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Abstract

We introduce a method for the evaluation of singular integrals arising in the dis-
cretisation of integral equations. The method is based on the idea of repeated sub-
division of domains. The integrals defined on these subdomains are classified. Each
class can be expressed as a sum of regular integrals and representatives of other
classes. A system of equations describes the relations between the classes. There-
fore the approximate value of the singular integral only depends on the accuracy of
the calculation of regular integrals.

AMS Subject Classifications: 65D32, 42B20.

Keywords: Numerical cubature, singular integrals.

1 Introduction

We consider integrals as they arise in the discretisation of integral equations. In simpli-

fied notation, terms of the shape

I =
Z

Dx

Z

Dy
‖x− y‖α dydx or I =

Z

Dx

Z

∂Dy
‖x− y‖α dydx (1)

over domains Dx, Dy ⊂ R
n appear. In this paper we will restrict ourselves to arbitrary

dimensions n for cubical and to n ≤ 3 for simplicial domains.

If the distance between the domains Dx and Dy is strictly positive, I is integrable for

all α as the integral is not singular and can be evaluated exactly or treated by standard

quadrature techniques [Str71], [CR93]. Likewise the integral is regular, if α ∈ 2N0.

Therefore we want to consider the case α ∈ R\2N0 in which Dx and Dy share at least

one common point. If −1 < α < 0, the kernel function is improperly integrable. If α ≤−1
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the integrals are strongly singular and I has to be interpreted as a partie finie integral in

the sense of Hadamard [Had52]. Our assumptions are explained for

I =
Z

Dx

Z

Dy
κ(x,y)dydx (2)

with a kernel κ satisfying particular assumptions.

All ideas given in this paper are based on the deliberations of [BH05], which depicts

the given problem (1) for one-dimensional domains.

2 Basic definitions

The method described in this paper mainly exploits two characteristics of the integrand

κ(x,y). The first is the translation invariance and the second is the homogeneity of the

kernel. Both are defined as follows.

Definition 2.1 (translational invariance)

A kernel κ(x,y) is called translational invariant, if it satisfies

κ(x,y) = κ(x+ c,y+ c) (c ∈ R
n) . (3)

Definition 2.2 (homogeneity)

A kernel κ(x,y) is called homogeneous, if it satisfies

κ(x,y) = sgκ(sx,sy) (s ∈ R>0) , (4)

where g ∈ R is the degree of homogeneity. Typically the parameters g and −α from (1)

will coincide.

Furthermore, κ is assumed to be sufficiently smooth outside a neighbourhood of the

possible singularity at x = y. A useful characterisation of the smoothness is given by the

asymptotic smoothness (confer for instance [Hac09]).

Definition 2.3 (asymptotic smoothness)

The kernel κ(x,y) is called asymptotically smooth, if there are constants h0, h1 ∈ R>0 such

that

|∂ν
x∂µ

yκ(x,y)| ≤ h1(h0)
|ν+µ|(µ+ν)! ‖ x− y ‖−g−|ν+µ| (5)

holds for all multi-indices ν ∈ N
n
0
, µ ∈ N

m
0

and g ∈ R as mentioned in Definition 2.2.

Remark 2.4

We consider integrals as they arise in the discretisation of integral equations. Therefore we

assume that the domains Dx, Dy originate from a regular grid without hanging nodes. Two

domains can either have a positive distance, share a common face or are identical.
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The next definition clarifies the designation of pairs of domains.

Definition 2.5 (regular and singular pairs of domains)

A pair of two domains is called regular, if the distance between them is strictly positive.

Otherwise it is called singular. The dimension of the common face in the singular case

is denoted by d ≥ 0. The set of regular pairs is denoted by Γreg and the set of singular

pairs sharing a common d−dimensional face is denoted by Γd .

Pairs of domains can be classified using equivalence classes. The underlying equiva-

lence relation is defined next.

Definition 2.6 (equivalence of domains and of pairs of domains)

We call two domains ρ, σ ⊂R
n equivalent, if a bijective transformation Φ : R

n →R
n exists

satisfying

Φ(σ) = ρ (6)

where Φ is a mapping given by

x = Φ(x̂) = t + cIx̂ (x ∈ ρ, x̂ ∈ σ),

with a constant vector t ∈ R
n, a constant c ∈ R and the identity matrix I. The transfor-

mation Φ allows scaling and translation of elements but no rotations.

Furthermore, we call two pairs of domains ρ1 ×ρ2 and σ1 ×σ2 equivalent, if

Φ(σ1) = ρ1,
Φ(σ2) = ρ2

(7)

holds with the same mapping Φ.

If the kernel κ is rotationally invariant or symmetric, the system of linear equations

introduced in Sections 3.4 and 4.4 can be further simplified. The underlying definitions

are given next.

Definition 2.7 (symmetry)

We denote κ(x,y) as symmetric, if the symmetry condition

κ(x,y) = κ(y,x) (∀x,y ∈ R
n) (8)

holds.

Definition 2.8 (rotational invariance)

κ(x,y) is called rotationally invariant, if

κ(x,y) = κ(Rx,Ry) (9)

for all rotation matrices R which represent rotations of n · π
2

(n ∈ Z) around the axes of

the coordinate system.

κ(x,y) is denoted as partially rotationally invariant, if the property mentioned above

only holds for some axes.
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3 Hypercubical domains

The hypercube or n-cube is the n-dimensional analogue of a square (n = 2) and a cube

(n = 3). It can be described as the convex hull of its 2
n vertices. To represent the fact of

cubical domains we slightly change the notation of (1) and write

I =
Z

Cx

Z

Cy
‖x− y‖α dydx.

3.1 Local coordinates

Consider an arbitrary axis-aligned n-cube C given by its vertices {v1, . . . ,v2n}. The n-

dimensional reference cube γ n
:= [0,1]n can be mapped to C via the formula

x = ΦC(x̂) = v1 +S
Cx̂ (x̂ ∈ γ n) (10)

and an appropriately chosen scaling matrix SC depending on the difference v̄1 − v1 with

v̄1 being the opposite vertex of v1 in the cube C. Now let ΦCx

and ΦCy

be mappings

satisfying

Cx = ΦCx

(γ n), Cy = ΦCy

(γ m).

Due to this notation we can transform the integral I to an integral over n- and m-

dimensional reference elements and write

I =
Z

Cx

Z

Cy
‖x− y‖α dydx = c1

Z

γ n

Z

γ m
κγ(x̂, ŷ,0,0)dŷdx̂ (11)

with
κγ(x̂, ŷ,υ

x,υy) = κ
(

ΦCx

(x̂)+υx,ΦCy

(ŷ)+υy
)

= κ(x+υx,y+υy) (υx,υy ∈ R
n)

(12)

and c1 being the product of the Jacobian determinants of ΦCx

and ΦCy

. We can now

perform any of the following considerations on reference elements.

Remark 3.1

In general the kernel κγ(x̂, ŷ,0,0) = κ
(

ΦCx

(x̂),ΦCy

(ŷ)
)

= κ
(

vCx

1
+SCx

x̂,vCy

1
+SCy

ŷ
)

does not

satisfy (4) as vCx

1
6= vCy

1
, but in the singular case (cf. Definition 2.5) it will.

3.2 Splitting and labelling

Any n-cube C given by its vertices {v1, . . . ,v2n} can be subdivided into 2
n subcubes:

C1 = conv{v1,v12, . . . ,v1,2n}
C2 = conv{v21,v2,v23, . . . ,v2,2n}

...

C2n−1 = conv{v2n−1,1, . . . ,v2n−1,2n−2,v2n−1,v2n−1,2n}
C2n = conv{v2n,1, . . . ,v2n−1,2n ,v2n}
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with vi j denoting the midpoint between two vertices vi and v j, vi j =
vi+v j

2
.

Remark 3.2

Let Cx ⊂ R
n and Cy ⊂ R

m be two arbitrary hypercubes embedded in R
n sharing a common

d-dimensional face, so w.l.o.g.: n ≥ m ≥ d ≥ 0 and m > 0, with a labelling as follows:

Cx = conv{v1, . . . ,v2d ,vx
2d+1

, . . . ,vx
2n},

Cy = conv{v1, . . . ,v2d ,v
y

2d+1
, . . . ,vy

2m}.

Furthermore let these elements be subdivided according to the rules mentioned above. Then

for the pairs Cx
i ×C

y
i , i ∈ {1, . . . ,2d}, there exists a labelling such that these elements are

equivalent to Cx ×Cy with respect to Definition 2.6 using c = 1

2
.

Example 3.3

A possible labelling in the case of two cubes sharing a common 2-face is illustrated in

Figure 1.

v2

v1

v3

v4

v
y
2

v
y
1

v
y
3

v
y
4

vx
2

vx
1

vx
3

vx
4

Figure 1: A possible labelling in the case of two cubes sharing a common 2-face

3.3 Computing the singular integral I

Let Cx ⊂R
n and Cy ⊂R

m be two arbitrary hypercubes embedded in R
n sharing a common

d-dimensional face, so w.l.o.g.: n ≥ m ≥ d ≥ 0 and m > 0,

Cx = conv{v1, . . . ,v2d ,vx
2d+1

, . . . ,vx
2n},

Cy = conv{v1, . . . ,v2d ,v
y

2d+1
, . . . ,vy

2m}.
(13)

As already mentioned, the integration is defined on reference elements and mapped via

(10) to Cx ×Cy. Subdividing the reference elements γ n and γ m according to Section 3.2

and expressing the integral I as a sum over these subcubes yields

I = c1

Z

γ n

Z

γ m
κγ(x̂, ŷ,0,0)dŷdx̂ = c1

2
n,2m

∑
i, j=1

Z

γ n
i

Z

γ m
j

κγ(x̂, ŷ,0,0)dŷdx̂. (14)
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The integrals over the domains γ n
i × γ m

i with i ∈ {1, . . . ,2d} are singular (cf. Definition

2.5), since they share a common d-dimensional face. The pairings γ n
i × γ m

j with i, j ∈

{1, . . . ,2d}, i 6= j, share common d∗-dimensional faces with d∗ ∈ {0, . . . ,d−1}. In the case

of i > 2
d or j > 2

d the pairing is regular. Thus the integral I is given by

I = c1

2
d

∑
i=1

Z

γ n
i

Z

γ m
i

κγ(x̂, ŷ,0,0)dŷdx̂

+ c1 ∑
γ n

i ×γ m
j ∈Γreg

Z

γ n
i

Z

γ m
j

κγ(x̂, ŷ,0,0)dŷdx̂

+ c1

d−1

∑
d∗=0

∑
γ n

i ×γ m
j ∈Γd∗

Z

γ n
i

Z

γ m
j

κγ(x̂, ŷ,0,0)dŷdx̂.

(15)

The integrals over the pairings γ n
i × γ m

i with i ∈ {1, . . . ,2d} can be expressed in terms of I

exploiting the translation invariance (3) and the homogeneity (4) of the kernel, since

c1

Z

γ n
i

Z

γ m
i

κγ(x̂, ŷ,0,0)dŷdx̂ = c1

(

1

2

)n+m
Z

γ n

Z

γ m
κγ

(

x̂
2
, ŷ

2
,υii,υii

)

dŷdx̂

= c1

(

1

2

)n+m+α
Z

γ n

Z

γ m
κγ (x̂, ŷ,0,0) dŷdx̂

=
(

1

2

)n+m+α
I,

(16)

as the pairings γ n
i × γ m

i , i ∈ {1, . . . ,2d}, are equivalent to γ n × γ m, if υii is chosen in such a

way that Remark 3.2 is valid.

Combining (15) and (16) we arrive at

I = 2
dcI +c1 ∑

γ n
i ×γ m

j ∈Γreg

Z

γ n
i

Z

γ m
j

κγ(x̂, ŷ,0,0)dŷdx̂

+c1

d−1

∑
d∗=0

∑
γ n

i ×γ m
j ∈Γd∗

Z

γ n
i

Z

γ m
j

κγ(x̂, ŷ,0,0)dŷdx̂

=
c1

1−2dc



 ∑
γ n

i ×γ m
j ∈Γreg

Z

γ n
i

Z

γ m
j

κγ(x̂, ŷ,0,0)dŷdx̂

+
d−1

∑
d∗=0

∑
γ n

i ×γ m
j ∈Γd∗

Z

γ n
i

Z

γ m
j

κγ(x̂, ŷ,0,0)dŷdx̂





(17)

which is valid for constants

c =

(

1

2

)n+m+α

, α 6= −(n+m)+d.

The right-hand side of (17) contains only regular addends and singular ones with lower

dimension of the common face. After a maximum of d applications of the method to
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the remaining singular integrals, all singular parts can be expressed in terms of regular

integrals.

Example 3.4 (integration over two identical cubes)

Let us consider the integral I defined on two arbitrary but identical cubes Cx = Cy =
conv{v1, . . . ,v8} ⊂ R

3 and a kernel function κ(x,y) satisfying (3) and (4). We are inter-

ested in determining

I =
Z

Cx

Z

Cy
κ(x,y)dydx

= c1

Z

γ 3

Z

γ 3

κγ(x̂, ŷ,0,0)dŷdx̂

= c1

8

∑
i, j=1

Z

γ 3

i

Z

γ 3

j

κγ(x̂, ŷ,0,0)dŷdx̂.

Applying (17) for identical elements γ n
i = γ m

j (n = m = d = 3) yields

I =
c1

1−8c



 ∑
γ n

i ×γ m
j ∈Γreg

Z

γ 3

i

Z

γ 3

j

κγ(x̂, ŷ,0,0)dŷdx̂

+ ∑
γ n

i ×γ m
j ∈Γ0

Z

γ 3

i

Z

γ 3

j

κγ(x̂, ŷ,0,0)dŷdx̂

+ ∑
γ n

i ×γ m
j ∈Γ1

Z

γ 3

i

Z

γ 3

j

κγ(x̂, ŷ,0,0)dŷdx̂

+ ∑
γ n

i ×γ m
j ∈Γ2

Z

γ 3

i

Z

γ 3

j

κγ(x̂, ŷ,0,0)dŷdx̂



 ,

with a constant c =
(

1

2

)6+α
, α 6= −3. The number of regular elements (Γreg) in the case

of identical elements is zero, the case of common points (Γ0) appears 8 times, the case

of common edges (Γ1) 24 times and the case of common faces (Γ2) 24 times.

For the 24 common faces (γ 3

i ×γ 3

j ∈ Γ2) the following is valid. In order not to overload

the symbols, we will not change the notation except the additional index at Ii j. The

reader has to keep in mind that an additional step of transformation, namely the map-

ping of the reference element γ 3 to γ 3

i and γ 3

j resp., is necessary by which the shape of

κγ and c1 is altered.

Ii j =
Z

γ 3

i

Z

γ 3

j

κγ(x̂, ŷ,0,0)dŷdx̂

= ĉ1

Z

γ 3

Z

γ 3

κ̂γ( ˆ̂x, ˆ̂y,0,0)d ˆ̂yd ˆ̂x

= ĉ1

8

∑
i, j=1

Z

γ 3

i

Z

γ 3

j

κ̂γ( ˆ̂x, ˆ̂y,0,0)d ˆ̂yd ˆ̂x.
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Applying (17) with d = 2 yields

Ii j =
ĉ1

1−4c



 ∑
γ n

i ×γ m
j ∈Γreg

Z

γ 3

i

Z

γ 3

j

κ̂γ( ˆ̂x, ˆ̂y,0,0)d ˆ̂yd ˆ̂x

+ ∑
γ n

i ×γ m
j ∈Γ0

Z

γ 3

i

Z

γ 3

j

κ̂γ( ˆ̂x, ˆ̂y,0,0)d ˆ̂yd ˆ̂x

+ ∑
γ n

i ×γ m
j ∈Γ1

Z

γ 3

i

Z

γ 3

j

κ̂γ( ˆ̂x, ˆ̂y,0,0)d ˆ̂yd ˆ̂x



 ,

which is valid for a constant c =
(

1

2

)6+α
and α 6= −4. In the case of a common face, Γ1

contains 8 elements, Γ0 4 elements and Γreg 48 elements. The shown procedure can be

repeated for all singular cases. As we have to keep the cases of identical elements, com-

mon points, edges and faces in mind as well, we are restricted to α /∈ {−3,−4,−5,−6}.

Table 1 gives an overview of the appearing number of cases and the total number of

regular integrals, if each singular case had to be treated independently. In the case of

two common cubes, the subdivision method leads to 47880 regular pairs. Because of

this, we will introduce equivalence classes to decrease the number of regular integrals

and to be able to reuse already achieved results.

Table 1: Number of pairings and number of regular integrals for Example 3.4.

case of number of total number of regular pairs

Γ3 Γ2 Γ1 Γ0 Γreg

common cube: 8 24 24 8 0 47880

common face: 4 8 4 48 1788

common edge: 2 2 60 186

common point: 1 63 63

3.4 Simplification by equivalence classes

The method described in Section 3.3 is usable but inefficient if each regular integral

is separately evaluated as shown in Table 1 of Example 3.4. Exploiting the properties

(3) and (4), we are able to decrease the number of regular integrals and reuse already

achieved results by using equivalence classes induced by the relation introduced in Def-

inition 2.6.

Consider two arbitrary hypercubes Cx ⊂ R
n and Cy ⊂ R

m embedded in R
n sharing a

common d-dimensional face, w.l.o.g.: n ≥ m ≥ d ≥ 0 and m > 0, as described in (13). If

these two elements are subdivided as described in Section 3.2, Nd∗ equivalence classes
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can be described whose representatives share d∗-dimensional faces where d∗ ≤ d. The

number Nd∗ of these classes can be quantified via [Cox73]

Nd∗ = 2
d−d∗

(

d

d∗

)

. (18)

The number N of equivalence classes is therefore given by

N =
d

∑
d∗=0

Nd∗ =
d

∑
d∗=0

2
d−d∗

(

d

d∗

)

. (19)

Now the solution can be described by a system of linear equations of the form AÎ = b.

Each row of the N ×N-matrix A = ai j|
N
i, j=1

describes the representation of exactly one

integral Ii, i = 1 . . .N, defined on a representative of the class i in terms of all equivalence

classes induced by the relation introduced in Definition 2.6. The diagonal and the off-

diagonal elements read
aii = 1−2

d∗
c = 1−2

d∗−n−m−α,
ai j = −ni jc,

(20)

where ni j reflects how often the equivalence class j occurs in the representation of class i.

The characteristics of the off-diagonal elements are only valid, if the reference elements

are mapped to the elements, which means that an additional step of scaling may occur.

If this step is skipped, additional scaling factors may appear in the matrix.

In this notation, the vector Î stores the values of the remapped representatives Ii of

the equivalence classes which have to be determined, and each entry of b collects the

values of the sum of the regular integrals of the class in question.

Remark 3.5

By an appropriate sorting of the equivalence classes, a triangular structure of A can be

achieved.

Remark 3.6

If the kernel κ(x,y) does not only fulfil (3) and (4), but is also symmetric and (partially)

rotationally invariant as described in Definitions 2.7 and 2.8, the system can be further

simplified. The potential of these simplifications are shown in Example 3.7 and 3.8.

Example 3.7 (simplified integration over two identical cubes)

Let us consider the same setting as given in Example 3.4, namely

I =
Z

Cx

Z

Cy
κ(x,y)dydx

= c1

Z

γ 3

Z

γ 3

κγ(x̂, ŷ,0,0)dŷdx̂

= c1

8

∑
i, j=1

Z

γ 3

i

Z

γ 3

j

κγ(x̂, ŷ,0,0)dŷdx̂

9



defined on two arbitrary but identical cubes Cx = Cy ⊂ R
3 and a kernel function κ(x,y)

satisfying (3) and (4). Determining the number of equivalence classes for this config-

uration via (19) yields N = 27. This covers one case of identical elements, 6 common

faces, 16 common edges and finally 8 common vertices. According to the numbers given

in the Γreg-column of Table 1, now only 1800 regular integrals occur.

Example 3.8 (Example 3.7 with rotationally invariant kernel)

Let us

now consider the same setting as in the example above but with the rotationally in-

variant kernel κ = 1

‖x−y‖ . In this case one has to consider 1 identical element, 1 common

face, 1 common edge, 1 common vertex and only 171 regular integrals occur. To be

more concrete, let Cx = Cy = [0.5,1]3 ⊂ R
3. Due to (3) we define I as follows,

I =
Z

[0.5,1]3

Z

[0.5,1]3

1

‖x− y‖
dydx =

Z

[0,0.5]3

Z

[0,0.5]3

1

‖x− y‖
dydx.

The method shown in the previous sections leads to 27 equivalence classes. Due to the

fact that the kernel is rotationally invariant, all classes with the same dimension in the

common face can be conflated into one single class. So only four classes remain. Possible

representatives are shown in Figure 2.

The matrix A of the system of linear equations is given by (21). For the numbers ni j

confer Table 1.

A =









1−2
dc −n12c −n13c −n14c

1−2
d∗

c −n23c −n24c

1−2
d∗

c −n34c

1−2
d∗

c









=









0.75 −0.75 −0.75 −0.25

0.875 −0.25 −0.125

0.9375 −0.0625

0.96875









.

(21)

The reader has to keep in mind that the parameter d∗ depends on the class in ques-

tion. Row one holds the data for the identical elements (d∗ = d = 3), row two rep-

resents elements with a common face (d∗ = 2), row three is the common edge case

(d∗ = 1) and row four the common point case (d∗ = 0). The parameter c is fixed with

c =
(

1

2

)(n+m−α)
=

(

1

2

)5
. The right-hand side b collects the values of the regular integrals

of the class in question. The concrete values as well as c1 j, which represents the value

c1 of class j, depend on the chosen representatives of the equivalence classes. (22) lists

the approximate values for the case of the elements shown in Figure 2 and the obtained

solution Î for the equivalence classes. The first entry of Î is the approximate value for

10



1 x2

1

x3

1

x1

(a) Identical element (d = d∗ = 3)

1 x2

1

x3

1

x1

(b) Common face (d∗ = 2)

1 x2

1

x3

1

x1

(c) Common edge (d∗ = 1)

1 x2

1

x3

1

x1

(d) Common point (d∗ = 0)

Figure 2: The representatives of the four equivalence classes of Example 3.8
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the problem presented here.

b =









0

0.0190194

0.0196264

0.0175234









, Î =









0.0588168

0.0306465

0.0221408

0.0180886









. (22)

4 Simplicial domains

As a second example this section covers domains of simplicial shape. The n-simplex is

an n-dimensional analogue of a triangle or a tetrahedron. It is the convex hull of a set

of n + 1 affinely independent points in Euclidean space of dimension n or higher. To

represent the fact of domains with simplicial shape we change the notation of (1) as

done in Section 3 and write

I =
Z

T x

Z

T y
‖x− y‖α dydx.

In contrast to Section 3 we shall restrict ourselves to dimensions n ≤ 3.

4.1 Local coordinates

Consider an arbitrary n-simplex T given by its corners {t1, . . . , tn+1,}, ti ∈ R
n. The refer-

ence simplex τ ⊂ R
n, τ = conv{0,e1, . . . ,en}, 0 denoting the origin and ei the unit vectors

of the Cartesian coordinate system, can be mapped to any given tetrahedron T via the

formula

x = ΦT (x̂) = t1 +J
T x̂ (x̂ ∈ τ) , (23)

J
T = (t2 − t1, . . . , tn+1 − t1) .

The superscripted T does not indicate the transpose. It is meant as an upper index.

Due to equation (23) we can repeat the procedure shown in Section 3.1 to transform

the integral I to an integral over n- and m-dimensional reference elements and write

I = c1

Z

τn

Z

τm
Kτ(x̂, ŷ,0,0)dŷdx̂. (24)

Here c1 denotes the product of the Jacobian determinants of ΦTx , ΦTy and

κτ(x̂, ŷ,υ
x,υy) = κ

(

ΦT (x̂)+υx,ΦT (ŷ)+υy
)

= κ(x+υx,y+υy) (υx,υy ∈ R
n) .

(25)

Any of the following considerations can now be performed on reference elements.

Remark 4.1

In general, t
Tx

1
6= t

Ty

1
and hence κ is not homogeneous. In the singular case we have t

Tx

1
= t

Ty

1

and equation (4) holds.
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4.2 Splitting and labelling

Splitting simplices in arbitrary dimensions is not as straightforward as splitting hyper-

cubes. So we restrict ourselves to dimensions n≤ 3 as already mentioned. The additional

points ti j which appear in the following are calculated via ti j =
ti+t j

2
.

4.2.1 1-Simplex splitting (line)

An arbitrary line, given by T = conv{t1, t2}, can be subdivided into 2 lines

T1 = conv{t1, t12}, T2 = conv{t12, t2}.

4.2.2 2-Simplex splitting (triangle)

A triangle T = conv{t1, t2, t3} can be decomposed into 4 triangles given by

T1 = conv{t1, t12, t13}, T3 = conv{t13, t23, t3},
T2 = conv{t12, t2, t23}, T4 = conv{t12, t13, t23}.

4.2.3 3-Simplex splitting (tetrahedron)

Any given tetrahedron T = conv{t1, t2, t3, t4} can be subdivided into 8 subtetrahedra

[Bey95]

T1 = conv{t1, t12, t13, t14}, T5 = conv{t12, t13, t14, t24},
T2 = conv{t12, t2, t23, t24}, T6 = conv{t12, t13, t23, t24},
T3 = conv{t13, t23, t3, t34}, T7 = conv{t13, t14, t24, t34},
T4 = conv{t14, t24, t34, t4}, T8 = conv{t13, t23, t24, t34}.

Remark 4.2

In every case, the first n + 1 subelements are equivalent to T as they contain the corners of

T , the remaining elements originate from the interior. In this setting, Ti is equivalent to T ,

if a labeling exists such that J in (6) holds with a constant c = 1

2
(cf. Definition 2.6).

Nevertheless a predication comparable to Remark 3.2 is not possible.

4.3 Computing the singular integral I

Let T x ⊂ R
n and T y ⊂ R

m be two arbitrary simplices embedded in R
n which share a

common d-dimensional face, w.l.o.g. 3≥ n≥m≥ d ≥ 0 and m > 0, given by their corners:

T x = conv{t1, . . . , td+1, t
Tx

d+2
, . . . , tTx

n+1
},

T y = conv{t1, . . . , td+1, t
Ty

d+2
, . . . , t

Ty

m+1
}.

(26)

13



As done in the previous sections, the integration is defined on reference elements and

mapped to T x ×T y by (23). The subdivision of reference elements τn, τm according to

Section 4.2 yields an expression which reads

I = c1

Z

τn

Z

τm
κτ(x̂, ŷ,0,0)dŷdx̂ = c1

2
n,2m

∑
i, j=1

Z

τn
i

Z

τm
j

κτ(x̂, ŷ,0,0)dŷdx̂. (27)

Now the singular parts in the sum on the right-hand side have to be identified. In

dimensions n > 1, unfortunately not all singular elements τn
i ×τm

j which share a common

d-dimensional face can be expressed in terms of I. So we have to distinguish different

cases.

4.3.1 The cases of a common point or a common edge (d = 0 and d = 1)

In the case of a common 0- or a 1-dimensional face, the integrals defined on τn
1
× τm

1
and

τn
1
× τm

1
, τn

2
× τm

2
, respectively, are singular in the sense of a common d-dimensional face.

So we note:

d = 0 : I = c1

Z

τn
1

Z

τm
1

κτ(x̂, ŷ,0,0)dŷdx̂

+c1 ∑
τn

i ×τm
j ∈Γreg

Z

τn
i

Z

τm
j

κτ(x̂, ŷ,0,0)dŷdx̂,

d = 1 : I = c1

Z

τn
1

Z

τm
1

κτ(x̂, ŷ,0,0)dŷdx̂+ c1

Z

τn
2

Z

τm
2

κτ(x̂, ŷ,0,0)dŷdx̂

+c1 ∑
τn

i ×τm
j ∈Γ0

Z

τn
i

Z

τm
j

κτ(x̂, ŷ,0,0)dŷdx̂

+c1 ∑
τn

i ×τm
j ∈Γreg

Z

τn
i

Z

τm
j

κτ(x̂, ŷ,0,0)dŷdx̂.

(28)

In the case of a common point (d = 0) only the domain τn
1
× τm

1
is singular. All singular

domains in the case of a common edge (d = 1) are listed in the following table. It

includes the two 1-faces as well:

τn
1 × τm

1 ,τn
1 × τm

2 ,τn
1 × τm

5 ,τn
1 × τm

6 ,

τn
2 × τm

1 ,τn
2 × τm

2 ,τn
2 × τm

5 ,τn
2 × τm

6 ,

τn
5 × τm

1 ,τn
5 × τm

2 ,τn
5 × τm

5 ,τn
5 × τm

6 ,

τn
6 × τm

1 ,τn
6 × τm

2 ,τn
6 × τm

5 ,τn
6 × τm

6 .
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As a closer look reveals, the integrals defined on τn
1
×τm

1
and τn

1
×τm

1
, τn

2
×τm

2
, respectively,

can be expressed in terms of I:

c1

Z

τn
i

Z

τm
i

κτ(x̂, ŷ,0,0)dŷdx̂ = c1

(

1

2

)n+m
Z

τn

Z

τm
κτ

(

x̂
2
, ŷ

2
,υii,υii

)

dŷdx̂

= c1

(

1

2

)n+m−α
Z

τn

Z

τm
κτ(x̂, ŷ,0,0)dŷdx̂

=
(

1

2

)n+m−α
I.

This means, υii is chosen in such a way that (7) holds with c = 1

2
. The combination of

the upper identity with (28) yields directly

d = 0 : I =
c1

1− c
∑

τn
i ×τm

j ∈Γreg

Z

τn
i

Z

τm
j

κτ(x̂, ŷ,0,0)dŷdx̂,

d = 1 : I =
c1

1−2c



 ∑
τn

i ×τm
j ∈Γ0

Z

τn
i

Z

τm
j

κτ(x̂, ŷ,0,0)dŷdx̂

+ ∑
τn

i ×τm
j ∈Γreg

Z

τn
i

Z

τm
j

κτ(x̂, ŷ,0,0)dŷdx̂



 .

(29)

The constant c equals c =
(

1

2

)n+m+α
. So the expressions are valid for α 6= −(n+m)+d.

4.3.2 The case of a common face (d = 2)

The case of a common face (d = 2) is the first one, in which a singular element of

dimension d appears, which cannot be expressed in terms of I and therefore requires an

additional splitting step.

Depending on the dimension of the subdivided elements τn and τm respectively, the

following domains are singular in the sense of a common 2-dimensional face:

n = 2, m = 2 : τ2

1 × τ2

1 τ2

2 × τ2

2 τ2

3 × τ2

3 τ2

4 × τ2

4,

n = 3, m = 2 : τ3

1 × τ2

1 τ3

2 × τ2

2 τ3

3 × τ2

3 τ3

6
× τ2

4,

n = 3, m = 3 : τ3

1 × τ3

1 τ3

2 × τ3

2 τ3

3 × τ3

3 τ3

6
× τ3

6
.

The domains in the last column of the upper table are inequivalent to τn×τm (cf. Section

4.2). To simplify the notation we shall denote the inequivalent pairing by τ◦•× τ◦• and

the according integral just by I• regardless of the concrete labelling. The following table

shows the domains τ2

4
and τ3

6
of the reference elements and the according transforma-

tions τ◦ → τ◦•, x̂ → x̄.

15



τ2

4 :

{(

0.5
0

)

,

(

0

0.5

)

,

(

0.5
0.5

)}

, x̄ =

(

0.5
0

)

+

(

−0.5 0

0.5 0.5

)

x̂

τ3

6
:











0.5
0

0



 ,





0

0.5
0



 ,





0.5
0.5
0



 ,





0.5
0

0.5











,

x̄ =





0.5
0

0



+





−0.5 0 0

0.5 0.5 0

0 0 0.5



 x̂

The element τ2

4
is shown in Figure 3 and a scaled and translated representative of ele-

ment τ3

6
is shown in Figure 4.

0.5 x1

0.5

x2

τ2

4

Figure 3: The domain τ2

4

The element pair τ◦•× τ◦• is inequivalent to the reference element pair τn
•× τm

• but has

the same dimension in the singular face. Therefore the elements τ◦• require their own

splitting according to Section 4.2. The repeated splitting yields pairs of domains which,

if singular in the sense of a common d-dimensional face, are equivalent either to τn × τm

or to τn
•× τm

• . So the solution takes the form

I = 3cI +I• +c1

d−1

∑
d∗=0

∑
τn

i ×τm
j ∈Γd∗

Z

τn
i

Z

τm
j

κτ(x̂, ŷ,0,0)dŷdx̂

+c1 ∑
τn

i ×τm
j ∈Γreg

Z

τn
i

Z

τm
j

κτ(x̂, ŷ,0,0)dŷdx̂

I• = 3cI• +c2
I +c1

d−1

∑
d∗=0

∑
τn

i ×τm
j ∈Γd∗

Z

τn
•i

Z

τm
• j

κτ(x̂, ŷ,0,0)dŷdx̂

+c1 ∑
τn

i ×τm
j ∈Γreg

Z

τn
•i

Z

τm
• j

κτ(x̂, ŷ,0,0)dŷdx̂

(30)
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which can easily be rewritten as a system of linear equations AÎ = b where

A =

(

1−3c −c

−c 1−3c

)

, Î =

(

I
1

c
I•

)

. (31)

The right-hand side b collects the sum of the integral values with lower dimension in

the singular face and the regular ones. The constant c is given as c =
(

1

2

)n+m+α
and the

determinant of A equals 1−6c+8c2. This restricts us to

α 6= −(n+m)+1 and α 6= −(n+m)+2

as otherwise A turns out to be singular.

Note that the second equation in (30) has been divided by c to obtain a more symmet-

ric form of the matrix. This is necessary to adapt the notation with regard to equivalence

classes.

4.3.3 The case of a common 3-face (d = 3)

The final and last configuration which can occur in the described setting is a common

3-dimensional face in the case of two identical tetrahedra. Splitting tetrahedra by the

technique presented in Section 4.2 yields four elements which are equivalent to τn × τm

and four elements which arise from the inner octahedron. They are not equivalent to

other elements and therefore require a separate splitting. The resplitting reveals an

additional element denoted by τ2

S which has to be splitted too. The five domains of

interest are listed in Table 2 and shown in Figure 4. All elements have already been

rescaled in such a way that the mapping of the reference elements does not require

scaling.

An additional subdivision and resizing of the five elements that are inequivalent to

τn × τm reveals a simple connection between the six classes which is reflected in the

following system AÎ = b where

A =

















1−4c −c −c −c −c 0

−c 1−4c −c −c 0 −c

−c −c 1−4c 0 −c −c

−c −c 0 1−4c −c −c

−c 0 −c −c 1−4c −c

0 −c −c −c −c 1−4c

















, Î =

















I
1

c
I5

1

c
I6

1

c
I7

1

c
I8

1

c2 IS

















. (32)

The right-hand side vector b again collects the sums of integrals defined on domains

with lower-dimensional singular face. Please note the scaling of the rows 2 to 6 of A

as mentioned in the previous Section 4.3.2. Again c is given by c =
(

1

2

)3+3+α
and the

system is solvable with a unique solution for α 6= {−3,−4,−5}.
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Table 2: Domains not equivalent to τ3

τ3

5
:











0

0

0



 ,





−1

1

0



 ,





−1

0

1



 ,





0

0

1











τ3

6
:











0

0

0



 ,





−1

1

0



 ,





0

1

0



 ,





0

0

1











τ3

7
:











0

0

0



 ,





0

−1

1



 ,





1

−1

1



 ,





0

0

1











τ3

8
:











0

0

0



 ,





1

0

0



 ,





1

−1

1



 ,





0

0

1











τ3

S :











0

0

0



 ,





0

−1

1



 ,





−1

0

1



 ,





0

0

1











4.4 Simplification by equivalence classes

To reduce the number of regular integrals in the case of hypercubical domains, equiv-

alence classes were introduced in Section 3.4. This is possible with simplices as well.

The number of equivalence classes and hence the size of the system AÎ = b now does

not only depend on the dimension of the singular face, but also on the dimension of

the domains. The values for the configurations covered in this section are shown in the

second column of Table 3.

The matrix takes a form similar to the one mentioned in (20), only the entries on the

main diagonal may differ, as they reflect the presence of inequivalent elements.

Even though it is possible to attain further simplifications in the case of symmetric and

(partially) rotationally invariant kernels, the achievements are not so massive as in the

case of hypercubical domains as column three of Table 3 illustrates.

5 Integrals with polynomial kernels

To make use of the method described in this paper, we assume that the integrand κ(x,y)
is translationally invariant (3) and homogeneous (4).

If it is possible to decompose a non-translationally invariant kernel into sums of trans-
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Table 3: The number of equivalence classes depending on n and m = d, resp., and the

simplifications attained by symmetric and rotationally invariant kernels.

dimensions number of d∗-dimensional pairs

unrotated rotated

Γ3 Γ2 Γ1 Γ0 Γ3 Γ2 Γ1 Γ0

n= 3, m = 3 6 36 270 3348 4 12 109 1266

n= 3, m = 2 2 10 82 2 10 82

n= 3, m = 1 1 6 1 6

n= 2, m = 2 2 6 18 1 3 6

n= 2, m = 1 1 4 1 4

n= 1, m = 1 1 2 1 1

1

x1

1

x2

1

x3

τ3

1

τ3

5

τ3

6

τ3

S

τ3

7

τ3

8

Figure 4: The domain τ3

1
and the five domains appearing in the subdivision of τ3

1
which

are not equivalent to τ3

1
.
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lationally invariant parts, even such configurations can be handled. A simple example

for such a case are kernels with a polynomial part like

κ(x,y) =
p(x,y)

‖x− y‖−α
. (33)

By translating such a kernel, additional expressions are added to the polynomial p(x,y),
which may not be extractable depending on the degree of the polynomial. To transform

the kernel into a sum of translational invariant parts, the binomial theorem can be used,

as it splits a polynomial into a sum of monomials. By doing so the shape of the parameter

c introduced in Sections 3 and 4 is altered, as the exponents of the monomials have to

be taken into account. Let the multi-index η hold the exponents of the monomial in

question. Then c is given by

c =

(

1

2

)n+m+α+∑n+m
i=0

ηi

.

The principle is illustrated in the following example.

Example 5.1

Consider a double integral defined on [0,1]× [0,1] and a kernel κ(x,y) = x2

‖x−y‖−α . So we

are interested in the value of

I =
Z

1

0

Z

1

0

x2

‖x− y‖−α
dydx

=
Z 1

2

0

Z 1

2

0

x2

‖x− y‖−α
dydx+

Z 1

2

0

Z

1

1

2

x2

‖x− y‖−α
dydx

+
Z

1

1

2

Z 1

2

0

x2

‖x− y‖−α
dydx+

Z

1

1

2

Z

1

1

2

x2

‖x− y‖−α
dydx.

(34)

The first addend is equivalent to τ1 × τ1 and the second covers the case of a common

point. Both terms are unproblematic in the first step of decomposition, as only scaling is

necessary and the translation does not affect the monomial:

Z 1

2

0

Z 1

2

0

x2

‖x− y‖−α
dydx =

(

1

2

)2

Z

1

0

Z

1

0

(

x
2

)2

‖
(

x
2

)

−
(

y
2

)

‖−α
dydx

=
(

1

2

)2+α+2

Z

1

0

Z

1

0

x2

‖x− y‖−α
dydx

= cI,
Z 1

2

0

Z

1

1

2

x2

‖x− y‖−α
dydx =

Z 1

2

0

Z 1

2

0

x2

‖x−
(

y+ 1

2

)

‖−α
dydx

=
(

1

2

)2+α+2

Z

1

0

Z

1

0

x2

‖x− y−1‖−α
dydx.
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Resplitting the case of a common point yields three regular elements and one which

is equivalent to the element it originates from. The remaining parts of the sum (34)

require the usage of the binomial theorem, which reads

(x+a)d =
d

∑
k=0

(

d

k

)

xkad−k.

Now the third addend which corresponds to the case of a common point, can be rewrit-

ten as

Z

1

1

2

Z 1

2

0

x2

‖x− y‖−α
dydx =

Z 1

2

0

Z 1

2

0

(

x+ 1

2

)2

‖
(

x+ 1

2

)

− y‖−α
dydx

=
(

1

2

)2+α+2

Z

1

0

Z

1

0

(x+1)2

‖x− y+1‖−α
dydx

=
(

1

2

)2+α+2
2

∑
k=0

(

2

k

)

1
2−k

Z

1

0

Z

1

0

xk

‖x− y+1‖−α
dydx,

requiring the solution of three cases of a common point but with different exponents k

in the monomial. For all k we may write:

Z

1

0

Z

1

0

xk

‖x− y+1‖−α
dydx =

Z 1

2

0

Z 1

2

0

xk

‖x− y+1‖−α
dydx

+
R

1

2

0

R

1
1

2

xk

‖x−y+1‖−α dydx

+
Z

1

1

2

Z 1

2

0

xk

‖x− y+1‖−α
dydx

+
R

1
1

2

R

1
1

2

xk

‖x−y+1‖−α dydx.

Only the second part of the upper sum is singular but it is equivalent to the source

element it originates from. A similar way has to be used to rewrite the fourth part of the

sum in (34), a case which is partially equivalent to I.

Z

1

1

2

Z

1

1

2

x2

‖x− y‖−α
dydx =

Z 1

2

0

Z 1

2

0

(

x+ 1

2

)2

‖x− y‖−α
dydx

=
(

1

2

)2+α+2

Z

1

0

Z

1

0

(x+1)2

‖x− y‖−α
dydx

=
(

1

2

)2+α+2
2

∑
k=0

(

2

k

)

1
2−k

Z

1

0

Z

1

0

xk

‖x− y‖−α
dydx

=
(

1

2

)2+α+2
I

+
(

1

2

)2+α+2
1

∑
k=0

(

2

k

)

1
2−k

Z

1

0

Z

1

0

xk

‖x− y‖−α
dydx.
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The configurations for k = 0 and k = 1 can be treated by the same method as described

to obtain an appropriate splitting. Each splitting only depends on equivalence classes

of the same or lower degree in the monomial. This holds in general for the cases of a

d-dimensional face as well.

6 Uncovered parameter configurations

The method described in Sections 3 and 4 is not usable for certain hypersingular in-

tegrals. For example, if an n-dimensional and an m-dimensional hypercube share a d-

dimensional face, we are restricted to α 6= −(n+m)+d∗, ∀d∗ = d . . .0.

In the case of n = m = 1, [BH05] presents a solution of the problem in the form of

an alternative splitting strategy. This is based on the concept of Hadamard integrals

and cannot be generalised to higher dimensions as it would require the use of curved

subdomains.

7 Approximation of the regular integrals and quadrature error estimation

7.1 Theoretical estimates

As described in the introduction and mentioned in Definition 2.3, we assume that the

kernel κ is asymptotically smooth outside a neighbourhood of the possible singularity of

order g ∈ R≥0 at x = y. So we expect the existence of constants h0, h1 ∈ R>0 such that

|∂ν
x∂µ

yκ(x,y)| ≤ h1(h0)
|ν+µ|(µ+ν)! ‖ x− y ‖−g−|ν+µ| (35)

holds for all multi-indices ν∈N
n
0

and µ∈N
m
0

. Typically the parameters −α and g from (4)

will coincide. This expression can be rewritten to reflect the given geometric situation,

so it reads

‖ ∂ν
x∂µ

yκ(x,y) ‖∞,Dx
i ×D

y
j
≤

h1

δ
g
i j

(

h0

δi j

)|ν+µ|

(µ+ν)!, (36)

δi j := dist
(

Dx
i ,D

y
j

)

, for all settings where Dx
i ∩D

y
j = /0. If we now apply Theorem 3.2 of

[BG04] to the standard tensor product Chebyshev interpolation operator in dimension

d and combine this with (36) we obtain an expression which reads

‖κ− k‖∞,Dx
i ×D

y
j
≤

8eh1(2p)d+1

δ
g
i j

(

1+
h0ρi j

δi j

)(

1+
2δi j

h0ρi j

)−2p

,

ρi j := diam
(

Dx
i ×D

y
j

)

, including the Euler number e and k ∈ P2p−1, where P2p−1 denotes

the space of tensor product polynomials of order 2p−1. This can be rewritten as

‖κ− k‖∞,Dx
i ×D

y
j
≤

8eh1(2p)d+1

δ
g
i j

(

1+
h0ρi j

δi j

)(

h0ρi j

h0ρi j +2δi j

)2p

. (37)
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Up to this point, the given equations do not require approximation. All expressions

hold for exact values. But it is possible to replace the exact integrals by their approxima-

tions. We denote this byQ(I)Dx
i ×D

y
j

in contrast to the exact integrals IDx
i ×D

y
j
. With IDx

i ×D
y
j

we denote both the integral and its value.

Let Q(I)Dx
i ×D

y
j
be a method defined on Dx

i ×D
y
j, which is exact for tensor product poly-

nomials of order 2p−1. For example the tensor product Gauss quadrature fulfils this for

both cubical and simplicial domains [Str71].

As the method is exact for k ∈ P2p−1, the expression
∥

∥

∥IDx
i ×D

y
j
−Q(I)Dx

i ×D
y
j

∥

∥

∥ ≤ 2 min
k∈P2p−1

‖κ− k‖∞,Dx
i ×D

y
j

is valid. In conjunction with (37) this last expression yields the estimate

∥

∥

∥IDx
i ×D

y
j
−Q(I)Dx

i ×D
y
j

∥

∥

∥ ≤C(p)

(

h0ρi j

h0ρi j +2δi j

)2p

(38)

and C(p) = 16eh1(2p)d+1

δ
g
i j

(

1+
h0ρi j

δi j

)

. As δi j := dist
(

Dx
i ,D

y
j

)

> 0 for regular integrals, the

quadrature error converges exponentially in the order p.

The right-hand side b of the system of linear equations mentioned in Sections 3.4 and

4.4 collects only regular integrals of shape Iℓ,Dx
i ,D

y
j

for the ℓ-th equivalence class. We

denote the maximal approximation error by

ε := max

1 ≤ ℓ ≤ N

Dx
i ∩D

y
j = /0

{∥

∥

∥Iℓ,Dx
i ×D

y
j
−Q(I)ℓ,Dx

i ×D
y
j

∥

∥

∥

}

. (39)

Because (38) holds for all regular integrals, it is valid for ε as well:

ε ≤
16eh1(2p)d+1

δ
g
i j

(

1+
h0ρi j

δi j

)(

h0ρi j

h0ρi j +2δi j

)2p

.

The error of approximation for the singular integrals can now be bounded in the follow-

ing way:

‖Ii −Q(Ii)‖ ≤ c(A)ε

with a constant c(A), as the matrix A is constant with respect to the integration.

7.2 Numerical experiments

Finally we present the results of some numerical experiments. First, we choose as do-

main the reference cube γ3 = [0,1]3 ⊂ R
3. The integral takes the form

I =
Z

γ3

Z

γ3

x
ν1

1
x

ν2

2
x

ν3

3
y

µ1

1
y

µ2

2
y

µ2

2

‖x− y‖1
dy dx. (40)
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For such a configuration an exact solution can be obtained by [Hac02]. Table 4 presents

relative errors and the total number of kernel evaluations (in brackets) depending on

the degree of the numerator monomial of (40) and the number of Gauss points p using

the simplifications given by symmetry and rotation of elements where possible.

Second, we choose as domain the reference simplex τ3 = {0,e1,e2,e3}⊂R
3, 0 denoting

the origin and ei the unit vectors of the Cartesian coordinate system. Now the integral

takes the form

I =
Z

1

0

Z

1−x1

0

Z

1−x1−x2

0

Z

1

0

Z

1−y1

0

Z

1−y1−y2

0

x
ν1

1
x

ν2

2
x

ν3

3
y

µ1

1
y

µ2

2
y

µ2

2

‖x− y‖2
dy dx. (41)

As for such a configuration no exact solution is given, we calculate numerical results

using the method described in Section 4. The appearing regular integrals are approx-

imated by Gaussian integration of order 19 using p = 10 Gauss points. The obtained

values for lower number of Gauss points are compared to these values. The relative

errors and the total number of kernel evaluations (in brackets) using the simplifications

given by symmetry and rotation of elements where possible are given in Table 5.

Table 4: Relative errors and number of kernel evaluations (in brackets) for different

degrees of the numerator monomial and number of Gauss points on cubical

domains.

ν1...µ3 p=1 2 3 4 5 6 7

000000 1.438−04 9.267−05 5.390−09 1.767−09 3.476−13 6.444−13 2.465−14

(171) (10,944) (124,659) (700,416) (2,671,875) (7,978,176) (20,117,979)

000001 1.438−04 9.267−05 5.390−09 1.767−09 3.476−13 6.446−13 2.477−14

(450) (28,800) (328,050) (1,843,200) (7,031,250) (20,995,200) (52,942,050)

000002 6.719−03 8.821−05 7.060−08 1.781−09 1.294−11 8.498−13 2.895−14

(729) (46,656) (531,441) (2,985,984) (11,390,625) (34,012,224) (85,766,121)

000123 2.108−02 7.774−05 2.191−07 1.837−09 3.602−11 1.230−12 1.266−14

(5,376) (344,064) (3,919,104) (22,020,096) (84,000,000) (250,822,656) (63,2481,024)

012012 2.351−02 1.478−04 4.651−07 3.096−09 8.499−11 2.392−12 9.544−15

(11,052) (707,328) (8,056,908) (45,268,992) (172,687,500) (515,642,112) (1,300,256,748)

123123 4.498−02 2.495−04 1.586−06 5.418−09 2.480−10 3.724−12 4.300−13

(155,472) (9,950,208) (113,339,088) (636,813,312) (2,429,250,000) (7,253,701,632) (18,291,125,328)
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