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ABSTRACT. Infinite dimensional Hamiltonian systems appear naturally in the
rich algebraic structure of Symplectic Field Theory. Carefully defining a gen-
eralization of gravitational descendants and adding them to the picture, one
can produce an infinite number of symmetries of such systems . As in Gromov-
Witten theory, the study of the topological meaning of gravitational descen-
dants yields new differential equations for the SF'T Hamiltonian, where the key
point is to understand the dependence of the algebraic constructions on choices
of auxiliary data like contact form, cylindrical almost complex structure, ab-
stract perturbations, differential forms and coherent collections of sections used
to define gravitational descendants.
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1. INTRODUCTION

Symplectic field theory (SFT), introduced by H. Hofer, A. Givental and Y.
Eliashberg in 2000 ([EGH]), is a very large project and can be viewed as a
topological quantum field theory approach to Gromov-Witten theory. Besides
providing a unified view on established pseudoholomorphic curve theories like
symplectic Floer homology, contact homology and Gromov-Witten theory, it leads
to numerous new applications and opens new routes yet to be explored.

While symplectic field theory leads to algebraic invariants with very rich
algebraic structures, it was pointed out by Eliashberg in his ICM 2006 plenary talk
([E]) that the integrable systems of rational Gromov-Witten theory very naturally
appear in rational symplectic field theory by using the link between the rational
symplectic field theory of prequantization spaces in the Morse-Bott version and
the rational Gromov-Witten potential of the underlying symplectic manifold,
see the recent papers [R1], [R2] by the second author. Indeed, after introducing
gravitational descendants as in Gromov-Witten theory, it is precisely the rich
algebraic formalism of SFT with its Weyl and Poisson structures that provides a
natural link between symplectic field theory and (quantum) integrable systems.
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Carefully defining a generalization of gravitational descendants and adding
them to the picture, the first author has shown in [F] that one can assign to
every contact manifold an infinite sequence of commuting Hamiltonian systems
on SFT homology and the question of their integrability arises. For this it is
important to fully understand the algebraic structure of gravitational descendants
in SFT. While it is well-known that in Gromov-Witten theory the topological
meaning of gravitational descendants leads to new differential equations for
the Gromov-Witten potential, it is interesting to ask how these rich algebraic
structures carry over from Gromov-Witten theory to symplectic field theory.

As a first step, we will show in this paper how the well-known string, dilaton
and divisor equations generalize from Gromov-Witten theory to symplectic field
theory, where the key point is the covariance of the algebraic constructions
under choices of auxiliary data like contact form, cylindrical almost complex
structure, abstract perturbations and coherent collections of sections used to define
gravitational descendants. It will turn that we obtained the same equations as in
Gromov-Witten theory (up to contributions of constant curves), but these however
only hold after passing to SFT homology.

Most of this paper was written when both authors were members of the Math-
ematical Sciences Research Institute (MSRI) in Berkeley and it was finished when
the first author was a postdoc at the Max Planck Institute (MPI) for Mathematics
in the Sciences in Germany and the second author was a postdoc at the Institut de
Mathematiques de Jussieu, Paris VI. They want to thank the institutes for their
hospitality and their great working environment. Further they want to thank Y.
Eliashberg, A. Givental, J. Latschev and D. Zvonkine for useful discussions.

2. SFT AND COMMUTING QUANTUM HAMILTONIAN SYSTEMS

Symplectic field theory (SFT) is a very large project, initiated by Eliashberg,
Givental and Hofer in their paper [EGH], designed to describe in a unified way the
theory of pseudoholomorphic curves in symplectic and contact topology. Besides
providing a unified view on well-known theories like symplectic Floer homology
and Gromov-Witten theory, it shows how to assign algebraic invariants to closed
contact manifolds (V, & = {\ = 0}):

Recall that a contact one-form A defines a vector field R on V by R € kerd\
and A(R) = 1, which is called the Reeb vector field. We assume that the contact
form is Morse in the sense that all closed orbits of the Reeb vector field are
nondegenerate in the sense of [BEHWZ]|; in particular, the set of closed Reeb
orbits is discrete. The invariants are defined by counting J-holomorphic curves in
R xV which are asymptotically cylindrical over chosen collections of Reeb orbits
r+ = {”yli,...,'yfi} as the R-factor tends to foo, see [BEHWZ]|. The almost
complex structure J on the cylindrical manifold R xV is required to be cylindrical
in the sense that it is R-independent, links the two natural vector fields on R xV/,
namely the Reeb vector field R and the R-direction ds, by J0s = R, and turns the
distribution £ on V into a complex subbundle of TV, £ = TV N JTV. We denote
by Mg, a(TT,T7)/R the corresponding compactified moduli space of genus g
curves with r additional marked points representing the absolute homology class
A € Hy(V) using a choice of spanning surfaces ((BEHWZ],[EGH]). Possibly after
choosing abstract perturbations using polyfolds following [HWZ], we get that
M, a(TF,T7) is a (weighted branched) manifold with corners of dimension equal
to the Fredholm index of the Cauchy-Riemann operator for .J. Note that as in [F]
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we will not discuss transversality for the Cauchy-Riemann operator but just refer
to the upcoming papers on polyfolds by H. Hofer and his co-workers.

Let us now briefly introduce the algebraic formalism of SFT as described in
[EGH]:

Recall that a multiply-covered Reeb orbit 4* is called bad if CZ(y*) # CZ(v)
mod 2, where CZ(~) denotes the Conley-Zehnder index of 4. Calling a Reeb orbit
v good if it is not bad we assign to every good Reeb orbit v two formal graded
variables p,, g, with grading

|p’y| =m —3— CZ(v), |Q'y| =m — 3+ CZ(v)

when dim V' = 2m — 1. Assuming we have chosen a basis Ay, ..., Ay of Ha(V), we
assign to every A; a formal variables z; with grading |z;| = —2¢1(A;). In order to
include higher-dimensional moduli spaces we further assume that a string of closed
(homogeneous) differential forms © = (61, ...,0x) on V is chosen and assign to every
0o € Q*(V) a formal variables ¢, with grading

[to] =2 — deg f,.
Finally, let & be another formal variable of degree |h| = 2(m — 3).

Let 20 be the graded Weyl algebra over C of power series in the variables 7, p,
and t; with coefficients which are polynomials in the variables ¢, and z,, which
is equipped with the associative product x in which all variables super-commute
according to their grading except for the variables p,, ¢, corresponding to the same
Reeb orbit ~,

[Py, 44] = py gy — (=1)P19lg wpy = sy h,
(K denotes the multiplicity of y.) Since it is shown in [EGH] that the bracket of
two elements in 2 gives an element in A2, it follows that we get a bracket on
the module A1 2. Following [EGH] we further introduce the Poisson algebra B of
formal power series in the variables p, and ¢; with coefficients which are polynomials
in the variables ¢, with Poisson bracket given by

_ 9f 99 \irng 99 OfF
{fmg}_;'%’Y(ap’yaq’y ( 1) 8p'yaq’y)'

As in Gromov-Witten theory we want to organize all moduli spaces
M. a(I'F,T7) into a generating function H € A~ 20, called Hamiltonian. In or-
der to include also higher-dimensional moduli spaces, in [EGH] the authors follow
the approach in Gromov-Witten theory to integrate the chosen differential forms
0, over the moduli spaces after pulling them back under the evaluation map from
target manifold V. The Hamiltonian H is then defined by

H-— Z [ eviOay A Aevi Oy, RO 1Ipl gl 24
r+ - Y/ Mgra(@tI7)/R
. + - d d
with t* = tal-..tozrv pF = pv;r--.p’Y:+’ qF = q’Yf"'q')/;f and Zd = ZOO T ZNN'

Expanding
H=h") H,n
g
we further get a rational Hamiltonian h = Hy € 3, which counts only curves with
genus zero.
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While the Hamiltonian H explicitly depends on the chosen contact form, the
cylindrical almost complex structure, the differential forms and abstract polyfold
perturbations making all moduli spaces regular, it is outlined in [EGH] how to
construct algebraic invariants, which just depend on the contact structure and the
cohomology classes of the differential forms.

In complete analogy to Gromov-Witten theory we can introduce r tautological
line bundles L1, ..., £, over each moduli space M, = M, 4(I'",I'")/R , where
the fibre of £; over a punctured curve (u, S ) € M, is again given by the cotangent
line to the underlying, possibly unstable nodal Riemann surface (without ghost
components) at the i.th marked point and which again formally can be defined
as the pull-back of the vertical cotangent line bundle of 7 : MTH — M, under
the canonical section o; : M, — M, .1 mapping to the i.th marked point in the
fibre. Note again that while the vertical cotangent line bundle is rather a sheaf
(the dualizing sheaf) than a true bundle since it becomes singular at the nodes in
the fibres, the pull-backs under the canonical sections are still true line bundles as
the marked points are different from the nodes and hence these sections avoid the
singular loci.

While in Gromov-Witten theory the gravitational descendants were defined
by integrating powers of the first Chern class of the tautological line bundle over
the moduli space, which by Poincare duality corresponds to counting common
zeroes of sections in this bundle, in symplectic field theory, more generally every
holomorphic curves theory where curves with punctures and/or boundary are
considered, we are faced with the problem that the moduli spaces generically
have codimension-one boundary, so that the count of zeroes of sections in general
depends on the chosen sections in the boundary. It follows that the integration of
the first Chern class of the tautological line bundle over a single moduli space has
to be replaced by a construction involving all moduli space at once. Note that this
is similar to the choice of coherent abstract perturbations for the moduli spaces in
symplectic field theory in order to achieve transversality for the Cauchy-Riemann
operator.

Keeping the interpretation of descendants as common zero sets of sections in
powers of the tautological line bundles, the first author defined in his paper [F]
the notion of coherent collections of sections (s) in the tautological line bundles
over all moduli spaces, which just formalizes how the sections chosen for the lower-
dimensional moduli spaces should affect the section chosen for a moduli spaces on

its boundary. Based on this he then defined descendants of moduli spaces M cM,
which were obtained inductively as zero sets of these coherent collections of sections

(s;) in the tautological line bundles over the descendant moduli spaces MM

So far we have only considered the case with one additional marked point. On the
other hand, as already outlined in [F], the general case with r additional marked
points is just notationally more involved. Indeed, we can easily define for every
moduli space M, = Mg, 4(I'",I'~)/R with r additional marked points and every

r-tuple of natural numbers (j1, ..., j) descendants Mﬁjl’“"”) C M., by setting

,0 —(0,...,0,7,
‘A mM 0

+0,5:,0,...,0

ﬂi‘jly”'vj’l‘) _ ﬂijho,...

) C M, are defined in the

same way as the one-point descendant moduli spaces ﬂi C M, by looking at

where the descendant moduli spaces ﬂio"”
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the r tautological line bundles £;, over the moduli space M, = HT(FJF’ /R

separately. In other words, we inductively choose generic sections sir in the line
j -(0,..-,0,5,0,...,0 i \— -(0,...,0,5-1,0,...,0 wi
bundles L?ﬂ to define ./\/li ! - (s7,)710) C ./\/li ! e M.

With this we can define the descendant Hamiltonian of SFT, which we will
continue denoting by H, while the Hamiltonian defined in [EGH] will from now on
be called primary. In order to keep track of the descendants we will assign to every
chosen differential form 6; now a sequence of formal variables ¢; ; with grading

|ti,j| = 2(1 — ]) — deg 91
Then the descendant Hamiltonian H € A~1 20 of SFT is defined by

H= Z / _ eviOo, A...Nevyb,, hg_ltlpﬁqr,

rt _ r- _ J—
where p* = PPyt s € = Gyr ey and t7 =14, ;. ta, g
n -

n

We want to emphasize that the following statement is not yet a theorem in the
strict mathematical sense as the analytical foundations of symplectic field theory,
in particular, the neccessary transversality theorems for the Cauchy-Riemann
operator, are not yet fully established. Since it can be expected that the polyfold
project by Hofer and his collaborators sketched in [HWZ] will provide the required
transversality theorems, we follow other papers in the field in proving everything
up to transversality and state it nevertheless as a theorem.

Theorem: Differentiating the Hamiltonian H € h~'20 with respect to the
formal variables t. , defines a sequence of quantum Hamiltonian

OH
otop

in the full SET homology algebra with differential D = [H,-] : h~120 — h~1920,
which commute with respect to the bracket on H.(h=*20,[H,]),

[HOL-,ZHHQ,(I] = Oa (aap)v (67Q) € {17 7N} X N

H,, = € H,(h'2,[H,])

Everything is an immediate consequence of the master equation [H, H] = 0, which
can be proven in the same way as in the case without descendants using the results
in [F]. While the boundary equation Do D = 0 is well-known to follow directly from
the identity [H, H] = 0, the fact that every H, p, (o, p) € {1,..., N} x N defines an
element in the homology H.(h~' 20, [H,]) follows from the identity

[H, H, ] = 0,
which can be shown by differentiating the master equation with respect to the
ta,p-variable and using the graded Leibniz rule,
0 af
YO [fa g] = [Fa
ap

Otap
On the other hand, in order to see that any two H,, ,,, Hg , commute after passing to
homology it suffices to see that by differentiating twice (and using that all summands
in H have odd degree) we get the identity

00

g1+ (~D)lteslI[f,

0’H

[H.p Hgg] + (—1)/frI[H, ———
P 1 Ot pOts.q

] =0.
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Let 20° be the graded Weyl algebra over C, which is obtained from the big
Weyl algebra 20 by setting all variables ¢, , equal to zero. Apart from the fact
that the Hamiltonian H® = H|; € A=190° now counts only curves with no
additional marked points, the new SFT Hamiltonians H:;)p =H,,plt—o € A} °,
(a,p) € {1,..,N} x N now count holomorphic curves with one marked point.
In other words, specializing at t = 0 we get back the following theorem proven in [F].

Theorem: Counting holomorphic curves with one marked point after inte-
grating differential forms and introducing gravitational descendants defines a
sequence of distinguished elements

H € H.(h ' 2w’ DO

in the full SET homology algebra with differential D° = [H°, ] : =1 28" — R~1 207,
which commute with respect to the bracket on H,(h~*25°, D),

M, H; =0, (a,p),(8,q) € {1,...,N} xN.

We now turn to the question of independence of these nice algebraic structures
from the choices like contact form, cylindrical almost complex structure, abstract
polyfold perturbations and, of course, the choice of the coherent collection of
sections. This is the content of the following theorem, where we however again
want to emphasize that the following statement is not yet a theorem in the
strict mathematical sense as the analytical foundations of symplectic field theory,
in particular, the neccessary transversality theorems for the Cauchy-Riemann
operator, are not yet fully established.

Theorem: For different choices of contact form \*, cylindrical almost complex
structure J& , abstract polyfold perturbations and sequences of coherent collec-
tions of sections (sji) the resulting systems of commuting operators H,, on
H.(h='207, D7) and H , on H.(h=' 20", D*) are isomorphic, i.e., there exists
an isomorphism of the Weyl algebras H.(h™*2~,D~) and H.(h~ 2", D)
which maps H,, , € H.(h™' 20~ ,D~) to HI_’p € H.(h 12", D).

Specializing at t = 0 we again get back the theorem proven in [F].

Theorem: For different choices of contact form AT, cylindrical almost com-
plex structure JE , abstract polyfold perturbations and sequences of coherent
collections of sections (sji) the resulting systems of commuting operators H}l;

on H,(h='20%~ ,D%") and H:;JZS on H,(h='20%% D%*) are isomorphic,
i.e., there exists an isomorphism of the Weyl algebras H*(h_lﬂﬁo’f,DO’_)
and H,(h~* %", D%*)  which maps H:‘X’; €  H.(h'2w" ,D%) to
H, ! € H (h=120%", DOH).

For the proof observe that in [F] the first author introduced the notion of a
collection of sections (s;) in the tautological line bundles over all moduli spaces
of holomorphic curves in the cylindrical cobordism interpolating between the
auxiliary structures which are coherently connecting the two coherent collections

: +
of sections (s;").

In order to prove the above invariance theorem we now recall the extension of the
algebraic formalism of SFT from cylindrical manifolds to symplectic cobordisms
with cylindrical ends as described in [EGH].
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Let ® be the space of formal power series in the variables h, pj‘ with coefficients
which are polynomials in the variables ¢} . Elements in 207 then act as differential
operators from the right/left on ® via the replacements

0 o0
Jr —
qy & Kyh—, Py Kyh——.
7 ’Yap't K K Qv

In the very same way as we followed [EGH] and defined the Hamiltonians
H* counting holomorphic curves in the cylindrical manifolds V* with contact
forms A\*, cylindrical almost complex structures J i, abstract perturbations and
coherent collections of sections (s]i), we now define a potential F € h~! D counting
holomorphic curves in the symplectic cobordism W between the contact manifolds
V* with interpolating auxiliary data, in particular, using the collection of sections
(s;) coherently connecting (sji)

Along the lines of the proof in [EGH], it follows that we have the fundamental
identity
— —
e"HY —H " =0
In the same way as in [EGH] this implies that
— —
DY '® - h'®, DFg=e FH (geF) — (-1)9(geF)HT e F

satisfies DF o DF¥ = 0 and hence can be used to define the homology algebra
H.(h~'®, DF). Furthermore it is shown that the maps

F :h'w —hn'® f— e_FTe"'F,
Fron gt — h 1o, froetF e F
commute with the boundary operators,
F* o D* = DF o F*,
and hence descend to maps between the homology algebras
F* . H.(h~'0%, DF) — H.(h" 1D, DY),

where it can be shown as in [EGH] that both maps are isomorphisms if W =R xV
and the contact forms A* induce the same contact structure & = ker A*.

On the other hand, differentiating the potential F € A~'® and the two Hamil-
tonians H* € 7~1 0% with respect to the to,p-variables, we get also the identity
e Hy ,—H, e = (—1)FeriH (e Fop) — (¥ Fop)HT,
about F, F, , = 6‘?—F and H*, HY | where we used that all summands in H (F)

a,p

, a,p’
have odd (even) degree and

9 ¥ F
e =e Fup-
8to¢,p a,p
On the other hand, it is easy to see that the above identity implies that
+(Ert+ — (- +Fg+ —F -Fgg— +F
F (Ha_’p) —F (Ha)p) =e" "H, e " —e "H e

is equal to
N -
(~D)lterle” FHT (et F Fayp) = (¢" F Fop)H e ¥ = (-1)1rIDF (Fy,p),
so that, after passing to homology, we have

+ 0\ (g —1 F
Fj(Ha,p) _F* (Ha,p) € H*(h ©7D )
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as desired.

3. DIVISOR, DILATON AND STRING EQUATIONS IN SFT

The goal of this paper is to understand how the well-known divisor, dilaton and
string equations from Gromov-Witten theory generalize to symplectic field theory.
Here the main problem is to deal with the fact that the SFT Hamiltonian itself
is not an invariant for the contact manifold. More precisely it depends not only
on choices like contact form, cylindrical almost complex structure and coherent
abstract perturbations but also on the chosen differential forms 6; and coherent
collections of sections (s;) used to define gravitational descendants. The main
application of these equations we have in mind is the computation of the sequence of
commuting quantum Hamiltonians H,, , = % on SFT homology H.(h~!20,D)
introduced in the last section.

3.1. Special non-generic coherent collections of sections. In order to prove
the desired equations we will start with special non-generic choices of coherent
collections of sections in the tautological bundles L£;, over all moduli spaces

M, =My, o+, T7)/R.

The first assumption we will make is about the choice of sections in the
tautological line bundles £ 1 over the simplest moduli spaces Mg 1(7,7)/R = S*
of orbit cylinders with one marked point. Observing that £;; has a natural
trivialization by canonically identifying Mo 1(v,7)/R with the target Reeb orbit
~ and the bundle itself with the cotangent bundle to R xv, we want to assume
that the section in £ ; is constant in this trivialization.

This choice has a nice consequence. For this consider the generic fibre
Flg = 7 ((u,8)) € My, a(TF,T7)/R of the forgetful fibration 7., where S
is a marked, punctured Riemann surface and u is the holomorphic map to R xV.
Such fibre is isomorphic to the quotient of S by the automorphisms of the map
u, where S is the compact Riemann surface with boundary obtained from S by
compactifying each puncture to a circle, which itself corresponds to a copy of the
moduli space Mo 1(7,7)/ R of cylinders over the corresponding Reeb orbit via the
boundary gluing map.

Now observe that the restriction of £, , to the fibre F(% $) coincides with the
cotangent bundle to F(u, g) away from the marked points, where it has a pole of
degree one. With our assumption on the section in £ ; over each moduli space
ﬂo,l(% v)/ R we then guarantee that a coherent section of £, ., when restricted to
F(% $) then also carries a pole of order one at the punctures. In order to see this,
observe that the gluing map at the punctures indeed agrees with the identification
of £1,; with the cotangent bundle to R x+.

Moreover we will need the analogue of the following comparison formula for
1-classes in Gromov-Witten theory,

Vi = T r—1 + PD[D; 1],
where 7, : Mg, a(M) — Mg ,—1(M) is the map which forgets the r.th marked

point, v; , is the i.th ¢-class on M, . 4(M) and D;, is the divisor in M, . 4(M)
of nodal curves with a constant bubble containing only the i.th and r.th marked
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In the very same way as in the proof of the comparison formula in Gromov-
Witten theory, it follows that in SFT we can indeed choose a collection of sections
(s;,r) in such a way that, for their zero set, we have

-1 —1/ -1
(1) Sinr 0) =, (Si,rfl(o)) + Dir,
where here the sum in the right hand side means union with the submanifold D, ,.,
transversally intersecting 7, ! (S;)Tl_l (0)).

The existence of such a choice of non-generic sections follows, as in Gromov-
Witten theory, from the fact that the pullback bundle 7 £; .1 agrees with the tau-
tological bundle £; . away from the submanifold D; . in M, = ﬂg,m(ﬁ, I')/R,
together with the fact that the restriction of £;, to D, is trivial and that the
normal bundle to D;, agrees with £; ,_1. Notice that such a choice of sections is
intrinsically non-generic, the sets s; ' (0) not being smooth, but union of smooth

1,7
components intersecting transversally.

We now prove that such sections can be chosen to be coherent. Indeed, as we
noticed, L; |HT\DW =7 Lir1 |WT\D1-,T so, starting with a coherent section on
M, _1, we construct a section on M, with the above configuration of zeros by
pulling it back to M, \ D;, and scaling it to zero in a small neighborhood of D, .,
via a real function, as it reaches D;,. The zero we create this way along D,
has degree 1 by the above considerations. Moreover the section is automatically
coherent if the cut-off function is chosen coherently. Notice also that, at the
extra boundary components appearing in the fibre direction, which are always dis-
joint from the D; ., the section 7} (s; r—1) (and hence s; ) is automatically coherent.

In order to be able to speak about higher powers wfﬁr of the v-classes, we further-
more assume that a corresponding identity for the zero divisors actually holds for

the coherent collections (sz) in the tautological line bundles £&7 over the descen-

dant moduli space H;?;lxjfl”"’o)(l""’,I‘_)/R C My, a(TH,T7)/R for all j € N.

In the very same way as we have the identity

-']r = W:wz,rfl +.] ! (Tr;ﬁwj_l N PD[D“TD’

i, 7,r—1

for the 1-classes, we can assume that we have chosen the coherent collections (sf )
such that for their zero sets we have

(s7,)710) = m (s, ) 1 O) + 5+ (M (s1:20) 71 (0) N D),
where the factor j in front of the second summand refers to the multiplicity of

the zeroes and N refers to the cap product of two forms or the divisor obtained
by intersecting two divisors, respectively. Note that this is possible since again

(0"”’j71""’0)(l"+,I‘_)/R.

75 L2 agrees with £&7 away from the divisor D;,, in Myos

7,r—1

3.2. Divisor equation. As customary in Gromov-Witten theory we will assume
that the chosen string of differential forms on V' contains a two-form 5. Since
by adding a marked point we increase the dimension of the moduli space by
two, the integration of a two-form over it leaves the dimension unchanged and
we can expect, as in Gromov-Witten theory, to compute the contributions to
SFT Hamiltonian involving integration of €» in terms of contributions without
integration, where the result should just depend on the homology class A € Ha(V)
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which can be assigned to the holomorphic curves in the corresponding connected
component of the moduli space.

Recall that in order to assign an absolute homology class A to a holomorphic
curve u : S — R xV we have to employ spanning surfaces F’, connecting a given

closed Reeb orbit v in V' to a linear combination of circles ¢y representing a basis
of H1 (V),

3F7:7—Zns-cs

in order to define

A= [Fpe] + [u(S)] — [Fr-],

+
where [Fr+] = Y7 _,[F. L] viewed as singular chains. We might expect to find a
result which is similar to the divisor equation in Gromov-Witten thoery whenever

/ 0y = / 0,

A w(9)

/ 0y — / 0 =0
Fry F

"
which is however not satisfied, in general.

that is,

Instead of showing that it is possible to find for each class in H?(V) a nice
representative which vanishes on all the spanning surfaces and hence meets the
requirements, we want to prove a statement which holds for every chosen string of
differential forms. Denote by d., the integral of the differential form 65 over the

spanning surface of ~,
dy = / 5.
F

L
Denoting the t-variables assigned to 8, by t?? and assuming for notational simplicity
that we have chosen a basis Ag, ..., Ay of Hz(V) such that fA_ 02 = do,;, with
associated variables zq, ..., z)y, we prove the following

Theorem 3.1. With the above choice of non-generic coherent sections, the follow-
ing divisor equation holds for the SF'T Hamiltonian

0 0 a,k+1 8 OH
(W_Zoa_,m)H = /Vt/\t/\HQ'i‘;t C2aatﬁ=k+ [H,A],

where cga are the structure constants of the cup product in H*(V') and where A € 20

accounts for the chosen spanning surfaces and is given by

A= Z dypyGy-
2l

Proof. Using the comparison formula (1), we compute, when the curve is not con-
stant, not an orbit cylinder or whenever r+|I'"|+|T~| > 4, as in the Gromov-Witten
case

* * *
/m(hw--mlm eviOa, Ao ANevi_10q, , Nev) Oy

r,A
* *
92) /_(j1 _____ V1 Ooy N Nevi_1 04,
MT*I,A

(o g o)
A Fry P
r—1
+Z/_(h _____ eV fay A AeVE(B2 A Bay) A AeViy B,
k=1 M7—1A "

r—



String equation in SFT 11

where MS;{“"“ = ﬂf]ﬁjg’”)(rt I'")/R denotes the component of the moduli
space of curves representing the homology class A € Hy(V). Note that since
we can assume that the Hamiltonian counts holomorphic curves with at least
one puncture, we do not get contributions from constant curves. On the other
hand, when the curve is constant and r + |[I'"| + || = 3 the integral is given by
fvt At A By and in the case of orbit cylinders with only one marked point any

correlator involving only a 2-form vanishes for dimensional reasons.

Notice now that the differential operator multiplying each monomial containing

pF+ ¢" in H by the coefficient
/ 6‘2 _/ 6‘2
FF+ F

r—
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is precisely

¥
This, together with
oH OH
dp——dq—)-H,A
; ( ot ’Yap’Y vy ’Yaqv [ ]
yields the desired equation. ([l

Note that even when we restrict to special choices for the differential forms and
coherent sections, the Hamiltonian H itself still depends on all other choices like
contact form, cylindrical almost complex structure and so on.

But even before we can turn to the question of invariance, we however first have
to make a short comment on the genericity of our special choices. As we outlined
in the last subsection, all our special choices of coherent sections are automatically
non-generic, since their zero sets localize on nodal curves and, in particular, are
not smooth. In order to see that we can still use our special non-generic choices
for computations, we have to use of the fact that, using smooth perturbations,
the special non-generic choice of coherent sections can be approximated arbitrarily
close by generic coherent collections of sections and that the new Hamiltonians
defined using these generic coherent sections agrees with the Hamiltonian defined
using the original non-generic choices when the error is sufficiently small by
precisely the same arguments as used for the usual gluing formulas for holomorphic
curves in Floer theory.

Turning back to the question of the dependence of our equations with respect to
auxiliary choices, with the above main application in mind it is even more important
that we have the following

Corollary 3.2. For any choice of differential forms and coherent sections the fol-
lowing divisor equation holds when passing to SET-homology

0 0 0H _
(W—zoa—%>H = /meoﬁzta»kﬂcgaaw € H.(h ', [H,]),
k

Proof. First it follows from [H,A] = 0 € H,(h~120,[H,]) that the equation on
SFT homology holds for our special choice of coherent sections, in particular, is
independent of the auxiliary choice of spanning surfaces in order to assign absolute
homology classes to punctured holomorphic curves.
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We redenote by H the Hamiltonian used in theorem 3.1 and coming from the
special choice of coherent sections and auxiliary data we made there. To prove
that the desired equation holds up to homology for any choice of coherent sections
and any other auxiliary data, leading to a new Hamiltonian H™, we just need

to check that its terms are properly covariant with respect to the isomorphism
F*_ o (F:_)_l : H*(h_l QBJF? [H+7 ]) - H*(h_l miu [H77 ])

Indeed it more generally follows from the computation at the end of the
previous section that, if D is any first order graded differential operator
in the ¢t and z variables, then we have (F, o (F)™\)(DH") = DH™,

so that in particular Hf, = DH" € H. (h='20" [H",.]) implies
H,, = DH € H.(h" 20, [H", ).

To be more precise, this follows from the fact that D given by

0 ak+1 B
D—Zoa—ZO—F;t C2aatﬁvk

satisfies like 9/0t,,, the (graded) Leibniz rule, that is, we have the two identities
[H,DH] =0,

so that DH € H,(h~'20,[H,]), and, if F is the potential for the cobordism
connecting the different choices of auxiliary data,

eF(D(ﬁ"")e_F - e_F(Dﬁ)_)eF
+(EFDF)H e F + FHYe FDF—c FDFH ¢F + ¢ FH (FDF)
= D(eF(ﬁJre*F - efFﬁLeF) =0,

which implies as before F-(DH') = F-(DH™). For the computations note that
the degree of D is zero and hence even. Finally the term accounting for constant
curves is even invariant as it is mapped to itself by F o (F.F)~1. ([l

Note that when we specialize to t = 0 the above equation simplifies to

oH°

lo=—=— € H,(h 2" [H.
2,0 (920 € ( mjv[ 7])

and hence allows for the computation of one of the Hamiltonians
Hi)p € H.(h'2° [H"]) in terms of the Hamiltonian H" counting holo-
morphic curves without marked points.

Remark: If the dimension of V is large enough, we indeed find for every 6 €
Q?(V) another differential 2-form §° with [6°] = [#] € H?(V) which vanishes on all
the spanning surface F,. Under the assumption that all the spanning surfaces can
be chosen to be embedded and pairwise disjoint, which leads to the requirement
on the dimension of V, the statement follows by modifying the differential form
inductively after proving it for the spanning surface of a single orbit . Indeed,
for chosen 6 € Q*(V) let 6, = 20 denote the pullback under the embedding of
F., into V. Since every 2-form on a surface with boundary is neccessarily exact,
we can choose a (primitive) 1-form A\, € Q'(F,) with 6, = d\, which we extend
to a one-form A on V' with support only in a small neighborhood of F,. Since
3 (0—d\) = 0,—d\, = 0, it follows that 00 := —d\ meets the desired requirements.
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3.3. Dilaton equation. The next equation we will study is the dilaton equation.
Theorem 3.3. For any choice of coherent sections the following dilaton equation
holds for the SET Hamiltonian when passing to SFT-homology

0
oto:1
with the first-order differential operator

0 0 0 0
Dgyjer := —2h— — _ _— = &P .
L B DS ) YOS

a,p

H = DEulcrH € H*(h_lﬂnv [Ha])

The same equation holds at the chain level for the above special choice of non-
generic coherent sections.

Proof. With our special choice of non-generic coherent sections still standing, the
proof is precisely the same as in Gromov-Witten theory. We want to compute the
integral

GVI 91'1 A A eV:_l 9“71 .
Hs‘hv--qirflwl)

Notice that the tautological bundle L, , restricted on the fibre of the forgetful
fibration . coincides with w + z; + ... + 2, where w is the canonical bundle
and z1,..., 2. are the marked points. Since the generic fiber is a smooth curve
with [I'F| 4+ |I'~| holes and since, by our proper choice of sections for £ ; on the
simplest moduli space of orbit cylinders with one marked point, coherence at such
holes is equivalent to closing the holes and imposing an extra pole there, we can
argue in the very same way as in Gromov-Witten theory.

Finally we would need to separately consider the cases where the forgetful
fibration 7, is not defined: as in Gromov-Witten theory only constant curves of
genus one with one marked point might give a contribution, but in SFT such
moduli space has virtual dimension one and we hence get no contribution by index
reasons. Translating this into differential operators on the Hamiltonian yields the
desired equation.

To prove that the same equation holds for any choice of auxiliary data when
passing to SFT-homology we need to check covariance of the right hand side
with respect to F o (FF)~!' : H.(h~'20% [HT,]) — H. ("' ,[H ,]), as
in corollary 3.2. This time Dgyer is not a first order differential operator in the
t and z variables, but also involves p and ¢ variables and the variable £ for the genus.

While all but the last summands of Dgyjer,

0] 0 0 0
Dguler = _2h% - vaa—p’y - Zq78_% o Zt‘%p%
¥ ¥ a,p
do not satisfy the desired Leibniz rule with respect to the bracket, the sum
operator Dgyler has the desired property thanks to the fact that it extracts
the Euler characteristic of the corresponding curves from each monomial in the
variables ¢, p, g, h.

Indeed, additivity of the Euler characteristic with respect to gluing straightfor-
wardly shows that Dgyle, satisfies the Leibniz rule, that is, as in the proof of the
divisor equation we have the two identities

[H7 DEuler H] = DEuler [H, H] = 0,
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so that Dgyler H € H.(h7120,[H, ]), and, if F is the potential for the cobordism
connecting the different choices of auxiliary data,

" (Dpuier HY)e ¥ — ¢~ F(Dpyter H)eF
+(eF Diuter F)ﬁJre* Fi FH*te F Dxyler F
—e FDpyor F HeF +e” FH- (eF Dguler F)
= DEuler(eFﬁ"’e_F — e_Fﬁ_eF) =0,
which implies as before Ff (Dgyler HT) = F (Dgwer H). O
Note that when we specialize to t = 0 the above equation yields the identity
H, = Dpuer H’ € H.(h7'20°, [H®, ])

and hence allows for the computation of a second one of the Hamiltonians H:;)p €

H,(h~'20" [H,]) in terms of the original Hamiltonian H® counting holomorphic
curves without marked points.

3.4. String equation. It just remains to understand how the string equation
translates from Gromov-Witten theory to SFT. Indeed string equation is an even
more straightforward application of the comparison formula (1) and, reasoning
along the same line as in the proof of divisor equation (included the covariance
statement), we easily get the following theorem.

Theorem 3.4. For any choice of coherent sections the following string equation
holds for the SFT Hamiltonian when passing to SFT-homology

0 o a,k+1 0 -1
WH_/Vt/\t+zk:t S H € H.(n™'20,[H, ),

The same equation holds at the chain level for the above special choice of non-
generic coherent sections.

Observe that when we specialize to ¢ = 0 we now get the obvious result Hé,o =0.
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