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Abstract

Stochastic point processes with refractoriness appear frequently in the quantitative analysis of

physical and biological systems, such as the generation of action potentials by nerve cells, the

release and reuptake of vesicles at a synapse, and the counting of particles by detector devices.

Here we present an extension of renewal theory to describe ensembles of point processes with time

varying input. This is made possible by a representation in terms of occupation numbers of two

states: Active and refractory. The dynamics of these occupation numbers follows a distributed delay

differential equation. In particular, our theory enables us to uncover the effect of refractoriness on

the time-dependent rate of an ensemble of encoding point processes in response to modulation of the

input. We present exact solutions that demonstrate generic features, such as stochastic transients

and oscillations in the step response as well as resonances, phase jumps and frequency doubling

in the transfer of periodic signals. We show that a large class of renewal processes can indeed

be regarded as special cases of the model we analyze. Hence our approach represents a widely

applicable framework to define and analyze non-stationary renewal processes.

PACS numbers: 02.50.Ey, 87.19.ll, 87.18.Sn, 29.40.-n
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I. INTRODUCTION

Point processes are stochastic models for time series of discrete events: a particle passes

through an apparatus, a photon hits a detector, or a neuron emits an action potential

[1, 2]. As diverse as these examples are, they share three basic features that need to enter a

statistical description and which are illustrated in Fig. 1. The first feature is refractoriness.

Technical devices to detect point events typically cannot discriminate events in arbitrarily

short succession. This is addressed as the dead-time of the detector [3, 4]. The process of

vesicle release and transmitter recycling in the synaptic cleft is of similar nature [5]. Upon

the arrival of an action potential at the synapse, a vesicle might fuse with the membrane

and release its contents into the synaptic cleft. Subsequently the vesicle is reassembled for

future signaling, but it is available only after a certain delay, equivalent to a refractory

signalling component. In neurons, refractoriness can be the result of the interplay of many

cellular mechanisms, and possibly also of network effects [6]. In case of cortical neurons,

which are driven to produce an action potential mainly by fluctuations of the input currents

[7], refractoriness can model the time it takes to depolarize the membrane from a hyper-

polarized level that follows the action potential into a range in which action potentials can be

initiated by fluctuations. Generally, refractoriness can be described as a duration d for which

the component cannot be recruited to generate another event. In Fig. 1 it is illustrated as

a delay line. After the refractory time is elapsed, the component reenters the pool of active

components that can generate an event. The existence of such a pool is the second common

property of the examples. Each component process of the ensemble can be either active or

refractory. So an ensemble of neurons, vesicles, or detectors, can be treated in terms of the

occupation of two states, “active” and “refractory”, as depicted in Fig. 1, where A(t) ∈ [0, 1]

describes the fraction of components which are active at time t and 1 − A(t) is the fraction

of components that are currently refractory. The third feature is the stochastic nature of

event generation. The time of arrival of a particle at a detector, the fluctuation of the

membrane potential of a neuron that exceeds the threshold for action potential initiation,

and the release of a vesicle into the synaptic cleft can under many conditions be assumed

to happen stochastically. Given an independent transition density of λ(t) per time interval,

event generation follows an inhomogeneous Poisson process, as indicated in Fig. 1. In the

example of a detector, λ(t) corresponds to the actual rate of incoming particles, and we
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glects the effects of refractoriness on short time scales due to temporal coarse-graining of

the population dynamics.

From a more abstract perspective, the PPD is a very simple example of a point pro-

cess that exhibits stochastic transients, which are not shared by the ordinary Poisson pro-

cess. Besides its many applications, the PPD therefore is a prototype system to study non-

equilibrium phenomena in point process dynamics. Generally, non-stationary point processes

can be defined by two different models: by rescaling time [18–20] or by time-dependent pa-

rameters of the hazard. The drawback of the former method is that the transformation from

operational to real time distorts the inter-event intervals, such that, for example, a constant

refractory period is not maintained. An example how a time-dependent hazard function can

be derived from an underlying neuron model with time-dependent input is given in [21]. Our

approach differs with regard to the choice of the hazard function, which enables rigorous

analysis of the dynamics of the process.

To analytically investigate non-equilibrium phenomena in ensembles of renewal process,

a typical approach is to use a partial differential equation (PDE) for the probability density

of the ages of the components (time since the last event)[6]. In Section II we derive the two-

state representation of the PPD from the dynamics of the age density. We present analytical

solutions of the population dynamics for the response to a step change in the input rate in

Section III, and to periodic input rate profiles in Section IV. Finally, in Section V, we

generalize our results to random refractoriness. We compute the effective hazard function

of the resulting inhomogeneous renewal process, connecting it to the framework of renewal

theory. For the PPRD with gamma-distributed dead-times, as applied recently to model

neural activity [22], we show how the dynamics in terms of a distributed delay differential

equation can be reduced to a system of ordinary (non-delay) differential equations. Again

we study the transient response of an ensemble of processes to a step-like change in the

input rate and the transmission of periodic input. We observe that both distributed and

fixed refractoriness lead to qualitatively similar dynamical properties. At last we identify

the class of renewal processes that can be represented as a PPRD. As it turns out, this

covers a wide range of renewal processes.
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II. DYNAMICS OF AN ENSEMBLE OF PPDS

Point processes can be defined by a hazard function

h(t,Ht)
def
= lim

ǫ→0

1

ǫ
P [event in [t, t + ǫ] |Ht] , (1)

which is the conditional rate of the process to generate an event at time t, given the history

of event times Ht up until t. A process is a renewal process [1] if the hazard function depends

only on the time τ since the last event (age) instead of the whole history Ht. This can be

generalized to the inhomogeneous renewal process which, additionally, allows for an explicit

time dependence of the hazard function h(t,Ht) = h(t, τ).

Here we consider an ensemble of point processes defined by the hazard function

h(t, τ) = λ(t)θ(τ − d), (2)

where θ(t) = {1 for t ≥ 0, 0 else} denotes the Heaviside function, d ≥ 0 is called dead-

time, λ(t) ≥ 0 is the time-dependent input rate and τ ≥ 0 is the age of the component

process. This is an inhomogeneous renewal process, which is known as the Poisson process

with dead-time (PPD). The state of an ensemble of such processes can be described by the

time-dependent probability density of ages a(t, τ), for which a partial differential equation

is known [6]
∂

∂t
a(t, τ) = − ∂

∂τ
a(t, τ) − h(t, τ)a(t, τ). (3)

Solutions must conserve probability, which manifests itself in the boundary condition

a(t, 0) = ν(t), with the event rate of the ensemble

ν(t)
def
=

∫ ∞

0

h(t, τ)a(t, τ) dτ = λ(t)A(t). (4)

In the second step we inserted (2) and introduced the active fraction of component processes

with age τ ≥ d

A(t)
def
=

∫ ∞

d

a(t, τ) dτ. (5)

For τ < d, Eq. (3) simplifies to ∂ta(t, τ) = −∂τa(t, τ), implying

a(t + u, u) = a(t, 0) = ν(t) ∀u ∈ [0, d). (6)

Since a(t, τ) is normalized we obtain with the boundary condition and (6),

1 =

∫ ∞

0

a(t, τ) dτ =

∫ t

t−d

ν(s) ds + A(t). (7)
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This equation is the starting point of the analysis of interacting populations of refractory

neurons in [17]. Differentiation of (7) by t yields

d

dt
A(t) = λ(t − d)A(t − d) − λ(t)A(t) , (8)

which is a linear delay differential equation (DDE) with time-dependent coefficients. Its

forward solution for input λ(t) is uniquely defined given A(t) on an interval of length d [23].

However, not all solutions of (8) can be interpreted physically, since by differentiation of

(7) additive constants are lost. Only if the initial trajectory satisfies (7), Eq. (8) determines

the time evolution of the ensemble. With (4), the time-dependent output rate ν(t) follows.

Note that only in the case of the “pure” Poisson process with d = 0 we obtain ν(t) = λ(t),

because A(t) = 1 by (7).

Eq. (8) represents a more accessible description of the process in terms of the occupation

of the active and the refractory state (see Fig. 1 and Section I) compared to the dynamics

of the probability density of ages (3). This description is feasible because of the particular

nature of the hazard function of the PPD (2). In the following we will consider specific

solutions of (8).

III. SOLUTIONS FOR A STEP INPUT

If λ(t) = λ is constant, given the occupation A(t) = u(t) on the first interval t ∈ [−d, 0]

with u : [−d, 0] → [0, 1], solutions to (8) are known in integral form [23]

A(t) = u(0)g(t) +

∫ d

0

λu(s − d) g(t − s) ds (9)

for t ≥ 0, where we introduced the fundamental solution g(t). It obeys g(t) = {0 for t <

0, 1 for t = 0} and solves (8) for t > 0. As we will show, here g is in fact the shifted and

scaled auto-correlation function R of the process.

The inter-event interval density of the stationary PPD is f(t) = λθ(t − d)e−λ(t−d). For

t ≥ d, the integral equation

A(t) = (f ⋆ A)(t), (10)

is equivalent to the delay differential equation (8), which can be proven by differentiation

with respect to t (⋆ denotes the convolution). The auto-correlation function [1]

R(t) =
∞∑

k=0

f ⋆k(t), (11)

6



with f ⋆k(t)
def
= (f ⋆(k−1) ⋆ f)(t) for k ≥ 1 and f ⋆0 def

= δ(t), solves (10) for t ≥ d, and hence is a

solution of (8) in that domain. We find for k ≥ 1 that

f ∗k(t) = λk(t − kd)k−1e−λ(t−kd)θ(t − kd)/(k − 1)! . (12)

Given the initial trajectory g(t) for t ≤ 0, solving (8) by variation of constants for t ∈ [0, d]

yields g(t) = λ−1f(t + d) = λ−1R(t + d). Then due to uniqueness of the solution it holds for

all t ≥ 0 that

g(t) = λ−1R(t + d) . (13)

We apply these results to compute the response of A(t) if the input rate is switched from

λ0 to λ at t = 0, given the process was in equilibrium for t ≤ 0. Eq. (7) determines this

equilibrium to A(t) ≡ a0 = (1 + λ0d)−1, t ≤ 0. In this case, the step change in λ(t) enters

(9) as

Astep(t) = u(0)g(t) +

∫ d

0

λ(s − d)
︸ ︷︷ ︸

λ0

u(s − d) g(t − s) ds, (14)

for t ≥ 0. We insert (13) to obtain

Astep(t) =
a0

λ
R(t + d) +

λ0a0

λ

∫ d

0

R(t + d − s) ds

=
a0

λ
R(t + d) +

λ0a0

λ

(

1 − 1

λ
R(t + d)

)

=
a0λ0

λ

(
1 + (λ−1

0 − λ−1) R(t + d)
)
, (15)

where we used (7), which holds for g(t) = λ−1R(t + d). Fig. 2 shows this analytical solution

compared to direct numerical simulation of an ensemble of PPDs upon a step change of the

input rate λ(t) at t = 0. The output rate displays a marked transient, which increases with

the dead-time d and exhibits oscillations of frequency 1/d.

IV. TRANSMISSION OF PERIODIC INPUT

We now investigate an ensemble of PPDs with an input rate λ(t) ∈ R that is periodic. If

T is its period, we obtain the Fourier series λ(t) =
∑∞

k=−∞
Λke

ikωt, with ω = 2π
T

and Λk ∈ C.

Then the steady state solution for the active fraction A(t) of the PPD is also periodic in T ,

so it can be expressed as A(t) =
∑∞

k=−∞
αke

ikωt with αk ∈ C. Inserted into (7) we obtain

1 =
∞∑

k,l=−∞

Λlαkql+ke
i(l+k)ωt +

∞∑

k=−∞

αke
ikωt (16)
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Figure 2: Transients upon step change of the input rate λ(t) at t = 0. Exact analytical result (15)

(solid lines) and simulation of the ensemble rate of 1010 processes (crosses). Parameters: d [s] :

0.02, 0.05, 0.08 (light gray, mid gray, dark gray) A: λ0 = ((5Hz)−1 − d)−1, λ = ((10Hz)−1 − d)−1,

B: λ0 = ((10Hz)−1 − d)−1, λ = ((5Hz)−1 − d)−1.

where for k 6= 0
∫ t

t−d

eikωt dt =
1 − e−ikωd

ikω
eikωt def

= qke
ikωt,

and q0
def
= d. Since the Fourier basis functions {eikωt, k ∈ Z} are mutually orthogonal, we can

separate (16) for different k. This yields the infinite dimensional linear system of equations

δk,0 = qk

∞∑

l=−∞

Λlαk−l + αk, k ∈ Z. (17)

The ensemble averaged output rate of the PPD defined in (4) then follows as ν(t) =

λ(t)A(t) =
∑∞

k=−∞
βke

ikωt with the spectrum

βk =
∞∑

l=−∞

αk−lΛl = q−1
k (δk,0 − αk) , (18)

where we used (17). This given, we replace the αk by βk in (17) to obtain

βk = Λk −
∞∑

l=−∞

Λk−lqlβl, k ∈ Z. (19)

This relation shows how different frequencies of the output rate are coupled by a convolution

with the input spectrum. Note that inverting (19) yields the spectrum of the time-dependent

input rate λ(t) given the spectrum of the output rate signal ν(t).

Let us now consider the special case of a cosine-modulated input

λ(t) = λ0 + ǫ cos(ωt),
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which we obtain with Λk = {0 for |k| > 1, ǫ
2

for k ∈ {1,−1}, λ0 for k = 0}, λ0 ≥ ǫ ≥ 0.

Then for k ∈ N, (17) becomes a so-called three-term recurrence relation [24] of the form

0 = αn+1 + xnαn + ynαn−1 with xn = (q−1
n + λ0)(2/ǫ) and yn = 1. This relation has

two linearly independent solutions. The unique minimal solution is convergent and can be

obtained from the continued fraction rn−1 = −yn/(xn + rn) in a robust manner [24] using

the relation rn = αn+1/αn, n ≥ 0: Setting rN = 0 for some N ∈ N one computes (rn)0≤n<N

backwards and increases N until r0 does not change within the required tolerance. Inserting

α1 = r0α0 into (17) for k = 0 we solve for α0 to obtain α0 = (1 + d(λ0 + ǫℜ(r0)))
−1 (here ℜ

denotes the real part). The remaining αk follow recursively from αk+1 = αkrk and α−k = α⋆
k,

since A(t) ∈ R. The spectrum of the output rate is then given by (18). Fig. 3A shows the

output rate ν(t) for different input rate modulation frequencies f = ω/(2π). Fig. 3C,D

display the amplitude and phase of the three lowest harmonics of the output rate ν(t) as a

function of f . The time averaged emission rate (β0) depends on the modulation frequency.

It is maximized slightly below the characteristic frequencies f = k/d. This is due to the

oscillation of A(t), which is almost in phase at these frequencies and hence cooperates with

the oscillatory hazard rate λ(t) to enhance the emission (see Fig. 3D). Interestingly, the

first (β1) and second (β2) harmonic of ν(t) display maxima at different f . At a particular

modulation frequency f ≃ 1/(2d) the amplitude of the second harmonic (β2) is larger than

the first harmonic (β1), so that the ensemble activity is effectively modulated with twice the

input frequency (see Fig. 3A (a) and Fig. 3C): the ensemble performs a frequency doubling.

Fig. 3B shows the maximum over one period of the output rate trajectory. These maxima

are dominated by the maxima of the amplitude of the first harmonic. In particular, low

frequency input signals are transmitted to the output with strong distortion and reduced

intensity, because the fraction of non-refractory processes, A(t), is in anti-phase (Fig. 3D) to

λ(t) and hence suppresses the output rate’s modulation. This is in contrast to the common

view that the PPD transmits slow signals more reliably than the Poisson process [6]. Note

that only if the driving frequency f = n/d, n ∈ N is an integer multiple of the inverse

dead-time then A(t) = (1 + λ0d)−1 is constant in time and the output rate is proportional

to λ(t) without any distortion.
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Figure 3: Transmission of cosine-modulated input. A, B: Theoretical result (solid lines) and simu-

lation of an ensemble of 1010 processes (crosses). A: Steady-state rate ν(t) for different modulation

frequencies f , with fd: 0.42, 0.85, 1.0, 1.4 (a,b,c,d). B: νmax = max(ν(t)) for different f . Here d [s]:

0.02, 0.05, 0.08 (light gray, mid gray, dark gray) C,D: Amplitude (C) and phase (D) of harmonics

k ∈ {0, . . . , 3} of A(t) (19) (top) and ν(t) (18) (bottom) as a function of modulation frequency f .

Grayscale denotes order of harmonics k : 0, 1, 2, 3 (black, dark gray, mid gray, light gray), d = 80ms.

Other parameters in A-D: λ(t) = λ0(1 + 0.9 cos(2πft)), λ0 = (ν−1
0 − d)−1, ν0 = 10Hz.

V. RANDOM DEAD-TIME

For detector devices as well as for neurons, a fixed dead-time might be a somewhat

restricted model. Here we consider the PPRD as described in the introduction. Upon gen-

eration of each event, the PPRD draws an independent and identically distributed random

dead-time with the probability density function (PDF) ρ for the duration of which it remains

silent. The PPRD is still a renewal process, since it has no further dependencies on the event

history beyond the time since the last event. As in the case of a fixed dead-time in Section

II, the following analysis of the PPRD is based on the conservation of the total number of

processes in an ensemble. Inactive components must have generated an event at some time
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in the past, which leads to the normalization condition

1 = A(t) +

∫ t

−∞

A(t′)λ(t′)

∫ ∞

t−t′
ρ(x)dx dt′ . (20)

This equation can be seen as the generalization of the normalization condition (7), from

which the DDE (8) follows by differentiation, to the case of random dead-time. Analogously

the distributed DDE

d

dt
A(t) = −λ(t)A(t) +

∫ ∞

0

ρ(x)λ(t − x)A(t − x) dx (21)

follows from (20) by differentiation with respect to t. Eq. (21) describes the time-evolution

of the occupation of the active state for an ensemble of general PPRDs. Obviously, the

dynamics of the PPD (8) is recovered from (21) in case of the localized density ρ(x) =

δ(x − d). In the rest of this section, we will derive the hazard function h(t, τ) of the

PPRD, consider the case of gamma-distributed dead time and the associated step response,

generalize the transmission of periodic input to random dead-time, and finally identify the

class of renewal processes that can be represented by the PPRD.

For a given density ρ(x) of the dead-time it is not obvious what the hazard function of

the PPRD is. In order to relate the PPRD to renewal theory we compute its time-dependent

hazard function (1) here. Let

Q(t, τ)
def
= E [θ(τ − x)| last event at t − τ ]

denote the probability of the process to be active at time t, given the last event occured at

t − τ , where x is the random dead-time and E denotes the expectation value with respect

to x. The hazard function is then h(t, τ) = λ(t)Q(t, τ). With

Q(t, τ) = P [x < τ | last event at t − τ ]

= 1 − P [x ≥ τ | ev. at t − τ ∩ no ev. in (t − τ, t)]

= 1 − P [x ≥ τ ] /P [no ev. in (t − τ, t) | ev. at t − τ ]

we obtain

h(t, τ) = λ(t) (1 −F(τ)/E [F (t, τ |x)]) , (22)

where

F(τ) =

∫ ∞

τ

ρ(x)dx
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is the survivor function of the dead-time distribution and

F (t, τ |x) = exp(−θ(τ − x)

∫ t

t−τ+x

λ(t′)dt′)

is the survivor function of a PPD with dead-time x. In case of constant λ(t) = λ we further

have

E [F (t, τ |x)] = e−λτ

∫ τ

0

eλxρ(x)dx + F(τ).

The hazard function (22) is shown for constant λ(t) in Fig. 4A for the special case described

below. Eq. (22) was applied to generate realizations of the PPRD for Fig. 4B.

For gamma-distributed dead-time (8) can be transformed into a system of ordinary dif-

ferential equations. We exemplify the application of (21) for gamma distributed dead-times

with parameters n ∈ N and β ∈ R
+,

ρ(x) = κn(x), (23)

κn(x) = βn+1xne−βx/n! , (24)

with E[x] = (n + 1)/β. The time course of the rate can be obtained from (21). Introducing

bk(t)
def
=

∫ t

−∞

κk(t − x)ν(x) dx

for 0 ≤ k ≤ n and bn+1(t)
def
= A(t) and exploiting the relation

d

dx
κk(x) = θ(k − 1)βκk−1(x) − βκk(x)

for 0 ≤ k ≤ n enables to replace the integral in (21) by a closed system of ordinary differential

equations

d

dt
bk(t) =







−bn+1(t)λ(t) + bn(t) k = n + 1

βbk−1(t) − βbk(t) 1 ≤ k ≤ n

βbn+1(t)λ(t) − βb0(t) k = 0.

(25)

For constant λ(t) = λ this can be written as d
dt
~b(t) = Mλ

~b(t), ~b(t) ∈ R
n+2. Hence given the

initial state ~b(0) the solution unfolds to

~b(t) = exp(Mλt) ·~b(0) . (26)

With ν(t) = ν = (λ−1 + E[x])−1 the equilibrium state follows: Setting the temporal deriva-

tives to 0 in (25) yields bk = ν for 0 ≤ k ≤ n, and bn+1 = A = 1− νE[x]. The rate response
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to a switch from λ0 to λ at t = 0 is thus given by (26) where ~b(0) is the equilibrium state

for λ0. A numerical simulation of the process with gamma distributed refractoriness (23)

with hazard function (22) and the corresponding analytical solution (26) upon a step change

of λ(t) are shown in Fig. 4. The simulation of the process was done via rejection [25] and

averaged over independent runs. The spread of dead-times (Fig. 4A) does not qualitatively

change the shape of the response transient (Fig. 4B).

Analogous to Section IV, we consider the case of periodic input. We insert the Fourier

series of λ(t) and A(t) into (20) and obtain the same relation of their spectra (16) as for a

single dead-time with the altered coefficients

qk =

∫ ∞

0

e−ikωy

∫ ∞

y

ρ(x)dx dy. (27)

As is easily seen, by inserting the localized dead-time PDF ρ(x) = δ(x−d) the original qk are

recovered. Hence all results of Section IV also hold for the PPRD, but with the coefficients

(27). In particular we would like to emphasize the validity of the general input-output

mapping (19) for arbitrarily distributed dead-time.

Let us now investigate which class of renewal processes can be represented by the PPRD.

We start with an arbitrary renewal process with inter-event interval I ∈ R+, defined by

its PDF ι(x). Let E ≥ 0 be an independent, exponentially distributed interval with PDF

ǫ(x) = λe−λx, and let R be the random dead-time with PDF ρ(x). For I to be a realization

of a PPRD it must hold for some ρ and λ ≥ 0 that

I = R + E ⇒ ι = ρ ⋆ ǫ ⇒ ι̂ = ρ̂ǫ̂ (28)

⇒ ρ̂ = λ−1(s + λ)ι̂ ⇒ ρ = λ−1L−1 [sι̂] + ι (29)

⇒ ρ(x) =
1

λ

(
d

dx
ι(x) + ι(0)

)

+ ι(x), (30)

where ˆ decorates a function which was transformed by the Laplace transform L, and s

denotes the Laplace variable. The renewal process defined by ι can be represented by a

PPRD if ρ is a PDF. Let us call the hazard function of the renewal process h(x), and the

survivor function F (x) = exp(−
∫ x

0
h(x′)dx′), which obey ι(x) = h(x)F (x) [1]. Assume that

ι(x) is differentiable. Since expression (30) is always normalized, in order for it to define a

suitable PDF we only have to require ρ(x) ≥ 0 for all x, possibly in the sense of distributions.

This translates into

λ−1
(
h′(x) − h2(x)

)
+ h(x) ≥ 0. (31)
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In case h(x) > 0, this can be written as

h(x) − h′(x)

h(x)
≤ λ. (32)

If, in addition, the hazard and its derivative are bounded in the sense that h(x) < ∞ and

h′(x) > −∞, there exists a λ > 0 such that (32) is fulfilled. These conditions are indeed

met by a large class of renewal processes.

For example, the gamma-process which has random inter-event intervals with PDF

ι(x) = κr(x) (23) with parameters r, β ∈ R, r ≥ 1, β ≥ 0 is by (30) equivalent to the

PPRD with ρ(x) = κr−1(x) and λ = β, but other choices of λ are also possible. This il-

lustrates the well known fact that the inter-event intervals of gamma processes with integer

shape parameter n can be considered as the concatenation of n exponentially distributed

intervals. In neuroscience the gamma-process is frequently used to model stationary time

series of action potential emissions of nerve cells. To describe adaptation phenomena, a time-

dependence of the parameters of the hazard function was introduced in [21]. Identification

of the gamma-process with a PPRD entails the alternative to generalize the gamma process

to time-dependent rates by varying the input rate of the PPRD. Similarly, the log-normal

process can be represented as a PPRD. We define its inter-event interval as x = ξ∆, where

ξ is a unit-less random number and ∆ gives the time-scale. Let ξ be distributed according

to the log-normal PDF

η(ξ) =
1√

2πξσ
exp

(

−(log ξ − µ)2

2σ2

)

for ξ > 0, η(0) = 0, with unit-less parameters µ, σ. Then x is distributed according to

ι(x) = ∆−1η(x/∆). According to (30) the process can be represented by any of the PPRDs

with

ρ(x) = ι(x)

(

1 − 1

xλ

(

1 +
log x

∆
− µ

σ2

))

λ ≥ ∆−1σ−2 exp
(
−1 − µ + σ2

)
,

where the lower bound on λ is due to the requirement ρ(x) ≥ 0. For these and other renewal

processes for which a PPRD representation exists, non-equilibrium dynamics can be studied

on the basis of (21).
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Figure 4: PPD with random dead-time with mean 80ms, shape parameter n: 10, 50 (black, gray).

A: density of dead-times ρ(τ)/ max(ρ(τ)) (23) (dotted lines) and hazard function h(τ)/λ0 (22) for

λ(t) = λ0 (solid lines). B: Transients upon step change of the input rate λ(t) at t = 0. Theoretical

result from (26) (solid lines) and simulation of an ensemble of 106 processes with hazard function

(22) (crosses) averaged over 225 trials. The error bars denote the standard deviation over trials.

λ0 = ((5Hz)−1 − d)−1, λ = ((10Hz)−1 − d)−1.

VI. DISCUSSION

In this paper, we consider the effect of refractoriness on the output of an encoding point

process in case of arbitrary time-dependent input signals. Such point processes, for example,

are used to model the generation of action potentials by nerve cells, the release and reuptake

of vesicles into the synaptic cleft, or the detection of particles by technical devices. We

describe ensembles of these stochastic processes by the occupation numbers of two states:

active and refractory. The active components behave as inhomogeneous Poisson processes,

but after an event is produced the component is silent for the duration of the dead-time, it

is caught in a delay line. We derive a distributed delay differential equation that describes

the dynamics in the general case of a randomly distributed dead-time.

Due to the simpler dynamics in case of a fixed dead-time, we first elaborate properties

of the PPD. For stationary input rate, we solve the dynamics of the ensemble in a way

that sheds light on the connection between the fundamental solution of the DDE and the

auto-correlation function of the point process. This relation is employed to express the time-

dependent ensemble rate (output) for a step-change of the hazard rate (input). The resulting

output rate displays stochastic transients and oscillations with a periodicity given by the

15



dead-time. Such transients might enable nerve cells to respond reliably to rapid changes in

the input currents [15, 26]. For periodically modulated input rate, we demonstrate how the

spectrum of the steady-state periodic output rate results from the linear coupling between

harmonics. In the particular case of cosine-modulated input signals only adjacent harmonics

are coupled. This nearest-neighbor interaction is rigorously solved using the theory of three-

term-recurrence relations and continued fractions [24].

Our analytic result explains frequency doubling, the emergence of higher harmonics and

the dependence of the time averaged population activity on the modulation frequency. In

particular, slow frequency components of the input are attenuated and distorted in the

population rate, which is in contrast to the claim that the PPD transmits slow frequency

signals more reliably than the Poisson process [6].

In case of periodic input modulation, the output spectrum contains all harmonics of the

fundamental frequency of the input. This might be related to a psychophysical phenomenon

called “missing fundamental illusion” [27, 28]: Being presented an auditory stimulus which

consists of several harmonics of a fundamental frequency, but in which the fundamental

frequency itself is missing, subjects nonetheless perceive the fundamental frequency as if it

was contained in the stimulus spectrum. By considering neurons in the auditory system

as PPDs whose hazard rate is modulated by the auditory stimulus, our theory explains

how the lowest harmonic is recovered in the population activity of the neurons. Conversely,

our results can be applied to infer input rate profiles from the count rate of detectors with

dead-time, in particular in the case of periodic input, for which (19) applies.

For the more general case of a random, arbitrarily distributed dead-time, we show how

the DDE generalizes to a distributed DDE. By suitable choice of the distribution of the dead-

time, non-equilibrium dynamics of a large class of renewal processes can be described. For

integer gamma-distributed dead-time we demonstrate how the distributed DDE transforms

into a coupled system of finitely many ordinary differential equations, which could also be

implemented as a multi-state Markov system [22]. Regarding the output rate transient

upon a step change of the input and the transmission of periodic inputs, we find that the

qualitative behavior of the system is very similar to the PPD. In conclusion, we present a

canonical model for non-stationary renewal processes, as well as the analytical methods to

describe ensembles thereof.
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