to de-
rive the analytical expression of maximum expectation
value Smax(ρ) = maxA,A′,B,B′,C,C′ S(ρ) for three-qubit
SC states.

In order to find the maximum expectation value Smax,

we implement the same transformation for ~b and ~b′ as in
the two-qubit case. The expectation value S(ρ) can be
written as:

S(ρ) = 〈ABC〉 + 〈ABC′〉 + 〈AB′C〉 − 〈AB′C′〉
+〈A′BC〉 − 〈A′BC′〉 − 〈A′B′C〉 − 〈A′B′C′〉

= 〈A(B +B′)C〉 + 〈A(B −B′)C′〉
+〈A′(B −B′)C〉 − 〈A′(B +B′)C′〉

= 2(cosφ〈ADC〉 + sinφ〈AD′C′〉
+ sinφ〈A′D′C〉 − cosφ〈A′DC′〉)

≤ 2[(〈ADC〉2 + 〈AD′C′〉2)1/2

+(〈A′D′C〉2 + 〈A′DC′〉2)1/2], (14)

where we have made use of Eq. (5) again.
For the three-qubit SC state:

ρ4 = a1|000〉〈000|+a2|000〉〈111|
+a∗2|111〉〈000|+a4|111〉〈111|

with a1, a4 ≥ 0, a1 + a4 = 1 and a1a4 ≥ |a2|2. The first
term in Eq. (14) with respect to ρ4 is given by

〈ADC〉
= (a1 − a4) cos θa cos θd cos θc

+2[Re(a2) cos(φa + φd + φc)

−Im(a2) sin(φa + φd + φc)] sinθa sin θd sin θc

≤ [(a1−a4)
2cos2θa cos2θd+4|a2|2 sin2θa sin2θd]

1

2 .

(15)

From Eq. (14) and Eq. (15) we get

S(ρ4) ≤ 2{[(a1 − a4)
2 cos2 θa(cos2 θd + cos2 θd′)

+4|a2|2 sin2 θa(sin
2 θd + sin2 θd′)]

1/2

+[(a1 − a4)
2 cos2 θa′(cos2 θd + cos2 θd′)

+4|a2|2 sin2 θa′(sin
2 θd + sin2 θd′)]

1/2}. (16)

Due to the constraint condition Eq. (3), one has cos2 θd+
cos2 θd′ ≤ 1 and sin2 θd+sin2 θd′ ≤ 2. Therefore we arrive
at

Smax(ρ4) = max{4|1 − 2a1|, 8
√

2|a2|} (17)

from the fact that

x cos2 θ + y sin2 θ ≤
{

x, x ≥ y;
y, x ≤ y,

(18)
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where the equality holds when θ = 0 for the first case,
and when θ = π/2 for the second case. Accordingly,

Smax(ρ4) = 4|1 − 2a1| holds when ~a, ~a′, ~b, ~b′ are all
aligned along ~z, ~c = sign(1−2a1)~z and ~c′ = −~c, whereas

Smax(ρ4) = 8
√

2|a2| holds when all the measurement vec-
tors lie in the x − y plane with tan(φa + φd + φc) =

tan(φa + φd′ + φc′) = tan(φa′ + φd′ + φc) = − Im(a2)
Re(a2)

,

tan(φa′ + φd + φc′) = π, φd − φd′ = π
2 and φ = π

4 . Eq.
(17) implies that ρ4 violates the Svetlichny inequality if
and only if |a2| > 1

2
√

2
. However ρ4 is always genuine

tripartite entangled for nonzero a2. Hence the violation
of the Svetlichny inequality is only a sufficient condition
for the genuine nonlocality of three-qubit SC states.

Now we contrast the violation of Svetlichny inequality
with entanglement. In terms of the reference [20], the
generalized concurrence [21] of three-qubit SC state ρ4

can be obtained, C(ρ4) =
√

6|a2|. Then, the Svetlichny

inequality does not hold when C(ρ4) ≥
√

3
2 , and its vio-

lation satisfies the following equation

Smax(ρ4) =
8C(ρ4)√

3
. (19)

Moreover, Smax(ρ4) has also direct relations to the
relative entropy entanglement, E(ρ) = minσ∈D S(ρ ‖
σ) = minσ∈D Tr[ρ log ρ − ρ log σ], where D is the set of
all fully separable states. It has been proven that ̺ =
a1|000〉〈000|+a4|111〉〈111| is the optimal separable state
for ρ4 such that E(ρ4) = minσ∈D S(ρ4 ‖ σ) = S(ρ4 ‖ ̺)
[14]. Hence, when ρ4 violates Svetlichny inequality, we
have

E(ρ4) = f(a1, a4, a2, a
∗
2)

−f(a1 log2 a1, a4 log2 a4, a2 log2 a4, a
∗
2 log2 a1)

= g(a1, a4, S
2
max)

−g(a1 log2 a1, a4 log2 a4, S
2
max log2 a1 log2 a4),

where f(x1, x2, x3, x4) = f+ log2 f+ + f− log2 f−,

f± = [(x1 + x2) ±
√

(x1 − x2)2 + 4x3x4]/2 and
g(x1, x2, x3) = g+ log2 g+ + g− log2 g−, g± = [(x1 +x2)±
√

(x1 − x2)2 + x3

32 ]/2.
Now we consider the generalization of the three-qubit

SC state ρ4 to mixed state ρ5:

ρ5 = b1|000〉〈000|+ b2|001〉〈001|+ b3|010〉〈010|
+b4|100〉〈100|+ b5|011〉〈011|+ b6|101〉〈101|
+b7|110〉〈110|+ b8|111〉〈111|+ c1|000〉〈111|
+c∗1|111〉〈000|. (20)

For such state, the Smax becomes

Smax(ρ5)

= max{4|b1 − b2 − b3 − b4 + b5 + b6 + b7 − b8|, 8
√

2|c1|}.

Thus ρ5 violates the Svetlichny inequality when |c1| >
1

2
√

2
. Here Smax(ρ5) = 4|b1 − b2 − b3 − b4 + b5 + b6 +

b7 − b8| holds when ~a, ~a′, ~b, ~b′ are all aligned along ~z,
~c = sign(b1 − b2 − b3 − b4 + b5 + b6 + b7 − b8)~z and ~c′ =

−~c. Smax(ρ5) = 8
√

2|c1| holds when all the measurement
directions lie in the x− y plane with tan(φa+φd+φc) =

tan(φa + φd′ + φc′) = tan(φa′ + φd′ + φc) = − Im(c1)
Re(c1)

,

tan(φa′ + φd + φc′) = π, φd − φd′ = π
2 and φ = π

4 .
In particular, let’s consider a transverse

noise channel operating on the GHZ state
|φ〉 = 1√

2
(|000〉 + |111〉). Then the final state

ρ6 =
∑

i,j,l=1,2Ki ⊗ Kj ⊗ Kl|φ〉〈φ|K†
i ⊗ K†

j ⊗ K†
l =

1
2 [γ6|000〉〈000| + γ4ω2(|001〉〈001| + |010〉〈010| +

|100〉〈100|)+γ2ω4(|011〉〈011|+ |101〉〈101|+ |110〉〈110|)+
(1 + ω6)|111〉〈111| + γ3(|000〉〈111| + |111〉〈000|)], which
is just of the form in Eq. (20). Therefore we have

Smax(ρ6)

= max{2|γ6 + 3γ2ω4 − 3γ4ω2 − 1 − ω6|, 4
√

2γ3}

=

{

2(1−γ6−3γ2ω4+3γ4ω2+ω6), 0≤γ≤ 1√
2
;

4
√

2γ3, 1√
2
≤γ≤1,

(21)

which shows that ρ6 violates the Svetlichny inequality
when t < 0.693147/Γ. Namely the Svetlichny inequality
can not detect the hidden nonlocality any more for t >
0.693147/Γ. From Eq. (21) and FIG. 2, we can see that
Smax(ρ6) is not a monotonic function of time; accordingly
we assert that Smax is also not a suitable entanglement
measure.
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FIG. 2: Smax(ρ6) versus Γ t

IV. CONCLUSIONS

In summary, we have obtained an analytical formula
of maximum expectation value Fmax of CHSH inequal-
ity for two-qubit SC states, from which we have shown
that this inequality is both necessary and sufficient for
the nonlocality of two-qubit SC states, though this is
not true for general two-qubit mixed states. In addition,
the relations between Fmax, entanglement and capacity
of dense coding for SC states have been also derived.
Moreover, unlike the entanglement measure, Fmax is not
monotonic with time under LOCC. For three-qubit sys-
tems, we have demonstrated that the violation of the
Svetlichny inequality is only a sufficient condition for the
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genuine nonlocality of three-qubit SC states. Further-
more we have presented a relation between Smax and
relative entropy entanglement, which gives a way to de-

termine the relative entropy entanglement of SC states
experimentally.
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