Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Castelnuovo-Mumford regularity of seminormal simplicial affine semigroup rings

(revised version: December 2010)
by

Max Joachim Nitsche

Castelnuovo-Mumford regularity of seminormal simplicial affine semigroup rings

Max Joachim Nitsche
Max-Planck-Institute for Mathematics in the Sciences
Inselstrasse 22, 04103 Leipzig, Germany
E-Mail: nitsche@mis.mpg.de
6th December 2010

Abstract

We show that the Eisenbud-Goto conjecture holds for seminormal simplicial affine semigroup rings. Moreover we prove an upper bound for the Castelnuovo-Mumford regularity in terms of the dimension, which is similar as in the normal case. Finally we compute explicitly the regularity of full Veronese rings.

1 Introduction

Let S be a homogeneous simplicial affine semigroup, i. e. S is the submonoid of $\left(\mathbb{N}^{d},+\right)$ generated by a set $A:=\left\{e_{1}, \ldots, e_{d}, a_{1}, \ldots, a_{c}\right\} \subset \mathbb{N}^{d}$, where

$$
\begin{aligned}
& e_{1}:=(\alpha, 0, \ldots, 0), e_{2}:=(0, \alpha, 0, \ldots, 0), \ldots, e_{d}:=(0, \ldots, 0, \alpha), \\
& a_{i}=\left(a_{i[1]}, \ldots, a_{i[d]}\right), \text { with } a_{i[1]}+\ldots+a_{i[d]}=\alpha, i=1, \ldots, c .
\end{aligned}
$$

Moreover we assume that the integers $a_{i[j]}, i=1, \ldots, c, j=1, \ldots, d$ are relatively prime and we assume that $d \geq 2, c \geq 1$ and $\alpha \geq 2$. Let K be an arbitrary field, by $K[S]$ we denote the affine semigroup ring of S. As usual we can identify the affine semigroup ring $K[S]$ with the subring of the polynomial ring $K\left[t_{1}, \ldots, t_{d}\right]$ generated by monomials $t^{a}:=t_{1}^{a_{1]}} \cdots t_{d}^{a_{[d]}}$, where $a=\left(a_{[1]}, \ldots, a_{[d]}\right) \in S$. In the following we study the \mathbb{Z} grading on $K[S]$ which is induced by $\operatorname{deg} t^{a}=\left(\sum_{i=1}^{d} a_{[i]}\right) / \alpha$. We note that $\operatorname{dim} K[S]=d$. By $R:=K\left[x_{1}, \ldots, x_{d+c}\right]$ we denote the standard-graded polynomial ring over K, i. e. $\operatorname{deg} x_{i}=1$. Thus we have a \mathbb{Z}-graded surjective K-algebra homomorphism:

$$
\pi: K\left[x_{1}, \ldots, x_{d+c}\right] \rightarrow K[S]
$$

given by $x_{i} \mapsto t_{i}^{\alpha}, i=1, \ldots, d$ and $x_{d+j} \mapsto t^{a_{j}}, j=1, \ldots, c$. Hence $K[S] \cong R /$ ker π, where $\operatorname{ker} \pi$ is a homogeneous prime ideal of R. Let m_{R} denote the maximal homogeneous ideal of R and $a(M):=\max \left\{n \mid M_{n} \neq 0\right\}$ with $a(M):=-\infty$ if $M=0$, for a graded R-module M. As usual the Castelnuovo-Mumford regularity $\operatorname{reg} K[S]$ of $K[S]$ is defined by

$$
\operatorname{reg} K[S]:=\max \left\{i+a\left(H_{m_{R}}^{i}(K[S])\right) \mid 0 \leq i \leq \operatorname{dim} K[S]\right\} .
$$

[^0]Since the Eisenbud-Goto conjecture [3] is widely open in general, it would be nice to answer the following:

Question (Eisenbud-Goto). Does $\operatorname{reg} K[S] \leq \operatorname{deg} K[S]-\operatorname{codim} K[S]$ hold?
Where $\operatorname{codim} K[S]:=\operatorname{dim}_{K} K[S]_{1}-\operatorname{dim} K[S]=c$ and $\operatorname{deg} K[S]$ denotes the multiplicity of $K[S]$. By a result of Treger [20] the question has a positive answer, if $K[S]$ is Cohen-Macaulay; the Buchsbaum case was proven by Stückrad and Vogel in [19. For projective monomial curves, i. e. $d=2$, the Eisenbud-Goto conjecture holds by a result of Gruson Lazarsfeld and Peskine [6]. The case $c=2$ was proven by Peeva and Sturmfels in [18]. Moreover in [8] Herzog and Hibi showed that the Eisenbud-Goto conjecture holds for (homogeneous) simplicial affine semigroup rings with isolated singularity (see Remark 3.7). In [9, Theorem 3.2] Hoa and Stückrad presented a bound for the regularity of $K[S]$ which is a "good" bound, in addition to this they provided some positive answers for the Eisenbud-Goto conjecture. But in fact the Eisenbud-Goto conjecture remains widely open for simplicial affine semigroup rings.

Let S be normal (see Definition 3.1), hence $K[S]$ is Cohen-Macaulay by [12, Theorem 1], i. e. the Eisenbud-Goto conjecture holds. In fact the ring $K[S]$ is not necessary Cohen-Macaulay or Buchsbaum, if S is seminormal (see Definition 3.1 and Example 3.6). By [9, Proposition 2.2] the Castelnuovo-Mumford regularity of $K[S]$ can be computed in terms of the regularity of certain monomial ideals by studying the intersection of the Apéry sets of the extremal rays of S, we call this set B_{S}. In [14, Theorem 4.1.1] Li characterized the seminormal property of S in terms of B_{S}. By this we show in Theorem4.15. If S is seminormal, then

$$
\operatorname{reg} K[S] \leq \operatorname{deg} K[S]-\operatorname{codim} K[S]
$$

In fact this bound could be not sharp, since $\operatorname{deg} K[S]$ could be equal to α^{d-1}. A subclass of seminormal simplicial affine semigroups with $\operatorname{deg} K[S]=\alpha^{d-1}$ are full Veronese rings. Let $S_{d, \alpha}:=\left\langle A_{d, \alpha}\right\rangle$ be the monoid generated by $A_{d, \alpha}:=\left\{\left(a_{[1]}, \ldots, a_{[d]}\right) \in \mathbb{N}^{d} \mid \sum_{i=1}^{d} a_{[i]}=\alpha\right\}$, we have

$$
\operatorname{deg} K\left[S_{d, \alpha}\right]-\operatorname{codim} K\left[S_{d, \alpha}\right]=\alpha^{d-1}-\binom{\alpha+d-1}{d-1}+d
$$

by Remark 5.1. In Theorem 5.3 we show that

$$
\operatorname{reg} K\left[S_{d, \alpha}\right]=\left\lfloor d-\frac{d}{\alpha}\right\rfloor .
$$

So in this case the Eisenbud-Goto conjecture is not sharp, see Example 5.4. In fact $S_{d, \alpha}$ is normal and therefore $\operatorname{reg} K\left[S_{d, \alpha}\right] \leq d-1$, by Remark 4.6. In Section 4 we extend this bound to the seminormal case, we show in Theorem 4.7. If S is seminormal, then:

$$
\operatorname{reg} K[S] \leq d-1
$$

In Section 2 we fix the basic notation and the computation of the regularity of $K[S]$ in terms of the regularity of certain monomial ideals. In the following we study the seminormal case in Section 3. In Section 4 we provide several bounds for the regularity of seminormal simplicial affine semigroup rings. Finally we compute the regularity of full Veronese rings in Section 5. For unspecified notation we refer to [2, 16].

2 Basics

Let $G:=G(S)$ be the group generated by S in \mathbb{Z}^{d}. By $x_{[i]}$ we denote the i-th component of x and we define $\operatorname{deg} x:=\left(\sum_{j=1}^{d} x_{[j]}\right) / \alpha$, for $x \in G$. Let $n \in S$, the Apéry set of n is defined by $S(n):=\{x \in S \mid x-n \notin S\}$. We set $B_{S}:=\cap_{j=1}^{d} S\left(e_{j}\right)$, i. e. for $x \in B_{S}$ we have $x-e_{i} \notin S$ for all $i=1, \ldots, d$. We note that if $x \notin B_{S}$, then $x+y \notin B_{S}$, for all $x, y \in S$. Let $x \sim y$ if and only if $x-y \in \alpha \mathbb{Z}^{d}$, hence \sim is an equivalence relation on G. It is obvious that every element in G is equivalent to an element in $G \cap D$, where $D:=\left\{x \in \mathbb{Q}^{d} \mid 0 \leq x_{[i]}<\alpha, \forall i\right\}$ and for all $x, y \in G \cap D$ with $x \neq y$ we have $x \nsim y$. Hence the number of equivalence classes $f:=\#(G \cap D)$ in G is finite. One can show that there are exactly $f \in \mathbb{N}$ equivalence classes in $G, G \cap D, S$, and in B_{S} (see [17, Section 2]). By $\Gamma_{1}, \ldots, \Gamma_{f}$ we denote the equivalence classes on B_{S}. For $j=1, \ldots, f$ we define

$$
h_{j}:=\left(\min \left\{m_{[1]} \mid m \in \Gamma_{j}\right\}, \min \left\{m_{[2]} \mid m \in \Gamma_{j}\right\}, \ldots, \min \left\{m_{[d]} \mid m \in \Gamma_{j}\right\}\right) .
$$

Let $T:=K\left[y_{1}, \ldots, y_{d}\right]$ be the polynomial ring graded by $\operatorname{deg} y_{i}=1$. We set $\tilde{\Gamma}_{j}:=$ $\left\{y^{\left(x-h_{j}\right) / \alpha} \mid x \in \Gamma_{j}\right\}$, where $y^{\left(a_{[1]}, \ldots, a_{[d]}\right)}:=y_{1}^{a_{[1]}} \cdots y_{d}^{a_{[d]}}$. By construction $I_{j}:=\tilde{\Gamma}_{j} T$ are monomial ideals in T, since $h_{j} \sim x$ for all $x \in \Gamma_{j}$. We note that ht $I_{j} \geq 2$ (height), since $\operatorname{gcd} \tilde{\Gamma}_{j}=1$, for all $j=1, \ldots, f$. We define m_{T} as the homogeneous maximal ideal of T and m_{S} as the homogenous maximal ideal of $K[S]$.

Proposition 2.1 (9 , Proposition 2.2]). There are isomorphisms of \mathbb{Z}-graded T-modules:
1.) $K[S] \cong \bigoplus_{j=1}^{f} I_{j}\left(-\operatorname{deg} h_{j}\right)$.
2.) $H_{m_{S}}^{i}(K[S]) \cong \bigoplus_{j=1}^{f} H_{m_{T}}^{i}\left(I_{j}\right)\left(-\operatorname{deg} h_{j}\right)$.

We note that this idea can be extended for arbitrary simplicial affine semigroups, see [17. Proposition 4.1]. Applying the fact $H_{m_{R}}^{i}(K[S]) \cong H_{m_{S}}^{i}(K[S])$ we have:

$$
\begin{equation*}
\operatorname{reg} K[S]=\max \left\{\operatorname{reg} I_{j}+\operatorname{deg} h_{j} \mid j=1, \ldots, f\right\} \tag{1}
\end{equation*}
$$

where $\operatorname{reg} I_{j}$ is the regularity of I_{j} considered as a \mathbb{Z}-graded T-module.
Remark 2.2. We note that $\operatorname{reg} K[S]$ is independent of K for $d \leq 5$, by [1, Corollary 1.4] and (11. By Proposition 2.1 it follows that $\operatorname{deg} K[S]=f$. Since $\Gamma_{j} \subset B_{S}$, we have $\Gamma_{j} \subset\left\{a_{1}, \ldots, a_{c}\right\rangle$ for all $j=1, \ldots, f$. Moreover it is clear that $\left\{0, a_{1}, \ldots, a_{c}\right\} \subseteq B_{S}$. Consider an element $x \in\left\{0, a_{1}, \ldots, a_{c}\right\}$ and an element $y \in B_{S}$ with $x \neq y$. Suppose that $x \sim y$. Since $0 \leq x_{[i]}<\alpha$, for all $i=1, \ldots, d$, we have $y \geq x$, meaning $y_{[k]} \geq x_{[k]}$ for all $k=1, \ldots, d$, and therefore $y \notin B_{S}$. This shows that $x \nsim y$. W.l.o.g we therefore may assume that $\Gamma_{1}=\{0\}, \Gamma_{2}=\left\{a_{1}\right\}, \ldots, \Gamma_{c+1}=\left\{a_{c}\right\}$.

Definition 2.3. For an element $x \in S$ we say that a sequence b_{1}, \ldots, b_{n} has $*$-property $: \Leftrightarrow b_{1}, \ldots, b_{n} \in\left\{a_{1}, \ldots, a_{c}\right\}$ and $x-b_{1} \in S, x-b_{1}-b_{2} \in S, \ldots, x-\left(\sum_{j=1}^{n} b_{j}\right) \in S$. Moreover we define $x(i):=x-\left(\sum_{j=1}^{i} b_{j}\right)$ w.r.t. a sequence b_{1}, \ldots, b_{n} with $*$-property and $x(0):=x$.

Remark 2.4. Suppose that $x \in S$ has a sequence $b_{1}, \ldots, b_{\operatorname{deg} x}$ with $*$-property, then we get $\operatorname{deg} x(i)=\operatorname{deg} x-i$ for $i=0, \ldots, \operatorname{deg} x$ and therefore $x(\operatorname{deg} x)=0$. Hence the length of a sequence with $*$-property is bounded by $\operatorname{deg} x$. Moreover for $0 \leq i<j \leq \operatorname{deg} x$ we have $x(i) \geq x(j)$. There are elements in S with no sequence with $*$-property, e. g. e_{j}.

Proposition 2.5. Let $x \in B_{S} \backslash\{0\}$.

1) There exists a sequence $b_{1}, \ldots, b_{\operatorname{deg} x}$ with *-property.
2) Let b_{1}, \ldots, b_{n} be a sequence with *-property. Then there exists a sequence with $*$ property $b_{1}, \ldots, b_{n}, b_{n+1}, \ldots, b_{\operatorname{deg} x}$.

Proof. 1) Suppose on the contrary that there is no sequence with $*$-property of length $\operatorname{deg} x$. Then $x \notin\left\langle a_{1}, \ldots, a_{c}\right\rangle$, which contradicts to $x \in B_{S}$.
2) Suppose that $x(n) \notin B_{S}$, then $x \notin B_{S}$ which is a contradiction. Therefore we have $x(n) \in B_{S}$. By claim 1) we are done.

Proposition 2.6. Let $x \in S$ and b_{1}, \ldots, b_{n} be a sequence with *-property. Let σ : $\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ be a bijection.

1) $b_{\sigma(1)}, \ldots, b_{\sigma(n)}$ is a sequence with $*$-property.
2) b_{1}, \ldots, b_{m} is a sequence with $*$-property for all $1 \leq m \leq n$.

Proof. 1) We need to show that $x(i) \in S$, for all $i=1, \ldots, n$ w.r.t $b_{\sigma(1)}, \ldots, b_{\sigma(n)}$, since clearly $b_{\sigma(1)}, \ldots, b_{\sigma(n)} \in\left\{a_{1}, \ldots, a_{c}\right\}$. Let $i=n$, we have $x(n)=x-\left(\sum_{j=1}^{n} b_{\sigma(j)}\right)=$ $x-\left(\sum_{j=1}^{n} b_{j}\right) \in S$ by assumption. Fix one $i<n$, then

$$
x(i)=x-\left(\sum_{j=1}^{i} b_{\sigma(j)}\right)=\underbrace{x-\left(\sum_{j=1}^{n} b_{\sigma(j)}\right)}_{\in S}+\underbrace{\sum_{j=i+1}^{n} b_{\sigma(j)}}_{\in S} \in S .
$$

2) This is obvious.

Lemma 2.7. Let $x \in B_{S} \backslash\{0\}$ and $b_{1}, \ldots, b_{\operatorname{deg} x}$ be a sequence with $*$-property.

1) $x(i) \in B_{S}$, for all $i=0, \ldots, \operatorname{deg} x$.
2) We have $x(i) \nsim x(j)$, for all $0 \leq i<j \leq \operatorname{deg} x$.

Proof. 1) Follows from the fact that if $x(i) \notin B_{S}$, then $x(i)+y \notin B_{S}$ for all $y \in S$.
2) Suppose on the contrary that $x(i) \sim x(j)$. We have $\operatorname{deg} x(i)>\operatorname{deg} x(j)$ and $x(i) \geq x(j)$, hence $x(i) \notin B_{S}$ which contradicts to claim 1).

Corollary 2.8 ([9, Theorem 1.1]). We have $\operatorname{deg} x \leq \operatorname{deg} K[S]-\operatorname{codim} K[S]$, for all $x \in B_{S}$.
Proof. W.l.o.g. we may assume that $\operatorname{deg} x \geq 2$. By Lemma 2.7 and Remark 2.2 there is a set $L=\left\{0, a_{1}, \ldots, a_{c}, x(0), \ldots, x(\operatorname{deg} x-2)\right\} \subseteq B_{S}$, such that for all $x, y \in L$ with $x \neq y$ we have $x \nsim y$. Hence $f=\operatorname{deg} K[S] \geq \# L=\operatorname{deg} x+\operatorname{codim} K[S]$.

Remark 2.9. We note that this proof is a new short proof of [9, Theorem 1.1]. We define the reduction number $\mathrm{r}(K[S])$ of $K[S]$ by $\mathrm{r}(K[S]):=\max \left\{\operatorname{deg} x \mid x \in B_{S}\right\}$, see [9, Section 1 and first Remark in Section 2]. By Corollary 2.8 or [9, Theorem 1.1] we get

$$
\begin{equation*}
\mathrm{r}(K[S]) \leq \operatorname{deg} K[S]-\operatorname{codim} K[S] \tag{2}
\end{equation*}
$$

i. e. the Eisenbud-Goto conjecture holds for the reduction number of $K[S]$. So whenever we have $\operatorname{reg} K[S]=\mathrm{r}(K[S])$ the Eisenbud-Goto conjecture holds. It should be mentioned that this property does not hold in general. Even for a monomial curve in \mathbb{P}^{3} the equality does not hold. For $S=\langle(40,0),(0,40),(35,5),(11,29)\rangle$ we have $\operatorname{reg} K[S]=13>11=\mathrm{r}(K[S])$. Moreover it is obvious that $\mathrm{r}(K[S]) \leq \operatorname{reg} K[S]$, by (1).

Example 2.10. Let $S=\langle(4,0),(0,4),(3,1),(1,3)\rangle$. Using Macaulay2 [5] we have $B_{S}=$ $\{(0,0),(3,1),(1,3),(6,2),(2,6)\}$ and therefore $\mathrm{r}(K[S])=\max \{0,1,1,2,2\}=2$. We get $\left.\Gamma_{1}=\{(0,0)\}, \Gamma_{2}=\{(3,1)\}, \Gamma_{3}=\{(1,3)\}, \Gamma_{4}=\{(6,2),(2,6)\}\right\}$ and $h_{1}=(0,0), h_{2}=$ $(3,1), h_{3}=(1,3), h_{4}=(2,2)$. By this we have $I_{1}=I_{2}=I_{3}=T$ and $I_{4}=\left(y_{1}, y_{2}\right) T$, hence

$$
\operatorname{reg} K[S]=\max \left\{\operatorname{reg} T+0, \operatorname{reg} T+1, \operatorname{reg} T+1, \operatorname{reg}\left(y_{1}, y_{2}\right) T+1\right\}=\max \{0,1,1,2\}=2
$$

Lemma 2.11. Let $x \in B_{S}, t \in \mathbb{N}^{+}, k \in\{1, \ldots, d\}$ and $x_{[k]}=t \alpha$. There is a sequence with $*$-property b such that $(t-1) \alpha<(x-b)_{[k]}<t \alpha$.

Proof. By Proposition 2.5 there is a sequence $b_{1}, \ldots, b_{\operatorname{deg} x}$ with $*$-property. We have $x(\operatorname{deg} x)=0$ by Remark 2.4 , hence there is a $p \in\{1, \ldots, \operatorname{deg} x\}$ such that $b_{p[k]}>0$. Since $b_{p} \in\left\{a_{1}, \ldots, a_{c}\right\}$ we know that $b_{p[k]}<\alpha$. The assertion follows by Proposition 2.6 .

Lemma 2.12. Let $J \subseteq\{1, \ldots, d\}$ with $\# J \geq 1$. Let $x \in B_{S}$ such that $x_{[k]}=\alpha$, for all $k \in J$. There exists a sequence $b_{1}, \ldots, b_{\operatorname{deg} x}$ with $*$-property such that: for all $i=1, \ldots, \# J$ there is at least one $k \in J$ such that $0<x(i)_{[k]}<\alpha$.

Proof. By Lemma 2.11 the case $\# J=1$ is clear, assume that $\# J>1$. Fix an arbitrary sequence with $*$-property $b_{1}, \ldots, b_{\# J-1}$. By Remark 2.4 there is a $k \in J$ such that $x(i)_{[k]}>0$, for all $i=1, \ldots, \# J-1$. By this, induction and Lemma 2.11 there is a sequence with $*$-property $b_{1}, \ldots, b_{\# J-1}$ such that: for all $i=1, \ldots, \# \sqrt{-1}$ there is a $k \in J$ such that $0<x(i)_{[k]}<\alpha$. By Lemma 2.11 we may assume that already $x(\# J-1)_{[k]}<\alpha$ for all $k \in J$. By Proposition 2.52) there is a sequence with $*$-property $b_{1}, \ldots, b_{\# J-1}, b_{\# J}, \ldots, b_{\operatorname{deg} x}$. Suppose on the contrary that $x(\# J)_{[k]}=0$, for all $k \in J$. Since $\operatorname{deg} x(\# J)=\operatorname{deg} x-\# J$ and $x \geq x(\# J)$ we have $x(\# J)=x-\left(\sum_{k \in J} e_{k}\right)$ and therefore $x \notin B_{S}$, since $x(\# J) \in S$.

3 The seminormal case

Let us consider an affine semigroup $U \subseteq \mathbb{N}^{d}$, i. e. U is a finitely generated submonoid of $\left(\mathbb{N}^{d},+\right)$. By $G(U)$ we denote the group generated by U. There are two closely related definitions in this context:

Definition 3.1. 1. We call U seminormal, if $x \in G(U)$ and $2 x, 3 x \in U$ imply $x \in U$.
2. We call U normal, if $x \in G(U)$ and $t x \in U$ for some $t \in \mathbb{N}^{+}$imply $x \in U$.

Remark 3.2. A Noetherian domain \bar{R} is called seminormal if for an element x in the quotient field $Q(\bar{R})$ of \bar{R} such that $x^{2}, x^{3} \in \bar{R}$ we have $x \in \bar{R}$. By a result of Hochster and Roberts the ring $K[U]$ is seminormal if and only if U is seminormal, see [13, Proposition 5.32]. A similar result holds in the normal case, by [12].

To get new bounds for the regularity of $K[S]$, we need another characterization. We define the set Box $:=\left\{x \in S \mid x=\sum_{i=1}^{d} \lambda_{i} e_{i}\right.$, for some $\left.\lambda_{i} \in \mathbb{Q} \cap[0,1]\right\}$. So we have Box $=\left\{x \in S \mid x_{[i]} \leq \alpha, \forall i=1, \ldots, d\right\}$.

Theorem 3.3 ([14, Theorem 4.1.1]). The semigroup S is seminormal if and only if B_{S} is contained in Box.

From now on we assume that S is seminormal. Let $I_{j} \neq T$ be an ideal which arises by the construction of Proposition 2.1 For $x \in \Gamma_{j}$ we have $0 \leq x_{[i]} \leq \alpha$ and therefore $\left(\left(x-h_{j}\right) / \alpha\right)_{[i]} \in\{0,1\}$. Hence I_{j} is a squarefree monomial ideal in T.

Lemma 3.4. Let $i, t \in \mathbb{N}$ with $1 \leq i \leq d$ and $1 \leq t \leq f$.

1) Let $x, y \in \Gamma_{t}$ with $x \neq y$. If $x_{[i]} \neq y_{[i]}$, then $x_{[i]}-y_{[i]} \in\{-\alpha, \alpha\}$.
2) Let $x, y \in \Gamma_{t}$ with $x \neq y$. If $0<x_{[i]}<\alpha$, then $x_{[i]}=y_{[i]}$.
3) Let $x, y \in \Gamma_{t}$ with $x \neq y$. If $x_{[i]} \neq y_{[i]}$, then $x_{[i]} \in\{0, \alpha\}$ and $y_{[i]}=\alpha-x_{[i]}$.
4) Let $x, y \in \Gamma_{t}$ with $x \neq y$, then $0<x_{[i]}=y_{[i]}<\alpha$ and $0<x_{[j]}=y_{[j]}<\alpha$ for some $i, j \in\{1, \ldots, d\}$ with $i \neq j$.
5) If $h_{t[i]}>0$, then $h_{t[i]}=x_{[i]}$, for all $x \in \Gamma_{t}$.

Proof. 1) We have $x_{[i]}-y_{[i]} \in \alpha \mathbb{Z}$ and $x_{[i]}-y_{[i]} \in[-\alpha, \alpha]$, since $0 \leq x_{[i]}, y_{[i]} \leq \alpha$. Hence $x_{[i]}-y_{[i]} \in\{-\alpha, \alpha\}$.
2) We have $x_{[i]}-y_{[i]} \notin\{-\alpha, \alpha\}$ and therefore $x_{[i]}=y_{[i]}$ by claim 1).
3) By claim 1) we have $x_{[i]}-y_{[i]} \in\{-\alpha, \alpha\}$ and $x_{[i]} \in\{0, \alpha\}$, by claim 2). Hence $y_{[i]}=\alpha-x_{[i]}$.
4) By claim 2) it is sufficient to show that $0<x_{[i]}, x_{[j]}<\alpha$ for some $i \neq j$. Suppose on the contrary that this is not true. If $x_{[i]} \in\{0, \alpha\}$ for all $i=1, \ldots, d$ we have $x \sim 0$. Hence $0 \in \Gamma_{t}$ and therefore $\# \Gamma_{t}=1$ which is a contradiction. Suppose that $0<x_{[i]}<\alpha$ for exact one $i \in\{1, \ldots, d\}$, i. e. $x_{[j]} \in\{0, \alpha\}$ for all $j \in\{1, \ldots, d\} \backslash\{i\}$. By this we have $\sum_{j=1}^{d} x_{[j]} \notin \alpha \mathbb{N}$ which is a contradiction, since $x \in S$.
5) Let $x \in \Gamma_{t}$. We have $0<h_{t[i]} \leq x_{[i]} \leq \alpha$ and therefore $h_{t[i]}=x_{[i]}$, since $h_{t[i]}-x_{[i]} \in \alpha \mathbb{Z}$, by construction.

Corollary 3.5 ([15, Theorem 2.2]). If $d \leq 3$, then S is Cohen-Macaulay.
Proof. By [4, Proposition 8] we need to show that $\# \Gamma_{t}=1$, for all $t=1, \ldots, f$. By Lemma 3.4 4) the case $d=2$ is trivial. Suppose on the contrary that $x, y \in \Gamma_{t}$ with $x \neq y$. By Lemma 3.4 4) we may assume that $0<x_{[i]}=y_{[i]}<\alpha$ for $i=1,2$. By Lemma 3.43) we may assume that $x_{[3]}=\alpha$ and $y_{[3]}=0$, since $x_{[3]} \neq y_{[3]}$. Then $x-e_{3}=y \in S$ which contradicts to $x \in B_{S}$.

Example 3.6. Let us consider the semigroup
$S=\left\langle e_{1}, \ldots, e_{6},(1,1,0,0,0,0),(1,0,1,0,0,0),(0,0,1,1,0,0),(0,1,0,1,0,0),(0,0,0,0,1,1)\right\rangle$,
in \mathbb{N}^{6} with $\alpha=2$. We have $B_{S} \subseteq$ Box thus S is seminormal by Theorem 3.3. One can show that $(0,1,1,0,0,0)+e_{1},(0,1,1,0,0,0)+e_{4} \in S$, but $(0,1,1,0,0,0)+(0,0,0,0,1,1)=$ $(0,1,1,0,1,1) \notin S$. Hence $K[S]$ is not Buchsbaum by [21, Lemma3]. By a similar example, one can show that Corollary 3.5 does not hold for $d=4$. For a general discussion of the relation between the seminormal property and the Cohen-Macaulay property of affine semigroup rings we refer to [14].

Remark 3.7. Herzog and Hibi showed in [8] that the Eisenbud-Goto conjecture holds for simplicial affine semigroups with isolated singularity. This is equivalent to the statement that A (see Introduction) contains all points of type $(0, \ldots, \alpha-1, \ldots, 1, \ldots, 0)$, where $\alpha-1,1$ stay in the i-th and j-th positions, respectively, and the other coordinates are zero. By Example 3.6 we are studying a distinct class of simplicial affine semigroup rings.

4 Bounding the regularity

In this section we assume that S is seminormal. Keep in mind that I_{j} is a squarefree monomial ideal in T, for all $j=1, \ldots, f$.

Remark 4.1. By Theorem $3.3 S$ is seminormal, if and only if $B_{S} \subseteq$ Box. Clearly $\mathrm{r}(K[S]) \leq d$. On the other hand there is only one element in Box with degree d, namely (α, \ldots, α), but $(\alpha, \ldots, \alpha) \notin B_{S}$. Hence $\mathrm{r}(K[S]) \leq d-1$. In Theorem 4.7 we obtain a similar bound for the regularity of $K[S]$.

Definition 4.2. For a monomial $m=y_{1}^{b_{1}} \cdots y_{d}^{b_{d}}$ we define $\operatorname{deg} m=\sum_{j=1}^{d} b_{j}$. Let I be a monomial ideal in T with a minimal set of monomial generators $\left\{m_{1}, \ldots, m_{s}\right\}$. Let F be the least common multiple of $\left\{m_{1}, \ldots, m_{s}\right\}$, then we define $\operatorname{var}(I):=\operatorname{deg} F$.

Remark 4.3. Consider the squarefree monomial ideal $I=\left(y_{1} y_{2}, y_{2} y_{3} y_{4}, y_{7}\right) T$ in $T=K\left[y_{1}, \ldots, y_{7}\right]$. Clearly $\operatorname{var}(I)=5$. So in the squarefree case $\operatorname{var}(I)$ is equal to the number of variables, which occur in the generators of I. We note that $\tilde{\Gamma}_{j}$ is always a minimal set of monomial generators of I_{j}. Moreover every monomial ideal in T has a unique minimal set of monomial generators by [16, Lemma 1.2]. Since ht $I_{j} \geq 2$ we have $\operatorname{var}\left(I_{j}\right) \neq 1$. Moreover for all $j=1, \ldots, f$ we get $I_{j} \neq T$, if and only if $\operatorname{var}\left(I_{j}\right) \neq 0$.

Lemma 4.4. $\operatorname{var}\left(I_{j}\right) \leq d-1-\operatorname{deg} h_{j}$, for all $j=1, \ldots, f$.
Proof. Assume that $I_{j}=T$, then $\operatorname{var}(T)=0$ and $\operatorname{deg} h_{j} \leq d-1$ by Remark 4.1. So we may assume that $\# \Gamma_{j} \geq 2$. By Lemma 3.4 4) we have $0<x_{[k]}, x_{[l]}<\alpha$, for all $x \in \Gamma_{j}$ and some $k \neq l$. In particular $0<h_{j[k], h_{j[l]}<\alpha \text {. Suppose on the contrary that }}$ $\operatorname{var}\left(I_{j}\right) \geq d-\operatorname{deg} h_{j}$. Then by Lemma 3.45) $h_{j[t]}=0$ for all $t \in J$ for some $J \subseteq\{1, \ldots, d\}$ with $\# J=d-\operatorname{deg} h_{j}$. Since $0<h_{j[k]}, h_{j[l]}<\alpha$ for some $l \neq k$ and $0 \leq h_{j[i]} \leq \alpha$, for all $i=1, \ldots, d$ by Theorem 3.3, we get $\operatorname{deg} h_{j}<\operatorname{deg} h_{j}$ which is a contradiction.

Theorem 4.5 ([11, Theorem 3.1]). Let I be a proper monomial ideal in T. Then

$$
\operatorname{reg} I \leq \operatorname{var}(I)-\mathrm{ht} I+1
$$

Remark 4.6. One can show that $\operatorname{reg} K[S] \leq d-1$, if S is normal (by the proof of 10 , Corollary 4.7] and [10, Corollary 3.8]). The next Theorem obtains a similar bound in the seminormal case.

Theorem 4.7.

$$
\operatorname{reg} K[S] \leq d-1
$$

Proof. By Remark 4.1 and (1) we may assume that $\# \Gamma_{j} \geq 2$. We need to show that $\operatorname{reg} I_{j}+\operatorname{deg} h_{j} \leq d-1$, for a fixed $j \in\{1, \ldots, f\}$ such that $\# \Gamma_{j} \geq 2$. By Lemma 4.4 and Theorem 4.5 we get

$$
\operatorname{reg} I_{j} \leq \operatorname{var}\left(I_{j}\right)-\operatorname{ht} I_{j}+1 \leq d-1-\operatorname{deg} h_{j}-2+1=d-2-\operatorname{deg} h_{j}
$$

since $\operatorname{ht} I_{j} \geq 2$. Hence $\operatorname{reg} I_{j}+\operatorname{deg} h_{j} \leq d-2$ and we are done.

Remark 4.8. We note that the bound established in Theorem 4.7 is sharp. Assume $\alpha \geq d$ in Theorem 5.3, by this we get $\operatorname{reg} K\left[S_{d, \alpha}\right]=d-1$ and of course $S_{d, \alpha}$ is seminormal.

Proposition 4.9. If $d \leq 5$, then $\operatorname{reg} K[S]=\mathrm{r}(K[S])$.
Proof. By Corollary 3.5 and [4, Proposition 8] the case $d \leq 3$ is clear. We show that $\operatorname{reg} I_{j}$ is equal to the maximal degree of a generator of I_{j}. By this we get:

$$
\operatorname{reg} I_{j}+\operatorname{deg} h_{j}=\max \left\{\operatorname{deg} x \mid x \in \Gamma_{j}\right\}
$$

for all $j=1, \ldots, f$ and we are done by (11). The case $\# \Gamma_{j}=1$ is obvious. We therefore may assume that $\# \Gamma_{j} \geq 2$ and we fix such a $j \in\{1, \ldots, f\}$. By Lemma 3.4 we get $\operatorname{deg} h_{j} \geq 1$. Let $d=5$, by Lemma 4.4 we have to consider the cases $\operatorname{var}\left(I_{j}\right) \in\{2,3\}$. Let $\operatorname{var}\left(I_{j}\right)=2$. The ideal I_{j} is of the form $I_{j}=\left(y_{k}, y_{l}\right) T$ for some $k \neq l$ and $k, l \in\{1, \ldots, 5\}$, since $\mathrm{ht} I_{j} \geq 2$. It follows that $\operatorname{reg} I_{j}=1$. By a similar argument we get the assertion for the case $d=4$ and $\operatorname{var}\left(I_{j}\right)=2$. Let $d=5$ and $\operatorname{var}\left(I_{j}\right)=3$, i. e. deg $h_{j}=1$. Since ht $I_{j} \geq 2$ and by Theorem 3.3 the only ideals possible are:

$$
I_{j_{1}}=\left(y_{k}, y_{l}, y_{m}\right), I_{j_{2}}=\left(y_{k} y_{l}, y_{m}\right), I_{j_{3}}=\left(y_{k} y_{l}, y_{k} y_{m}, y_{l} y_{m}\right)
$$

and $k, l, m \in\{1, \ldots, 5\}$ are pairwise not equal. By Theorem 4.5 we get $\operatorname{reg} I_{j_{1}}=1$ and $\operatorname{reg} I_{j_{2}}=\operatorname{reg} I_{j_{3}}=2$.

By Corollary 2.8 the Eisenbud-Goto conjecture holds, if $d \leq 5$. The next Theorem shows that the Eisenbud-Goto conjecture holds in any dimension.

Remark 4.10. Proposition 4.9 could fail for $d \geq 6$. Let us consider the squarefree monomial ideal $I=\left(y_{1} y_{2}, y_{3} y_{4}\right) T$ with $\operatorname{var}(I)=4$. So reg $I=3$ is bigger than the maximal degree of a generator of I, which is 2 .

Definition 4.11. Let I be a proper monomial ideal in T with a minimal set of monomial generators $\left\{m_{1}, \ldots, m_{s}\right\}$. Let F be the least common multiple of $\left\{m_{1}, \ldots, m_{s}\right\}$, say $F=y_{1}^{b_{1}} \cdots y_{d}^{b_{d}}$. We define the set $\operatorname{supp}(I) \subseteq\{1, \ldots, d\}$ w.r.t. I by: $i \in \operatorname{supp}(I): \Leftrightarrow b_{i} \neq 0$.

Remark 4.12. So $\operatorname{supp}(I)$ is the set of indices of the variables, which occur in one of the minimal generators of I. For the ideal $I=\left(y_{1} y_{2}, y_{2} y_{3}, y_{5} y_{6}\right) T$ in $T=K\left[y_{1}, \ldots, y_{7}\right]$, we have $F=y_{1} y_{2} y_{3} y_{5} y_{6}$, i. e. $\operatorname{supp}(I)=\{1,2,3,5,6\}$. Consider the ideal $y_{1} y_{2} T$, we get $\operatorname{supp}\left(y_{1} y_{2} T\right)=\{1,2\}$.

Lemma 4.13. Let $\# \Gamma_{j} \geq 2, n \in \Gamma_{j}$ and $m \in \tilde{\Gamma}_{j}$ such that $m=y^{\left(n-h_{j}\right) / \alpha}$. Then

1) $n_{[q]}=0$, for all $q \in \operatorname{supp}\left(I_{j}\right) \backslash \operatorname{supp}(m T)$.
2) $n_{[q]}=\alpha$, for all $q \in \operatorname{supp}(m T)$.

Proof. 1) Suppose on the contrary that there is a $q \in\left(\operatorname{supp}\left(I_{j}\right) \backslash \operatorname{supp}(m T)\right) \neq \emptyset$ such that $n_{[q]}>0$. Since $q \in \operatorname{supp}\left(I_{j}\right)$ we have $h_{j[q]}=0$ by Lemma 3.45) and therefore $n_{[q]}=\alpha$, since $h_{j[q]}-n_{[q]} \in \alpha \mathbb{Z}$ and $n_{[q]} \leq \alpha$. This implies $q \in \operatorname{supp}(m T)$, which is a contradiction.
2) Since $q \in \operatorname{supp}(m T)$, we have $n_{[q]} \geq \alpha$. By Theorem $3.3 n_{[q]} \leq \alpha$.

Remark 4.14. The above Lemma fails for an arbitrary S, like in Example 2.10. Consider $\Gamma_{4}=\{(6,2),(2,6)\}$, i. e. $h_{4}=(2,2)$ and $\tilde{\Gamma}_{4}=\left\{y_{1}, y_{2}\right\}$. For every $n \in \Gamma_{4}$ we have $n_{[i]} \neq 0, i=1,2$. But $\operatorname{supp}\left(I_{4}\right)=\{1,2\}$ and $\# \operatorname{supp}\left(y_{1} T\right)=\# \operatorname{supp}\left(y_{2} T\right)=1$.

Theorem 4.15.

$$
\operatorname{reg} K[S] \leq \operatorname{deg} K[S]-\operatorname{codim} K[S]
$$

Proof. By (1) we need to show that $\operatorname{deg} K[S]-c \geq \operatorname{reg} I_{j}+\operatorname{deg} h_{j}$, for all $j=1, \ldots, f$. If $\# \Gamma_{j}=1$ the assertion follows by Corollary 2.8. Let us fix a $j \in\{1, \ldots, f\}$ such that $\# \Gamma_{j} \geq 2$. We have $\Gamma_{j}=\left\{n_{1}, \ldots, n_{\# \Gamma_{j}}\right\}$ and $\tilde{\Gamma}_{j}=\left\{m_{1}, \ldots, m_{\# \Gamma_{j}}\right\}$. We may assume that $m_{i}=y^{\left(n_{i}-h_{j}\right) / \alpha}$. We set $J_{k}:=\left(m_{1}, \ldots, m_{k}\right) T$ and $g(k):=\operatorname{var}\left(J_{k}\right)-\operatorname{ht} J_{k}+1+\operatorname{deg} h_{j}$, for $1 \leq k \leq \# \Gamma_{j}$. We show by induction on k with $1 \leq k \leq \# \Gamma_{j}$ that there is a set L_{k} :
(i) $L_{k} \subseteq B_{S}$.
(ii) $\# L_{k} \geq g(k)-1$.
(iii) $x \nsim y$, for all $x, y \in L_{k}$ with $x \neq y$.
(iv) $\operatorname{deg} x \geq 2$, for all $x \in L_{k}$.
(v) $x_{[q]}=0$, for all $x \in L_{k}$ and for all $q \in \operatorname{supp}\left(I_{j}\right) \backslash \operatorname{supp}\left(J_{k}\right)$.

Let $k=1$. We know that $\operatorname{ht} J_{1}=1$ and $\operatorname{var}\left(J_{1}\right)+\operatorname{deg} h_{j}=\operatorname{deg} n_{1}$, i. e. $g(1)=\operatorname{deg} n_{1}$. By Proposition 2.51) n_{1} has a sequence $b_{1}, \ldots, b_{\operatorname{deg} n_{1}}$ with $*$-property, since $n_{1} \in B_{S}$. Set

$$
L_{1}:=\left\{n_{1}(0), \ldots, n_{1}\left(\operatorname{deg} n_{1}-2\right)\right\}
$$

clearly $\# L_{1} \geq \operatorname{deg} n_{1}-1=g(1)-1$, i. e. property (ii) is satisfied and by construction we get property (iv). By Lemma 2.7 1) $L_{1} \subseteq B_{S}$ which shows (i) and by Lemma 2.7 2) property (i iii) holds. By Lemma 4.131) property (v) holds for $n_{1}(0)$, hence for every element in L_{1}.
Using induction on $k \leq \# \Gamma_{j}-1$ the properties $(i)-(v)$ hold for $L_{k}=\left\{c_{1}, \ldots, c_{p}\right\}$. There could be two different cases:

Case 1: $\operatorname{supp}\left(J_{k}\right) \cap \operatorname{supp}\left(m_{k+1} T\right) \neq \emptyset . \quad\left(\right.$ e. g. $\left.k=2, J_{2}=\left(y_{1} y_{2}, y_{2} y_{3} y_{4}\right) T, m_{3}=y_{4} y_{5} y_{6}.\right)$
(iii) We set $J:=\left(\operatorname{supp}\left(m_{k+1} T\right) \backslash \operatorname{supp}\left(J_{k}\right)\right)$. Since $\operatorname{supp}\left(J_{k}\right) \cap \operatorname{supp}\left(m_{k+1} T\right) \neq \emptyset$ we have $\operatorname{deg} n_{k+1} \geq \# J+2$, in particular $n_{k+1[q]}=\alpha$, for all $q \in J$, see Lemma 4.132). By Lemma 2.12 there is a sequence $b_{1}, \ldots, b_{\operatorname{deg} n_{k+1}}$ with $*$-property such that for all $q=1, \ldots, \# J$ there is one $p \in J$ with $0<n_{k+1}(q)_{[p]}<\alpha$. Let us fix a c_{i}. By property $(v) c_{i[p]}=0$, hence $c_{i} \nsim n_{k+1}(q)$, for all $q=1, \ldots, \# J$. Set

$$
L_{k+1}:=\left\{c_{1}, \ldots, c_{p}, n_{k+1}(1), \ldots, n_{k+1}(\# J)\right\}
$$

In case that $J=\emptyset$, we set $L_{k+1}=L_{k}$. By Lemma 2.72) we get (iii).
(i) By Lemma 2.7 1) $n_{k+1}(1), \ldots, n_{k+1}(\# J) \in B_{S}$, since $n_{k+1} \in B_{S}$.
(iv) Since $\operatorname{deg} n_{k+1} \geq \# J+2$.
(v) By induction $c_{i[q]}=0$, for all $q \in\left(\operatorname{supp}\left(I_{j}\right) \backslash \operatorname{supp}\left(J_{k}\right)\right) \supseteq\left(\operatorname{supp}\left(I_{j}\right) \backslash \operatorname{supp}\left(J_{k+1}\right)\right)$. By Lemma 4.13 1) we have $n_{k+1[q]}=0$, for all $q \in\left(\operatorname{supp}\left(I_{j}\right) \backslash \operatorname{supp}\left(m_{k+1} T\right)\right) \supseteq\left(\operatorname{supp}\left(I_{j}\right) \backslash\right.$ $\operatorname{supp}\left(J_{k+1}\right)$), hence property (v) holds.
(ii) Since ht $J_{k+1} \geq \mathrm{ht} J_{k}$ and $\operatorname{var}\left(J_{k+1}\right)=\operatorname{var}\left(J_{k}\right)+\# J$ we have

$$
g(k+1)-1 \leq \# J+\operatorname{var}\left(J_{k}\right)-\operatorname{ht} J_{k}+1+\operatorname{deg} h_{j}-1=\# J+g(k)-1 \leq \# J+p
$$

Case 2: $\operatorname{supp}\left(J_{k}\right) \cap \operatorname{supp}\left(m_{k+1} T\right)=\emptyset . \quad\left(\right.$ e. g. $\left.k=2, J_{2}=\left(y_{1} y_{2}, y_{2} y_{3} y_{4}\right) T, m_{3}=y_{5} y_{6} y_{7}.\right)$
(iii) Similar argument beside of the fact that $\operatorname{deg} n_{k+1} \geq \# J+1$. Replace L_{k+1} by

$$
L_{k+1}:=\left\{c_{1}, \ldots, c_{p}, n_{k+1}(1), \ldots, n_{k+1}(\# J-1)\right\} .
$$

In case that $\# J=1$, we set $L_{k+1}=L_{k}$.
$(i),(i v),(v)$ Analogous, replace $\# J$ by $\# J-1$.
(ii) Since $\operatorname{supp}\left(J_{k}\right) \cap \operatorname{supp}\left(m_{k+1} T\right)=\emptyset, m_{k+1}+J_{k}$ is a non-zero-divisor of T / J_{k}. Hence $\mathrm{ht} J_{k+1}=\mathrm{ht} J_{k}+1$, by Krull's Principal Ideal Theorem (e.g. see [2, Theorem 10.1]). So
$g(k+1)-1=\# J+\operatorname{var}\left(J_{k}\right)-\operatorname{ht} J_{k}-1+1+\operatorname{deg} h_{j}-1=\# J+g(k)-2 \leq \# J+p-1$.
By this we get a set $L_{\# \Gamma_{j}}=\left\{c_{1}, \ldots, c_{p}\right\} \subseteq B_{S}$ with the above properties, in particular $p \geq g\left(\# \Gamma_{j}\right)-1=\operatorname{var}\left(I_{j}\right)-\operatorname{ht} I_{j}+1+\operatorname{deg} h_{j}-1 \geq \operatorname{reg} I_{j}+\operatorname{deg} h_{j}-1$, by Theorem4.5. By Remark 2.2 we get a set $L=\left\{0, a_{1}, \ldots, a_{c}, c_{1}, \ldots, c_{p}\right\} \subseteq B_{S}$ with $x \nsim y$, for all $x, y \in L$ with $x \neq y$. So for all $j=1, \ldots, f$ we have

$$
f=\operatorname{deg} K[S] \geq \# L=c+p+1 \geq c+\operatorname{reg} I_{j}+\operatorname{deg} h_{j}
$$

Remark 4.16. We note that Corollary 2.8 holds for any S. So Theorem 4.15 holds with the following assumption on S :

- If $\# \Gamma_{j} \geq 2$, then Γ_{j} is contained in Box.

5 Regularity of full Veronese rings

For $X, Y \subseteq \mathbb{N}^{d}$ we define $X+Y:=\{x+y \mid x \in X, y \in Y\}, m X:=X+\ldots+X(m-$ times) and $0 X:=0$. Moreover we set $A_{d, \alpha}:=\left\{\left(a_{[1]}, \ldots, a_{[d]}\right) \in \mathbb{N}^{d} \mid \sum_{i=1}^{d} a_{[i]}=\alpha\right\}$ and $S_{d, \alpha}=\left\langle A_{d, \alpha}\right\rangle$. For example $A_{3,2}=\{(2,0,0),(0,2,0),(0,0,2),(1,1,0),(1,0,1),(0,1,1)\}$. It is trivial that:

$$
\begin{equation*}
n A_{d, \alpha}=\left\{\left(a_{[1]}, \ldots, a_{[d]}\right) \in \mathbb{N}^{d} \mid \sum_{i=1}^{d} a_{[i]}=n \alpha\right\} \tag{3}
\end{equation*}
$$

Hence there is an isomorphism of K-vector spaces:

$$
K\left[S_{d, 1}\right]_{n \alpha}=K\left[t_{1}, \ldots, t_{d}\right]_{n \alpha} \cong K\left[S_{d, \alpha}\right]_{n}
$$

We have $h_{K\left[t_{1}, \ldots, t_{d}\right]}(n)=\binom{n+d-1}{d-1}$, where $h_{K\left[t_{1}, \ldots, t_{d}\right]}$ denotes the Hilbert polynomial of $K\left[t_{1}, \ldots, t_{d}\right]$ and therefore

$$
\begin{equation*}
h_{K\left[S_{d, \alpha}\right]}(n)=h_{K\left[t_{1}, \ldots, t_{d}\right]}(n \alpha)=\binom{n \alpha+d-1}{d-1} . \tag{4}
\end{equation*}
$$

Remark 5.1. By $\{4\} \operatorname{deg} K\left[S_{d, \alpha}\right]=\alpha^{d-1}$ and $\# A_{d, \alpha}=h_{K\left[S_{d, \alpha}\right]}(1)=\binom{\alpha+d-1}{d-1}$, hence $\operatorname{codim} K\left[S_{d, \alpha}\right]=\binom{\alpha+d-1}{d-1}-d$.

Since the semigroup $S_{d, \alpha}$ is normal, the ring $K\left[S_{d, \alpha}\right]$ is Cohen-Macaulay by [12, Theorem 1] and therefore $\# \Gamma_{j}=1$ for all $j=1, \ldots, f$ (see [10] or [4, Proposition 8]). Hence

$$
\begin{equation*}
\operatorname{reg} K\left[S_{d, \alpha}\right]=\mathrm{r}\left(K\left[S_{d, \alpha}\right]\right) \tag{5}
\end{equation*}
$$

by (1). Now we compute the reduction number of $K\left[S_{d, \alpha}\right]$, which can be computed by $\mathrm{r}\left(K\left[\mathbb{S}_{d, \alpha}\right]\right)=\min \left\{r \in \mathbb{N} \mid r A_{d, \alpha}+\left\{e_{1}, \ldots, e_{d}\right\}=(r+1) A_{d, \alpha}\right\}$, see [9, Section 1].

Lemma 5.2. Let $r \in \mathbb{N}$. The following assertions are equivalent:

1) $r A_{d, \alpha}+\left\{e_{1}, \ldots, e_{d}\right\}=(r+1) A_{d, \alpha}$.
2) $(r+1) \alpha>d(\alpha-1)$.

Proof. 1) $\Rightarrow 2$) Let us assume that $0 \leq(r+1) \alpha \leq d(\alpha-1)$. It is trivial that there is an element $x \in \mathbb{N}^{d}$ with $x_{[i]} \leq \alpha-1$ for all $i=1, \ldots, d$ and $\sum_{i=1}^{d} x_{[i]}=(r+1) \alpha$. We have $x \in(r+1) A_{d, \alpha}$, by (3). Now suppose that $x \in r A_{d, \alpha}+\left\{e_{1}, \ldots, e_{d}\right\}$ then $x=x^{\prime}+e_{j}$, for some j and therefore $x_{[j]} \geq \alpha$ a contradiction, hence $x \notin r A_{d, \alpha}+\left\{e_{1}, \ldots, e_{d}\right\}$.
2) $\Rightarrow 1)$ Let $x \in(r+1) A_{d, \alpha}$ and suppose that $x_{[j]} \leq \alpha-1$ for all j then $(r+1) \alpha=$ $\sum_{i=1}^{d} x_{[i]} \leq d(\alpha-1)$. Hence $x_{[j]} \geq \alpha$ for some j and therefore $x-e_{j} \in r A_{d, \alpha}$ by (3). Hence $(r+1) A_{d, \alpha} \subseteq r A_{d, \alpha}+\left\{e_{1}, \ldots, e_{d}\right\}$ and we are done.

Theorem 5.3.

$$
\operatorname{reg} K\left[S_{d, \alpha}\right]=\left\lfloor d-\frac{d}{\alpha}\right\rfloor
$$

Proof. We show that $\mathrm{r}\left(K\left[S_{d, \alpha}\right]\right)=\left\lfloor d-\frac{d}{\alpha}\right\rfloor$ and we are done by 5 . We have

$$
\left(\left\lfloor d-\frac{d}{\alpha}\right\rfloor+1\right) \alpha>\left(d-\frac{d}{\alpha}+1-1\right) \alpha=d(\alpha-1),
$$

hence $\mathrm{r}\left(K\left[S_{d, \alpha}\right]\right) \leq\left\lfloor d-\frac{d}{\alpha}\right\rfloor$, by Lemma 5.2. Without loss of generality assume that $\left\lfloor d-\frac{d}{\alpha}\right\rfloor \geq 1$. We have

$$
\left(\left\lfloor d-\frac{d}{\alpha}\right\rfloor-1+1\right) \alpha \leq\left(d-\frac{d}{\alpha}\right) \alpha=d(\alpha-1) .
$$

hence $\mathrm{r}\left(K\left[S_{d, \alpha}\right]\right)>\left\lfloor d-\frac{d}{\alpha}\right\rfloor-1$, by Lemma 5.2 .

Example 5.4. By Theorem 5.3 we are able to compute the Castelnuovo-Mumford regularity of full Veronese rings. For $S_{20,2}$ we know that $\operatorname{reg} K\left[S_{20,2}\right]=\left\lfloor 20-\frac{20}{2}\right\rfloor=10$ and $\operatorname{deg} K\left[S_{20,2}\right]-\operatorname{codim} K\left[S_{20,2}\right]=2^{19}-\binom{2+19}{19}+20=524098$, by Remark 5.1 .

Acknowledgement

The author would like to thank Jürgen Stückrad and Lê Tuân Hoa for many helpful discussions.

References

[1] W. Bruns and J. Herzog. Semigroup rings and simplicial complexes. Journal of Pure and Applied Algebra, 122(3):185-208, 1997.
[2] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry (Graduate Texts in Mathematics). Springer, 2004.
[3] D. Eisenbud and S. Goto. Linear free resolutions and minimal multiplicity. Journal of Algebra, 88(1):89-133, 1984.
[4] P. A. García-Sánchez and J. C. Rosales. On Buchsbaum simplicial affine semigroups. Pacific Journal of Mathematics, 202(2):329-339, 2002.
[5] D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
[6] L. Gruson, R. Lazarsfeld, and C. Peskine. On a theorem of Castelnuovo, and the equations defining space curves. Inventiones Mathematicae, 72(3):491-506, 1983.
[7] M. Hellus, L. T. Hoa, and J. Stückrad. Gröbner Bases of simplicial toric ideals. Nagoya Mathematical Journal, 196:67-85, 2009.
[8] J. Herzog and T. Hibi. Castelnuovo-Mumford regularity of simplicial semigroup rings with isolated singularity. Proceedings of the American Mathematical Society, 131(9):2641-2647, 2003.
[9] L. T. Hoa and J. Stückrad. Castelnuovo-Mumford regularity of simplicial toric rings. Journal of Algebra, 259(1):127-146, 2003.
[10] L. T. Hoa and N. V. Trung. Affine semigroups and Cohen-Macaulay rings generated by monomials. Transactions of the American Mathematical Society, 298(1):145-167, 1986.
[11] L. T. Hoa and N. V. Trung. On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals. Mathematische Zeitschrift, 229(3):519-537, 1998.
[12] M. Hochster. Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes. The Annals of Mathematics, 96(2):318-337, 1972.
[13] M. Hochster and J. L. Roberts. The Purity of the Frobenius and Local Cohomology. Advances in Mathematics, 21(2):117-172, 1976.
[14] P. Li. Seminormality and the Cohen-Macaulay Property. PhD thesis, Queen's University, Kingston, Canada, 2004.
[15] P. Li and L. G. Roberts. Cohen-Macaulay and seminormal affine semigroups in dimension three (submitted). http://www.mast.queensu.ca/~pingli/aboutme.html, August 2010.
[16] E. Miller and B. Sturmfels. Combinatorial Commutative Algebra (Graduate Texts in Mathematics). Springer, 2005.
[17] M. J. Nitsche. Natural Cohen-Macaulayfication of simplicial affine semigroup rings (submitted). arXiv:1006.5670, 2010.
[18] I. Peeva and B. Sturmfels. Syzygies of codimension 2 lattice ideals. Mathematische Zeitschrift, 229(1):163-194, 1998.
[19] J. Stückrad and W. Vogel. Castelnuovo bounds for certain subvarieties in \mathbb{P}^{n}. Mathematische Annalen, 276(2):341-352, 1987.
[20] R. Treger. On equations defining arithmetically Cohen-Macaulay schemes. I. Mathematische Annalen, 261(2):141-153, 1982.
[21] N. V. Trung. Classification of the double projections of Veronese varieties. Kyoto Journal of Mathematics, 22(4):567-581, 1982.

[^0]: 2010 Mathematics Subject Classification. Primary 13D45, 13F45.
 Keywords: Castelnuovo-Mumford regularity, Eisenbud-Goto conjecture, reduction number, affine semigroup rings, seminormal rings, full Veronese rings.

