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Abstract

We compare two functionals defined on the space of continuous func-
tions with compact support in an open neighborhood of the zero section
of the cotangent bundle of a torus. One comes from Viterbo’s symplectic
homogenization, the other from the Calabi quasi-states due to Entov and
Polterovich. In dimension 2 we are able to say when these two functionals
are equal. A partial result in higher dimensions is presented. We also in-
dicate a link to asymptotic Hofer geometry on T ∗S1. Proofs are based on
the theory of quasi-integrals and topological measures on locally compact
spaces.

1 Introduction

A symplectic quasi-integral on a symplectic manifold is a positive functional
on the space of continuous functions which is linear on Poisson-commutative
subspaces, and also satisfies a certain Lipschitz condition. Symplectic quasi-
integrals (under the name of symplectic quasi-states) have been constructed on a
variety of closed symplectic manifolds, for example, in [EP], [O], [U]; applications
can be found in [EP], [EPZ]. In the present paper we are interested in two
particular examples of symplectic quasi-integrals. One comes from Viterbo’s
symplectic homogenization on T ∗

T
n [V]; the other is the Calabi quasi-state on

CP n due to Entov and Polterovich [EP]. Our goal is to compare the two. As a
consequence of our computation of the homogenization operator in case n = 1 we
also obtain an explicit formula for the asymptotic Hofer norm of an autonomous
Hamiltonian flow on T ∗S1.

∗Fakultät für Mathematik, TU Dortmund; alexandra.monzner@tu-dortmund.de
†Max-Planck-Institut für Mathematik in den Naturwissenschaften; zapolsky@mis.mpg.de
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1.1 Results

For a topological space X we denote by C(X) the space of real-valued con-
tinuous functions on X while Cc(X) ⊂ C(X) is the subspace of functions with
compact support. The Calabi quasi-state is a certain non-linear functional
ζ: C(CP n) → R, while the symplectic homogenization is a non-linear opera-
tor H: Cc(T

∗
T

n) → Cc(R
n). Define η0: Cc(T

∗
T

n) → R by η0(f) = H(f)(0) for
f ∈ Cc(T

∗
T

n). For more information on ζ and H, see subsection 1.3.

1.1.1 Comparison

Our first result is for n = 1. For r ∈ (0, 1
2
] consider a symplectic embedding

j: Ur → S2, where Ur = S1 × (−r, r) ⊂ T ∗S1, such that j(S1 × {0}) is the
equator. The symplectic forms are standard and they are normalized so that the
area of S2 = CP 1 is 1 while the area of Ur is 2r. There is the induced extension-
by-zero map j!: Cc(Ur) → C(S2) and the pull-back functional ζr := j∗ζ = ζ ◦ j!
on Cc(Ur).

Theorem 1.1. The restriction of η0 to Cc(Ur) coincides with ζr if and only if
r ∈ (0, 1

4
].

Let us put this result into context and give some motivation. There are
moment maps Φ: CP n → R

n and Ψ: T ∗
T

n → R
n defined by

Φ([z0 : · · · : zn]) =

(
|z1|

2

∑n
j=0 |zj|

2
−

1

n+ 1
, . . . ,

|zn|
2

∑n
j=0 |zj|

2
−

1

n+ 1

)

and
Ψ(q, p) = p ,

where we view T ∗
T

n = T
n(q)× R

n(p). The functionals ζ and η0 satisfy

ζ(Φ∗f) = f(0), η0(Ψ
∗g) = g(0)

for f ∈ C(Rn) and g ∈ Cc(R
n). For η0 this follows from the ‘Lagrangian’

property of H, see below; for ζ this is proved in [EP]. There exists a symplectic
embedding with dense image j: U → CP n, where U = T

n × V ⊂ T ∗
T

n, V =
{p ∈ R

n | pj > − 1
n+1

,
∑

j pj <
1

n+1
}, which commutes with moment maps, that

is Φ ◦ j = Ψ. Consider again the induced map j!: Cc(U) → C(CP n) and the
pull-back functional j∗ζ = ζ ◦ j!. It follows that if F = Ψ∗f for f ∈ Cc(V ), then
j∗ζ(F ) = η0(F ), that is, the two functionals agree on functions pulled back via
the moment map. It is then natural to pose the following question:
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Question 1.2 (L. Polterovich). Do j∗ζ and η0 agree on all of Cc(U)? If not,
does there exist an open neighborhood V ′ ⊂ R

n of 0 such that they do on Cc(U
′)

where U ′ = T
n × V ′?

Theorem 1.1 answers this question for n = 1. Next we formulate a partial
negative result for n ≥ 2:

Proposition 1.3. For any ε, δ ∈ (0, 1
n(n+1)

) consider Uε,δ = T
n × Vε,δ, where

Vε,δ = (− 1
n+1

, ε)× (−δ, δ)n−1 ⊂ R
n .

Then the restrictions of η0 and j∗ζ to Cc(Uε,δ) do not coincide.

1.1.2 A link to asymptotic Hofer geometry

Given a symplectic manifold (M,ω) and a Hamiltonian diffeomorphism φ of
M generated by a time-dependent Hamiltonian with compact support, the Hofer
norm1) of φ is the number

‖φ‖Hofer = inf
f

∫ 1

0

(
max
M

ft −min
M

ft

)
dt ,

where the infimum is taken over all compactly supported Hamiltonians f : [0, 1]×
M → R generating φ and ft(·) ≡ f(t, ·). For an autonomous Hamiltonian f on
M denote by φt

f its flow and define the asymptotic Hofer norm of (the flow of)
f by

µ(f) = lim
t→+∞

‖φt
f‖Hofer

t
.

We refer the reader to [PS] for a discussion on µ. Ibid., the authors prove that
in case M is an open surface of infinite area, it is true that

µ(f) = c+(f)− c−(f) ,

where
c+(f) = sup

L∈L
min
L
f and c−(f) = inf

L∈L
max

L
f ,

L being the set of all embedded non-contractible circles in M . We show the
following

Lemma 1.4. If M = T ∗S1 with its canonical symplectic structure, then for
f ∈ C∞

c (T ∗S1) we have c+(f) = maxH(f) and c−(f) = minH(f).

1)See [P] for preliminaries on Hofer geometry.
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The proof is given in subsection 3.4. This implies

Corollary 1.5. The asymptotic Hofer norm of f ∈ C∞
c (T ∗S1) satisfies

µ(f) = maxH(f)−minH(f) .

In [V] it is proven that the quantity maxH(f) − minH(f) also equals the
so-called asymptotic Viterbo distance γ∞(f), see [SV] for definitions. It is true
in general that the asymptotic Viterbo distance is bounded from above by the
asymptotic Hofer norm (ibid.). The above discussion shows that in the au-
tonomous case we have an equality:

Corollary 1.6. For f ∈ C∞
c (T ∗S1) we have γ∞(f) = µ(f).

This should be contrasted with Theorem 2 of the same paper which gives a
construction of a fiberwise convex autonomous Hamiltonian on the closed disk
cotangent bundle B∗

T
n of a torus for which γ∞ is strictly less than the asymp-

totic Hofer norm. The latter however is defined using only Hamiltonians on
B∗

T
n which vanish on the boundary and which admit a smooth extension to

T ∗
T

n depending only on time and on ‖p‖ outside B∗
T

n (this particular flavor
of asymptotic Hofer geometry was introduced and first studied in [S]). The fact
that B∗

T
n has finite volume allows to use the Calabi invariant of the Hamiltonian

as a lower bound for its asymptotic Hofer norm, which is impossible on T ∗S1.

1.2 Quasi-integrals and topological measures

Our proofs use the following notion.

Definition 1.7. Let X be a locally compact Hausdorff space. A (not necessarily
linear) functional η: Cc(X) → R is called a quasi-integral if

(i) (Monotonicity) η(f) ≤ η(g) for f, g ∈ Cc(X) with f ≤ g;

(ii) (Lipschitz continuity) for every compact subset K ⊂ X there is a num-
ber NK ≥ 0 such that |η(f)− η(g)| ≤ NK‖f − g‖ for all f, g with support
contained in K;

(iii) (Quasi-linearity) η is linear on every subspace of Cc(X) of the form
{φ ◦ f |φ ∈ C(R), φ(0) = 0}, where f ∈ Cc(X).

If X is compact and η satisfies η(1) = 1, it is called a quasi-state. If X is a
symplectic manifold and η is linear on Poisson-commutative subspaces of C∞

c (X),
it is called symplectic.
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We use the uniform norm ‖f‖ = supx∈X |f(x)| for f ∈ Cc(X).

Remark 1.8. In caseX is compact, the notion of a quasi-integral was introduced
and first studied by Aarnes, see [A1]. It was generalized to various other settings,
see Remark 2.6 for more information. However, as far as we know, the notion
of a quasi-integral as a positive quasi-linear Lipschitz functional on the space of
continuous functions with compact support on a locally compact space is new.

It is shown in [EP] that the Calabi quasi-state is a symplectic quasi-state
according to the above definition. We also prove

Lemma 1.9. Let µ be a Radon measure2) on R
n. Then

ηµ :=

∫

Rn

H(·) dµ: Cc(T
∗
T

n) → R

is a symplectic quasi-integral; it is Lipschitz continuous with constant µ(K) for
functions with compact support in T

n ×K, where K ⊂ R
n is compact.

It follows that η0 = ηδ0 is a symplectic quasi-integral.

Remark 1.10. In [V], Viterbo formulated a version of this lemma, and proved
most of what is stated in it, although the proper definition of a quasi-integral on
T ∗

T
n was lacking.

Remark 1.11. Note that Theorem 1.1 is a comparison of the functional ζr
coming from the Calabi quasi-state and the functional η0 in dimension 2. For
measures µ other than the delta measure at 0, the functionals ζr and ηµ do not
coincide, as can be seen already by evaluating the two on functions pulled back
by the moment map Ψ. A similar remark applies in higher dimensions. Therefore
throughout we only speak about η0.

Remark 1.12. We draw the reader’s attention to the fact that the results of
section 1.1 have to do with the general question of uniqueness of symplectic
quasi-states and quasi-integrals. Linear quasi-integrals are in one-to-one corre-
spondence with Radon measures. In general, a positive linear combination of a
non-linear symplectic integral and of a linear one yields a non-linear one, so the
interesting question is whether symplectic integrals are unique up to the addition
of a measure. As Theorem 1.1 and Proposition 1.3 show, there is no uniqueness
of symplectic integrals on a neighborhood of the zero section in T ∗

T
n, even if we

impose additional conditions like Hamiltonian invariance (compare with subsec-
tion 1.3) and the values of the quasi-integral on functions pulled back from the
moment map Ψ.

2)A Radon measure for us is a locally finite regular Borel measure.
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In order to compare ζ and η0, we make use of a representation theorem for
quasi-integrals in terms of topological measures.

Definition 1.13. Let X be a locally compact Hausdorff space. Let K(X) be
the family of compact subsets of X, O(X) the family of open subsets of X with
compact closure, and A(X) = K(X)∪O(X). A function τ : A(X) → [0,∞) is a
topological measure if

(i) (Additivity) if A,A′ ∈ A(X) are disjoint and A ∪ A′ ∈ A(X), then
τ(A ∪ A′) = τ(A) + τ(A′);

(ii) (Monotonicity) τ(A) ≤ τ(A′) for A,A′ ∈ A(X) with A ⊂ A′;

(iii) (Regularity) τ(K) = inf{τ(O) |O ∈ O(X), O ⊃ K} for any K ∈ K(X)
(outer) and τ(O) = sup{τ(K) |K ∈ K(X), O ⊃ K} for any O ∈ O(X)
(inner).

Remark 1.14. A topological measure in this sense on a compact space is the
same as a usual Aarnes topological measure [A1].

Theorem 1.15. There is a natural bijection between the sets of quasi-integrals
and of topological measures on a locally compact space.

The description of the bijection, as well as a more precise formulation of the
theorem and its proof are the subject of section 2.

We use the following result as our main computational tool.

Lemma 1.16. Let τ be a topological measure on a manifold without boundaryM .
Then τ is uniquely determined by its values on codimension 0 compact connected
submanifolds with boundary of M .

Proof. This result for the case when M is closed was established in [Z1]. Re-
peated verbatim, that proof also shows that ifM is without boundary, the values
of τ on compact subsets of M are uniquely determined by its values on subman-
ifolds as mentioned in the lemma, but without the connectedness assumption.
Since a compact manifold with boundary has only finitely many connected com-
ponents and all of them are also compact subsets of M , the additivity of τ
suffices in order to restrict attention to connected submanifolds. Inner regular-
ity allows us to conclude that the values of τ on O(M) are then also uniquely
determined.

1.3 The functionals

Here we collect the necessary preliminaries about the Calabi quasi-state and
the homogenization operator.
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1.3.1 The Calabi quasi-state

Let τ denote the topological measure representing the Calabi quasi-state.
It is proved in [EP] that the Calabi quasi-state is invariant under Hamiltonian
diffeomorphisms. The same is then true for τ . We also need the following results
about τ .

The case n = 1. Here CP 1 = S2, with the area form normalized to have area
1. As Lemma 1.16 asserts, a topological measure is determined by its values on
compact connected subsurfaces with boundary. Any such subsurface of S2 has
the formW = S2−

⋃
iDi, where the Di are finitely many open disks with disjoint

closures. We have (see for example [A2] for a proof that this indeed defines a
topological measure)

τ(W ) =

{
0 , if area(Di) >

1
2
for some i

1 , otherwise
.

It also follows that if D is an open disk, then τ(D) = 0 if area(D) ≤ 1
2
and 1

otherwise. Finally, if L ⊂ S2 is an equator, that is, a simple closed curve such
that its complement is two open disks of area 1

2
, then τ(L) = 1. This is also

proved in [EP].
The case n ≥ 2. Let Tn

Clif = Φ−1(0) be the Clifford torus. Then τ(Tn
Clif) = 1.

Since τ is invariant under Hamiltonian isotopies, if L is Hamiltonian isotopic to
T

n
Clif, then τ(L) = 1.

1.3.2 The symplectic homogenization

If f ∈ Cc(T
∗
T

n), the function H(f) ∈ Cc(R
n) is defined as the limit of the

sequence fk, where fk(q, p) = f(kq, p) for k ∈ N. The convergence is that of the
time one flows of fk to the one of f with respect to a metric due to Viterbo,
which is defined using generating functions. See [V] for details. Note that ibid.,
the homogenization operator is also defined for time-dependent Hamiltonians;
we will not use this more general version, however.

The relevant properties for us are as follows:

(i) (Monotonicity) H(f) ≤ H(g) for f, g ∈ Cc(T
∗
T

n) with f ≤ g;

(ii) (Lipschitz continuity) ‖H(f)−H(g)‖ ≤ ‖f−g‖ for all f, g ∈ Cc(T
∗
T

n);

(iii) (Strong quasi-linearity) the restriction of H to any Poisson-commuting
subspace of C∞

c (T ∗
T

n) is linear;

(iv) (Invariance) if φ is a Hamiltonian diffeomorphism of T ∗
T

n generated by a
time-dependent Hamiltonian with compact support, then H(f ◦φ) = H(f)
for any f ∈ Cc(T

∗
T

n);
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(v) (Lagrangian) if f ∈ Cc(T
∗
T

n) is such that there is a constant c and
p ∈ R

n so that f = c on T
n × {p}, then H(f)(p) = c.

In subsection 3.1, we compute H using only these properties, which implies

Corollary 1.17. In the case n = 1 the homogenization operator is uniquely
determined by its properties.

Acknowledgements. We thank Leonid Polterovich for suggesting the topic
of this paper and for his interest in it, as well as for pointing out the link to
asymptotic Hofer geometry, and Karl Friedrich Siburg for useful discussions and
comments. The second author would like to thank Judy Kupferman and Marco
Mazzucchelli for listening to a preliminary version of the results and for helpful
suggestions.

2 Quasi-integrals and topological measures on

locally compact spaces

In this section X is a locally compact Hausdorff space. Any open subset of
X is a locally compact space on its own right. Note also that X is completely
regular; we will implicitly use this fact and its consequences. We use the theory
for the compact case, developed in [A1], without explicitly mentioning it.

Recall the definitions of a quasi-integral and of a topological measure on X,
Definitions 1.7, 1.13.

Given a quasi-integral ζ, define a set function τζ : A(X) → [0,∞) by

τζ(K) = inf{ζ(f) | f ∈ Cc(X), f ≥ 1lK}; τζ(O) = sup{ζ(f) | f ∈ Cc(X), f ≤ 1lO}

for K ∈ K(X) and O ∈ O(X). Here and in the sequel, 1l stands for the charac-
teristic function of a set.

The main result of this section is

Theorem 2.1 (Representation). The map ζ 7→ τζ is a bijection from the space
of quasi-integrals to the space of topological measures on X.

Most of this section is devoted to the proof of this theorem. We would like
to point out that in the original work [A1] Aarnes used delicate analysis in order
to prove his representation theorem. Instead of adapting his arguments to the
locally compact case, we rely on results valid in the compact case, the rest of the
proof being relatively elementary.

Subsection 2.1 contains the main technical step which allows a reduction to
the compact case. Subsection 2.2 is devoted to the proof of the representation
theorem. Subsection 2.3 contains the proof of Lemma 1.9.
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2.1 One-point compactifications

Fix O ∈ O(X) and let Ô = O ∪∞ be its one-point compactification. Recall
that

O(Ô) = {U ⊂ O open} ∪ {(O −K) ∪∞|K ∈ K(O)}

and
K(Ô) = K(O) ∪ {(O − U) ∪∞|U ⊂ O open} .

Fix a topological measure τ on X and define τ̂O: A(Ô) → [0,∞) by

τ̂O(U) = τ(U) , τ̂O(K) = τ(K)

and

τ̂O((O −K) ∪∞) = τ(O −K) , τ̂O((O − U) ∪∞) = τ(O)− τ(U)

for U ⊂ O open and K ∈ K(O).

Lemma 2.2. τ̂O is a topological measure on Ô.

The proof is a routine verification; we supply it for the sake of completeness.

Proof (of lemma 2.2). Note first of all that τ̂ ≡ τ̂O is well-defined. We need to
show that

(i) τ̂(Ô −K) + τ̂(K) = τ̂(Ô) for K ∈ K(Ô);

(ii) τ̂(K ∪K ′) = τ̂(K) + τ̂(K ′) for disjoint K,K ′ ∈ K(Ô);

(iii) τ̂(K) ≤ τ̂(K ′) for K,K ′ ∈ K(Ô) with K ⊂ K ′;

(iv) τ̂(K) = inf{τ̂(U) |U ∈ O(Ô), U ⊃ K} for K ∈ K(Ô).

We note the following: ifK,K ′ are compact subsets of O, then all of the above
properties follow immediately from the definition of τ̂ and the corresponding
properties of τ . The following then suffices to establish (i-iv). (i) Let K =
(O − U) ∪∞, where U ⊂ O is open. Then

τ̂(Ô −K) + τ̂(K) = τ(U) + (τ(O)− τ(U)) = τ(O) = τ̂(Ô) .

(ii) Let K ∈ K(O) and K ′ = (O − U) ∪∞ ∈ K(Ô) be disjoint, where U ⊂ O is
open. Then

τ̂(K ∪K ′) = τ̂(O− (U −K)∪∞) = τ(O)− τ(U −K) = (τ(O)− τ(U))︸ ︷︷ ︸
=τ̂(K′)

+ τ(K)︸ ︷︷ ︸
=τ̂(K)

.
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(iii) Let K ∈ K(O) and K ′ = (O − U) ∪ ∞ ∈ K(Ô) be such that K ⊂ K ′,
where U ⊂ O is open. Then K ⊂ O − U , which implies U ⊂ O − K, hence
τ(U) ≤ τ(O −K) = τ(O)− τ(K), and we have

τ̂(K ′) = τ(O)− τ(U) ≥ τ(K) = τ̂(K) .

Now assume K = (O − V ) ∪∞ ∈ K(Ô), with V ⊂ O open and K ⊂ K ′, where
K ′ is as above. Then V ⊃ U and so

τ̂(K) = τ(O)− τ(V ) ≤ τ(O)− τ(U) = τ̂(K ′) .

(iv) Let K = (O−U)∪∞ ∈ K(Ô), where U ⊂ O is open. If an opet set V ⊂ Ô
contains K, it has to be of the form V = (O−L)∪∞, where L ⊂ O is compact,
and then it follows that L ⊂ U . Thus

inf{τ̂(V ) |V ⊃ K open} = inf{τ(O)− τ(L) |L ⊂ U compact} ,

which equals

τ(O)− sup{τ(L) |L ⊂ U compact} = τ(O)− τ(U) = τ̂(K) ,

where the first equality follows from the inner regularity of τ .

Now we apply the one-point compactification process to quasi-integrals. Let
ζ be a quasi-integral. The space Cc(O) is dense in the C0 topology in the space

C0(Ô) = {f ∈ C(Ô) | f(∞) = 0}. The restriction of ζ to Cc(O) is Lipschitz

and so defines a unique extension ζ̂O to C0(Ô), which is also Lipschitz, with

the same Lipschitz constant as ζ|Cc(O). For a general f ∈ C(Ô) put ζ̂O(f) =

ζ̂O(f −f(∞))+λO ·f(∞), where λO = sup{ζ(g) | g ∈ Cc(O), g ≤ 1lO}. Although
λO = τζ(O), we will ignore this fact for the moment, because we need to express
everything in terms of ζ.

Lemma 2.3. ζ̂O is a quasi-integral on Ô.

Proof. Abbreviate ζ̂ = ζ̂O. It suffices to show (i) ζ̂(f) ≥ 0 for f ∈ C(Ô), f ≥ 0,

and (ii) ζ̂ is linear on every subspace of C(Ô) of the form {φ◦f |φ ∈ C(R)} with

f ∈ C(Ô).

Proof of (i). Let f ∈ C(Ô), f ≥ 0. Put f̃ = f − f(∞). We have ζ̂(f) =

ζ̂(f̃) + λOf(∞). Let ε > 0. There is g ∈ Cc(O) such that ‖f̃ − g‖ < ε and

0 ≥ min g = min f̃ ≥ −f(∞). There exists h ∈ Cc(O) such that 0 ≥ h ≥ min g
and h = min g on the support of g. We then have g ≥ h ≥ min g · 1lO and so

ζ̂(g) = ζ(g) ≥ ζ(h) ≥ λO ·min g = λO ·min f̃ ≥ −λO · f(∞) ,
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by the definition of λO and the linearity of ζ on R · h ⊂ Cc(O). Therefore

ζ̂(f̃) ≥ ζ̂(g)− Cε ≥ ζ(h)− Cε ≥ −λO · f(∞)− Cε ,

where the first inequality follows from the Lipschitz continuity of ζ̂|C0(Ô) with
constant C. Thus we obtained, for any ε > 0:

ζ̂(f) = ζ̂(f̃) + λO · f(∞) ≥ −Cε ,

which proves (i).

For (ii) let f ∈ C(Ô) and φ, ψ ∈ C(R). Since

ζ̂(φ◦f) = ζ̂(φ◦f−φ(f(∞)))+λOφ(f(∞)) = ζ̂((φ−φ(f(∞)))◦f)+λOφ(f(∞))

and similarly for ψ◦f and φ◦f+ψ◦f = (φ+ψ)◦f , proving that ζ̂(φ◦f+ψ◦f) =

ζ̂(φ◦f)+ζ̂(ψ◦f) is equivalent to proving that ζ̂[(φ−φ(f(∞)))◦f+(ψ−ψ(f(∞)))◦

f ] = ζ̂((φ − φ(f(∞))) ◦ f) + ζ̂((ψ − ψ(f(∞))) ◦ f), therefore we may assume

that φ(f(∞)) = ψ(f(∞)) = 0. Now let f̃ = f − f(∞), and let φ̃, ψ̃ be defined

by φ̃(t) = φ(t + f(∞)) and similarly for ψ̃. We then have φ̃(0) = ψ̃(0) = 0 and

φ̃ ◦ f̃ = φ ◦ f and same for ψ. Let now fk ∈ Cc(O) be a sequence whose limit is

f̃ . The fact that ζ is quasi-linear implies that

ζ(φ̃ ◦ fk + ψ̃ ◦ fk) = ζ(φ̃ ◦ fk) + ζ(ψ̃ ◦ fk) .

When k → ∞, the left-hand side tends to ζ̂(φ̃ ◦ f̃ + ψ̃ ◦ f̃) = ζ̂(φ ◦ f + ψ ◦ f),

while the right-hand side to ζ̂(φ̃ ◦ f̃) + ζ̂(ψ̃ ◦ f̃) = ζ̂(φ ◦ f) + ζ̂(ψ ◦ f), thereby
proving (ii).

2.2 Proof of Theorem 2.1

2.2.1 From quasi-integrals to topological measures

Recall that we defined a set function τζ using a quasi-integral ζ.

Proposition 2.4. τ = τζ is a topological measure.

Proof. Monotonicity: for pairs of compact subsets, as well as for pairs of open
subsets follows from the definition. If K ∈ K(X), O ∈ O(X) and O ⊂ K, then
for any function f such that f ≥ 1lK and any function g with g ≤ 1lO we have
f ≥ g and so τ(K) = inf ζ(f) ≥ sup ζ(g) = τ(O), the inf and sup being taken
over all such f, g. Assume now that K ⊂ O. Then there exist f ∈ Cc(X) with
values in [0, 1] such that f |K = 1 and f |X−O = 0. Thus τ(K) ≤ ζ(f) ≤ τ(O).
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Regularity: let K ∈ K(X). For outer regularity we have to prove that
τ(K) = inf{τ(O) |O ∈ O(X), O ⊃ K}. Denote the infimum by I. Then from
monotonicity it follows that τ(K) ≤ I and we want to show that τ(K) ≥ I. Let
ε > 0, and fix a compact set L containing K in its interior. By the definition of
the infimum and the fact that X is completely regular, there is a function f such
that f |K = 1, f = 0 outside the interior of L, and τ(K) ≥ ζ(f)−ε. By continuity
of f , compactness of K and local compactness of X, there is O ∈ O(X) such
that K ⊂ O ⊂ L and f |O > 1− ε. This means that any function g with g ≤ 1lO
satisfies f

1−ε
> g, and so 1

1−ε
ζ(f) ≥ τ(O). Putting this together, we obtain

τ(K) ≥ ζ(f)− ε ≥ (1− ε)τ(O)− ε ≥ τ(O)− ε(1 + τ(L)) ≥ I − ε(1 + τ(L)) .

Since ε was arbitrary and L is fixed, we get τ(K) ≥ I, as desired. A similar
argument shows inner regularity.

Additivity: again, for pairs of disjoint compacts and for pairs of disjoint
open sets this is more or less clear, that is follows fairly directly from the defini-
tions and the properties of inf and sup. The pickle is to establish additivity for a
pairK ∈ K(X), O ∈ O(X), which are disjoint, and such thatK∪O is either open
or compact. Let us assume that U = K ∪ O is open (and then necessarily with
compact closure); the case when the union is compact is treated similarly. Note
that regularity implies τ(U) ≥ τ(O) + τ(K), since for any compact K ′ ⊂ O the
union K ′ ∪K is disjoint, compact and contained in U , so τ(U) ≥ τ(K) + τ(K ′).
Taking the supremum over all such K ′, we obtain the statement. Thus it remains
to show τ(U) ≤ τ(O) + τ(K).

Also by the regularity of τ , we have the following statement: for any ε > 0
there is an open neighborhood P of K with compact closure such that whenever
f satisfies 1lK ≤ f ≤ 1lP , it is true that ζ(f) ≥ τ(K) ≥ ζ(f) − ε. We can
choose this P to lie inside any open neighborhood of K. Similarly, for any ε > 0
there is a compact set L ⊂ O such that if g satisfies 1lL ≤ g ≤ 1lO, we have
ζ(g) ≤ τ(O) ≤ ζ(g) + ε, and this L can be chosen to contain any prescribed
compact subset of O.

Let ε > 0. Let L be a compact subset of O, as we just described. Similarly,
let P be an open neighborhood of K with compact closure. We may assume that
P is contained in U−L. And finally, letM be a compact subset of U , containing
L ∪ P , which has the same property with respect to U , that is 1lM ≤ h ≤ 1lU
implies ζ(h) ≤ τ(U) ≤ ζ(h) + ε. Let h be such a function. Let h′′: X → [0, ε]
be such that h′′|K = ε and h′′ = 0 outside P , and set h′ = h + h′′. Then
h′|K = 1+ ε, 1 ≤ h′ ≤ 1 + ε on P and h′ = h outside P . Consider two functions
φ, ψ: [0, 1+ ε] → [0, 1] such that φ(t) = 0 for t ∈ [0, 1], φ(1+ ε) = 1 and ψ(t) = t
for t ∈ [0, 1] and φ(t) + ψ(t) = 1 for t ∈ [1, 1 + ε]. Define f = φ ◦ h′, g = ψ ◦ h′.
These functions have the following properties: 1lK ≤ f ≤ 1lP , 1lL ≤ g ≤ 1lO,

12



1lM ≤ f + g ≤ 1lU . It follows that

τ(K) + τ(O) ≥ ζ(f) + ζ(g)− ε = ζ(f + g)− ε ≥ τ(U)− 2ε ,

where the equality is due to the quasi-linearity of ζ. Thus we obtained the
required inequality.

2.2.2 From topological measures to quasi-integrals

Here we fix a topological measure τ and construct the corresponding quasi-
integral ζτ . Let O ∈ O(X) and let τ̂ = τ̂O be the topological measure induced on

Ô by the one-point compactification procedure. It gives rise to a quasi-integral
ζO: C(Ô) → R via the formula

ζO(f) = τ̂(Ô) ·min f +

∫ max f

min f

τ̂({f ≥ t}) dt .

Since ζO is monotone, quasi-linear, and Lipschitz with constant NO = τ̂(Ô) =

τ(O), the same properties are valid for its restriction to Cc(O) ⊂ C(Ô). There-
fore, if f ∈ Cc(X) has support in some O ∈ O(X), define ζτ (f) = ζO(f). The
only thing that we need to check is that this is a correct definition, that is, if
the support of f is contained in O′ ∈ O(X), then ζO(f) = ζO′(f). Since O ∩ O′

is also in O(X) and still contains the support of f , we see that it suffices to
consider the case O ⊂ O′. Now, both ζO and ζO′ are quasi-integrals, hence
ζO(f) = ζO(f

+)− ζO(f
−), and similarly for ζO′ , where f+(x) = min(0, f(x)) and

f−(x) = −max(0, f(x)). It follows that we may assume f ≥ 0. Since f has

compact support, min f = 0 on both Ô and Ô′; it also has the same maximum.
Now for t > 0 the set {f ≥ t} is compact and contained in the support of f . By
the definition of τ̂O and τ̂O′ we know τ̂O({f ≥ t}) = τ({f ≥ t}) = τ̂O′({f ≥ t}),
which means that the two functions coincide on (0,max f ], and hence so do their
integrals, which are equal, respectively, to ζO(f), ζO′(f).

2.2.3 The bijection

Now we have to show that the above procedures of going from quasi-integrals
to topological measures and back are inverse to each other.

Proposition 2.5. (i) Let τ be a topological measure. Then τζτ = τ ;

(ii) Let ζ be a quasi-integral. Then and ζτζ = ζ.

13



Proof. (i) Let σ = τζτ . Recall that if O ∈ O(X), there is a topological measure

on Ô induced by τ , τ̂O, and that ζτ restricted to Cc(O) coincides with the restric-
tion of the quasi-integral ζO corresponding to τ̂O. Now, if K ⊂ O is compact,
then

τ(K) = τ̂O(K) = inf{ζO(f) | f ∈ C(Ô), f ≥ 1lK} .

One can show that the value of the infimum remains unchanged if we only con-
sider functions with compact support in O, and then it also equals σ(K), by the
definition of σ. Thus σ = τ on K(X), and by inner regularity, the same is true
on O(X).

(ii) Let η = ζτζ . Since both ζ and η are quasi-integrals, they respect the
positive-negative decomposition of functions, namely ζ(f) = ζ(f+)− ζ(f−) and
same for η. Thus it suffices to show that ζ and η coincide on nonnegative
functions.

Fix O ∈ O(X) and consider ζ̂O, the quasi-integral induced on Ô from ζ
by the one-point compactification procedure. It is represented by a topological
measure τ ′ on Ô. Since the restrictions of ζ and ζ̂O to Cc(O) coincide, we have
τζ(K) = τ ′(K) for any compact K ⊂ O. Let f ∈ Cc(O) be nonnegative. Then

ζ(f) = ζ̂O(f) =

∫ max f

0

τ ′({f ≥ t}) dt =

∫ max f

0

τζ({f ≥ t}) dt = η(f) ,

the last equality being valid by the definition of η.

The proof of Theorem 2.1 is thereby complete.

Remark 2.6. Aarnes’s representation theorem was generalized to various set-
tings; we refer the reader to [Bo], [GL], [W]. The Borel quasi-measures, due to
Boardman [Bo], on a completely regular space are assumed to be defined on all
closed and open subsets, and the corresponding quasi-integral is then defined
on the space of all bounded continuous functions. As far as we know, quasi-
integrals on the space of continuous functions with compact support have not
been treated. If the space is assumed to be locally compact, these quasi-integrals
are more general than Borel quasi-integrals, in that every Borel quasi-integral
determines one as we defined in this paper. Topological measures as defined here
are a generalization of both Aarnes topological measures on compact spaces and
Radon measures on locally compact spaces. Let us also note that a topological
measure τ on a locally compact space X extends to a unique topological mea-
sure τ̂ on the one-point compactification X̂, such that τ̂(∞) = 0 if and only if
τ is bounded. This is the case if and only if the corresponding quasi-integral is
globally Lipschitz, and the Lipschitz constant evidently equals τ̂(X̂) = supA(X) τ .
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2.3 Proof of Lemma 1.9

Monotonicity follows from that of H and of integration. The fact that ηµ
is linear on Poisson-commuting subspaces of C∞

c (X) follows from the ‘Strong
quasi-linearity’ property of H.

It suffices to establish Lipschitz continuity for compact subsets of T ∗
T

n of the
form T

n ×K where K ⊂ R
n is compact. If a function f has support in T

n ×K,
the ‘Lagrangian’ property of H implies that H(f)(p) = 0 for p /∈ K. Let now g
be another function with support in T

n ×K. Then we have

|ηµ(f)− ηµ(g)| ≤

∫

Rn

|H(f)(p)−H(g)(p)| dµ(p) ≤

≤ µ(K)‖H(f)−H(g)‖ ≤ µ(K)‖f − g‖ ,

which proves Lipschitz continuity together with the announced bound on the
Lipschitz constant.

Since integration against a measure is linear, in order to prove the quasi-
linearity of ηµ, we need only show that H is linear on any subspace of Cc(T

∗
T

n)
of the form {φ ◦ f |φ ∈ C(R), φ(0) = 0} for f ∈ Cc(T

∗
T

n). Let f ∈ Cc(T
∗
T

n)
and φ, ψ ∈ C(R) with φ(0) = ψ(0) = 0; we can replace φ and ψ by functions
with compact support without altering φ ◦ f and ψ ◦ f . There are functions
fk ∈ C∞

c (T ∗
T

n), φk, ψk ∈ C∞
c (R) with φk(0) = ψk(0) = 0 for all k ∈ N, such

that fk → f , φk → φ, ψk → ψ, all in the C0 norm. It follows that

H(φk◦fk+ψk◦fk) → H(φ◦f+ψ◦f),H(φk◦fk) → H(φ◦f),H(ψk◦fk) → H(ψ◦f),

all in the C0 norm, due to the Lipschitz continuity of H. We have

{φk ◦ fk, ψk ◦ fk} = φ′
k ◦ fk · ψ

′
k ◦ fk{fk, fk} = 0

for all k, which implies, together with the ‘Strong quasi-linearity’ of H:

H(φk ◦ fk + ψk ◦ fk) = H(φk ◦ fk) +H(ψk ◦ fk) .

As k → ∞, the left-hand side of this equality tends to H(φ ◦ f + ψ ◦ f), while
the right-hand side tends to H(φ ◦ f) +H(ψ ◦ f), proving what we wanted.

3 Proofs and computations

3.1 The topological measure representing ηp0 for n = 1

Lemma 1.9 states that if p0 ∈ R, then

ηp0 := ηδp0 = H(·)(p0): Cc(T
∗S1) → R
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is a quasi-integral. According to the representation theorem 2.1 ηp0 determines
and is determined by a unique topological measure

τp0 := τηp0 : A(T ∗S1) → [0,∞).

Lemma 1.16 implies that τp0 is uniquely determined by its values on compact
connected subsurfaces with boundary of T ∗S1, and it is these values that we are
going to compute.

Such subsurfaces in T ∗S1 come in two types. The first type consists of sub-
surfaces with only contractible boundary components; any such subsurface is a
closed disk with holes. Subsurfaces of the second type are those with exactly
two non-contractible boundary components, both of which are isotopic to the
zero-section S1 × {0}; such a subsurface is a closed annulus with holes, the an-
nulus being Hamiltonianly isotopic to a standard one, that is, an annulus of the
form S1 × [a, b]. We claim that (i) τp0 vanishes on subsurfaces of the first type,
and (ii) if W is of the second type and the annulus is Hamiltonianly isotopic to
S1 × [a, b], then

τp0(W ) = 1l[a,b](p0) =

{
0 if p0 /∈ [a, b]

1 if p0 ∈ [a, b]
.

To prove claim (i), we note that the homogenization operator H vanishes
on functions with compact support in disks. Indeed, let U ⊂ T ∗S1 be an open
disk, let f have support in U , and let p ∈ R. Then there is a Lagrangian
L ⊂ T ∗S1 which is Hamiltonianly isotopic to a standard one Lp = S1 × {p},
and which avoids U . It follows that f = 0 on L. The properties ‘Invariance’
and ‘Lagrangian’ of H yield H(f)(p) = 0, and therefore H(f) = 0. From the
definition of τp0 it follows that τp0(U) = 0. If W is a subsurface contained
in a closed disk, let V ⊃ W be a slightly larger open disk. Then, using the
monotonicity of τp0 , we obtain

0 ≤ τp0(W ) ≤ τp0(V ) = sup{H(f)(p0) | f ∈ Cc(T
∗S1), f ≤ 1lV } = 0 .

Let us turn to claim (ii). Let W ⊂ T ∗S1 be a subsurface of the second type,
that is W = A−

⋃
i Ui, where A is a closed annulus and Ui ⊂ A are open disks

with disjoint closures. Due to the additivity of τp0 and the fact that τp0 vanishes
on open disks, we obtain

τp0(W ) = τp0(A)−
∑

i

τp0(Ui) = τp0(A) .

By assumption, A is Hamiltonianly isotopic to a standard annulus S1 × [a, b]
and since H is invariant under Hamiltonian isotopies it suffices to compute τp0
on annuli of this form.
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If p0 /∈ [a, b], let φ: R → [0, 1] be a continuous function such that φ(p) = 1 for
p ∈ [a, b] and φ(p) = 0 for p /∈ (a−ε, b+ε), where ε > 0 is chosen small enough so
that p0 /∈ (a− ε, b+ ε). Define f ∈ Cc(T

∗S1) by f(q, p) = φ(p). Again, invoking
the ‘Lagrangian’ property of H, we see that H(f)(p0) = 0. By definition,

τp0(S
1 × [a, b]) = inf{H(g)(p0) | g ∈ Cc(T

∗S1), g ≥ 1lA} .

Since f is one of the functions appearing in the latter infimum, it equals 0, and
consequently so does τp0(S

1 × [a, b]).
If, on the other hand, p0 ∈ [a, b], then for any function f ∈ Cc(T

∗S1) which
equals 1 on S1 × [a, b] we will obtain H(f)(p0) = 1, once more using property
‘Lagrangian’. It follows that

τp0(S
1 × [a, b]) = inf{H(f)(p0) | f ∈ Cc(T

∗S1), f ≥ 1lA} = 1 .

This establishes claim (ii).

Proof (of Corollary 1.17). The homogenization operator is determined by the
functionals H(·)(p) for p ∈ R. As we mentioned above, any such functional is
a quasi-integral and thus is uniquely determined by the topological measure τp
representing it. In turn, this topological measure is reconstructible from its values
on compact connected subsurfaces with boundary of T ∗S1. We computed these
values above, using only the aforementioned properties of the homogenization
operator, which implies that it is uniquely determined by those properties.

3.2 Proof of Theorem 1.1

Maintain the notations of subsection 1.1. As we said before, the idea is to
compare the topological measures τ0 and τr, representing η0 and ζr, respectively,
namely we will prove that the restriction of τ0 to A(Ur) coincides with τr if and
only if r ∈ (0, 1

4
].

The reader should now consult subsection 1.3.1 for the relevant results about
τ , the topological measure representing ζ.

We assume that τ0|Ur
= τr and show that r ∈ (0, 1

4
]. Suppose r > 1

4
. Let

D ⊂ Ur be a closed disk of area ≥ 1
2
. In subsection 3.1 we showed that the

topological measures τp vanish on disks, therefore τ0(D) = 0. On the other hand
j(D) ⊂ S2 is a closed disk of area ≥ 1

2
and thus τr(D) = τ(j(D)) = 1 6= 0 =

τ0(D), contradiction.
Finally we show that for r ∈ (0, 1

4
] we have τr = τ0|Ur

. Once again, being
topological measures on Ur, τ0 and τr are determined by their values on compact
subsurfaces with boundary. Therefore it suffices to show that τ0 and τr coincide
on the family of such subsurfaces.
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If W ⊂ Ur is of the first type (see subsection 3.1), then τ0(W ) = 0. Now
since W is contained in a closed disk ⊂ Ur, the assumption on r implies that this
closed disk has area < 1

2
, and consequently j(W ) is contained in a closed disk of

area < 1
2
as well, implying τr(W ) = τ(j(W )) = 0 = τ0(W ).

If W ⊂ Ur is of the second type, it is an annulus with holes, the annulus
being Hamiltonianly isotopic to a standard one A = S1 × [a, b]. By an argument
of subsection 3.1, τ0(W ) = τ0(A) = 1l[a,b](0). Let us now compute τr(W ) =
τ(j(W )). The subsurface j(W ) equals S2 −

(
D− ∪D+ ∪

⋃
iDi

)
, where D+ and

D− are the open disks in the complement of j(W ), containing the north and
the south poles, respectively (we assume without loss of generality that j(Ur)
avoids the poles), and Di are a finite number of open disks with pairwise disjoint
closures contained in j(Ur). Since the area of j(Ur) is at most 1

2
, each Di has

area ≤ 1
2
and thus τ(Di) = 0, which yields τ(j(W )) = τ

(
S2 − (D− ∪D+)

)
. By

area arguments it can be seen that 0 ∈ [a, b] if and only if the areas of D± are
≤ 1

2
, that is if and only if τ

(
S2 − (D− ∪ D+)

)
= 1, while 0 /∈ [a, b] if and only

if one of the disks D± has area > 1
2
if and only if τ

(
S2 − (D− ∪D+)

)
= 0. We

thus established that τ0(W ) = 1l[a,b](0) = τ(j(W )) = τr(W ), as required.

3.3 Higher dimensions

In this subsection we prove Proposition 1.3.

Proof (of Proposition 1.3). We denote by τ the topological measure representing
the Calabi quasi-state ζ. The idea of proof is to construct a Lagrangian torus
L ⊂ CP n which is Hamiltonian isotopic to the Clifford torus and which lies in
the image j(Uε,δ), such that j−1(L) equals the product ℓ×(Tn−1×{0}) ⊂ T ∗S1×
T ∗

T
n−1 = T ∗

T
n, where ℓ ⊂ T ∗S1 is contractible. Suppose that we constructed

such a torus. Then τ(L) = τ(Tn
Clif) = 1, while an argument similar to that of

the proof of claim (i) in subsection 3.1 shows that τ0(j
−1)(L) = 0 6= 1 = τ(L),

showing that j∗τ 6= τ0 on Uε,δ which implies that j∗ζ 6= η0 on Uε,δ, therefore
proving the desired claim.

We now turn to details. First of all, we give a formula for the symplectic
embedding j: U → CP n which commutes with the moment maps, as announced
in subsection 1.1.

For k ∈ N we denote by Bk(r) the open Euclidean ball of radius r in C
k,

centered at the origin. We remind the reader of the normalization of the Fubini-
Study form ωFS on CP n by

∫
CP 1 ωFS = 1. Consider the symplectic embedding

ι: Bn(1) → CP n , ι(z) =
[√

1−
∑

j |zj|
2 : z1 : · · · : zn

]
,

18



where the symplectic form on C
n is 1

π
times the standard one. Recall that

U := Uδ,ε = S1 × (− 1
n+1

+ ε, 2ε)×
(
S1 × (−δ, δ)

)n−1
,

and define

κ: U → Bn(1) by κ(q, p) =
(
(p1 +

1
n+1

)1/2e2πiq1 , . . . , (pn +
1

n+1
)1/2e2πiqn

)
.

Set j = κ ◦ ι. A direct computation shows that Ψ = Φ ◦ j. The Clifford torus
T

n
Clif satisfies

ι−1(Tn
Clif) = {z ∈ Bn(1) | |zj|

2 = 1
n+1

∀j}

and therefore j(Tn × {0}) = T
n
Clif.

Figure 1: The dotted line is the circle
{|z|2 = 1

n+1
}; the solid line is the curve

γ0. The inner and outer radii are ρ1, ρ2,
respectively.

Figure 2: The dash-dotted curve
is the zero section; the solid and
dashed curve is ℓ.

Let ρ1, ρ2, α > 0 be real numbers subject to the following conditions: 1
n+1

<

ρ22 <
1

n+1
+ ε, α < π

2
, and (1 − α

π
)(ρ22 −

1
n+1

) = ρ21 +
α
π
( 1
n+1

− ρ21). It is easy to
see that such numbers always exist. The last condition expresses the equality
of certain areas bounded by two curves, see below. Now consider the following
points in the complex plane:

η1 = ρ2e
iα, η2 = ρ2e

−iα, η3 = ρ1e
−iα, η4 = ρ1e

iα ,

and let γ0 be a continuous curve starting at η1, continuing counterclockwise
along the circle |z| = ρ2 until η2, then going to η3 along a straight line, following
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the circle |z| = ρ1 clockwise until η4 and finally connecting back to η1, again
along a straight line, see figure 1. Let ψ1 be a Hamiltonian diffeomorphism of C
generated by a time-dependent Hamiltonian with support in the disk {|z|2 < 1

n
},

and such that it maps the circle {|z|2 = 1
n+1

} to a smooth curve γ which is very

close to γ0, and such that γ ⊂ {0 < |z|2 < 1
n+1

+ ε}. That such a curve and
such a diffeomorphism exist follows from the fact that the signed area between
the curve γ0 and the circle {|z|2 = 1

n+1
} is zero, as follows from the conditions

satisfied by the numbers ρ1,2, α. Let ψ be the Hamiltonian diffeomorphism of(
B1( 1√

n
)
)n

given by ψ = ψ1 × id× · · · × id. This ψ is also generated by a time-
dependent Hamiltonian with compact support in the latter set; the set embeds
into Bn(1) and consequently into CP n via ι. It follows that ψ can be extended
by identity to a Hamiltonian diffeomorphism of CP n, and let us denote this
extended diffeomorphism again by ψ. Set L = ψ(Tn

Clif). It can be seen that
L = ι(γ × ({|z|2 = 1

n+1
})n−1) and that this torus is contained in j(U) with

j−1(L) = ℓ × (Tn−1 × {0}), where ℓ ⊂ T ∗S1 is a contractible curve, see figure
2. We thus constructed a torus with the required properties. The proof is
complete.

3.4 The quasi-integral ηp0 and proof of Lemma 1.4

Here we present an explicit formula for ηp0(f), where f is a sufficiently nicely
behaved function, in terms of the Reeb graph of f .

Call a function f ∈ C∞
c (T ∗S1) nice if there are numbers p′ ≤ p′′ and δ > 0

such that (i) f(q, p) is independent of q for p ∈ (−∞, p′ + δ] ∪ [p′′ − δ,∞), (ii)
f(q, p) = 0 for p /∈ (p′, p′′), (iii) f is generic Morse on S1 × (p′, p′′). Note that
p′, p′′ may be equal in which case f = 0.

It is easy to prove

Lemma 3.1. The set of nice functions is C0 dense in Cc(T
∗S1).

Thus it suffices to compute the values of ηp0 on nice functions in order to deter-
mine it completely. Let therefore f be nice. Define an equivalence relation on
T ∗S1 by declaring the equivalence classes to be equal to connected components
of level sets of f . The resulting quotient space is the Reeb graph Γ of f . It is
a tree. Let π: T ∗S1 → Γ denote the quotient map. Γ is a single point if and
only if f = 0, and then ηp0(f) = 0. Henceforth we assume f 6= 0. There are two
distinguished vertices in Γ0, which we call v− and v+, which correspond to the
connected components S1 × (−∞, p′] and S1 × [p′′,∞) of the level set {f = 0},
respectively. Let Γ0 be the unique connected linear (that is, of vertex degree
≤ 2) subgraph containing v±. Points in the interior of an edge of Γ0 correspond
to non-contractible components of regular level sets of f , while its vertices other
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than v± correspond to singular components, that is figures-eight, which are com-
prised of two non-contractible loops meeting at one point. The reader is referred
to figure 3 for an illustration.

Figure 3: The Reeb graph Γ (on the right) of the height function on a deformed
T ∗S1. The bold portion is the subgraph Γ0.

We are going to label points of Γ0 by subsets of R. To this end, for a non-
contractible smooth embedded circle C ⊂ T ∗S1 let l(C) ∈ R be its level, that
is the unique number such that C is Hamiltonianly isotopic to3) S1 × {l(C)}. If
w ∈ Γ0 lies in the interior of an edge, label it by the one-point set {l(w)}, where
l(w) = l(π−1(w)). If v ∈ Γ0 is a vertex other than v±, then there are exactly
two edges e′v, e

′′
v of Γ0 meeting at it. Let l′v = limw∈e′v l(w), l

′′
v = limw∈e′′v l(w),

where w tends to v. These two numbers are never equal4) and so we can assume
l′v < l′′v and we label v by the set [l′v, l

′′
v ]. Finally, label v− by (−∞, p′] and v+ by

[p′′,∞). Then ηp0(f) equals the value of f at the unique point w ∈ Γ0 such that
p0 belongs to the label set of w. A little more abstractly, define a continuous
map ι: R → Γ0 by sending p ∈ R to the unique point of Γ0 such that p belongs
to its label set. There is a continuous function f : Γ → R such that f = f ◦ π.
Then ηp0(f) = f(ι(p0)); put differently, H(f) = f ◦ι. These claims can be proven
using, for example, the techniques of [Z2].

Proof (of Lemma 1.4). We prove that c+(f) = maxH(f). The second statement
follows on replacing f by −f .

A slightly more delicate version of the ‘Lagrangian’ property of H, which is
proved in [V] implies that if L ⊂ T ∗S1 is a non-contractible smoothly embedded

3)The level can be computed as follows. Let γ: S1 → T ∗S1 be a parametrization of C such
that the composition pr ◦γ: S1 → S1 has degree 1, where pr : T ∗S1 → S1 is the projection to
the base. Then l(C) =

∫
S1 γ

∗λ, where λ = p dq is the Liouville form.
4)In fact, their difference is the area bounded by the figure-eight π−1(v).
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circle, then the existence of a number c such that f |L ≥ c implies H(f)(l(L)) ≥ c,
where l(L) is the level of L as above. Since f |L ≥ minL f , we have H(f)(l(L)) ≥
minL f , from which it follows that

maxH(f) ≥ H(f)(l(L)) ≥ min
L
f ,

and taking supremum over L ∈ L we obtain maxH(f) ≥ c+(f).
To prove the reverse inequality we first of all note that both c+ and maxH are

continuous in the C0 topology, and so it suffices to prove that c+(f) ≥ maxH(f)
for f a nice function. Choose such an f . Note that the function f : Γ → R

defined above is strictly monotone on the interiors of the edges of Γ0, because
interior points correspond to regular components of level sets of f . It follows
that maxH(f) = maxΓ0

f is the value of f at one of the vertices v of Γ0. Let
e be an edge of Γ0 adjacent to v. The continuity of f implies that maxH(f) =
f(v) = limw∈e f(w), where the limit is over interior points w ∈ e tending to v.
For w an interior point of e the component π−1(w) is a smoothly embedded non-
contractible circle, and f equals f(w) on it. Therefore c+(f) ≥ f(w). Passing to
the limit w → v we obtain c+(f) ≥ limw∈e f(w) = maxH(f).
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