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1 Introduction – State of the Art

The Boundary Element Method (BEM) in time domain is especially important for

treating wave propagation problems in semi-infinite or infinite domains. In this ap-

plication the main advantage of this method becomes obvious, i.e., its ability to

model the radiation condition correctly. Certainly this is not the only advantage of

a time domain BEM but very often the main motivation as, e.g., in earthquake en-

gineering or scattering problems. The mathematical background of time-dependent

boundary integral equations is summarized by Costabel [27].

Scattering problems have been treated very early with integral equations where

some solution techniques may be seen as a BEM in time domain, e.g., [37]. For

elastodynamics the first boundary integral formulation was published by Cruse and

Rizzo [28]. However, this formulation performs in Laplace domain with a subse-

quent inverse transformation to time domain to achieve results for the transient be-

havior. The corresponding formulation in Fourier domain, i.e., frequency domain,

was presented by Domı́nguez [35]. The first boundary element formulation directly

in the time domain was developed by Mansur for the scalar wave equation and for

elastodynamics with zero initial conditions [56]. The extension of this formulation

to non-zero initial conditions was presented by Antes [5]. A completely different

approach to handle dynamic problems utilizing static fundamental solutions is the

so-called dual reciprocity BEM. This method was introduced by Nardini and Breb-

bia [62] and details may be found in the monograph of Partridge et al [64]. A very

detailed review of elastodynamic boundary element formulations and a list of ap-
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plications can be found in two articles of Beskos [15, 16]. Fast formulations for

elastodynamics based on a plane wave expansion has been published by Otani et al

[63] and Takahashi et al [80].

An important area of applications of time (and frequency) domain boundary in-

tegral equations is electrodynamics. Variational methods initiated for acoustics [9]

have been extended to electromagnetism in [81, 83, 7, 66] and also to FEM-BEM

coupling in the time domain [8]. Collocation methods are also here of great im-

portance in applications [34]. There has been a very important development in fast

methods for electrodynamics [77, 85, 25] where fast multipole methods for high-

frequency problems [25, 24] have been extended to the time-domain. All these

methods have been known to experience stability problems in longer time com-

putations [32, 33, 76], but various remedies have over the years been developed

[32, 33, 31, 30, 76]. In particular, as in the frequency domain case, the combined

integral equations give rise to more stable methods [76].

The above listed methodologies to treat time dependent problems with the BEM

can be split in two main groups: direct computation in time domain or inverse trans-

formation combined with computation in Laplace domain. Not only due to the de-

pendency of numerical inverse transformations on some sophisticated parameter,

but also due to physical reasons it is more natural to work in the real time domain

and observe the phenomenon as it evolves. But, as all time-stepping procedures,

such a formulation requires an adequate choice of the time step size. An improperly

chosen time step size leads to instabilities or numerical damping. An improved and

stable version of the underlying integral equation has been published by Bamberger

and Ha-Duong [9] and Aimi and Diligenti [3]. Both rely on an energy principle

and require two temporal integrations. The instabilities of the usual time-stepping

algorithm have been analysed by Birgisson et al [19]. Four procedures to improve

the stability of the classical dynamic time-stepping BE formulation can be quoted:

the first employs modified numerical time marching procedures, e.g., [6] for acous-

tics, [65] for elastodynamics; the second employs a modified fundamental solution,

e.g., [67] for elastodynamics; the third employs an additional integral equation for

velocities [57]; and the last uses weighting methods, e.g., [87] for elastodynamics

and [88] for acoustics.

Beside these improved approaches there exist the possibility to solve the con-

volution integral in the boundary integral equation with the so-called Convolution

Quadrature Method (CQM) proposed by Lubich [51, 52]. Applications to hyper-

bolic and parabolic integral equations can be found in [55, 53]. The CQM utilizes

the Laplace domain fundamental solution and results not only in a more stable time

stepping procedure but also damping effects in case of visco- or poroelasticity can

be taken into account (see [73, 74, 71]). The motivation to use the CQM in these

engineering applications is that only the Laplace domain fundamental solutions are

required. This fact is also used for BE formulations in cracked anisotropic elas-

tic [89] or piezoelectric materials [39]. Another aspect is the better stability be-

havior compared with the above mentioned formulation. For acoustics this may be

found in [1, 2] and in elastodynamics in [72]. Recently work has begun in investigat-

ing CQM for electromagnetism [83]. In the framework of fast BE formulations the
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CQM is used in a Panel-clustering formulation for the Helmholtz equation by Hack-

busch et al [46]. Recently, some newer mathematical aspects of the CQM have been

published by Lubich [54]. Further, interest in high order Runge-Kutta based CQM

has lately increased due to its good performance in applications, see [10] for numer-

ical experiments in acoustics and [12, 14, 22] for convergence results.

In this paper, both, the linear multistep and Runge-Kutta based CQM is described

together with most recent theoretical results on convergence, the application to var-

ious linear hyperbolic problems is explained, and the paper ends with a numeri-

cal experiment for an elastodynamic problem. Important for the paper at hand are

different approaches to the implementation of CQM. The originally proposed con-

struction of convolution weights by fast Fourier transform (FFT) [52] is described,

also the recent decoupling approach promoted in [13], and the recursive method of

[10], a modification of [48].

Throughout this paper, vectors and tensors are denoted by bold symbols and

matrices by sans serif and upright symbols. The Laplace transform of a function

f (t) is denoted by f̂ (s) with the complex Laplace parameter s ∈ H and H = {s ∈
C|ℜs > 0}.

2 Time Dependent Boundary Integral Equations

In this work linear hyperbolic differential equations are considered. The most simple

equation is the scalar wave equation. However, vectorial problems will also be tack-

led and, hence, the basic equations are described for the simplest vectorial problem,

for elastodynamics.

2.1 Governing Equations

Describing with x and t the position in the three-dimensional Euclidean space R
3

and the time point from the interval (0,∞) the hyperbolic initial value problem for

the displacement field u(x, t) is

c2
1∇∇ ·u(x, t)− c2

2∇×∇×u(x, t) =
∂ 2u

∂ t2
(x, t) (x, t) ∈ Ω × (0,∞)

u(y, t) = gD(y, t) (y, t) ∈ ΓD × (0,∞)

t(y, t) = gN(y, t) (y, t) ∈ ΓN × (0,∞)

u(x,0) =
∂u

∂ t
(x,0) = 0 (x, t) ∈ Ω × (0) .

(1)

The material properties of the solid are represented by the wave speeds
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c1 =

√
K + 4

3
G

ρ
c2 =

√
G

ρ
,

with the material data compression modulus K, shear modulus G, and the mass

density ρ . The first statement in (1) requires the fulfillment of the partial differential

equation in the spatial domain Ω for all times 0 < t < ∞. This spatial domain Ω
has the boundary Γ which is subdivided into two disjoint sets ΓD and ΓN at which

boundary conditions are prescribed. The Dirichlet boundary condition is the second

statement of (1) and assigns a given datum gD to the displacement u on the part ΓD

of the boundary. Similarly, the Neumann boundary condition is the third statement

in which the datum gN is assigned to the surface traction t, which is defined by

t(y, t) =(T u)(y, t)

= lim
Ω∋x→y∈Γ

[

(
G
(

∇u+(∇u)T
)
+

(
K − 2

3
G

)
∇ ·uI

)
(x, t) ·n(y)]

= lim
Ω∋x→y∈Γ

[σ(x, t) ·n(y)] .

(2)

In (2), σ is the stress tensor depending on the displacement field u according to

the linear strain-displacement relationship and Hooke’s law. For later purposes the

traction operator T is defined, which maps the displacement field u to the surface

traction t. The boundary conditions have to hold for all times and may be also pre-

scribed in each direction by different types, e.g., roller bearings. Finally, in the last

statement of (1) the condition of a quiescent past is given which implies homoge-

neous initial conditions.

Beside the elastodynamic problem, a number of other wave propagation prob-

lems describing different physical phenomena can be treated similarly. The respec-

tive governing differential equations are listed next.

2.1.1 Acoustics – scalar wave equation

The hyperbolic differential equation for waves traveling in a non-viscous fluid is

c2∇2 p(x, t) =
∂ 2 p

∂ t2
(x, t) (x, t) ∈ Ω × (0,∞) , (3)

with boundary conditions defined analogously to (1) and also vanishing initial con-

ditions. The wave velocity is defined by

c =

√
K

ρ

with the compressibility K of the fluid. The traction operator (2) degenerates to the

normal derivative to define the normal flux
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qn (y, t) = (T p)(y, t) = lim
Ω∋x→y∈Γ

[∇p(x, t) ·n(y)] .

2.1.2 Viscoelastodynamics

This extension of the elastodynamic case to materials with damping can easily per-

formed with the elastic-viscoelastic correspondence principle [26]. This principle

says that in Laplace domain the material data has simply to be exchanged by the

viscoelastic material data which are dependent on the Laplace variable s, i.e., they

are time dependent. Consequently, the governing differential equation is the Laplace

transform of (1) to Laplace domain

c2
1v (s)∇∇ · û(x,s)− c2

2v (s)∇×∇× û(x,s) = s2û(x,s) (x,s) ∈ Ω ×H , (4)

with the viscoelastic wave speeds

c1v (s) =

√
K̂ (s)+ 4

3
Ĝ(s)

ρ
c2v =

√
Ĝ(s)

ρ
. (5)

The material data K̂ (s) and Ĝ(s) can for most materials given as rational functions

of s, e.g., for the simplest causal model - the three parameter model - it holds

K̂ (s) = K
1+qHs

1+ pHs
Ĝ(s) = G

1+qDs

1+ pDs
, (6)

with the compression modulus K and the shear modulus G from elasticity. The pa-

rameters qH ,qD, pH , and pD are further material data. More details on viscoelas-

tic constitutive equations may be found in [26] and their implementation in BEM

in [72, 40].

The traction operator is defined as in elastodynamics where Hooke’s law has

now the material data from (6), i.e., the constitutive equation in time domain is a

convolution integral. This and also the structure of (4) shows that a formulation of

the problem in time domain yields an integro-differential equation.

2.1.3 Poroelastodynamics

The wave propagation in saturated two-phase media as, e.g., soil is governed by a

coupled set of differential equations for the solid displacements u and the pore pres-

sure p. Beside mixture theory based approaches (see, e.g., the Theory of Porous Me-

dia [20] or the simple mixture theory [86]), Biot’s theory is widely used in practice

and will also be used here. The basic formulation for wave propagation problems

can be found in the two papers [17, 18]. The set of governing equations in Laplace

domain is
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G∇2û(x,s)+

(
K +

1

3
G

)
∇∇ · û(x,s)− (α −β (s))∇p̂ =s2

(
ρ −β (s)ρ f

)
û(x,s)

β (s)

sρ f

∇2 p̂(x,s)− φ 2s

R
p̂(x,s)− (α −β (s))s∇ · û(x,s) =0 ,

(x,s) ∈ Ω ×H

(7)

with the bulk material data shear modulus G and compression modulus K, Biot’s

coefficients α and R, and the porosity φ . The bulk density is denoted by ρ =
(1−φ)ρs + φρ f , composed by the partial densities of the solid ρs and the fluid

ρ f . The complex valued parameter β (s) is an abbreviation and defined as

β (s) =
κρ f φ 2s2

φ 2s+ s2κ
(
ρa +φρ f

)

with the permeability κ and the apparent mass density ρa. As in viscoelasticity, this

set of governing equations can not be formulated as a pure differential equation

in time domain because the coefficients depend on s. The wave velocities, due to

the incorporated friction between the solid and the fluid, are time dependent. The

respective wave numbers, defined as usual λ = s
c
, are

λ 2
1,2 =

s2

2

[
φ 2ρ f

β (s)R
+

ρ −β (s)ρ f

K + 4
3
G

+
ρ f (α −β (s))2

β (s)
(
K + 4

3
G
)

±

√√√√
(

φ 2ρ f

β (s)R
+

ρ −β (s)ρ f

K + 4
3
G

+
ρ f (α −β (s))2

β (s)
(
K + 4

3
G
)
)2

−4
φ 2ρ f

(
ρ −β (s)ρ f

)

β (s)R
(
K + 4

3
G
)


 ,

λ 2
3 =

s2
(
ρ −β (s)ρ f

)

G
.

Compared to the above given models in poroelasticity three waves, a fast and slow

compressional wave and a shear wave, exist.

The traction operator has to be seen in a generalized way and has obviously two

parts. It is composed of the definition of the total stress and the flux governed by

Darcy’s law

[
t̂

q̂

]
(y,s) = (T

[
û

p̂

]
)(y,s) = lim

Ω∋x→y∈Γ

[
[σ̂ −α p̂I] (x,s) ·n(y)[

− β
sρ f

(
∇p̂+ρ f s2û

)]
(x,s) ·n(y)

]
.

2.1.4 Electromagnetism – Maxwell equations

The system of Maxwell equations in a homogeneous and isotropic medium is given

by
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µ
∂H

∂ t
(x, t)+∇×E(x, t) = 0

ε
∂E

∂ t
(x, t)−∇×H(x, t) = 0,

(8)

with E and H being the electric and magnetic field, respectively, and ε and µ re-

spectively electric permittivity and magnetic permeability. Boundary conditions are

obtained by a combination of tangential traces of the two fields: n×E and n×H,

e.g., n×E = 0 for a perfectly conducting surface and the impedance boundary con-

dition n×H−α(n×E)×n = 0, α ≥ 0, for an imperfectly conducting surface [60].

The relationship to wave equations can be made more visible by rewriting the

first order system (8) as a second order system. This can be done by, for example,

eliminating the magnetic field H and thereby obtaining the equation

−c2 ∇×∇×E(x, t) =
∂ 2E

∂ t2
(x, t) ,

with the wave speed c = 1√
εµ .

2.2 Integral Equations

For all of the governing equations given above, a representation formula can be de-

rived (see, e.g., for acoustics [61], for elastodynamics [84], for viscoelastodynam-

ics [42], for poroelastodynamics [72], and for electromagnetism [78, Chapter 25]).

Representation formula for Maxwell equations does not fit the general framework

of the other equations, therefore it is presented separately.

Taking u as representative for the unknowns in the governing equations (1), (3),

(4), and (7) the representation formula is

u(x, t) =

t∫

0

∫

Γ

U(x−y, t − τ)t(y,τ)dΓy dτ−

t∫

0

∫

Γ

(TyU)(x−y, t − τ)u(y,τ)dΓy dτ x ∈ Ω ,y ∈ Γ . (9)

The surface measure dΓy carries its subscript in order to emphasize that the integra-

tion variable is y. Similarly, Ty indicates that the derivatives involved in the compu-

tation of the surface traction are taken with respect to the variable y. The function

U(x− y, t − τ) denotes the fundamental solution of the respective governing equa-

tion. In the Laplace domain, the fundamental solutions of all of the above given

problems can be formulated in 3-d as
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Û(x−y,s) =
w

∑
i=1

Ai (r,s)
e−λir

4πr
with r = |x−y| , (10)

using the wave number λi =
s
ci

instead of the wave velocities ci. The upper limit

w of the sum in (10) is the amount of body waves in the model. The coefficients

Ai (r,s) are listed in the Appendix. In 2-d, the structure of the fundamental solution

is the same, however, the exponential function has to be replaced by the modified

Bessel functions of zero or first order. Time dependent fundamental solutions are

only available for acoustics, elastodynamics, and electromagnetism, but even here,

for example for elastodynamics and the dissipative wave equation in acoustics, the

time domain fundamental solution can become very complex. In the following, this

problem is overcome by using the CQM for time discretisation.

By means of equation (9), the unknown u is given at any point x inside the do-

main Ω and at any time 0< t <∞, if the boundary data u(y,τ) and t(y,τ) are known

for all points y of the boundary Γ and times 0 < τ < t. The first boundary integral

equation is obtained by taking the expression (9) to the boundary. Using operator

notation, this boundary integral equation reads

(V t)(x, t) = C (x)u(x, t)+(K u)(x, t) (x, t) ∈ Γ × (0,∞) . (11)

The introduced operators are the single layer operator V , the integral-free term C ,

and the double layer operator K which are defined as

(V t)(x, t) =

t∫

0

∫

Γ

U(x−y, t − τ)t(y,τ)dΓy dτ (12a)

C (x) = I + lim
ε→0

∫

∂Bε (x)∩Ω

(TyUstatic)
⊤(x−y)dΓy (12b)

(K u)(x, t) = lim
ε→0

t∫

0

∫

Γ \Bε (x)

(TyU)⊤(x−y, t − τ)u(y,τ)dΓy dτ . (12c)

In these expressions, Bε(x) denotes a ball of radius ε centered at x and ∂Bε(x) is its

surface. In (12b), the integral free term is only determined by the static counterpart

of each operator, i.e., the index static denotes the respective fundamental solution.

E.g., in elastodynamics Ustatic is the elastostatic fundamental solution. Note that

the single layer operator (12a) involves a weakly singular integral over Γ and the

double layer operator (12c) has to be understood in the sense of a principal value.

Further, it should be remarked that the operator notation in (12a) and (12c) includes

the convolution operator in time.

Application of the traction operator Tx to the dynamic representation formula (9)

yields the second boundary integral equation

(Du)(x, t) = (I −C (x)) t(x, t)− (K ′t)(x, t) x ∈ Γ . (13)
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The newly introduced operators are the adjoint double layer operator K ′ and the

hyper-singular operator D . They are defined as

(K ′t)(x, t) = lim
ε→0

t∫

0

∫

Γ \Bε (x)

(TxU)(x−y, t − τ)t(y,τ)dΓy dτ

(Du)(x, t) =− lim
ε→0

t∫

0

Tx

∫

Γ \Bε (x)

(TyU)⊤(x−y, t − τ)u(y,τ)dΓy dτ .

The hyper-singular operator has to be understood in the sense of a finite part.

For the solution of mixed initial boundary value problems, a non-symmetric for-

mulation by means of the first boundary integral equation (11) in combination with a

collocation technique will be used. A symmetric formulation is obtained using both

the first and the second boundary integral equation, (11) and (13) in combination

with a Galerkin technique.

Symmetric formulation

First, the Dirichlet datum u and the Neumann datum t are decomposed into

u = ũ+ g̃D and t = t̃+ g̃N , (15)

with arbitrary but fixed extensions, g̃D and g̃N , of the given Dirichlet and Neumann

data, gD and gN . They are introduced such that

g̃D(x, t) = gD(x, t) , (x, t) ∈ ΓD × (0,∞)

g̃N(x, t) = gN(x, t) , (x, t) ∈ ΓN × (0,∞)

holds. The extension g̃D of the given Dirichlet datum has to be continuous due to

regularity requirements [79].

In order to establish a symmetric formulation, the first boundary integral equation

(11) is used only on the Dirichlet boundary ΓD whereas the second one (13) is used

only on the Neumann part ΓN . Taking the prescribed boundary conditions (1) into

account and inserting the decompositions (15) into both integral equations leads to

the symmetric formulation for the unknowns ũ and t̃

V t̃−K ũ = fD, (x, t) ∈ ΓD × (0,∞)

D ũ+K
′ t̃ = fN , (x, t) ∈ ΓN × (0,∞)

(16)

with the abbreviations

fD = C g̃D +K g̃D −V g̃N

fN = (I −C ) g̃N −K
′g̃N −D g̃D .
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Representation formula for Maxwell equations

The representation formula has the following form for the electric field

E(x, t) =−µ

t∫

0

∫

Γ

U(x−y, t − τ)
∂ j

∂ t
(y,τ)dΓy dτ

+
1

ε
∇

t∫

0

∫

Γ

U(x−y, t − τ)∂−1
t ∇Γ · j(y,τ)dΓy dτ

−∇×
t∫

0

∫

Γ

U(x−y, t − τ)m(y,τ)dΓy dτ

and the following for the magnetic field

H(x, t) =−ε

t∫

0

∫

Γ

U(x−y, t − τ)
∂m

∂ t
(y,τ)dΓy dτ

+
1

µ
∇

t∫

0

∫

Γ

U(x−y, t − τ)∂−1
t ∇Γ ·m(y,τ)dΓy dτ

+∇×
t∫

0

∫

Γ

U(x−y, t − τ)j(y,τ)dΓy dτ,

where j = H×n and m = n×E are, respectively, the surface current and surface

charge density. The symbol ∂−1
t denotes integration on the interval [0, t], this is con-

sistent with the operational notation introduced in the next section. The fundamental

solution Û(x,s) still has the form (10) and is in fact the same as the fundamental so-

lution for the acoustic wave equation, showing the close relationship between the

two sets of equations. Taking tangential traces one obtains boundary integral for-

mulations of boundary value problems. Since the formalism using the four integral

operators introduced for other governing equations does not directly translate to the

Maxwell system, for further information the reader is referred to literature, see [78,

Chapter 25].

3 Convolution quadrature

All of the time domain integral operators of the previous section have the form of a

time convolution

u(t) =

t∫

0

k(t − τ)g(τ)dτ. (17)
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The difficulty in computing such convolutions comes from the fact that the kernel

k(t) is often distributional and in many cases of practical interest, e.g., viscoelastic-

ity and poroelasticity, even not known explicitly. However, the Laplace transform of

the kernel

K(s) = k̂(s) = L k(s) :=

∞∫

0

k(t)e−st d t

is always explicitly known and simpler. For this reason it is essential to be able

to compute (17) by using only the Laplace transformed kernel K(s). To make this

dependence on the Laplace transformed kernel explicit, operational notation, going

back to Heaviside and standard in papers on convolution quadrature [53],

(K(∂t)g)(t) :=

t∫

0

k(t − τ)g(τ), (18)

is used in this paper. The rationale behind this notation comes from identities of the

type K(∂t)g = g′ for K(s) = s and the composition rule K2K1(∂t)g = K2(∂t)K1(∂t)g.

Convolution quadrature time discretization will be explained and convergence re-

sults given with the following assumption on the operator K(s):

K(s) is analytic for ℜs > 0 and bounded as

|K(s)| ≤C(σ0)
|s|µ
(ℜs)ν

, for ℜs ≥ σ0 > 0.
(19)

To make the connection to the previous section explicit, note that in this notation

the single layer operator of (12a) can be written as

(V t)(x, t) = (V (∂t)t)(x, t)

where V is the single layer operator in the Laplace domain:

(V (s)φ)(x) :=
∫

Γ

Û(x−y,s)φ(y)dsy

and Û is the explicitly known fundamental solution in the Laplace domain, see (10).

3.1 Linear multistep based convolution quadrature

For ∆ t > 0 let t j = j∆ t be the discrete time steps at which (18) is to be computed.

Convolution quadrature approximation of (18) at t = tn is given by

(
K(∂ ∆ t

t )g
)
(tn) :=

n

∑
j=0

ω∆ t
n− j(K)g(t j). (20)
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Here the convolution weights ω∆ t
j (K) are defined implicitly by

K

(
γ (ζ )

∆ t

)
=

∞

∑
j=0

ω∆ t
j (K)ζ j, (21)

where γ (ζ ) is the quotient of the generating polynomials of a linear multistep

method of order p. For hyperbolic problems only A-stable methods are admissi-

ble, the most often used methods being the backward difference formulas of order 1

(BDF1/backward Euler) and order 2 (BDF2) for which

γ (ζ ) = 1−ζ (BDF1), γ (ζ ) =
3

2
−2ζ +

1

2
ζ 2, (BDF2).

An important property of convolution quadrature is that the composition rule is pre-

served. Namely, K2K1(∂
∆ t
t )g = K2(∂

∆ t
t )K1(∂

∆ t
t )g. Further, for K(s) = s, K(∂ ∆ t

t )g =
∂ ∆ t

t g is the linear multistep approximation of the derivative g′.
A brief motivation for the approximation (20) is in order. Making use of the

extension g(t) ≡ 0 for t ≤ 0, the approximation (20) can be defined for all t:(
K(∂ ∆ t

t )g
)
(t) = ∑

∞
j=0 ω∆ t

j (K)g(t − t j). Taking the Laplace transformation of this

expression gives

L

(
K(∂ ∆ t

t )g
)
(s) =

(
∞

∑
j=0

ω∆ t
j (K)e−s∆ t j

)
L g(s) = K

(
γ
(
e−s∆ t

)

∆ t

)
L g(s).

Since L (K(∂t)g)(s) = K(s)L g(s), the convolution quadrature manifests itself

through the approximation s ≈ γ(e−s∆ t)
∆ t

= s+ sO((s∆ t)p), p being the order of the

multistep method. The restriction to A-stable methods comes from the requirement

ℜγ
(
e−s∆ t

)
> 0 for ℜs > 0.

Next a result on convergence of the linear multistep based convolution quadrature

is given, the proof of which can be found in [53].

Theorem 1 (Lubich 1994). Let (19) hold, g(0) = g′(0) = · · ·= g(m−1)(0) = 0 for m

such that m ≥ max(p+2+µ, p), and let un =
(
K(∂ ∆ t

t )g
)
(tn) be the approximation

obtained by convolution quadrature (20) based on BDF formula of order p = 1,2.

Then there exists t̄ > 0 such that for all 0 < ∆ t < t̄ and n = 0,1, . . . ,N = T/∆ t it

holds

|un −u(tn)| ≤C∆ t p

tn∫

0

|g(m)(τ)|dτ.

The constant C is independent of ∆ t and N, but depends on T and constant C(σ0)
in (19).

The result proved in [53] covers a larger class of A-stable linear multistep meth-

ods. The statement here has been restricted to BDF methods in order to shorten

the exposition. The trapezoid rule does not satisfy the assumptions of the general

theory given in [53] if µ > 0. Recently, in [10] the convergence of the trapezoid
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rule has been proved for this case and successful numerical experiments have been

performed for acoustic scattering applications.

Because of the restriction to A-stable linear multistep methods, the highest or-

der attainable is p = 2. To achieve higher orders of convergence one has to turn

to Runge-Kutta methods. Further reasons to prefer Runge-Kutta methods are high-

lighted later in the paper, see Section 4.3.

3.2 Runge-Kutta based convolution quadrature

Let a Runge-Kutta method of (classical) order p and stage order q be given by its

Butcher tableau
c A

bT where A ∈ R
m×m, b,c ∈ R

m; for a detailed introduction to

Runge-Kutta methods see [21, 47, 49]. A Runge-Kutta method is said to be A-stable

if the stability function

R(z) = 1+ zbT (I − zA)−1
1, 1 := (1,1, . . . ,1)T ,

is bounded as

|R(z)| ≤ 1, for ℜz ≤ 0 and I − zA is non-singular for all ℜz ≤ 0. (22)

To simplify expressions assume further that bT A−1 = (0,0, . . . ,1), i.e., that the

method is stiffly accurate [47]; this in turn implies that cm = 1. A further techni-

cal assumption is needed

|R(iy)|< 1, for all |y|> 0.

Radau IIA and Lobatto IIIC are examples of Runge-Kutta methods satisfying all of

the above conditions.

In a Runge-Kutta method computations are done not only at the equally spaced

points t j = j∆ t but also at the stages t j + cℓ∆ t, ℓ = 1,2, . . . ,m. Note that cm = 1

implies t j + cm∆ t = t j+1. The Runge-Kutta based convolution quadrature approxi-

mation to u(tn + cℓ∆ t), ℓ= 1, . . . ,m, is then given by




un1

...

unm


=

(
K(∂t

∆ t)g
)

n
:=

n

∑
j=0

W ∆ t
n− j(K)




g(t j + c1∆ t)
...

g(t j + cm∆ t)


 .

Here, the matrix convolution weights W ∆ t
j (K) are defined implicitly through a gen-

erating function

K

(
∆ (ζ )

∆ t

)
=

∞

∑
j=0

W ∆ t
j (K)ζ j,

with

∆ (ζ ) = A−1 −ζ A−1
1bT A−1.
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The solution at tn+1 is given simply by un+1 = unm = bT A−1(unℓ)
m
ℓ=1, i.e.,

un+1 := bT A−1
(

K(∂t
∆ t)g

)
n
.

The composition rule still holds for the stage approximation, that is, K2K1(∂t
∆ t)g=

K2(∂t
∆ t)K1(∂t

∆ t)g. This is however not true for the approximation bT A−1K(∂t
∆ t)g,

whence we refrain from using the operational quadrature notation here.

First convergence results under the assumption (19) with ν = 0 have been proved

in [12]. Subsequently it has been noticed that, unlike in the linear multistep case, a

more favourable result can be proved if ν > 0. This result has been proved in [14]

and is stated next. It shows that for sufficiently smooth and compatible data an order

of convergence O(∆ tq+1−µ+ν) is obtained; recall that q is the stage order of the

Runge-Kutta method.

Theorem 2. Assume (19), with ν ≥ 0. Let r > max(p + µ + 1,q + 1) and g ∈
Cr([0,T ]) satisfy g(0) = g′(0) = · · · = g(r)(0) = 0. Then, under the above condi-

tions on the Runge-Kutta method there exists t̄ ≥ 0 such that for 0 < ∆ t < t̄ and

t ∈ [0,T ],

|un −u(tn)| ≤C(∆ t p +∆ tq+1−µ+ν)

t∫

0

|g(r+1)(τ)|dτ.

The constant C is independent of ∆ t and g, but does depend on the Runge-Kutta

method, t̄, and T .

3.3 Implementation

The implicitly defined convolution weights ω∆ t
j (K) can be computed by numerical

quadrature of the Cauchy integral formula, as proposed in [52],

ω∆ t
j (K) =

1

2πi

∮

C

K

(
γ (ζ )

∆ t

)
ζ− j−1 dζ ≈ R− j

N +1

N

∑
ℓ=0

K

(
γ
(
Rζ−ℓ

N+1

)

∆ t

)
ζ
ℓ j
N+1, (23)

where ζN+1 = e
2πi

N+1 and 0 < R < 1. The computational cost using the fast Fourier

transform (FFT) to compute the sum for all j = 0,1, . . . ,N, is O(N logN) and the

error is O(RN+1). Due to finite precision arithmetic the accuracy is restricted to√
eps, where eps is the machine precision and the parameter R is chosen as R =

eps
1

2(N+1) ; see [52].

In applications it is of interest to solve a discrete convolutional system:

Find un, such that gn =
n

∑
j=0

ω∆ t
n− j(K)u j, n = 0,1, . . . ,N, (24)
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or the equivalent system in the Runge-Kutta case. Due to the composition rule

K2K1(∂
∆ t
t )g = K2(∂

∆ t
t )K1(∂

∆ t
t )g solving this system is equivalent to computing the

convolution with the operator K−1:

un =
n

∑
j=0

ω∆ t
n− j(K

−1)g j =
N

∑
j=0

ω∆ t
n− j(K

−1)g j, n = 0,1, . . . ,N, (25)

with the definition, ω j = 0 for j < 0, which is compatible with (21). Two approaches

to implementation are presented next. The first one uses the representation (25),

whereas the second uses (24), but both avoid constructing the weights ω∆ t
j explic-

itly. The presentation is done for the linear multistep based convolution quadrature.

Modifications needed in the Runge-Kutta case are explained at the end of the sub-

section.

3.3.1 Solving the convolutional system by computing a discrete convolution

with K−1

Next an efficient method for computing (25) is presented. The method has been

introduced in [13] but bears similarities with Method iii) of [52].

Substituting the approximation (23), this time with K−1 instead of K, into (25)

and after rearranging the terms the following expression is obtained

un ≈
R−n

N +1

N

∑
ℓ=0

K−1

(
γ
(
Rζ−ℓ

N+1

)

∆ t

)[
N

∑
j=0

R
jg jζ

−ℓ j
N+1

]
ζ ℓn

N+1. (26)

The term in the square bracket is the discrete Fourier transform of the vector

(g0,Rg1, . . . ,R
NgN)

T and hence can be computed in O(N logN) time using FFT.

The outer sum represents the inverse discrete Fourier transform also computable

in O(N logN) time using FFT. Thus, the whole computation can be performed in

O(N logN) time and the convolution weights need never be computed explicitly.

In [13], it is shown that the error of this approximation is still O(RN+1) with the

accuracy again restricted to
√

eps by the finite precision arithmetic.

Since computing K−1(s) is usually a significantly more complex and expensive

operation than the computation of K(s), this method can become expensive [58].

For this reason a recursive procedure is presented in the next section that requires

the inversion of K(s) only at the single frequency s = γ (0)/∆ t.

3.3.2 Solving the discrete convolutional system recursively

In [10], a modification of the recursive procedure of [48] is introduced which allows

the solution of (24) without ever constructing the convolution weights. This method

is presented next.

First, assume that
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n

∑
j=0

ω∆ t
n− j(K)u j = gn,

has already been solved for n = 0,1, . . . ,N1/2 < N. Then, it remains to solve

n

∑
j=N1/2+1

ω∆ t
n− j(K)u j = gn −

N1/2

∑
j=0

ω∆ t
n− j(K)u j, n = N1/2 +1, . . . ,N. (27)

Once the history ∑
N1/2

j=0 ω∆ t
n− j(K)u j is computed, the above system can be computed

recursively. The expensive part is hence the computation of the history, but it can

be computed efficiently using the fast Fourier transform (FFT). In order to avoid

constructing the weights ω∆ t
j (K) explicitly, a scaled FFT can be used, as explained

next.

Define

g̃n :=

N1/2

∑
j=0

ω∆ t
n− j(K)u j = R

−n

N1/2

∑
j=0

R
n− jω∆ t

n− j(K)R ju j, n = N1/2 +1, . . . ,N,

for a fixed 0 < R < 1. Let g̃R be the vector obtained by a matrix-vector multiplica-

tion of the circulant matrix, whose first column is given by

cR(K) := (ω∆ t
0 (K),Rω∆ t

1 (K), · · · ,RNω∆ t
N (K))T ,

with the vector

uR := (u0,Ru1, · · · ,RN1/2uN1/2
,0, · · · ,0)T .

It is not difficult to check that

R
−n(g̃R)n = g̃n, for n = N1/2 +1, . . . ,N;

here it is implicitly assumed that the numbering of elements in a vector begin with

0. Therefore, if g̃R can be computed efficiently and without explicitly constructing

the convolution weights, then so can the history required for (27). Since circulant

matrices are diagonalized by the discrete Fourier transform, in the following denoted

by FN+1, it holds

g̃R = F
−1
N+1 diag(FN+1cR(K))FN+1uR. (28)

The definition of FN+1 that will be used in the following is

(FN+1u)ℓ =
N

∑
j=0

u jζ
−ℓ j
N+1, with ζN+1 = e

2πi
N+1 .

The definition of convolution weights (21) then gives
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(FN+1cR(K))ℓ =
N

∑
j=0

R
jω∆ t

j ζ
−ℓ j
N+1 = K

(
γ
(
Rζ−ℓ

N+1

)

∆ t

)
−

∞

∑
j=N+1

R
jω∆ t

j ζ
−ℓ j
N+1

= K

(
γ
(
Rζ−ℓ

N+1

)

∆ t

)
−

∞

∑
k=1

R
k(N+1)

[
N

∑
j=0

R
jω∆ t

j+k(N+1)(K)ζ−ℓ j
N+1

]
.

Since the term in square brackets is again a discrete Fourier transform, considering

(28) and applying F
−1
N+1 to both sides in the above equation gives

g̃R = F
−1
N+1 diag

[
K

(
γ (R)

∆ t

)
, · · · ,K

(
γ
(
Rζ−N

N+1

)

∆ t

)]
FN+1uR

−
∞

∑
k=1

R
k(N+1) diag

[
ω∆ t

k(N+1),Rω∆ t
1+k(N+1), · · · ,RNω∆ t

N+k(N+1)

]
FN+1uR.

Scaling both sides with R−1 := diag(1,R−1, . . . ,R−N) finally gives

g̃ = R−1
F

−1
N+1 diag

[
K

(
γ (R)

∆ t

)
, · · · ,K

(
γ
(
Rζ−N

N+1

)

∆ t

)]
FN+1uR (29)

−
∞

∑
k=1

R
k(N+1) diag

[
ω∆ t

k(N+1)(K), · · · ,ω∆ t
N+k(N+1)(K)

]
FN+1uR.

Therefore, the vector g̃, containing the update due to the history, can be computed

to an accuracy O(RN+1) by using only evaluations of the Laplace domain operator

K(s). Further, the computational cost is only O(N logN). The error is however re-

stricted by finite precision eps of computations of K(s) and the FFT. Therefore, the

total error for computation of the correction g̃n is RN+1 +R−neps, n = N1/2, . . . ,N.

Hence, the best accuracy
√

eps is obtained with the choice R = eps1/2N .

This procedure can be continued recursively. Thereby no convolution weights

ω∆ t
j (K) need to be computed except for the first one

ω∆ t
0 (K) = K

(
γ (0)

∆ t

)
.

It is also the only operator that needs to be inverted if the recursion is performed until

a 1×1 system is reached. In practice it is more common to stop the recursion once

a small sized system is reached and then solve the small system using the method

of Section 3.3.1. See Algorithm SolveCQ for the structure of such an approach.

In order to solve (24) the algorithm is called with arguments SolveCQ(0, N, g, u,

J), where a constant J defines the size of the “small” system. The cost of such a

recursive procedure is O(N log2 N) [48] since there are logN levels in the recursion

and at each level an FFT is computed.
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Algorithm SolveCQ(N0,N1,g,u,J)

(∗ Solves convolutional system ∑
n
j=N0

ω∆ t
n− j(K)u j = gn, n = N0, . . . ,N1 ∗)

1. if N1 −N0 ≥ J

2. then N1/2 = ⌈(N1 −N0)/2⌉
3. SolveCQ(N0, N1/2, g, u, J)

4. update right-hand side

gn = gn −
N1/2

∑
j=N0

ω∆ t
n− j(K)u j, n = N1/2 +1, . . . ,N1

using (29).

5. SolveCQ(N1/2 +1, N1, g, u, J)

6. else compute

un =
n

∑
j=N0

ω∆ t
n− j(K

−1)g j, n = N0, . . . ,N1,

using (26).

Remark 1 (Parallelization). Algorithm SolveCQ, see lines 6. and 4., can easily gain

from the availability of a parallel architecture. In applications, the expensive part

of the computation is the evaluation of the operator K(s). Due to the diagonaliza-

tion of the (block) circulant matrices, in both methods, this part of the computation

is trivially parallel and, therefore, appropriate also for distributed memory parallel

architecture.

3.3.3 A few remarks regarding the implementation of Runge-Kutta based

convolution quadrature

The same procedure as explained above for the linear multistep case can also be

used to implement the Runge-Kutta based convolution quadrature. Again, it is only

necessary to be able to evaluate operators

K

(
∆
(
Rζ−ℓ

N+1

)

∆ t

)
and K

(
∆(0)

∆ t

)
= K

(
A−1

∆ t

)
.

If ∆(Rζ−ℓ
N+1) has a full basis of eigenvectors, i.e., if there exist invertible matrix

X and diagonal matrix Λ = diag(λ1,λ2, · · · ,λm)
T such that ∆(Rζ−ℓ

N+1) = XΛX−1,

then the matrix valued operator is easily computed by

K

(
∆
(
Rζ−ℓ

N+1

)

∆ t

)
= X diag(K(λ1/∆ t), · · · ,K(λm/∆ t))X−1.
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In [10], it has been shown that there is only a single value of Rζ−ℓ
N+1, respectively

two such values, for which ∆
(
Rζ−ℓ

N+1

)
is not diagonalizable in the case of the 2-

stage Radau IIA method, and respectively, the 3-stage Radau IIA method. These

particular values are very unlikely to be hit during a computation, still the condition

number of the basis of eigenvectors X should, as a precaution, be examined.

4 Convolution quadrature applied to hyperbolic initial value

problems

In the notation of Section 3, the time domain integral operators V ,K ,K ′, and

D can be written as V (∂t),K(∂t),K
′(∂t), and D(∂t) where V,K,K′, and D are the

corresponding Laplace domain operators

(V t)(x,s) =
∫

Γ

Û(x−y,s)t(y)dΓy dτ

(Ku)(x,s) = lim
ε→0

∫

Γ \Bε (x)

(TyÛ)⊤(x−y,s)u(y)dΓy,

(K′t)(x,s) = lim
ε→0

∫

Γ \Bε (x)

(TxÛ)(x−y,s)t(y)dΓy dτ

(Du)(x,s) =− lim
ε→0

Tx

∫

Γ \Bε (x)

(TyÛ)⊤(x−y,s)u(y)dΓy, for x ∈ Γ .

Once the Cauchy data are computed, the representation formula (9) can be used

to evaluate the solution inside the domain Ω . The single and double layer operators

used in the representation formula are denoted by Ṽ and K̃, i.e.,

(Ṽ t)(x,s) =
∫

Γ

Û(x−y,s)t(y)dΓy dτ

(K̃u)(x,s) =
∫

Γ

(TyÛ)⊤(x−y,s)u(y)dΓy, for x ∈ Ω .

The linear multistep method based convolution quadrature of the symmetric for-

mulation (16) is given by

(V (∂ ∆ t
t )t̃)(x, tn)− (K(∂ ∆ t

t )ũ)(x, tn) = fD(x, tn), x ∈ ΓD

(D(∂ ∆ t
t )ũ)(x, tn)+(K′(∂ ∆ t

t )t̃)(x, tn) = fN(x, tn), x ∈ ΓN

(32)

for n = 0,1, . . . ,N and with the abbreviations
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fD = C g̃D +K(∂ ∆ t
t )g̃D −V (∂ ∆ t

t )g̃N ,

fN = (I −C ) g̃N −K′(∂ ∆ t
t )g̃N −D(∂ ∆ t

t )g̃D .

Once (32) is solved for the boundary data, the solution u inside the domain Ω is

obtained by discretizing the representation formula as

un(x) = (Ṽ (∂ ∆ t
t )t)(x, tn)− (K̃(∂ ∆ t

t )u)(x, tn), x ∈ Ω . (33)

For the Runge-Kutta based convolution quadrature, ∂ ∆ t
t is replaced by ∂t

∆ t
.

4.1 Bounds in the Laplace domain

In order to be able to apply Theorem 1 and Theorem 2 to show convergence and sta-

bility of the semi-discretized symmetric formulation (32), estimates in the Laplace

domain of the form (19) are needed. That is, considering the symmetric formulation

in Laplace domain

(V (s)t̂)(x,s)− (K(s)û)(x,s) = f̂D(x,s), x ∈ ΓD

(D(s)û)(x,s)+(K′(s)t̂)(x,s) = f̂N(x,s), x ∈ ΓN

(34)

with
f̂D = C ĝD +K(s)ĝD −V (s)ĝN

f̂N = (I −C ) ĝN −K′(s)ĝN −D(s)ĝD,

an s-dependent bound in an appropriate norm of the solution operator

T (s) : (ĝD, ĝN) 7→ (û, t̂)

is needed. Since the kernel functions of the integral operators involved in (34) are

analytic in the right half complex plane as functions of s, so are the integral operators

themselves, and consequently, if it exists, the solution operator T also. If the problem

is well-posed, the solution operator must be polynomially bounded in appropriate

norms, but determining the degree of such a polynomial bound, µ in (19), and ν
in (19), is in general difficult and for the symmetric formulation only known in the

acoustic case, see [50], with the results extendible to the elastic case. For the linear

multistep based convolution quadrature, see Theorem 1, the value of µ gives the

smoothness of the data required for optimal convergence rate to be reached. For

the Runge-Kutta method, see Theorem 2, this constant, in fact µ − ν , influences

the optimal convergence rate however smooth the data may be. Accordingly, for the

Runge-Kutta method it is of an extra importance to know this constant.

Bounds for various formulations with explicit dependance on s, have so far been

computed for acoustics and electromagnetism. For the acoustic case, in the pioneer-

ing work of Bamberger and Ha-Duong [9] estimates
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‖V (s)‖
H−1/2(Γ )→H1/2(Γ ) ≤C

|s|
ℜs

and ‖V−1(s)‖
H1/2(Γ )→H−1/2(Γ ) ≤C

|s|2
ℜs

, (35)

have been proved. Therefore, according to Theorem 2, the expected rate of conver-

gence to the exact densities is O(∆ tq), i.e., stage order q. More favourable bounds

have been shown in [14] for the operator Ṽ (s), these imply that the rate of conver-

gence to u(x, t) for a fixed x ∈ Ω is O(∆ t p), that is the full (classical) order of the

Runge-Kutta method; this result is likely to extend to all of the other wave propaga-

tion problems.

In the recent work by Laliena and Sayas [50], various formulations, the sym-

metric coupling, FEM-BEM coupling, transmission problems, etc., have also been

investigated in the acoustics case. As stated by the authors of [50] all these results

are extendible to the elastic case. The bound obtained in [50] for the solution oper-

ator of the symmetric formulation is

‖T (s)‖ ≤C
|s|5/2

ℜs
.

For the electric field integral equation (EFIE) formulation of the problem of scat-

tering of electromagnetic waves by a perfect conductor, the corresponding bound

has been given in [66, 81].

Note that for the analysis of the fully discretized problem, i.e., discretized both in

time and space, bounds of the type (35) are needed also for the spatially discretized

integral operators [53].

4.2 Properties of convolution weights

It is instructive to investigate the shape of the convolution weights for the various

boundary integral operators. In this section, the single layer operator convolution

weights ω∆ t
j (V ) and W ∆ t

j (V ) for the acoustic and viscoelastodynamic equations are

investigated.

These have the form

ω∆ t
j (V )t =

∫

Γ

ω̃∆ t
j (x−y)t(y)dΓy and W ∆ t

j (V )t =
∫

Γ

W̃ ∆ t
j (x−y)t(y)dΓy,

the kernels being given by generating functions

Û(z,γ (ζ )/∆ t) =
∞

∑
j=0

ω̃∆ t
j (z)ζ j and Û(z,∆ (ζ )/∆ t) =

∞

∑
j=0

W̃ ∆ t
j (z)ζ j.

For the backward Euler method and the acoustic wave equation, the kernels

ω̃∆ t
j (V ) can be given explicitly:
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ω̃∆ t
j (z) =

e−
|z|
c∆ t

4π|z|

( |z|
c∆ t

) j
1

j!
, BDF1 for the wave equation.

From this formula and Stirling’s approximation of j! it is not difficult to see that

ω̃∆ t
j (z) is close to zero except for |z|/c ≈ j∆ t. This is not surprising since the kernel

function in this case approximates, in a certain sense, the Dirac delta distribution
δ (t j−|z|/c)

4π|z| . Explicit formulas for ω̃∆ t
j (z) in the case of BDF2 can be given in terms of

Hermite polynomials [46]. The width of the intervals to which |z| needs to belong to

in order that |ω̃∆ t
j (z)|> ε for some ε > 0 have been investigated in [46]. For Runge-

Kutta methods such estimates do not exist as yet, but numerical experiments [10],

suggest that the width of this band is considerably smaller for high-order Runge-

Kutta methods.
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Fig. 1: Plots of the i = 1 and j = 2 entry of the tensors ω̃∆ t
n (z) and bT A−1W̃ ∆ t

n (z)1=

∑
m
l=1

(
W̃ ∆ t

n (z)
)

ml
with z = (1,1,0)T for 3-stage Radau IIA and BDF2 methods.

Because of the increased complexity of viscoelastodynamics compared to acous-

tics it is particularly of interest to investigate the shape of the kernel functions in

this case. In Figure 1, the shapes are compared for different choices of ∆ t and the
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underlying linear multistep or Runge-Kutta method. For the Runge-Kutta method

the sum of the last row of W̃ ∆ t
j (z) ∈ R

m×m is plotted; in fact each component has a

similar shape. For this plot, the measured material data of a Perspex (PMMA) are

used, i.e., the material constants in (5) and (6), are set with

K = 6.2×109 N/m2, G = 1.33×109 N/m2, ρ = 1184 kg/m3

qH = qD = 0.0023 1/s, pH = pD = 0.002 1/s .

The two waves, with different speeds of propagation, can nicely be seen in these

plots. It is also seen that for the Runge-Kutta method the fronts are much better

localised and with less non-physical oscillation for considerably larger ∆ t than for

the BDF2 kernels. This suggests that the higher order brings also qualitative advan-

tages, that is, that the results should be closer to the physical reality earlier as ∆ t is

decreased. This observation is explained more thoroughly in the next section.

4.3 Dissipation and dispersion

It is often possible to say more about the numerical solution of a problem than just

the assymptotic convergence order. Certain qualitative properties of the numerical

solution can be quantified by the notions of numerical dissipation and dispersion,

see [82].

An important fact, in this respect, is that the convolution quadrature of the time-

domain boundary integral equation is equivalent to a boundary integral formulation

of the semi-discretization of the underlying partial differential equation. Namely,

the solution of the semi-discrete problem (32) and (33) satisfies the linear multistep,

respectively Runge-Kutta discretization, of the underlying partial differential equa-

tion (1). For example in the case of viscoelastodynamics, see (4), the solution un,

n = 0,1, . . . ,N, of (32) will satisfy the semi-discrete PDE

c2
1v(∂

∆ t
t )∆u− c2

2v(∂
∆ t
t )∇×∇×u = (∂ ∆ t

t )2u (36)

whereas in the case of the acoustic wave equation the solution un, n = 0,1, . . . ,N, of

(32) satisfies the semi-discrete PDE

c2∆u = (∂ ∆ t
t )2u (37)

on the domain Ω . For the method of proof of this fact, see [53, Theorem 5.2] and the

introduction of [10]. To perform dispersion and dissipation analysis, one assumes

(36) or (37) to hold in the whole space R
3 and investigates the shape of plane wave

solutions. Such analysis is classical, but has first been performed in the context of

convolution quadrature in [23].

For simplicity only the scalar wave equation (37) is investigated here. The non-

discretized wave equation (3) admits plane-wave solutions of the form ei( ξ
c .x+ωt)
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with ω2 = |ξ |2. Semi-discrete equation (37) also admits plane wave solutions

un(x) = ei( ξ
c .x+ω∆ t tn), but, the relationship between ω∆ t and ξ is considerably more

involved and constitutes the dissipation and dispersion analysis. For linear multistep

methods the relationship is given by

|ξ |2 =
(

γ
(
e−iω∆ t ∆ t

)

i∆ t

)2

. (38)

In the case of backward Euler discretization, i.e., γ (ζ ) = 1−ζ , solving this equation

for ω∆ t the following relationship is obtained

ω∆ t =±|ξ |+ i

2
∆ t|ξ |2 ∓ 1

3
∆ t2|ξ |3 · · · , Backward Euler.

This shows that plane waves satisfying the semi-discrete wave equation discretized

by first order BDF method are of size O(e−
1
2 ∆ t|ξ |2), i.e., the solutions are signifi-

cantly damped unless ∆ t|ξ |2 ≪ 1. This is a much stronger condition than the sam-

pling condition of a few degrees of freedom per wavelength, i.e., ∆ t|ξ | ≪ 1. In

general, it is seen from (38) and the approximation property γ (e−z) = z+O(zp+1),
that for a p-th order linear multistep based discretization to give an accurate result,

∆ t must satisfy the condition ∆ t p|ξ |p+1 ≪ 1. Since the order of A-stable multistep

methods is restricted to p ≤ 2, this condition on ∆ t is always significantly more

stringent than the sampling condition.

For Runge-Kutta methods consider the plane wave unℓ = ei( ζ
c .x+ω∆ t tn+ωℓ,∆ t cℓ∆ t).

Since cm = 1, ωm,∆ t = ω∆ t must hold, but in general it is not possible to require

ωℓ,∆ t = ω∆ t for all ℓ. For the analysis the following result proved in [10] will be

used

Lemma 1. Let (22) hold, |ζ | 6= 1, and λ be an eigenvalue of ∆ (ζ ), but not of A−1.

Then R(λ ) = ζ−1.

A similar calculation as for the linear multistep methods gives the relationship

|ξ |2




un1

...

unm


=

(
∆
(
e−iω∆ t ∆ t

)

i∆ t

)2




un1

...

unm


 . (39)

A solution ωl,∆ t of the following equation also satisfies (39)

|ξ |




un1

...

unm


=

(
∆
(
e−iω∆ t ∆ t

)

i∆ t

)


un1

...

unm


 .

Therefore, i∆ t|ξ | is an eigenvalue of ∆
(
e−iω∆ t ∆ t

)
and for small enough ∆ t|ξ | cannot

be an eigenvalue of A−1. Consequently, due to Lemma 1,
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R(i∆ t|ξ |) = eiω∆ t ∆ t .

Recalling the approximation property of the stability function R(z) = ez +O(zp+1).
it is seen that

ω∆ t = |ξ |+ |ξ |O(|ξ ∆ t|p). (40)

Since for the 2-stage Radau IIA method p = 3 and for the 3-stage method p = 5,

it is seen from the last equation that these methods are significantly less dissipative

and dispersive than the A-stable linear multistep formulas. Furthermore, the constant

implicit in (40) is very favourable in the case of Radau IIA methods, it is C = 1/216

for the 2-stage and C = 1/7200 for the 3-stage method.

5 Space discretization

Space discretization, in the context of convolution quadratures, poses no extra diffi-

culty compared to the space discretization of boundary integral operators of elliptic,

in particular Helmholtz, problems. It is merely necessary to replace the Laplace

domain integral operators in (32) by their discretized counterparts.

5.1 Galerkin and collocation in space

When using Galerkin discretization in space, finite element bases on boundaries ΓD

and ΓN are used to construct the approximation spaces

XD = Span{ϕ1,ϕ2, . . . ,ϕM1
|ϕ j ≡ 0 on ΓN},

XN = Span{ψ1,ψ2, . . . ,ψM2
|ψ j ≡ 0 on ΓD}.

The unknowns (ũ)n and (t̃)n at time t = tn are approximated by a linear combination

of functions in XD and XN :

(ũh)n =
M1

∑
ℓ=1

α
(n)
ℓ ϕℓ and (t̃h)n =

M2

∑
k=1

β
(n)
k ψk, n = 0,1, . . . ,N. (41)

Inserting this ansatz into (32) and testing by functions from XD and XN gives the

fully discrete system

∫

Γ

V (∂ ∆ t
t )t̃h(x, tn)ψk(x)dΓx −

∫

Γ

K(∂ ∆ t
t )ũh(x, tn)ψk(x)dΓx =

∫

Γ

fD(x, tn)ψk(x)dΓx,

∫

Γ

D(∂ ∆ t
t )ũh(x, tn)ϕℓ(x)dΓx +

∫

Γ

K′(∂ ∆ t
t )t̃h(x, tn)ϕℓ(x)dΓx =

∫

Γ

fN(x, tn)ϕℓ(x)dΓx,
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for n = 0,1, . . . ,N, ℓ= 1,2, . . . ,M1, and k = 1,2, . . . ,M2.

When solving this convolutional linear system of equations using the techniques

of Section 3.3, quadrature required to implement these equations can be done solely

in Laplace domain. More specifically, the Galerkin discretization of operators V (sℓ),
K(sℓ), K′(sℓ), and D(sℓ) for all the frequencies sℓ occurring in the algorithms de-

scribed in Section 3.3 are needed. For example, Galerkin discretization of the single

layer potential requires the computation of the following integrals

∫

Γ

(V (sℓ)ψ j)(x)ψk(x)dΓx =
∫

Γ

∫

Γ

Û(x−y,sℓ)ψ j(y)ψk(x)dΓy dΓx.

Numerical quadrature routines for kernels Û(x− y,sℓ) have been extensively in-

vestigated and are readily available, see for example [36, 45, 75]. In fact, one of the

main advantages of convolution quadrature lies in the fact that numerical quadrature

of the difficult/unknown distributional kernel function is not necessary.

It has to be mentioned that the right-hand sides fD and fN are not immediately

available, but have to be first computed by applying time-domain integral operators

to the data g̃D and g̃N . This is usually done by first projecting the data onto boundary

element bases defined on Γ ; note that since it is not necessarily true that g̃D ≡ 0 on

ΓN and g̃N ≡ 0 on ΓD it is not possible here to re-use spaces XD and XN .

To avoid double integration in space, it is of interest to use collocation in space

instead of Galerkin discretization. Here the unknown functions are again approxi-

mated by a linear combination of basis functions as in (41) and this approximation is

substituted in (32). To arrive at a system of linear equations, the resulting equations

are evaluated at collocation points on the boundary.

Stability and convergence analysis of the fully discrete symmetric system has

not yet appeared in literature in any of the applications covered in this paper. The

linear multistep convolution quadrature with Galerkin discretization in space for

the indirect boundary integral formulation of the Dirichlet problem of acoustics has

been fully analysed in [53].

5.2 Fast data-sparse methods in frequency domain

Using Algorithm SolveCQ to solve the fully discrete system it is necessary to dis-

cretize operators V (sℓ), K(sℓ), K′(sℓ), and D(sℓ). Galerkin or collocation discretiza-

tions of such operators result in dense M j×Mk matrices, j,k = 1,2. Therefore, direct

computation and storage of such matrices has cost O(M2) with M = max(M1,M2).
Fortunately, so called data sparse techniques have been developed in the past couple

of decades that can in almost linear cost, i.e., O(M loga M) for some a > 0, compute

approximations of these matrices. Two main classes of such data sparse methods are

hierarchical matrices (H -matrices) [44, 43] and the fast multipole methods (FMM)

[68, 24].
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The difficulty of computing a data sparse representation of space discretizations

of integral operators is directly related to the wavenumbers sℓ. The kernel functions

have the form

Û(x,s) =
w

∑
i=1

A(i)(r,s)
e
− s

ci(s)
r

4πr
, r = |x|,

with ci(s) → const > 0 for |s| → ∞, and hence if |ℑsℓ| ≫ 1 the kernel is highly

oscillatory and consequently difficult to discretize efficiently, on the other hand if

ℜs ≫ 1 the operator is practically diagonal and easy to efficiently discretize.

The evaluation of integral operators at different wavenumbers occurs in two

places in Algorithm SolveCQ: in line 6. where a discrete convolutional system of

size J is solved by solving a decoupled set of linear systems in Laplace domain,

and in line 4. where a matrix-vector product with discretized integral operators in

Laplace domain needs to be computed. In [10], it is shown that if J is chosen as

a constant independent of ∆ t the frequencies arising in solving the small system

6 all satisfy |ℑs|/ℜs ≤ const. This in turn implies that the integral operators in

Laplace domain can be approximated by an H -matrix with computational and stor-

age complexity O(M logM). Furthermore, an (approximate) LU-decomposition in

H -matrix format can be computed in O(N log2 N) time, which can be used as a

very good preconditioner for solving the linear systems by an iterative method, such

as GMRES.

Wavenumbers occurring in the update, line 4., can have |ℑs| ∼ ∆ t−1. If ∆ t/ci,

with ci the speed of the wave, is much smaller than the size of the computational do-

main Ω , high-frequency problems occur for which H -matrices lose their efficiency

[58]. Fortunately, the highly-oscillatory operators need not be inverted, but only a

single matrix-vector product needs to be computed. This is an ideal task for the so

called fast multipole methods. Here the advantage of the recursive procedure from

Section 3.3.2 can best be seen.

Many fast-multipole like methods for high-frequency Helmholtz integral opera-

tors have been developed since the early 1990s [4, 11, 29, 69, 70]. These have dealt

with cases of purely real and purely imaginary wavenumbers. They can be adapted

to the present case of the whole range of complex frequencies, still, to do this opti-

mally more work is needed.

6 Numerical example

In this section, the solution procedure of section 3.3.1 is tested for elastodynamics

with different Runge-Kutta and multistep methods. In order to show the validity

of the results only benchmark examples, whose analytical solutions are known, are

treated. All computations were performed by using the HyENA C++ library for

the numerical solution of partial differential equations using the boundary element

method [59]. For the Fourier like transformations the FFTW routines [38] are taken.
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A 3-d rod of size ℓ1 = 3.0m and ℓ2 = ℓ3 = 1.0m, as depicted in Figure 2, is

considered. It is fixed on one end and the other end is excited by a pressure jump

t1 = −1.0H(t)N/m2. H(t) denotes the unit step function. The material parameters

of steel (ρ = 7850 kg/m3, G = 1.055× 1011 N/m2, K = 7.03× 1010 N/m2) are taken.

Poisson ratio is chosen to be zero, such that the results can be compared with the

analytical solution of longitudinal waves in a 1-d elastodynamic rod (see [41]). The

t1 =−1.0H(t)N/m2

x1

x2

x3
1m

1m

3m

Fig. 2: System and boundary conditions

rod shown in Figure 2 is discretised with two different meshes, the coarse with 565

triangular boundary elements of uniform mesh size h = 0.2m and the fine with 2176

triangular boundary elements of uniform mesh size h = 0.1m. Both are depicted in

Figure 3. The displacements and tractions are approximated by piecewise constant

and continuous linear polynomials, respectively. In order to compare different time

discretizations the dimensionless value

β =
c1∆ t

h

is introduced. This value depends on the velocity of the compression wave c1, the

time step size ∆ t, and the average mesh size h. For the Runge-Kutta methods the

time step size ∆ t is taken that of the stages and not of one step to have a fair com-

parison with the multistep method.

In the following, results are presented to show the influence of the different time

discretisations, i.e., the chosen methods are BDF2, Radau IIA (2-stage), and Radau

IIA (3-stage). It is studied how these different methods work in relation to the spatial

discretisation and the time step size.

First, the displacement in the middle of the top and the tractions in the middle of

the bottom of the bar are displayed in Figure 4 versus time for the different Runge-

Kutta methods listed above and the BDF2. A collocation technique with β = 0.3
and the fine mesh is used. The displacement results are more or less equal and coin-

cide well with the analytical solution. The traction solution is overall good as well.

The differences between the Runge-Kutta methods and the BDF2 are visible in the
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565 triangular elements

382 nodes

(a) coarse mesh: h = 0.2m

2176 triangular elements

1438 nodes

(b) fine mesh: h = 0.1m

Fig. 3: Uniform meshes used for the calculations

oscillations at the jumps. There, the Runge-Kutta methods show less pronounced

effects and as well a better representation of the straight lines. This is in accordance

with the observations made for the integration weights in section 4 (see Figure 1).

The Runge-Kutta methods have represented the wave fronts much sharper than the

BDF2. Hence, here the oscillations must be smaller. Nevertheless, also the results

for the BDF2 are good. As the different displacement results are nearly not distin-

guishable, in the following only traction results will be presented.

The next study shows the influence of the mesh size where the traction results

using a Radau IIA (2-stage) are compared. In Figure 5, the results are displayed

versus time for both discretisations of Figure 3 and for a collocation (denoted by

’collo’) and a symmetric Galerkin BEM (denoted by ’SGBEM’). As expected the

finer mesh yields better results. The difference between collocation and the SGBEM

is not observable. Similar plots can be made with the other time discretisations,

which yield qualitatively the same. One difference can be observed. The 3-stage

Radau IIA method tends to instabilities for the chosen β = 0.3.

The sensitivity on the times step size is studied in Figure 6. The traction re-

sults are computed with the finer mesh for all three multistep methods for different

β -values. For β = 0.1 the 3-stage Radau IIA method shows clearly an instability.

These results are truncated after t ≈ 0.0033s, not to destroy the whole picture. With

a coarser mesh also the other methods would show instabilities. Overall, the nu-

merical tests confirm that a finer mesh moves the instabilities to smaller values of

β . Comparing to the mathematics in section 3 this behavior is not obvious. But, it

must be remarked that all proofs require some smoothness of the given data which is

in the example by the Heaviside function clearly violated. However, for engineering
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Fig. 4: Results for different Runge-Kutta methods and the BDF2 versus time
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Fig. 5: Influence of mesh size using a Radau IIA (2-stage) method

applications such loadings are necessary and, therefore, the numerical tests has been

made with this right hand side.

The last study concerns the long time behavior, because a lot of time domain

BE formulations suffer from either strong numerical damping or instabilities in the

long time range. The proposed method shows a very nice behavior as presented

in Figure 7. The collocation and the SGBEM results are given for both meshes

using a 3-stage Radau IIA method. Nearly no numerical damping is observed and

no instabilities. The time step size is chosen according to β = 0.5. The other Runge-

Kutta or multistep methods produce comparable results. Hence, it can be concluded

that the long time behavior is satisfactory.

Overall, the presented results show that the method is robust with respect to the

time and the spatial discretisation if the mesh is sufficiently fine and the time step

size not too small.

Appendix

The general form of the fundamental solutions for the operators given in section 2

can be found in (10). For better readability it is recalled
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Fig. 6: Influence of time step size for the different multistep methods
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Fig. 7: Long time behavior using a Radau IIA (3-stage) method

Û(x−y,s) =
w

∑
i=1

A(i) (r,s)
e−λir

4πr
with r = |x−y| .

In the following, the coefficients Ai (r,s) are listed. For the vectorial problems the

fundamental solutions are tensors. For them the indical notation is used with the

notation r,i =
xi−yi

r
for the directional derivative and δi j for the Kronecker delta.

Acoustics

The respective equations are presented in section 2.1.1. In (3), the homogeneous

form of the differential equation is given. For the definition of the fundamental so-

lution a source of Dirac type has to be added. As in acoustics only one compressional

wave appears and the sum in (10) has only one term, i.e., w = 1 holds. Further, it is

a scalar problem, hence, the tensor of fundamental solutions degenerates to a scalar

value. The coefficient is

A(1) = 1 with λ1 =
s

c
= s

√
ρ

K
.
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Visco- and elastodynamics

The governing equations for viscoelasticity are given in section 2.1.2 as an extension

of the elastodynamic case (1). Only the wave velocities have to be replaced by (5).

The excitation in the definition of the fundamental solutions is a force of Dirac type.

Two waves, the compression and the shear wave, exist and, therefore, the sum in

(10) has two terms, i.e., w = 2 holds. The coefficients are

A
(1)
i j =

1

ρs2

{
3r,ir, j −δi j

r2
(λ1r+1)+λ 2

1 r,ir, j

}

A
(2)
i j =

1

ρs2

{
3r,ir, j −δi j

r2
(λ2r+1)+λ 2

2 r,ir, j

}

with the complex wave numbers

λ1 =
s

c1
λ2 =

s

c2
in elastodynamics and

λ1 =
s

c1v

λ2 =
s

c2v

in viscoelastodynamics.

Poroelastodynamics

The governing equations of proelastodynamics (7) is a coupled set of differential

equations for the unkowns solid displacement u and pore pressure p. Consequently,

the fundamental solution is a matrix

Ĝ =

(
Û s

i j Û
f

i

P̂s
j P̂ f

)
with Û

f
i = sP̂s

i .

The single entries are composed as given in (10) and have either three waves, i.e.,

w = 3 or only two compressional waves, i.e., w = 2. The respective coefficients of

the sum are for the solid displacements due to a bulk body forc of Dirac type in the

solid, i.e., Û s
i j

A
(1)
i j =

1(
ρ −β (s)ρ f

)
s2

R1
λ 2

4 −λ 2
2

λ 2
1 −λ 2

2

A
(2)
i j =

−1(
ρ −β (s)ρ f

)
s2

R2
λ 2

4 −λ 2
1

λ 2
1 −λ 2

2

A
(3)
i j =

1(
ρ −β (s)ρ f

)
s2

(
δi jλ

2
3 −R3

)

with Rk = (3r,ir, j −δi j)/r2 +λk (3r,ir, j −δi j)/r+λ 2
k r,ir, j and

λ 2
4 = s2

(
ρ −β (s)ρ f

)
/(K +4/3G). The pressure caused by the same load is, i.e.,

P̂s
j
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A
(1)
i j =

(α −β (s))sρ f r, j

β (s)
(
K + 4

3
G
)(

λ 2
1 −λ 2

2

)
(

λ1 +
1

r

)

A
(2)
i j =

−(α −β (s))sρ f r, j

β (s)
(
K + 4

3
G
)(

λ 2
1 −λ 2

2

)
(

λ2 +
1

r

)
.

The remaining one is the pressure due to a source of Dirac type in the fluid, i.e., P̂ f

A
(1)
i j =

sρ f

β (s)

λ 2
1 −λ 2

4

λ 2
1 −λ 2

2

A
(2)
i j =

−sρ f

β (s)

λ 2
2 −λ 2

4

λ 2
1 −λ 2

2

.

Electromagnetism

The fundamental solution is the same as for the acoustic wave equation, i.e.,

A(1) = 1 with λ1 =
s

c
= s

√
εµ .
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