
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

Tensorisation of Vectors and their Efficient

Convolution

by

Wolfgang Hackbusch

Preprint no.: 48 2010

Tensorisation of Vectors and their Efficient Convolution

Wolfgang Hackbusch

Max-Planck-Institut Mathematik in den Naturwissenschaften

Inselstr. 22, D-04103 Leipzig

Abstract

In recent papers the tensorisation of vectors has been discussed. In principle, this is the isomorphic
representation of an R

n vector as a tensor. Black-box tensor approximation methods can be used to
reduce the data size of the tensor representation. In particular, if the vector corresponds to a grid
function, the resulting data size can become much smaller than n, e.g., O(log n) ≪ n. In this article
we discuss vector operations, in particular, the convolution of two vectors which are given via a sparse
tensor representation. We want to obtain the result again in the tensor representation. Furthermore, the
cost of the convolution algorithm should be related to the operands’ data sizes.

While R
n vectors can be considered as grid values of function, we also apply the same procedure to

univariate functions.

AMS Subject Classifications: 15A69, 15A99, 44A35, 65F99, 65T99
Key words: tensorisation, tensor representation, hierarchical tensor representation, convolution, matrix-
vector multiplication

1 Introduction

Tensorisation is an interpretation of an usual Rn vector as a tensor. For this purpose, we shall introduce a
tensor space V and an isomorphism

Φ = Φn : V → R
n

in §2. Because of the isomorphic structure, we have dim(V) = n. On the side of tensors we shall introduce
certain tensor representations (tensor formats, see §3). They allow a simple truncation procedure, i.e., a
tensor v can be replaced by ṽε with a guaranteed error bound ‖v − ṽε‖ ≤ ε. Often, the data size N(ṽε)
of ṽε is much smaller than n (see Example 3.1 and the analysis by Grasedyck [3]). As a consequence, the
tensorisation together with the truncation yields a black-box compression method for vectors in Rn. However,
the truncation and its analysis is not the subject of this article.

Here, we consider operations between vectors. The crucial point is that the computational work of the
operations should be related to the data size of the operands. Assuming a data size ≪ n, the cost should
also be much smaller than the operation in the standard Rn vector format.

The first example of an operation is the scalar product 〈v, w〉 and is thought as an exercise introducing
the recursive concept of the hierarchical format. Having ε-approximations ṽε and w̃ε in the tensor format
with data size N(ṽε), N(w̃ε) ≪ n, we are interested in the computation of 〈Φ(ṽε),Φ(w̃ε)〉 ≈ 〈v, w〉 with a
computational effort related to N(ṽε), N(w̃ε) rather than n. Details will be given in §4.

However, the main interest of this article concerns the convolution operation u := v ⋆ w with ui =
∑

k vkwi−k. We shall show that the convolution procedure can be applied directly to the tensor approx-
imations ṽε and w̃ε. The algorithm is developed in §5 and its cost is related to the data sizes N(ṽε),
N(w̃ε).

In §6 we mention that instead of Rn we can also treat (finite dimensional subspaces of) function spaces.
Again, operations like the scalar product or convolution of functions can be performed directly in the tensor
format (see §6).

In the end we mention some generalisations. In particular, vectors can be replaced by matrices. Here,
we remark how the matrix-vector multiplication can be performed using the tensor format for both matrices
and vectors.

1

2 Tensorisation

2.1 Isomorphism Φn between
⊗d

j=1 K
2 and K

n

In the following, K ∈ {R,C} is the underlying field. We number the entries of vectors from Kn by

0 ≤ i ≤ n− 1 , i.e., v = (vi)
n−1
i=0 ∈ Kn.

Assume that n is even. Then the tensor space K
n/2 ⊗ K

2 can be defined. Tensors v ∈ K
n/2 ⊗ K

2 have
entries vi1i2 ∈ K for 0 ≤ i1 ≤ n/2 − 1, 0 ≤ i2 ≤ 1. Since Kn and Kn/2 ⊗ K2 have identical dimension, they
are isomorphic. A special isomorphism is given by

vi1i2 = vi1+i2∗n/2 for 0 ≤ i1 ≤
n

2
− 1, 0 ≤ i2 ≤ 1.

For even n/2, we can replace Kn/2 by the isomorphic space Kn/4 ⊗ K2 and obtain Kn ∼= Kn/4 ⊗ K2 ⊗ K2.
Iterating this process, we obtain the isomorphism

Φn : V :=

d⊗

j=1

K
2 → K

n for n = 2d, (2.1)

v ∈ V 7→ v = (vk)
n−1
k=0 ∈ K

n with vk = vi1i2...id
, where k =

d∑

j=1

ij2
j−1, ij ∈ {0, 1}.

The tensor v ∈ V has entries with d indices ij ∈ {0, 1}, which correspond to the dual representation of the
integer k ∈ {0, . . . , n− 1}. Particular tensors are the elementary tensors

v =
d⊗

j=1

v(j) with v(j) ∈ K
2, (2.2a)

whose entries are

vi1i2...id
=

d∏

j=1

v
(j)
ij

for ij ∈ {0, 1}. (2.2b)

The restriction of the exponential function exp(ωx) (ω ∈ K) to the grid
{

k
n : 0 ≤ k ≤ n− 1

}
yields the

vector v ∈ Kn with vk = exp
(
ω k

n

)
, which is subject of the next remark.

Remark 2.1 Assume n = 2d. The isomorphism Φn maps v =
(
exp

(
ω k

n

))n−1

k=0
∈ Kn into an elementary

tensor (2.2a) with v(j) =
(

1
exp(2j−1ω/n)

)
∈ K2.

The remarkable fact is that the elementary tensor (2.2a) is described by d K2-vectors, hence by 2d
numbers. Note that d = log2(n) ≪ n.

2.2 Kn and ℓ0

In the following, it is helpful to introduce the set

ℓ0 := {(ai)i∈N0 : ai = 0 for almost all i ∈ N0}

of infinite sequences with only finitely many nonzero entries. The embedding of Kn into ℓ0 is defined by

λn : K
n → ℓ0, v ∈ K

n 7→ a = (ai)i∈N0
∈ ℓ0 with ai :=

{
vi for 0 ≤ i ≤ n− 1,
0 for i ≥ n.

We define the degree of a ∈ ℓ0 by deg(a) := max{i ∈ N0 : ai 6= 0}. Obviously, λn maps Kn into sequences
a ∈ ℓ0 with deg(a) ≤ n− 1.

For convenience we suppress the notation λn and identify Kn with the subset of sequences of degree
≤ n− 1.

The shift operator Sm (m ∈ Z) is defined in ℓ0 via

b = Sm(a) has entries bi =

{
ai−m if m ≤ i,
0 otherwise.

2

2.3 Tensor space
⊗d

j=1 ℓ0

The embedding of Kn into ℓ0 (and, particularly, of K2 into ℓ0) allows to embed
⊗d

j=1 K2 into
⊗d

j=1 ℓ0. The

mapping Φn :
⊗d

j=1 K2 → ℓ0 can be extended to1

Φn :

d⊗

j=1

ℓ0 → ℓ0 ,

d⊗

j=1

v(j) 7→ a = (ai)i∈N0 with ak =
∑

i1,...,id∈N0

k=
d

P

j=1

ij2
j−1

d∏

j=1

v
(j)
ij
.

Note that Φn :
⊗d

j=1 ℓ0 → ℓ0 is not injective. Only in the case of v(j) ∈ K2, the indices ij are restricted

to {0, 1} and each integer k has exactly one representation k =
∑d

j=1 ij2
j−1. Then the definition coincides

with (2.1). By means of Φn we define an equivalence relation in
⊗d

j=1 ℓ0 via

v ∼ w if and only if Φn(v) = Φn(w) (v,w ∈

d⊗

j=1

ℓ0).

If deg(v) := deg(Φn(v)) ≤ n− 1, there is a unique v̂ ∈
⊗d

j=1 K2 ⊂
⊗d

j=1 ℓ0 with v ∼ v̂.
The shift operator can be used together with the tensor product.

Lemma 2.2 Φn

(
d⊗

j=1

Smjv(j)

)

= SmΦn

(
d⊗

j=1

v(j)

)

holds for m =
d∑

j=1

mj2
j−1.

So far, the action of S is defined for vectors of ℓ0 only. For tensors, we set

Sm
d⊗

j=1

v(j) :=
(

Smv(1)
)

⊗

d⊗

j=2

v(j), (2.3)

i.e., the shift applies to the first direction. Then the statement of Lemma 2.2 can be written as

d⊗

j=1

Smjv(j) ∼ Sm
d⊗

j=1

v(j) with m =

d∑

j=1

mj2
j−1.

Since Φn

(
v ⊗

(
1
0

))
= Φn (v) for any tensor v ∈

⊗d
j=1 ℓ0, one obtains the following results:

v ⊗
(
1
0

)
∼ v

v ⊗
(
0
1

)
∼ S2d

v

}

for all v ∈

d⊗

j=1

ℓ0. (2.4)

3 Tensor representation

The full representation of v ∈ V stores all entries vi1i2...id
. This requires2 n = 2d data and is equivalent to

the full representation of the original vector v ∈ Kn. On the other hand, we have already mentioned that an
elementary tensor (2.2a) has a rather low storage size (only logarithmic in n). This fact is exploited by the
next representation.

1In order to define a (multi-)linear mapping on a tensor space, it is sufficient to define the action on elementary tensors.
2In general applications, the size is not 2d but md with m ≫ 2. Then, n = md can easily exceed the available storage, i.e.,

the full representation is not realisable.

3

3.1 r-term representation

Any tensor is by definition a linear combination of elementary tensors. When we bound the number of terms
by r ∈ N0, we obtain the r-term representation. Here, v ∈ V is said to possess an r-term representation, if
there are vectors v(j,ν) ∈ K2 (1 ≤ j ≤ d, 1 ≤ ν ≤ r) with3

v =
r∑

ν=1

d⊗

j=1

v(j,ν). (3.1)

The number r in (3.1) is called the representation rank of v, while rank(v) is the smallest possible r in (3.1).
The set of all tensors satisfying (3.1) is denoted by Rr. The storage size of v ∈ Rr is 2rd. As long as r is of
moderate size, 2rd may be much smaller than n.

The next example shows the role of an approximation.

Example 3.1 For n = 2d set v =
(
f(k+1

n)
)n−1

k=0
∈ Kn for the function f(x) = 1/x in (0, 1] . For any r ∈ N,

there is an approximation v(r) ∈ Kn such that v(r) := Φn(v(r)) belongs to Rr and satisfies the component-wise
error estimate

∣
∣vk − v(r),k

∣
∣ ≤ C1n exp(−C2r) with C1, C2 > 0.

Hence, for a given error bound ε > 0, the choice r = O(log(n) + log(1/ε)) is sufficient. The storage size of
the tensor v(r) is O(log2(n) + log(n) log(1/ε)).

For a proof one uses the exponential sum approximation
∑r

ν=1 ων exp(−ανx) of 1/x in [1/n, 1] with the
corresponding error bound (cf. Braess-Hackbusch [1]). Inserting the grid values x = (k + 1) /n, Remark 2.1
can be applied to each term. Hence, the storage is 2rd. Choosing r = O(log(n)+ log(1/ε)), we get the result
from above.

If an r-term representation with moderate r is possible, like in Example 3.1, its use can be recommended,
since operations with elementary tensor are particularly simple. However, the r-term representation becomes
costly, if r is too large. Furthermore, the truncation of v ∈ Rr to some ṽ ∈ Rs with s < r is possible, but
not quite easy (cf. Espig [2]).

3.2 Hierarchical representation

3.2.1 General case

Let v ∈ V =
⊗d

δ=1 Vδ. The hierarchical structure is described by the so-called dimension partition tree T.
This is a binary tree with the following properties:

(i) the root is the set {1, . . . , d}, while all vertices are certain subsets of {1, . . . , d},
(ii) a vertex α ∈ T is a leaf if and only if #α = 1, i.e., if α is a singleton {δ} for some δ ∈ {1, . . . , d},
(iii) any non-leaf vertex α ∈ T has two sons α′, α′′ ∈ T with the disjoint union α = α′ ∪ α′′.

Each vertex α ∈ T is associated to vector spaces Uα ⊂Wα, which satisfy:

(i) for α = {δ} (i.e., α is a leaf), U{δ} ⊂W{δ} := Vδ,
(ii) for a non-leaf vertex α ∈ T with sons α′, α′′ ∈ T there holds

Uα ⊂Wα := Uα′ ⊗ Uα′′ , (3.2)

(iii) v ∈ U{1,...,d}.

The dimension of the subspaces Uα is denoted by

rα = dim(Uα).

Remark 3.2 The standard value of r{1,...,d} is 1 because U{1,...,d} = span{v} is sufficient. Only, if we want
to represent several tensors by the same hierarchical representation, rd > 1 makes sense.

3Since v(j,ν) = 0 is not excluded, this definition allows also sums of less than r terms.

4

For the numerical realisation we use orthonormal bases of Uα. Here, we have to distinguish the case of

leaves and non-leaves. For leaves α = {δ} ∈ T , a basis
{

b
(α)
1 , . . . , b

(α)
rα

}

of Uα is stored. For the standard

case Vδ = K
nδ , a storage of size nδr{δ} is needed.

For non-leaves α ∈ T , the basis
{

b
(α)
1 , . . . , b

(α)
rα

}

of Uα is characterised indirectly. Wα := Uα′ ⊗ Uα′′ has

the induced basis
{

b
(α′)
i ⊗ b

(α′′)
j : 1 ≤ i ≤ rα′ , 1 ≤ j ≤ rα′′

}

. Hence, b
(α)
k ∈ Uα ⊂Wα has a representation

b
(α)
k =

rα′

∑

i=1

rα′′

∑

j=1

C
(α,k)
ij b

(α′)
i ⊗ b

(α′′)
j . (3.3)

Only the small-size matrix C(α,k) =
(

C
(α,k)
ij

)

1≤i≤rα′ ,1≤i≤rα′′

is to be stored.

Finally, the tensor v ∈ U{1,...,d} is given by v =
∑rα

k=1 c
(α)
k b

(α)
k for α = {1, . . . , d}, requiring the storage

of c(α) =
(

c
(α)
k

)rα

k=1
∈ Krα (concerning rα = 1 see Remark 3.2).

3.2.2 Particular case for the present application

For the purpose of tensorisation it makes sense to consider the tensor product in the sequence
(
. . .
((

K2 ⊗ K2
)
⊗ K2

)
⊗ . . .

)
⊗ K2. The corresponding tree T becomes a linear tree.4 Its vertices are

{1, . . . , δ} (2 ≤ δ ≤ d) and the singletons {δ}. In particular, each vertex α = {1, . . . , δ} has the sons
α′ = {1, . . . , δ − 1} and α′′ = {δ}.

The dimension of Vδ = K2 is already so small that we do not try to find smaller subspaces U{δ} ⊂ Vδ,
i.e., we set U{δ} := Vδ = K

2.
Because of the special situation, we write

(i) Uδ instead of Uα for vertices α = {1, . . . , δ} ∈ T. Here, we note that (3.2) becomes

Uδ ⊂ Uδ−1 ⊗ K
2 (2 ≤ δ ≤ d). (3.4)

(ii) rδ instead of rα (α = {1, . . . , δ}) for the dimension of Uδ,

(iii) b
(δ)
i instead of b

(α)
i (α = {1, . . . , δ}) for the basis vectors of Uδ,

(iv) C(δ,k) instead of C(α,k) (α = {1, . . . , δ}) for the coefficient matrix from (3.3).

Because of U{δ} = K2, we can avoid the use of the symbol U{δ}. The basis {b
({δ})
1 , b

({δ})
2 } of U{δ} = K2

is fixed independently of δ by
b1 :=

(
1
0

)
, b2 :=

(
0
1

)
. (3.5)

Hence, formula (3.3) becomes

b
(δ)
k =

rδ−1∑

i=1

2∑

j=1

C
(δ,k)
ij b

(δ−1)
i ⊗ bj for δ = 2, . . . , d, (3.6)

where the starting values are b
(1)
i = bi (i = 1, 2; cf. (3.5)).

The data of the hierarchical representation of a tensor v =
∑rd

i=1 cib
(d)
i with c := (ci)

rd

i=1 are

{(

C(δ,k)
)

1≤k≤rδ,2≤δ≤d
, c

}

. (3.7)

If rδ ≤ r holds for all vertices {1, . . . , δ} ∈ T, the overall storage cost is

(d− 1) r2 + r.

Remark 3.3 The (minimal) dimension rδ of the subspaces Uδ can be described algebraically. Let α =

{1, . . . , δ} and write the tensor space
⊗d

i=1 Vi in the form
(
⊗δ

i=1 Vi

)

⊗
(
⊗d

i=δ+1 Vi

)

. A tensor v can be

regarded as a matrix with the entries vp,q, where p = (i1, . . . , iδ) and q = (iδ+1, . . . , id) . Then rδ is the rank
of this matrix.

4For this choice the hierarchical format coincides with the so-called tensor tree format of Oseledets-Tyrtyshnikov [6].

5

4 Scalar product

The computation of the scalar product is considered as a first example for the use of the different represen-
tations, before we describe the convolution.

4.1 Scalar product of elementary tensors

The vector v ∈ Kn and the tensor v = Φ−1
n v ∈ V :=

d⊗

j=1

K2 have the same components, only re-arranged in

another ordering. Therefore, it is obvious that the Euclidean norms are equal:

‖v‖2 :=
n∑

i=1

|vi|
2 =

2∑

i1=1

· · ·
2∑

id=1

|vi1...id
|2 =: ‖v‖2 .

A similar statement holds for the scalar product:

〈v, w〉 :=
n∑

i=1

viwi =
2∑

i1=1

· · ·
2∑

id=1

vi1...id
wi1...id

=: 〈v,w〉 .

The concrete computation depends on the format in which v and w are given. First, we consider
elementary tensors: v =

⊗d
j=1 v

(j) and w =
⊗d

j=1 w
(j) for certain v(j), w(j) ∈ Vj = K2. Then the scalar

product can be computed for each factor separately:

〈
d⊗

j=1

v(j),

d⊗

j=1

w(j)

〉

=

d∏

j=1

〈

v(j), w(j)
〉

,

where the latter scalar product belongs to K2, i.e.,
〈
v(j), w(j)

〉
= v

(j)
1 w

(j)
1 + v

(j)
2 w

(j)
2 . Hence, the computation

requires 4d− 1 arithmetical operations.

4.2 Scalar product of tensors given in r-term format

Now, the tensors have the form v =
∑rv

ν=1

⊗d
j=1 v

(j,ν) ∈ Rrv
and w =

∑rw

ν=1

⊗d
j=1 w

(j,ν) ∈ Rrw
. Obviously,

the scalar product is given by the double sum

〈v,w〉 =

rv∑

ν=1

rw∑

µ=1

d∏

j=1

〈

v(j,ν), w(j,µ)
〉

.

Hence, the computational work is rvrw (4d− 1) .

4.3 Scalar product of tensors given in hierarchical representation

Let v and w be represented by the respective hierarchical data
{(
C′(δ,k)

)

1≤k≤r′

δ
,2≤δ≤d

, c′
}

and
{(
C′′(δ,k)

)

1≤k≤r′′

δ
,2≤δ≤d

, c′′
}

(cf. (3.7), i.e.,

〈v,w〉 =

r′

d∑

k=1

r′′

d∑

ℓ=1

c′kc
′′
ℓ

〈

b
′(d)
k , b

′′(d)
ℓ

〉

, (4.1)

6

where b
′(d)
k [b

′′(d)
ℓ] denotes the basis vector associated to v ∈ U ′

d [w ∈ U ′′
d]. Next, we use the recursive

definition of b
′(δ)
k , b

′′(δ)
ℓ and the fact that bm are the fixed orthonormal vectors from (3.5):

〈

b
′(δ)
k , b

′′(δ)
ℓ

〉

=

〈r′

δ−1∑

ν=1

2∑

m=1

C′(δ,k)
νm b′(δ−1)

ν ⊗ bm,

r′′

δ−1∑

µ=1

2∑

m=1

C′′(δ,ℓ)
µm b′′(δ−1)

µ ⊗ bm

〉

=

r′

δ−1∑

i=1

r′′

δ−1∑

j=1

2∑

m=1

C
′(δ,k)
im C

′′(δ,ℓ)
jm

〈

b
′(δ−1)
i , b

′′(δ−1)
j

〉

.

Using
〈

b
′(δ−1)
i , b

′′(δ−1)
j

〉

as entries of the matrix B(δ−1) ∈ K
r′

δ−1×r′′

δ−1 , we obtain from the previous line that

B
(δ)
k,ℓ =

〈

b
′(δ)
k , b

′′(δ)
ℓ

〉

=
〈

C(δ,k,ℓ), B(δ−1)
〉

F

with C(δ,k,ℓ) := C′(δ,k)
(

C′′(δ,ℓ)
)H

, (4.2)

where 〈A,B〉
F

:=
∑

i,j AijBij is the Frobenius scalar product of matrices. The dominant part of the com-

putational cost is the building of the matrices C(δ,k,ℓ) for all k, ℓ, which requires 3r′δ−1r
′′
δ−1r

′
δr

′′
δ operations.

By (4.2), B(δ) can be obtained from B(δ−1). This recursion starts with B(1) = B({1}) =
[

1
0

0
1

]
and

r′1 = r′′1 = 2. Hence, the computation of B(d) by this recursion takes 3
∑d

δ=2 r
′
δ−1r

′′
δ−1r

′
δr

′′
δ operations. If

r′δ, r
′′
δ ≤ r for all δ, the asymptotic cost is 3 (d− 1) r4. Finally, 〈v,w〉 is obtained by (4.1), which is trivial

because of the standard value r′d = r′′d = 1 (cf. Remark 3.2).

5 Convolution

When we perform the convolution say of functions in d variables x1, . . . , xd, it is well-known that for ele-
mentary tensors we may perform d one-dimensional convolutions instead:





d∏

j=1

fj(xj)



 ⋆





d∏

j=1

gj(xj)



 =

d∏

j=1

(fj ⋆ gj) (xj).

The question arises, whether the convolution of standard vectors v, w ∈ Kn is equivalent to the separate
convolution in each of the d directions of the artificially constructed tensorisations. The answer will be yes
and no. After a direction-wise convolution we have to apply a certain carry-over procedure.

5.1 Convolution in ℓ0 and Kn

For the convolution of vectors v, w ∈ K
n, we consider K

n as embedded in ℓ0. The convolution in ℓ0 is given
by

a, b ∈ ℓ0 7→ c := a ⋆ b ∈ ℓ0 with ck :=

k∑

j=0

ajbk−j .

Remark 5.1 a) If v, w ∈ Kn, their convolution yields v ⋆ w ∈ ℓ0 with deg(v ⋆ w) ≤ 2n− 2. Hence, we may
write u := v ⋆ w ∈ K2n−1.

b) When we represent the vectors v, w ∈ K
n by tensors from

⊗d
δ=1 K

2, the result u := v ⋆ w must be

represented in
⊗d+1

δ=1 K2 with d replaced by d + 1 (the last entry of u ∈ K2n = K2d+1

is u2n−1 = 0, since
deg(u) ≤ 2n− 2).

The vector space ℓ0 is isomorphic to the vector space P of polynomials of finite, but arbitrary degree:

π : ℓ0 → P with π(a) =

∞∑

j=0

ajx
j . (5.1)

7

According to the embedding Kn →֒ ℓ0, we also use π as mapping from Kn into P (onto all polynomials of
degree ≤ n− 1).

The convolution in ℓ0 corresponds to the (pointwise) multiplication in P:

c := a ⋆ b ∈ ℓ0 ⇔ π(c) = π(a)π(b). (5.2)

5.2
d⊗

δ=1

K2,
d⊗

δ=1

ℓ0, and polynomials

The isomorphism π from (5.1) together with the embeddings K
n →֒ ℓ0 and K

2 →֒ ℓ0 allows another interpre-

tation of tensors in
⊗d

δ=1 K2. Consider an elementary tensor v =
⊗d

δ=1 v
(δ) (v(δ) ∈ K2) and the correspond-

ing vector v = Φn(v) ∈ Kn. Applying π to v, we obtain the polynomial p := π(v) with p(x) :=
∑n−1

j=0 vjx
j .

For ease of notation, we shall write π instead of π ◦ Φn, i.e., π :
⊗d

δ=1 K2 → P. The connection between

v =
⊗d

δ=1 v
(δ) and v = Φn(v) on the side of polynomials is given by

p(x) =

d∏

δ=1

pδ(x
2δ−1

) with p := π(v) = π(v), pδ := π(v(δ)), (5.3)

where the linear polynomials pδ(ξ) = v
(δ)
0 + v

(δ)
1 ξ are substituted by ξ = x2δ−1

. Note that the mapping

π :
⊗d

δ=1 K2 → P is injective. Moreover, for any polynomial p of degree ≤ n− 1 (n = 2d) there is a unique

tensor v ∈
⊗d

δ=1 K2 with π(v) = p.

The mapping (5.3) can be extended from
⊗d

δ=1 K2 to
⊗d

δ=1 v
(δ) ∈

⊗d
δ=1 ℓ0. The only difference is that

now pδ := π(v(δ)) with v(δ) ∈ ℓ0 is a polynomial of arbitrary degree, and that π :
⊗d

δ=1 ℓ0 → P is no more

injective. We note that v ∼ w if and only if π(v) = π(w) for v,w ∈
⊗d

δ=1 ℓ0.

5.3 Convolution of tensors

The elementary tensors v =
⊗d

δ=1 v
(δ) and w =

⊗d
δ=1 w

(δ) (v(δ), w(δ) ∈ K2) represent the vectors v = Φn(v)
and w = Φn(w) in Kn. Therefore the convolution v ⋆w must be defined such that

Φn (v ⋆w) = Φn(v) ⋆ Φn(w). (5.4)

The right-hand side in (5.4) should not be used for the practical computation, since the vectors Φn(v) and
Φn(w) have data size n and their convolution requires O(n log n) operations, whereas v and w have data
size O(d) = O(log n) and the computational cost of v ⋆w should be of similar size. Note that (5.4) defines
only the equivalence class of v ⋆w.

It will turn out that the term-wise convolution is almost valid, i.e., v ⋆w =
⊗d

δ=1

(
v(δ) ⋆ w(δ)

)
holds, but

its right-hand side is an element of
⊗d

δ=1 ℓ0, not of
⊗d

δ=1 K2, since v(δ) ⋆ w(δ) is a vector in K3 (cf. §5.1).

Lemma 5.2 The convolution of v =
d⊗

δ=1

v(δ) and w =
d⊗

δ=1

w(δ) (v(δ), w(δ) ∈ ℓ0) yields

d⊗

δ=1

(

v(δ) ⋆ w(δ)
)

, where v(δ) ⋆ w(δ) ∈ ℓ0.

Proof. Set p := π(v), pδ := π(v(δ)) and q := π(w), qδ := π(w(δ)). By definition,
d⊗

δ=1

(
v(δ) ⋆ w(δ)

)
corresponds

to the vector u associated with the polynomial

π(u)(x) =

d∏

δ=1

π(v(δ) ⋆ w(δ))(x2δ−1

) =
(5.2)

d∏

δ=1

π(v(δ))(x2δ−1

) · π(w(δ))(x2δ−1

) =

d∏

δ=1

pδ(x
2δ−1

)qδ(x
2δ−1

)

=

(
d∏

δ=1

pδ(x
2δ−1

)

)(
d∏

δ=1

qδ(x
2δ−1

)

)

= p(x)q(x) = π(v ⋆ w)(x),

8

which proves u = v ⋆ w.

We recall Remark 5.1b: If v,w ∈
⊗d

δ=1 K2, the result is a tensor u := v ⋆w in
⊗d+1

δ=1 K2. Lemma 5.3
describes the start at d = 1, while Lemma 5.4 can be used for the recursion.

Lemma 5.3 The convolution of v =
(
α
β

)
, w =

(
γ
δ

)
∈ K

2 =
⊗1

j=1 K
2 yields

(
α
β

)
⋆
(
γ
δ

)
=







αγ
αδ + βγ
βδ
0







=
(

αγ
αδ+βγ

)
+ S2

(
βδ
0

)
(5.5a)

= Φ4(v) with v :=
(

αγ
αδ+βγ

)
⊗
(
1
0

)
+
(
βδ
0

)
⊗
(
0
1

)
∈
⊗2

j=1
K

2.

Furthermore, the shifted vector S1
((

α
β

)
⋆
(
γ
δ

))

has the tensor representation

S1
((

α
β

)
⋆
(
γ
δ

))

=







0
αγ

αδ + βγ
βδ







= Φ4(v) with v :=
(

0
αγ

)
⊗
(
1
0

)
+
(
αδ+βγ

βδ

)
⊗
(
0
1

)
∈
⊗2

j=1
K

2. (5.5b)

The basic identity is given in the next lemma.

Lemma 5.4 Assume v,w ∈
⊗δ−1

j=1 K2 and x =
(
α
β

)
, y =

(
γ
δ

)
∈ K2. Let the convolution result of v,w be

v ⋆w ∼ a = a′ ⊗
(
1
0

)
+ a′′ ⊗

(
0
1

)
∈
⊗δ

j=1
K

2. (5.6a)

Then, convolution of the tensors v ⊗ x and w ⊗ y yields

(v ⊗ x) ⋆ (w ⊗ y) ∼ u = u′ ⊗
(
1
0

)
+ u′′ ⊗

(
0
1

)
∈
⊗δ+1

j=1
K

2

with u′ = a′ ⊗
(

αγ
αδ+βγ

)
+ a′′ ⊗

(
0

αγ

)
∈
⊗δ

j=1
K

2 (5.6b)

and u′′ = a′ ⊗
(
βδ
0

)
+ a′′ ⊗

(
αδ+βγ

βδ

)
∈
⊗δ

j=1
K

2.

Proof. Lemma 5.2 implies that

(v ⊗ x) ⋆ (w ⊗ y) ∼ (v ⋆w) ⊗ z with z := x ⋆ y ∈ K
3 ⊂ ℓ0.

Assumption (5.6a) together with Lemma 2.2 and (2.4) yields

(v ⋆w) ⊗ z ∼
(

a′ + S2δ−1

a′′
)

⊗ z.

Again, Lemma 2.2 shows that

S2δ−1

a′′ ⊗ z = S2δ−1

(a′′ ⊗ z) ∼ a′′ ⊗ (Sz).

Using (5.5a,b), we obtain

a′ ⊗ z ∼ a′ ⊗
(

αγ
αδ+βγ

)
⊗
(
1
0

)
+ a′ ⊗

(
βδ
0

)
⊗
(
0
1

)
,

(

S2δ−1

a′′
)

⊗ z ∼ a′′ ⊗ (Sz) ∼ a′′ ⊗
(

0
αγ

)
⊗
(
1
0

)
+ a′′ ⊗

(
αδ+βγ

βδ

)
⊗
(
0
1

)
.

Summation of both identities yields the assertion of the lemma.

Corollary 5.5 x, y ∈
{(

1
0

)
,
(
0
1

)}
implies

(
αγ

αδ+βγ

)
,
(

0
αγ

)
,
(
βδ
0

)
,
(
αδ+βγ

βδ

)
∈
{(

0
0

)
,
(
1
0

)
,
(
0
1

)}
in (5.6b).

Lemma 5.3 proves assumption (5.6a) for δ = 2, while 5.4 shows that v⊗x and w⊗y satisfy requirement
(5.6a) (for δ + 1 instead of δ).

9

5.4 Convolution of elementary tensors or tensors in r-term format

Unfortunately, the convolution of elementary tensors does not result again in an elementary tensor. This is
seen in (5.6b): even if a′ and a′′ are elementary tensors, u′ and u′′ are not. Instead, (5.6b) yields a sum of
2δ terms.

As a consequence, the convolution of tensors in r-term format does not yield an s-term tensor with mod-
erate representation rank s. Instead, one should convert tensors from the r-term format into the hierarchical
format and apply the procedure of §5.5. We mention that tensors v ∈ Rr allow a hierarchical representation
with dimensions rδ ≤ r (cf. [5]).

5.5 Convolution of tensors in hierarchical format

We recall that the hierarchical format is characterised by the subspaces Uδ ⊂
⊗δ

j=1 K2 satisfying (3.4):

Uδ ⊂ Uδ−1 ⊗ K2. The essential observation is that also the results of the convolution yield subspaces with
this property.

Note that there are three different tensors v, w, and u := v ∗ w involving three different formats with
three different subspace families U ′

δ, U
′′
δ , and Uδ (1 ≤ δ ≤ d). The bases spanning these subspaces consist of

the vectors b
′(δ)
i , b

′′(δ)
i , and b

(δ)
i . The dimensions of the subspaces are r′δ, r

′′
δ , and rδ.

In order to map a tensor a = a′ ⊗
(
1
0

)
+ a′′ ⊗

(
0
1

)
into a′ and a′′, we introduce the mappings ϕ′

δ, ϕ
′′
δ with

a′ = ϕ′
δ(a), a′′ = ϕ′′

δ (a):

ϕ′
δ, ϕ

′′
δ :

δ⊗

j=1

K
2 →

δ−1⊗

j=1

K
2 with

(ϕ′
δ(v))i1i2...iδ−1

:= vi1i2...iδ−1,0 and (ϕ′′
δ (v))i1i2...iδ−1

:= vi1i2...iδ−1,1 (0 ≤ ij ≤ 1) .

Theorem 5.6 Let the tensors v,w ∈
⊗d

j=1 K
2 be represented by (possibly different) hierarchical formats

using the respective subspaces U ′
δ and U ′′

δ , 1 ≤ δ ≤ d, satisfying

U ′
1 = K2, U ′

δ ⊂ U ′
δ−1 ⊗ K2, v ∈ U ′

d ,
U ′′

1 = K2, U ′′
δ ⊂ U ′′

δ−1 ⊗ K2, w ∈ U ′′
d .

(5.7a)

The subspaces

Uδ := span{ϕ′
δ+1(x ∗ y), ϕ′′

δ+1(x ∗ y) : x ∈ U ′
δ, y ∈ U ′′

δ } (1 ≤ δ ≤ d) (5.7b)

satisfy
U1 = K

2, Uδ ⊂ Uδ−1 ⊗ K
2, v ∗ w ∈ Ud. (5.7c)

The dimension of Uδ can be bounded by

dim(Uδ) ≤ 2 dim(U ′
δ) dim(U ′′

δ).

Proof. 1) U1 = K2 can be concluded from Lemma 5.3.
2) By assumption (5.7a), x ∈ U ′

δ ⊂ U ′
δ−1 ⊗K

2 has a representation x = x′ ⊗
(
1
0

)
+ x′′ ⊗

(
0
1

)
with x′,x′′ ∈

U ′
δ−1. The analogous statement holds for y. Expansion of the sums yields x∗y =

(
x′ ⊗

(
1
0

))
∗
(
y′ ⊗

(
1
0

))
+ . . .

For each term, Lemma 5.4 states that ϕ′
δ+1

((
x′ ⊗

(
1
0

))
∗
(
y′ ⊗

(
1
0

)))
= u′ and ϕ′′

δ+1(. . .) = u′′ belong to
Uδ−1 ⊗ K2 (cf. (5.6b)). Hence, ϕ′

δ+1(x ∗ y), ϕ′′
δ+1(x ∗ y) ∈ Uδ−1 ⊗ K2, and the definition of Uδ implies the

inclusion Uδ ⊂ Uδ−1 ⊗ K2.
3) v ∈ U ′

d and w ∈ U ′′
d together with the definition of Ud lead to v ∗ w ∈ Ud.

4) The bound of dim(Uδ) follows directly from (5.7b).

For δ = 1, . . . , d, the numerical scheme has

1. to introduce an orthonormal basis {b
(δ)
1 , . . . , b

(δ)
rδ } of Uδ, where rδ := dim(Uδ), and

10

2. to represent the convolution b
′(δ)
i ∗ b

′′(δ)
j by

b
′(δ)
i ∗ b

′′(δ)
j =

2∑

m=1

rδ∑

k=1

β
(δ)
ij,km b

(δ)
k ⊗ bm. (5.8)

As soon as the β-coefficients from (5.8) are known, general products x ∗ y of x ∈ U ′
δ and y ∈ U ′′

δ can be
evaluated easily as shown in the next remark.

Remark 5.7 Let x =
∑r′

δ

i=1 ξib
′(δ)
i ∈ U ′

δ and y =
∑r′′

δ

j=1 ηjb
′′(δ)
j ∈ U ′′

δ . Then convolution yields

x ∗ y = z = z′ ⊗
(
1
0

)
+ z′′ ⊗

(
0
1

)
with z′ =

rδ∑

k=1

ζ′kb
(δ)
k , z′′ =

rδ∑

k=1

ζ′′k b
(δ)
k ,

where ζ′k =

r′

δ∑

i=1

r′′

δ∑

j=1

ξiηjβ
(δ)
ij,k1 and ζ′′k =

r′

δ∑

i=1

r′′

δ∑

j=1

ξiηjβ
(δ)
ij,k2

with β
(δ)
ij,km from (5.8). The computation of ζ′k, ζ

′′
k (1 ≤ k ≤ rδ) requires 4rδr

′
δ (r′′δ + 1) operations.

Start δ = 1. For δ = 1, U ′
1 = U ′′

1 = U1 = K
2 holds, and the bases are identically given by b

′(1)
1 = b

′′(1)
1 =

b
(1)
1 =

(
1
0

)
and b

′(1)
2 = . . . =

(
0
1

)
. The β-coefficients from (5.8) are

k = 1 k = 2
j = 1 j = 2 j = 1 j = 2

β
(δ)
ij,k1 : i = 1 1 0 0 1

i = 2 0 0 1 0

β
(δ)
ij,k2 : i = 1 0 0 0 0

i = 2 0 1 0 0

Recursion step from δ − 1 to δ ∈ {2, . . . , d}. By induction, the basis
{

b
(δ−1)
k : 1 ≤ k ≤ rδ−1

}

is

already available. In a first step, we represent b
′(δ)
i ∗ b

′′(δ)
j in the orthonormal basis {b

(δ−1)
ν ⊗

(
1
0

)
, b

(δ−1)
ν ⊗

(
0
1

)
:

1 ≤ ν ≤ rδ−1 }, which spans Uδ−1 ⊗ K2. For this purpose, we recall that b
′(δ)
i and b

′′(δ)
j have representations

b
′(δ)
i =

∑rδ−1

ν=1

∑2
µ=1 C

′(δ,i)
νµ b

′(δ−1)
ν ⊗ bµ and b

′′(δ)
j =

∑rδ−1

ρ=1

∑2
σ=1 C

′′(δ,j)
ρσ b

′′(δ−1)
ρ ⊗ bσ (cf. (3.3)). The result

b
(δ)
ij := b

′(δ)
i ∗ b

′′(δ)
j =

2∑

µ=1

2∑

σ=1

r′

δ−1∑

ν=1

r′′

δ−1∑

ρ=1

C′(δ,i)
νµ C′′(δ,j)

ρσ

(

b′(δ−1)
ν ⊗ bµ

)

∗
(

b′′(δ−1)
ρ ⊗ bσ

)

︸ ︷︷ ︸

=:b
(δ)
ij,µσ

(5.9)

is a sum of the four terms b
(δ)
ij,µσ (1 ≤ µ, σ ≤ 2). Each term can be split into

b
(δ)
ij,µσ = b

′(δ)
ij,µσ ⊗ b1 + b

′′(δ)
ij,µσ ⊗ b2 with b

′(δ)
ij,µσ = ϕ′

δ+1(b
(δ)
ij,µσ) and b

′′(δ)
ij,µσ = ϕ′′

δ+1(b
(δ)
ij,µσ). (5.10)

As example, we consider the case µ = σ = 1. Then x = y = b1 leads to α = γ = 1, β = δ = 0 and to
(

αγ
αδ+βγ

)
= b1,

(
0

αγ

)
= b2 in Lemma 5.4. The product

(

b
′(δ−1)
ν ⊗ bµ

)

∗
(

b
′′(δ−1)
ρ ⊗ bσ

)

can be evaluated by

(5.6a,b):

ϕ′
δ+1

((

b′(δ−1)
ν ⊗ b1

)

∗
(

b′′(δ−1)
ρ ⊗ b1

))

=
(5.6b)

ϕ′
δ

(

b′(δ−1)
ν ∗ b′′(δ−1)

ρ

)

⊗ b1 + ϕ′′
δ

(

b′(δ−1)
ν ∗ b′′(δ−1)

ρ

)

⊗ b2

=
(5.8)

2∑

m=1

rδ−1∑

k=1

β
(δ−1)
νρ,km b

(δ−1)
k ⊗ bm ∈ Uδ−1 ⊗ K

2,

11

while
(
βδ
0

)
=
(

αδ+βγ
βδ

)
= 0 implies

ϕ′′
δ+1

((

b′(δ−1)
ν ⊗ b1

)

∗
(

b′′(δ−1)
ρ ⊗ b1

))

= 0.

This determines the components in (5.10) for µ = σ = 1. Together with the definition of b
(δ)
ij,µσ in (5.9), we

obtain b
(δ)
ij,11 as a linear combination of the basis vectors b

′(δ−1)
k ⊗ bm. Similar representations hold for the

other b
(δ)
ij,µσ ((µ, σ) 6= (1, 1)). Finally, we have

b
(δ)
ij := b

′(δ)
i ∗ b

′′(δ)
j = b

′(δ)
ij ⊗ b1 + b

′′(δ)
ij ⊗ b2 with

b
′(δ)
ij =

rδ−1∑

k=1

2∑

m=1

γ
′(δ)
ij,km b

(δ−1)
k ⊗ bm, b

′′(δ)
ij =

rδ−1∑

k=1

2∑

m=1

γ
′′(δ)
ij,km b

(δ−1)
k ⊗ bm,

where the computation of the coefficients γ
′(δ)
ij,km, γ

′′(δ)
ij,km from β

(δ−1)
νρ,km, C

′(δ,i)
νµ , C

′′(δ,j)
ρσ requires

8r′′δ r
′
δ−1rδ−1

(
r′′δ−1 + r′δ

)
operations.

The vectors b
′(δ)
ij , b

′′(δ)
ij span the subspace Uδ ⊂ Uδ−1 ⊗ K2. Next, we have find an orthonormal basis

{b
(δ)
ν : 1 ≤ ν ≤ rδ} of Uδ, where rδ := dim(Uδ). More precisely, we have to find the coefficients C

(δ,ν)
ij such

that b
(δ)
ν =

∑rδ−1

i=1

∑2
j=1 C

(δ,k)
ij b

(δ−1)
i ⊗ bj (cf. (3.6)). This concludes the induction step from δ − 1 to δ.

The construction of the new orthonormal basis may use the QR decomposition. Here, we use the Gram
matrix Gδ requiring the pairwise scalar products

〈

b
′(δ)
ij , b

′(δ)
ℓm

〉

,
〈

b
′(δ)
ij , b

′′(δ)
ℓm

〉

,
〈

b
′′(δ)
ij , b

′′(δ)
ℓm

〉

for 1 ≤ i, ℓ ≤ r′δ, 1 ≤ j,m ≤ r′′δ .

The indices q, p ∈ {1, . . . , 2r′δr
′′
δ } of Gδ = (gpq) can be considered as an ordering of the triples (ijα) with

1 ≤ i ≤ r′δ, 1 ≤ j ≤ r′′δ , 1 ≤ α ≤ 2 referring to b
(δ)
ij1 := b

′(δ)
ij and b

(δ)
ij2 := b

′′(δ)
ij . The computation of Gδ

takes 8 (r′δr
′′
δ)2 rδ−1 operations (note that the basis b

(δ−1)
k ⊗ bm (1 ≤ k ≤ rδ−1, 1 ≤ m ≤ 2) is orthonormal

so that, e.g.,
〈

b
′(δ)
ij , b

′(δ)
νµ

〉

=
∑rδ−1

k=1

∑2
m=1 γ

′(δ)
ij,kmγ

′(δ)
νµ,km). The computation of the Cholesky decomposition

Gδ = LδL
H

δ requires 4
3 (r′δr

′′
δ)

3
operations. Here we assume that the indices are such that the lower triangular

matrix L has the form

L =

[
Lδ O
∗ O

]

with Lδ ∈ K
rδ×rδ , rδ = rank(Gδ).

Set5 A :=
[
L−1

δ O
]
. Then b

(δ)
ν :=

∑
aν,(ijα)b

(δ)
ijα for 1 ≤ ν ≤ rδ represents the new orthonormal basis.

The coefficients C
(δ,k)
km from (3.6) are obtained via

C
(δ,ν)
km =

∑

i,j

(

aν,(ij1)γ
′(δ)
ij,km + aν,(ij2)γ

′′(δ)
ij,km

)

for 1 ≤ ν ≤ rδ, 1 ≤ k ≤ rδ−1, 1 ≤ m ≤ 2.

The corresponding cost is 2rδ−1r
2
δ (cf. Footnote 5). By construction, we obtain the coefficients β

(δ)
ij,km from

(5.8). Note that (5.8) is equivalent to b
′(δ)
ij =

∑rδ

k=1 β
(δ)
ij,k1 b

(δ)
k and b

′′(δ)
ij =

∑rδ

k=1 β
(δ)
ij,k2 b

(δ)
k . This finishes the

computation of β(δ)
... from β(δ−1)

... .
Adding the above mentioned costs of the partial steps, we obtain the total cost of the recursion step from

δ − 1 to δ, which is to be summed over all δ:

8r′′δ r
′
δ−1rδ−1

(
r′′δ−1 + r′δ

)
+ 8 (r′δr

′′
δ)

2
rδ−1 +

4

3
(r′δr

′′
δ)

3
+ 2rδ−1r

2
δ for 2 ≤ δ ≤ d.

5The inverse is not computed explicitly. Instead, back substitution is used, when A is applied to a vector (matrix).

12

6 Function spaces

6.1 Tensorisation of functions

So far, we have considered vectors which can be considered as discrete grid functions. Now we discuss true
functions and their convolution. So simplify the setting,6 we consider piecewise continuous functions on the
unit interval [0, 1]. Let n = 2d be fixed and define Cpw([0, 1]) by functions which are uniformly continuous on
each subinterval [k/n, (k + 1) /n). Many approximation schemes uses a piecewise approximation of functions
on the described subintervals (hp-method,7 splines, wavelets etc.). In the latter case, the function restricted to
the subinterval belongs to a certain (finite dimensional) subspace V0 ⊂ C([0, 1/n]) (polynomials, generating
wavelet function, etc.).

We shall construct an isomorphism between the tensor space

C
([

0, 1
n

])
⊗

d⊗

j=1

K
2

and Cpw([0, 1]). Since we know already the isomorphism between
⊗d

j=1 K2 and Kn, it is enough to describe
the isomorphism

Ψn : V := C
([

0, 1
n

])
⊗ K

n → Cpw([0, 1]).

A tensor v ∈ V can be considered as a function on [0, 1
n]× {0, . . . , n− 1}. The first argument x ∈ [0, 1

n] is a
continuous variable, whereas i ∈ {0, . . . , n− 1} is discrete. The definition of Ψn is given via

f = Ψn(v) with f

(
k

n
+ x

)

= v (x, k) for all 0 ≤ x <
1

n
and 0 ≤ k ≤ n− 1.

The continuous version of the embedding K2 →֒ Kn →֒ ℓ0 from §2.2 is C([0, 1
n]) →֒ Cpw([0, 1]) →֒

Cpw,0([0,∞)), where f ∈ Cpw,0([0,∞)) are piecewise continuous functions with finite support. The convolu-
tion maps Cpw,0([0,∞)) × Cpw,0([0,∞)) into Cpw,0([0,∞)):

(f ⋆ g) (x) =

∫ x

0

f(t)g(x− t)dt for f, g ∈ Cpw,0([0,∞)) and 0 ≤ x <∞.

As in §2.3, we embed V = C([0, 1
n])⊗Kn in Cpw,0([0,∞))⊗ℓ0. The interpretation of v ∈ Cpw,0([0,∞))⊗ℓ0

is
f = Ψn(v) has the values f(x) =

∑

0≤k≤nx

v
(
x− k

n , k
)

for x ≥ 0.

Note that by definition of ℓ0 the latter sum is finite. Again, we use the notation

v ∼ w ⇔ Ψn(v) = Ψn(w).

The convolution v ⋆w has to satisfy Ψn (v ⋆w) = Ψn(v) ⋆Ψn(w) (cf. (5.4)).
We introduce the shift operator S : Cpw,0([0,∞)) → Cpw,0([0,∞)) via

(Smf) (x) =

{
f
(
x− m

n

)
for m

n ≥ x ∈ [0,∞) ,
0 otherwise.

Then, the isomorphism Ψn can be rewritten as

Ψn(v)(x) =

∞∑

k=0

Skv (x, k) . (6.1a)

6Other functions spaces are possible as well. If the functions are not required to be continuous, a piecewise definition is not
required. The advantage of Cpw([0, 1]) is that the convolution result lies again in Cpw([0, 1]).

7In [4] we have considered the convolution of piecewise polynomials on a refined grid. Such an hp approximation is a
possible sparsification of data and requires a particular convolution algorithm. The tensorisation is even more general, since
hp approximations allow a sparse representation by the tensor representation (cf. [3]) and can make use of even other types of
functions.

13

Furthermore, the identity
(
Skf

)
⋆
(
Sℓg
)

= Sk+ℓ (f ⋆ g) (6.1b)

holds.
The analogue of Lemma 5.2 is the following statement.

Lemma 6.1 Let v = ϕ⊗ x and w = ψ ⊗ y be elementary tensors from Cpw,0([0,∞)) ⊗ ℓ0. Then

v ⋆w ∼ (ϕ ⋆ ψ) ⊗ (x ⋆ y) .

Proof. By (6.1a) we have f := Ψn(v) =
∑∞

k=0 xk

(
Skϕ

)
and g := Ψn(w) =

∑∞
ℓ=0 yℓ

(
Sℓψ

)
. By (6.1b),

convolution yields

f ⋆ g =

∞∑

k=0

∞∑

ℓ=0

xkyℓS
k+ℓ (f ⋆ g) .

We set z := x ⋆ y (discrete convolution in ℓ0) and substitute m = k + ℓ. The identity

f ⋆ g =
∞∑

m=0

m∑

k=0

xkym−kS
m (f ⋆ g) =

∞∑

m=0

zmS
m (f ⋆ g) = Ψn ((f ⋆ g) ⊗ z)

proves the assertion.

Remark 6.2 If the support of f, g ∈ Cpw,0([0,∞)) is contained in [0, 1/n], u := f ⋆ g belongs to C([0, 2/n])
and can be written as u = u′ ⊗ b1 + u′′ ⊗ b2 with u′ := u|[0,1/n] and u′′ := u(· + 1/n)|[0,1/n]. Here, the unit
vectors b1, b2 ∈ K2 from (3.5) are considered as embedded in ℓ0.

Now, we can replace Kn by
⊗d

j=1 K2 (and ℓ0 by
⊗d

j=1 ℓ0). Hence, Cpw([0, 1]) becomes isomorphic to

V =
⊗d

j=0 Vj = C([0, 1/n]) ⊗
⊗d

j=1 K2.

6.2 Hierarchical representation

We use again the hierarchical representation from §3.2.2 with the following modifications:

1. The dimension index set is {0, 1, . . . , d} instead of {1, . . . , d} . The vector space V0 is the function space
on [0, 1/n], e.g., C([0, 1/n]), whereas all other spaces are Vj = K2 as before.

2. For j = 0 we have to specify a (finite dimensional) subspace U0 ⊂ V0 by means of a basis {b
(0)
1 , . . . , b

(0)
r0 }.

If we want to use a piecewise polynomial approximation, b
(0)
i may be the Legendre polynomials of

degree i − 1 mapped onto [0, 1/n]. In the case of Example 3.1,8 the basis functions are exponentials

b
(0)
ν (x) = exp(−ανx) for certain αν > 0, 1 ≤ ν ≤ r0.

A tensor v ∈ V =
⊗d

j=0 Vj is now characterised by the data

((

b
(0)
i

)

1≤i≤r0

,
(

C(δ,k)
)

1≤k≤rδ,1≤δ≤d
, c

)

,

i.e., v =
∑rd

i=1 cib
(d)
i holds, where the basis vectors b

(d)
i are recursively defined via (3.6). Differently from

before, (3.6) is also used for δ = 1, and the basis (b
(0)
i)1≤i≤r0 of U0 ⊂ V0 must be prescribed explicitly (for

2 ≤ δ ≤ d, the basis of Uδ = Vδ = K2 is given by (3.5)).

8Here, we have to shift the function by 1/n to avoid the singularity: f(x) = 1/ (x + 1/n) .

14

6.3 Scalar product

We discuss the scalar product of tensors v,w ∈ V given in the hierarchical format, i.e., v and w are given by

the respective data
(

(b
′(0)
i)1≤i≤r′

0
,
(
C′(δ,k)

)

1≤k≤r′

δ
,1≤δ≤d

, c′
)

and
(

(b
′′(0)
i)1≤i≤r′′

0
,
(
C′′(δ,k)

)

1≤k≤r′′

δ
,1≤δ≤d

, c′′
)

.

Not only the bases, also the subspaces U ′
0 ⊂ V0 and U ′′

0 ⊂ V0 may differ.

As in §4.3, we determine the matrix B(δ) of the pairwise scalar products
〈

b
′(δ)
k , b

′′(δ)
ℓ

〉

recursively by

means of (4.2). For the start we need B(0), i.e., the scalar products
∫ 1/n

0
b
′(0)
k (x)b

′′(0)
ℓ (x)dx of the functions

b
′(0)
k , b

′′(0)
ℓ ∈ C([0, 1/n]). If, by some reason, the exact scalar product is not available, a numerical quadrature

method may be used.
As soon as B(d) is computed, the product 〈v,w〉 is given by (4.1).

6.4 Convolution algorithm

When we discuss the convolution u := v ∗ w, we have to distinguish three hierarchical representations

with the respective subspaces U (j), U ′(j), U ′′(j) generated by the bases {b
(j)
1 , . . . , b

(j)
rj }, {b

′(j)
1 , . . . , b

′(j)
r′

j
},

{b
′′(j)
1 , . . . , b

′′(j)
r′′

j
}. We assume that the convolution of the basis functions b

′(0)
ν ∈ U ′

0 and b
′′(0)
µ ∈ U ′′

0 is explicitly

known, i.e., there is an orthonormal basis of U0 such that

b′(0)ν ⋆ b′′(0)µ =

2∑

m=1

r0∑

k=1

β
(δ)
ij,kmb

(0)
k ⊗ bm (6.2)

with b
(0)
k ∈ U ′′

0 ⊂ C([0, 1/n]). The latter representation is justified by Remark 6.2.
The convolution algorithm is now identical to the scheme of §5.

7 Generalisations

7.1 General hierarchical format

So far, we have discussed the special hierarchical format from §3.2.2. The general hierarchical format allows
to choose a general binary dimension partition tree T (see §3.2.1).

For simplicity, we assume the situation V =
⊗d

j=1 K2 with n = 2d from §2. The root of the tree T is by
definition the set ρ = {1, . . . , d}. Its sons α′, α′′ ∈ T are vertices with ρ = α′ ∪ α′′ (disjoint union). Hence,
λ′ + λ′′ = d for λ′ := #α′ and λ′′ := #α′′. Set n′ := 2λ′

, n′′ := 2λ′′

and note that n = n′n′′. Again, K
n is

isomorphic to Kn′

⊗Kn′′

. If n′ > 2, the vertex α′ possesses two sons, i.e., Kn′

is further split into Kn1 ⊗Kn2

with n′ = n1n2; etc.
Each vertex α ∈ T is associated with the spaces Vα =

⊗

j∈α K2, Uα ⊂ Uα′ ⊗ Uα′′ ⊂ Vα (see (3.2)). The

bases of Uα, Uα′ , and Uα′′ are related by means of the coefficient matrices C(α,k) (see (3.3)). Since, again,
Uα = Vα = K2 holds for the leaves9 α ∈ L(T) (i.e., #α = 1), we fix the basis of Uα by (3.5). A tensor v ∈ V

represented in the hierarchical format is given by the data
((

C(α,k)
)

1≤k≤rα,α∈T\L(T)
, c

)

,

i.e., v =
∑rρ

i=1 cib
(ρ)
i (ρ root of T), where the basis is defined recursively by (3.3) starting with b

(α)
i = bi for

α ∈ L(T) (cf. (3.5)).

Next we discuss the scalar product of v,w ∈ V given by the data
((
C′(α,k)

)

1≤k≤r′

α,α∈T\L(T)
, c′
)

and
((
C′′(α,k)

)

1≤k≤r′′

α,α∈T\L(T)
, c′′
)

. Again, we need the pairwise scalar products
〈

b
′(α)
k , b

′′(α)
ℓ

〉

. The recursive

computation uses

〈

b
′(α)
k , b

′′(α)
ℓ

〉

=

r′

α1∑

i=1

r′

α2∑

j=1

r′′

α1∑

m=1

r′′

α2∑

n=1

c
′(α,k)
ij c

′′(α,ℓ)
mn

〈

b
′(α1)
i , b′′(α1)

m

〉〈

b
′(α2)
j , b′′(α2)

n

〉

9L(T) is the set of leaves of T, i.e., L(T) = {α ∈ T : #α = 1}.

15

(α1 and α2 sons of α) instead of (4.2). The final result is

〈v,w〉 =

r′

ρ∑

ℓ=1

r′′

ρ∑

k=1

c
′(ρ)
ℓ c

′′(ρ)
k

〈

b
′(ρ)
ℓ , b

′′(ρ)
k

〉

(ρ root of T).
For the convolution, we consider the crucial isomorphism K

n ∼ K
n′

⊗ K
n′′

⊂ ℓ0 ⊗ ℓ0 for n = n′n′′

and the property that v, w ∈ Kn represented by elementary tensors v = v′ ⊗ v′′ and w = w′ ⊗ w′′ satisfy
v ⋆w ∼ (v′ ⋆ w′)⊗ (v′′ ⋆ w′′) . Vectors v′, w′ ∈ Kn′

lead to u := v′ ⋆ w′ ∈ K2n′−1 ⊂ ℓ0. Writing u ∈ K2n′−1 as
u′ + Sn′

(u′′) (u′, u′′ ∈ Kn′

, for the shift S see §2.2), we obtain

v ⋆w ∼ u′ ⊗ (v′′ ⋆ w′′) + u′′ ⊗ S1 (v′′ ⋆ w′′) .

Since v′′ ⋆ w′′ ∈ K2n′−1, it follows that S1 (v′′ ⋆ w′′) ∈ K2n′

. Hence, there is a representation (5.8) for

the convolution b
′(α)
i ∗ b

′′(α)
j of the basis vectors from the respective subspaces U ′

α and U ′′
α . The recursive

computation of the coefficients β
(α)
ij,km in (5.8) is completely analogous to the procedure in §5.5.

7.2 Periodic convolution

The periodic convolution is ci =
∑n−1

k=0 akbi−k, where the indices are understood modulo n. Obviously, this
kind of convolution cannot be performed direction-wise, since the direction-wise period would be 2. The
simplest remedy is the periodisation of the previous convolution, i.e., perform c′ := a ⋆ b ∈ K2n−1 as before
and set ci := c′i + c′n+i for 0 ≤ i ≤ n− 1, where c2n−1 := 0.

7.3 Matrix case

The isomorphism Φn :
⊗d

j=1 K2 → Kn can be easily extended to the matrix case: Φn :
⊗d

j=1 K2×2 → Kn×n.

Here, each matrix entry Mkℓ with k =
∑d

i=1 κi2
i−1 and ℓ =

∑d
j=1 λj2

j−1 corresponds to the tensor entry

M(κ1λ1),...,(κdλd). Similarly, functions in two variables on [0, 1]2 can be understood as elements of a tensor

space V =
⊗d

j=0 Vj with V0 = C([0, 1/n]2), V1 = . . . = Vd = K
2×2. Now, Frobenius scalar products as well

as convolutions in two variables can be performed.
The representation of a matrix M ∈ Kn×n by a Kronecker-tensor M ∈

⊗d
j=1 K2×2 leads to the question

how a matrix-vector multiplication y := Mx is formed on the side of tensors. Let x ∈
⊗d

j=1 K2 and

x = Φnx ∈ Kn. Set y := Mx and y := Φ−1
n y. Since for fixed k we have

yκ1,...,κd
= yk =

∑

ℓ

Mkℓxℓ =
∑

λ1,...,λd

M(κ1λ1),...,(κdλd)xλ1,...,λd
,

where k =
∑d

i=1 κi2
i−1 and ℓ =

∑d
j=1 λj2

j−1, we obtain y = Mx.

For elementary tensors M =
⊗d

j=1M
(j) and x =

⊗d
j=1 x

(j), also y = Mx is an elementary tensor
⊗d

j=1 y
(j) with y(j) := M (j)x(j).

For r-term representations M =
∑r

ν=1

⊗d
j=1M

(j,ν) and x =
∑s

µ=1

⊗d
j=1 x

(j,µ), we obtain an rs-term

representation of the result y =
∑r

ν=1

∑s
µ=1

⊗d
j=1M

(j,ν)x(j,µ) involving drs matrix-vector multiplications

M (j,ν)x(j,µ), requiring 6drs arithmetical operations.

Finally, we discuss the use of the hierarchical format. Let x be represented by

{(

C
(δ,k)
x

)

1≤k≤rx
δ

,2≤δ≤d
, cx
}

(cf. (3.7)). Analogously,10 M is represented by

{(

C
(δ,ℓ)
M

)

1≤ℓ≤rM
δ

,2≤δ≤d
, cM

}

. The tensor y will be of

the form

{(

C
(δ,k)
y

)

1≤k≤ry
δ
,2≤δ≤d

, cy
}

with coefficients to be computed. In fact, the computation of C
(δ,k)
y

follows the same lines as for the convolution in §5.5.

10Instead of (3.5) we use the fixed basis
nh

1
0

0
0

i

,
h

0
0

1
0

i

,
h

0
1

0
0

i

,
h

0
0

0
1

io

.

16

Let
{

b
x(δ)
k : 1 ≤ k ≤ rx

δ

}

⊂
⊗δ

j=1 K
2 be the basis of Ux

δ (cf. (3.4)), while
{

b
M(δ)
ℓ : 1 ≤ ℓ ≤ rM

δ

}

⊂
⊗δ

j=1 K2×2 is the basis of UM
δ . Then

Uy
δ := span

{

b
M(δ)
ℓ b

x(δ)
k : 1 ≤ k ≤ rx

δ , 1 ≤ ℓ ≤ rM
δ

}

⊂

δ⊗

j=1

K
2

are the subspaces associated to y. By induction, the products b
M(δ−1)
ℓ b

x(δ−1)
k can be represented in the basis

{

b
y(δ−1)
i : 1 ≤ i ≤ ry

δ−1

}

. Using the identities (3.6) for b
M(δ)
ℓ and b

x(δ)
k , the products b

M(δ)
ℓ b

x(δ)
k can be written

as linear combinations of b
y(δ−1)
i ⊗ bj. Orthonormalisation leads to a suitable basis

{

b
y(δ)
i

}

of Uy
δ and to the

coefficients in b
M(δ)
ℓ b

x(δ)
k =

∑

i β
(δ)
ℓk,ib

y(δ)
i . The final result is y =

∑

i c
y
i b

y(δ)
i with cyi :=

∑

ℓ,k c
M
ℓ β

(δ)
ℓk,ic

x
k.

References

[1] D. Braess and W. Hackbusch: On the efficient computation of high-dimensional integrals and the ap-
proximation by exponential sums. In: Multiscale, nonlinear and adaptive approximation (R. DeVore, A.
Kunoth, eds.), Springer Berlin 2009, pp. 39-74.

[2] M. Espig: Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen Dimensionen.
Doctoral thesis, University Leipzig, 2008

[3] L. Grasedyck: Polynomial approximation in hierarchical Tucker format by vector-tensorization. Submit-
ted 2010.

[4] W. Hackbusch: Convolution of hp-functions on locally refined grids. IMA J. Numer. Anal. 29 (2009)
960-985

[5] W. Hackbusch and S. Kühn: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15

(2009) 706–722.

[6] I.V. Oseledets and E.E. Tyrtyshnikov: Breaking the curse of dimensionality, or how to use SVD in many
dimensions. SIAM J. Sci. Comput. 31 (2009) 3744-3759.

17

