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A new approximation for post-Hartree Fock (HF) methods is presented applying ten-

sor decomposition techniques in the canonical product tensor format. In this ansatz,

multidimensional tensors like integrals or wavefunction parameters are processed as

an expansion of one-dimensional representing vectors. This approach has the poten-

tial to decrease the computational effort and the storage requirements of conventional

algorithms drastically while allowing for rigorous truncation and error estimation. For

post-HF ab initio methods for example, storage is reduced to O(d · R · n) with d be-

ing the number of dimensions of the full tensor, R being the expansion length (rank)

of the tensor decomposition and n being the number of entries in each dimension

(i.e. the orbital index). If all tensors are expressed in the canonical format, the com-

putational effort for any subsequent tensor contraction can be reduced to O(R2 · n).

We discuss details of the implementation, especially the decomposition of the two

electron integrals, the AO-MO transformation, the MP2 energy expression and the

perspective for Coupled Cluster methods. An algorithm for rank-reduction is pre-

sented that parallelizes trivially. For a set of representative examples the scaling of

the decomposition rank with system and basis set size is found to be O(N1.8) for the

AO integrals, O(N1.4) for the MO integrals and O(N1.2) for the MP2 t2-amplitudes

(N denotes a measure of system size) if the upper bound of the error in the ℓ2-norm

is chosen as ε = 10−2. This leads to an error in the MP2 energy in the order of

mHartree.

a)Electronic mail: auer@mpie.de
b)Electronic mail: Mike.Espig@mis.mpg.de
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I. INTRODUCTION

Tensor decomposition techniques originate from the early works of Hitchcock1 and its first

applications with the work by Tucker2, Carroll and Chang3 and Harshman4 in the field of

psychometrics. Later, these decomposition techniques were used also in the fields of chemo-

metrics, where they have become very popular5–8. Over the last ten years tensor decom-

position techniques found their way into numerical linear algebra9,10, signal processing11,12,

computer vision13–15, data mining16–18, neuroscience19,20 and many more. The advantage of

using decomposed tensors is mainly due to the fact of reduced data handling and decreased

complexity of mathematical operations dealing with decomposed high dimensional tensors.

Decomposition techniques often allow to treat large amount of data very efficiently, which

would not be possible with standard procedures due to the “curse of dimensionality“21 of

higher-order tensors.

A prominent example for “curse of dimensionality“ problems are Coupled Cluster (CC),

Configuration Interaction (CI) or perturbative post-Hartree Fock (HF) methods. For ex-

ample, the computational effort for the CCSDT method scales as O(N8), for CCSDTQ it

scales as O(N10), where N is a parameter of system size. Due to the steep scaling of the

number of parameters to store and manipulate, applications of these exquisite methods are

limited to small systems.

In recent years a lot of effort has been devoted to overcome this steep scaling by reducing

the number of wavefunction parameters. One ansatz is to use tensor decomposition tech-

niques in order to compress the amount of data. Methods like the Cholesky decomposition

(CD) can be used to decompose four dimensional arrays like the two-electron integrals into

two dimensional quantities22–33. Also other approximations like density fitting (DF)34–37 /

resolution of identity (RI) techniques38–41 are used for approximating the two-electron in-

tegrals. These approaches allow to reduce the computational effort typically by one order

of magnitude and have been commonly used for a long time in the framework of density

functional theory (DFT). In explicitly correlated methods42–47 such approaches are essential

in order to overcome problems associated with the arising additional multi-centre integrals.

If decomposition techniques are applied to the the energy denominator like in the in Laplace

transformed Møller-Plesset perturbation theory (MP2)33,48–54, the complexity of such meth-

ods can, in combination with further approximations, be reduced to linear scaling51,55–57.
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A further possibility to reduce the number of parameters in post-HF calculations in this

spirit is the construction of an optimal valence space representation in which the number

of orbitals that have to be correlated is significantly decreased58–68. In the framework of

higher order CC methods also Singular-Value-Decomposition (SVD) techniques have been

studied69,70.

In this work we present an adaption of a numerical scheme from applied mathematics for

post-HF electronic structure methods. In contrast to most existing decomposition schemes

like RI/DF or CD this approach is not aimed at reducing the effort to calculate the two-

electron integrals but rather to reduce the steep scaling of post-HF methods. In this scheme,

multidimensional tensors are represented by using an expansion in one-dimensional quanti-

ties. Rather than constructing a low rank approximation of a highly dimensional tensor a

priori, which is for example difficult for wavefunction parameters, the detour via a trivial

decomposition with high rank and a subsequent rank reduction is taken. In the optimal

case, the rank reduction procedure should then yield parameters that have been compressed

to their most compact form. For the practicability of the resulting approximation the deci-

sive quality is of cause the scaling of the expansion length (rank) with system and basis set

size, which is investigated in detail for the two-electron integrals and an estimate of the CC

amplitudes as obtained from MP2.

This paper is organized in the following way: In Sec. IIA a short introduction into the

tensor decomposition techniques applied in this work is given. The tensor format and the

rank reduction algorithm are discussed in detail. In the following sections II B - IID the

application of the tensor decomposition and low rank approximation are demonstrated for

different tensors in post-HF methods and the implications for the amount of storage and

the complexity of tensor manipulations are discussed. In Section IV the results of a series of

benchmark calculations are presented as a proof of principle. Finally, in Section V the impli-

cations of the results on the amount of storage and the complexity of tensor manipulations

are summarized followed by a short outlook for high-level post-HF ab initio methods.
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II. THEORY

A. Tensor product approximation and rank reduction

With the help of decomposition methods a general d-dimensional tensor can be factor-

ized into a sum of representing vectors1,71–75. For this purpose different tensor formats

exist, like the TUCKER model2,9,76 or the canonical product format (CP)1,77–81 that is often

obtained by a parallel factor decomposition (PARAFAC), also termed canonical decompo-

sition (CANDECOMP)3,4,9,82–84. In the following, we focus on the CP format because it

offers certain advantages for post-HF methods and yields a representing format of minimal

dimensionality. In the CP format a tensor A(w, x, y, z) ∈ Rn×n×n×n in 4-dimensions (for

example the two-electron integrals) is expanded as

A =
R

∑

r=1

a(w)
r ⊗ a(x)

r ⊗ a(y)
r ⊗ a(z)

r (1)

with summation length R called rank of the representation and n describing the number

of entries in each dimension85. The four representing vectors a
(w)
r , a

(x)
r , a

(y)
r and a

(z)
r are

connected by application of the Kronecker product. Here and in the following, it should

be noted the superscripts (w), (x), (y) and (z) in the representing vectors of a tensor in the

CP format are, strictly speaking, not indices (in sense of indices to denote matrix elements)

as such but are rather used to distinguish the representing vectors for the different dimensions

of the original tensor. E.g. in Eqn. 1 the vectors a
(w)
r are the r representing vectors for the

first dimension (w) of the tensor A(w, x, y, z) and each has a length of n.

While shown for the example of four dimensions above, this type of decomposition can be

extended to any dimensionality. In contrast to the full 4-dimensional tensor that requires to

store n4 entries, the memory requirement is reduced to 4 ·n ·R. In this case, the complexity

of algebraic operations can also be decreased to only linear scaling with respect to the

dimension so that the ”curse of dimensionality” can be overcome77,78. However, this ansatz

is only beneficial if the 4-dimensional tensor in Eqn. 1 can be represented by a low-rank

approximation, where the rank R is significantly smaller than n3.

This decomposition is related to Cholesky decomposition and RI/density fitting, and

while the latter differ in the procedure to obtain the representing matrices, they share a
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similar form of decomposition :

A(w, x, y, z) =
R

∑

r=1

awx
r · ayz

r . (2)

The difference to the CP format (Eqn. 1) is that rather than having one representing matrix

(awx
r and ayz

r in Eqn. 2 denote different elements of the same matrix) with for example

n2 · R elements, in the CP format different representing vectors are used that contain n · R

elements. The disadvantage is, that the procedure to construct the low rank representation

is an iterative scheme that (currently) requires the computation, and partly storage, of all

integrals. Consequently, the application of this scheme is computationally more demanding

than the calculation of the integrals by itself and is thus not likely to be of advantage for

DFT or HF algorithms. However, in contrast to RI/DF or CD this ansatz can be applied

to any kind of tensor like wavefunction parameters such as higher order amplitudes or CI

coefficients, arbitrary integrals etc. Therefore, the technique presented here are intended for

the usage in high-level post-HF methods. As also lambda and perturbed amplitudes that

occur in analytical derivatives of CC theory86,87 can be decomposed, this approach can also

directly be applied in the calculation of molecular properties via analytical derivatives.

While for two dimensions, there exists a unique procedure to obtain an optimal low-rank

approximation, namely the SVD, this is not the case for higher dimensions. In principle,

the best way to obtain a representation in the CP format is to derive it a priori from

the equations that define the high dimensional tensors, such that these do not have to be

calculated explicitly79,80,88–90. However, if this is not possible, one can always find a trivial

decomposition of this tensor with very high rank, that can be reduced with a reduction

algorithm (c.f. Eqn. 3)84,91. In Fig. 1 the trivial decomposition is illustrated for a small

example in two dimensions. For the trivial decomposition, the first representing vector

codes the number of the row as a unit vector. The last representing vector is initialized with

all entries in the specific row described by the first vector. To decompose the full matrix

shown in Fig. 1 three pairs of representing vectors are necessary leading to an initial rank of

three. For a 4-dimensional quantity four vectors are required, three unit vectors holding the

first three indices in vector format and the last representing vector containing all values for

this special multi-index. In this trivial decomposition the initial rank for a four dimensional

tensor is always n3. To obtain a low rank approximation, this initial quantity can be reduced
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in rank within a given accuracy ε:

J(Ã) := ||A − Ã|| ≤ ε with Ã =
R̃

∑

r=1

ã(w)
r ⊗ ã(x)

r ⊗ ã(y)
r ⊗ ã(z)

r , (3)

where Ã is the new approximated tensor with the reduced rank R̃. This is done by a mini-

mization procedure where the error ε in the ℓ2-norm, to which the low-rank approximation

will be converged, is given as input to the reduction algorithm. For solving this minimiza-

tion problem there are different choices like an alternating least square (ALS) scheme77,78,

a modified Newton method80,90 or an accelerated gradient (AG)84 algorithm.

In this work the AG algorithm (see Fig. 2) has been used, which has certain advantages

over the other methods, such as a better convergence and a complexity comparable to the

ALS method. For a detailed analysis of the AG methods see reference 84. The crucial part

of the AG algorithm is the computation of the exact line search parameter αk ∈ R≥0. Given

a direction Dk, a solution of the one-dimensional nonlinear equation

p(αk) =
〈

J ′(Ãk + αDk),Dk
〉

= 0.

has to be found. Normally the exact line search is avoided and an Armijo type inexact line

search92 is applied. Generally, for CP tensors of order d, the function p is a polynomial of

degree at most 2d − 1. Hence, a third order derivative-free procedure (3-PG) for finding

zeros of a function93 is applied. The 3-PG method is globally linear convergent for a function

f ∈ C2[x, y], where x, y ∈ R with f(x)f(y) < 0. The order of convergence is defined by the

real root of the polynomial τ 7→ τ 3 − τ 2 − τ − 1 (≈ 1.8393). Moreover, the 3-PG method is

equivalent to the Newton method for polynomials of degree three.

The complexity of the computation of the gradient J ′ is O(d · R̃ · n · (R̃ + R)), where

d is the dimension of the tensor. Since the most expensive part in the AG method is the

calculation of the gradient, the overall complexity of the AG method is

kmaxO(d · R̃ · n · (R̃ + R)), (4)

where kmax denotes the maximal number of iterations in the minimization procedure (see

Fig. 2).

The current rank-reduction scheme shown in Fig. 2 is organised as follows : First, a

pivoting routine is used to find a large entry in the original tensor on a special cross over all
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dimensions, which is used as a new rank in the representing vectors for the approximation.

This new rank is then optimized to improve the A-residual value and is added to the set

ranks in Ã. An iterative procedure is then used to improve all ranks in the representing

vectors to further lower the difference between Ã and A. If this difference is lower than the

given threshold parameter ε, the procedure is stopped and the final number of ranks has

been obtained. Otherwise, the cycle starts again with the pivoting routine and adds another

rank to the approximated Ã. This way, the rank grows one by one during the iterations

until the given accuracy is reached. A detailed description of the full algorithm can be found

in references 90 and 84.

It should be pointed out that this scheme has not been modified in any way in order

to optimise it for the problem of approximating two-electron integrals or wavefunction pa-

rameters. As the work presented here should be understood as a proof of principle, there

is extensive room for improvement from a viewpoint of computational efficiency. Current

efforts are directed at making the procedure computationally efficient and will be reported

in a further publication.

Furthermore, it should be noted that in the scheme applied in this work, no use of

permutational symmetry for the indices of the tensors are made. While this results in a

numerical “permutational symmetry violation” in principle, this does not pose a problem in

practice (see also section IVA).

B. Decomposition of the two-electron integrals and integral transformation

As the amount of integrals to be computed increases rapidly with system and basis set size,

several approaches for low rank approximation of the two-electron integral tensor already

exist, as already mentioned in the introduction. For a representation in the CP tensor format

the two-electron integrals can be cast into a decomposed form by trivial decomposition, so

that the initial rank R scales with O(N3), where N is the number of basis functions

〈µν|σρ〉 =
R

∑

r=1

χ(µ)
r ⊗ χ(ν)

r ⊗ χ(σ)
r ⊗ χ(ρ)

r . (5)

Here and in the following we use the convention that µ, ν, σ, ρ denote AO-indices, a, b, c, d

denote virtual and i, j, k, l occupied indices, e, f denote virtual and m,n denote occupied

summation indices. It should be noted, that superscripts in parenthesis do not denote indices
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in the sense of denoting matrix elements, but are used to distinguish the representing vectors

for the different dimensions of the tensor.

From Eqn. 5 it can be seen that for the trivial decomposition the number of parameters

to store even increases from N4 for the full tensor to 4 ·R ·N = 4 ·N4 for the representation

in the CP format. Thus it is only beneficial to use integrals in the CP decomposed format

for post-HF approximations if the rank can be reduced to less than 1
4
N3. Only then the

memory requirements for the representation in the CP format are lower than the amount

of storage for the full two-electron integrals. Thus, the decisive quantity is the final rank

after reduction and especially the scaling of the reduced rank with system and basis set

size. Together with the prefactor of the rank reduction algorithm, this scaling behaviour

will determine the cross over point to conventional algorithms. Yet, already from the success

of schemes like RI/DF and CD for lowering the amount of storage for the integrals one can

estimate that it should be possible to find a low rank representation in the CP tensor format

that exhibits low scaling with system and basis set size. Furthermore, as for CD techniques

linear scaling algorithms have been devised30, similar approaches should also be applicable

to the tensor decomposition methods presented in the following.

Having cast the two-electron integrals in the AO-basis into the CP format, the AO-MO

integral transformation (here given for the four-virtual index integrals)

〈ab|cd〉 =
∑

µνσρ

Ca
µCb

νC
c
σC

d
ρ〈µν|σρ〉 (6)

can be written as the separate transformation of the four representing vectors χ

vab
cd =

∑

µνσρ

Ca
µCb

νC
c
σC

d
ρ

R
∑

r=1

χ(µ)
r ⊗ χ(ν)

r ⊗ χ(σ)
r ⊗ χ(ρ)

r (7)

=
R

∑

r=1

(

∑

µ

Ca
µχ(µ)

r

)

⊗

(

∑

ν

Cb
νχ

(ν)
r

)

⊗

(

∑

σ

Cc
σχ

(σ)
r

)

⊗

(

∑

ρ

Cd
ρχ(ρ)

r

)

(8)

vab
cd =

R′=R
∑

r=1

v(a)
r ⊗ v(b)

r ⊗ v(c)
r ⊗ v(d)

r . (9)

Thus, the integral transformation is carried out by simple matrix-vector multiplications of

the MO coefficient matrices C with the corresponding representing vectors of the decom-

posed two-electron integrals in the AO-basis. The complexity of this transformation can

be reduced from O(N4 · virt + N3 · virt2 + N2 · virt3 + N · virt4) for the conventional algo-

rithm to a scaling of O(N · virt · R) in the CP tensor format, were virt denotes the number
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of virtual orbitals. One important fact is that in principle the rank does not change during

the transformation (R′ = R). This means that the compression in the CP tensor format

is independent of the basis chosen to represent the two-electron integrals. If a low rank

approximation is found starting from the canonical orbitals it should have the same rank

as for localized or natural orbitals. Furthermore, after a low rank approximation has been

found in the AO basis, a low rank representation of the integrals in the MO basis can be

obtained.

All other types of MO integrals, as they for example occur in CC calculations, can be

obtained in the same way, but the CP format allows also to construct other types of MO

integrals in a very convenient way. If only the MO integrals with four occupied and four

virtual indices are transformed, all other types of integrals can then be composed from the

representing vectors of these two objects. In Eqn. 10 this is demonstrated for the two

occupied, two virtual index integrals.

vab
cd =

R′

∑

r=1

v
(a)
r ⊗ v

(b)
r ⊗ v

(c)
r ⊗ v

(d)
r

vkl
ij =

R′

∑

r=1

v
(k)
r ⊗ v

(l)
r ⊗ v

(i)
r ⊗ v

(j)
r























⇒ vab
ij =

R′

∑

r=1

v(a)
r ⊗ v(b)

r ⊗ v(i)
r ⊗ v(j)

r (10)

While the rank of the integral representation does not change during transformation, the

occupied and the virtual space are only subspaces of the AO-basis, so that the physical

information the integrals carry is reduced upon transformation. Due to this fact, it should

be possible to reduce the ranks of the different MO-integrals even further.

It should be noted that an alternative could also be to first transform the AO-integrals

after trivial decomposition to the MO-basis and only reduce the rank of the MO-integrals

or to perform the trivial decomposition and subsequent reduction only for the MO-integrals

after they have been obtained from any quantum chemistry software package. Furthermore,

it might be advantageous to derive schemes in which the starting point for the decomposition

and rank reduction are representations of the two-electron integrals as obtained from more

efficient schemes like RI or DF techniques.
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C. MP2 algorithm based on decomposed integrals and denominator

While we discuss an MP2 algorithm in the following, this should be regarded as a first

step towards the application of tensor decomposition techniques in CC theory. The great-

est benefit of low-dimensional, low-rank approximations is expected for higher order CC

methods, for which the computational effort is prohibitive for larger applications due to the

manipulation of tensors with six, eight or more dimensions.

In the framework of CC theory MP2 can be considered to yield a first-order estimate of

the t2 amplitudes94:

tab
ij = vab

ij · Dab
ij (11)

where vab
ij are antisymmetrized two-electron integrals and Dab

ij is the energy denominator

defined in Eq. 12.

Dab
ij =

1

−ǫa − ǫb + ǫi + ǫj

(12)

This ansatz is not only convenient from a formal point of view, but also allows to estimate

the performance of the CP tensor format for post-HF methods like CC.

If Eqn. 11 is based on integrals represented using a low rank CP tensor approximation,

the complete amplitude expression can be decomposed if also the energy denominator Dab
ij

is cast into a product format. For this purpose the approximation of 1/x by exponential

sums48,52,54 is used. One element of the denominator can be written as

1

−ǫa − ǫb + ǫi + ǫj

≈
S

∑

s=1

ωs · exp(−αs(−ǫa − ǫb + ǫi + ǫj)) (13)

=
S

∑

s=1

ωs · exp(αsǫa) · exp(αsǫb) · exp(−αsǫi) · exp(−αsǫj), (14)

so that the full tensor Dab
ij can be obtained in the CP format as

Dab
ij ≈

S
∑

s=1

ǫ(a)
s ⊗ ǫ(b)

s ⊗ ǫ(i)
s ⊗ ǫ(j)

s . (15)

The accuracy of this approximation, like in the Laplace MP2 method33,48–52,54, can be

adjusted by choosing an appropriate threshold which results in a fixed decomposition rank

for the denominator expression52. If decomposed integrals and the denominator in the

CP format are combined, the amplitudes from Eqn. 11 can be obtained as
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tab
ij ≈

(

R′

∑

r=1

v(a)
r ⊗ v(b)

r ⊗ v(i)
r ⊗ v(j)

r

)

·

(

S
∑

s=1

ǫ(a)
s ⊗ ǫ(b)

s ⊗ ǫ(i)
s ⊗ ǫ(j)

s

)

(16)

=
R′

∑

r=1

S
∑

s=1

(

v(a)
r · ǫ(a)

s

)

⊗
(

v(b)
r · ǫ(b)

s

)

⊗
(

v(i)
r · ǫ(i)

s

)

⊗
(

v(j)
r · ǫ(j)

s

)

(17)

=

Q=R′·S
∑

q=1

t(a)
q ⊗ t(b)

q ⊗ t(i)
q ⊗ t(j)

q . (18)

The initial rank Q of the amplitudes is determined by the rank of the MO integrals R′ and

the rank of the energy denominator S as Q = R′ · S. In consequence, the initial rank for

the amplitudes is always larger than the rank of the two-electron integrals. However, due to

the fact that the t2 amplitudes are obtained from the MO integrals by weighting them with

the energy denominator, the optimal rank of t2 should be approximately the same or even

smaller than the rank of the MO integrals. Therefore, it should be possible to reduce the

initial rank of t2 by applying the rank-reduction algorithm presented in Sec. IIA.

Finally, the MP2 energy using t2 and the MO-integrals in the new CP tensor format can

simply be calculated as inner products of tab
ij and vij

ab:

EMP2 =
1

4

∑

efmn

tefmnv
mn
ef (19)

=
1

4

∑

efmn

(

Q
∑

q=1

t(e)
q ⊗ t(f)

q ⊗ t(m)
q ⊗ t(n)

q

)

·

(

R
∑

r=1

v(m)
r ⊗ v(n)

r ⊗ v(e)
r ⊗ v(f)

r

)

=
1

4

Q
∑

q=1

R
∑

r=1

(

virt
∑

e=1

t(e)
q · v(e)

r

)

⊗

(

virt
∑

f=1

t(f)
q · v(f)

r

)

⊗

(

occ
∑

m=1

t(m)
q · v(m)

r

)

⊗

(

occ
∑

n=1

t(n)
q · v(n)

r

)

EMP2 =
1

4

Q
∑

q=1

R
∑

r=1

〈

t(e)
q , v(e)

r

〉

⊗
〈

t(f)
q ,v(f)

r

〉

⊗
〈

t(m)
q , v(m)

r

〉

⊗
〈

t(n)
q ,v(n)

r

〉

. (20)

Thus, only scalar products of the different representing vectors of tab
ij and vij

ab have to

be evaluated. The calculation of the MP2 energy expression in this format scales as

O(Q · R′ · (virt + virt + occ + occ)) ≈ O(Q · R′ · N). Overall, the complexity of the out-

lined MP2 algorithm in the CP format scales linear with system size and the rank of the

tensors. As a consequence, the scaling of the rank with system and basis set size and the

scaling of the rank reduction algorithm itself determine the actual scaling of the algorithm.
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D. A note on CC methods using tensor decomposition techniques

The computationally most demanding step in CC calculations are tensor contractions of

amplitudes with different integrals that occur in the CC amplitude equations. If all integrals

and amplitudes are expressed as low-rank representations in decomposed format, any tensor

contraction can be formulated in a way similar to the evaluation of the MP2 energy discussed

above (see Sect. II C). There, all contractions of internal indices are evaluated by simple

scalar products, while the remaining external indices are obtained by simple copy operations

of the representing vectors of integrals and amplitudes. This way, all contributions to the

residual are immediately obtained in the CP format. The scaling of each tensor contraction

in the CP format is O(N · Q · R), were Q denotes the rank of the amplitudes and R denotes

the rank of the Hamilton-matrix element. However, the rank of the resulting object is now

determined by the rank of the t2 amplitudes times the rank of the corresponding integral

and has then to be reduced by application of the rank reduction algorithm. The overall

scaling will result as O(N) if Q and R are independent of system size, O(N3) if Q and R

scale linear, O(N5) if Q and R scale quadratic with system size and so on. The implications

for CC methods and benchmark calculations from a first pilot implementation, which is

currently being developed in our group, will be presented in a forthcoming paper.

III. COMPUTATIONAL DETAILS

The current implementation of the rank reduction procedure uses input data obtained

with a development version of the CFOUR program package95. The two-electron integrals96

and the results from the Hartree Fock calculation together with the ε-value for the upper

bound of the error in the ℓ2-norm are taken as input for the new algorithm.97

The rank reduction algorithm presented in Sec. IIA scales with initial rank times final

rank and the number of iterations, so that for large initial ranks the rank reduction is a very

time consuming step. Due to the trivial decomposition that is currently used to cast the

two-electron integrals into the CP tensor format, the initial rank always scales as O(N3),

where N is the number of basis functions. However, the canonical format allows for an

efficient parallel procedure by treating large quantities in a different way: The large initial

tensor in CP format is split up into slices including a fixed number of ranks. The rank
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reduction is then applied to the individual slices, so that reduced slices are obtained, which

can then again be merged (see Fig. 3). In order to obtain a low rank approximation this

procedure can be repeated until the rank does not change any more or a full rank reduction

can be carried out for the full merged tensor representation. This procedure can trivially

be distributed to multiple processes and also lends itself to a distributed integral direct

algorithm that is currently being developed in our group. This would also eliminate the

need for storing the two-electron integrals as done in the current pilot implementation and

as it is often customary in CC codes.

A typical full rank reduction of AO-two-electron integrals with an initial rank of 5000 to

ε = 10−4 takes 8.6 hours of CPU time on one core of a workstation with an AMD Opteron

2218 Stepping 2 processor with 2.6 GHz. The parallelized sliced reduction with slices of 1000

and the same threshold takes 5 · 0.4 CPU hours on 5 CPUs. A subsequent full reduction to

ε = 10−4 of the prereduced slices takes 3.7 hours on a single CPU, so the sliced reduction

followed by a full reduction leads to good rank reduction and affordable CPU time as will

further be discussed in section IV.98

IV. RESULTS

A. Decomposition of the two-electron integrals

In this section the decomposition of AO integrals and the rank reduction to obtain a

low rank approximation for a small test-set of molecules (see Tab. I) are discussed. Here,

different schemes for the rank reduction were tested: A single sliced rank reduction (sr)

as described in section III, a single sliced reduction followed by a full rank reduction (sfr)

and a full rank reduction (fr) of the AO integral tensor. From Table I it can be seen that

the single sliced rank reduction does not lead to a good reduction for the AO integrals.

The compression of ranks99 in CH4 for example is between 53 % for the highest accuracy

(ε = 10−6) and 92 % for the lowest accuracy (ε = 10−2). If the remaining representing vectors

are combined to one slice and reduced (sfr) the compression can be improved further. The

final rank for ε = 10−6 can be reduced by 82 % while the rank for ε = 10−2 can be decreased

by 96 %. Furthermore, even from these examples it can be seen that the compression for

larger examples is better.
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If a full reduction (fr) is carried out for the AO integrals the results are very similar to

those obtained by the sliced reduction followed by a full reduction (sfr). Here, the final ranks

are almost identical and deviate at most about 0.5 %. It should be noted that the deviation

decreases for smaller values of ε. Therefore, the best balance between computational time

and reduction of rank is obtained with a sliced reduction followed by a full reduction (sfr).

This scheme is used for all larger examples (initial rank > 5000) in the following for which

a full rank reduction is not feasible due to the limitations of the current implementation

of the rank reduction algorithm100. In order to assess the scaling of the final rank after

reduction of the two-electron integrals, a LiH chain in a 6-31G basis101 and a H2O molecule

using different basis sets have been studied. The results obtained from single sliced rank

reductions (sr) are presented in Figure 4 and show a scaling O(n2.5) with system size and

O(N2.8) with basis set size which is almost independent of the ε value used. This means

that the scaling of the initial rank (O(n2.6) and O(N3) respectively)102 cannot be reduced

drastically by a single sliced rank reduction (sr). However, the prefactor can be decreased

by more than one order of magnitude especially for larger examples and larger values of

ε. For a value of ε = 10−2 also a subsequent full reduction of the prereduced AO integrals

(sfr) from the LiH chain has been performed (see Fig. 4). There it can be seen, that a

more rigorous reduction reduces the scaling further to O(n1.8), while the prefactor does not

change very much with respect to the sliced reduction.

The dependence of the final rank on the initial slice sizes for sliced decomposition has

been tested for the H2O example with different basis sets. Here, slices with 500, 1000 and

2000 ranks have been reduced and the scaling with basis set size can be compared (see

Table II). Generally, larger slice sizes lead to better reduction of ranks and also the scaling

with basis set size can be reduced by choosing larger slice sizes. It should be noted that

a subsequent full rank reduction would yield practically the rank of the fr-procedure, no

matter what slice size has been chosen in the initial sliced prereduction (c.f. Tab. I). In

conclusion, the optimal performance of the rank reduction algorithm is achieved with slice

sizes between 1000 and 2000.

In order to assess the error that arises due to the fact that in the decomposed format

no permutational symmetry is used, the values of integrals that should be identical by

permutational symmetry have been compared after reassembly. This has been done for the

AO integrals as well as for the MO integrals for several test cases and different values of ε.
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In all cases the difference of two equivalent integrals were smaller than 10−7 which is at least

two order of magnitude smaller than the error in the ℓ2-norm introduced by the low-rank

approximation and can thus safely be neglected.

B. AO-MO transformation with decomposed integrals

The AO-MO transformation can be carried out as described in Sec. II B. While the ranks

do not change due to the transformation it should be possible to reduce the rank of the MO

integrals further. Thus, different types of MO integrals are calculated in the CP format (c.f.

Eqn. 9 and 10) and the rank reduction algorithm is applied to the resulting MO integrals

of the LiH chain example. The same accuracy parameters that have been used for the AO

integrals are applied. The scaling with system size is shown in Figure 5. Here it can be

seen, that approximate low rank representations for different kind of MO integrals exhibit

almost linear scaling of reduced ranks with system size, especially for vab
ij . Other types of

integrals show a scaling between O(n2.6) for vab
cd with ε = 10−6 and O(n1.4) for vab

ij with

ε = 10−2. To check for consistency, also a series of alkyl-chains have been calculated that

show practically the same behaviour (see Fig. 6). From this it can be concluded that the

amount of storage for the MO integrals can be decreased from O(N4) scaling to optimally

O(N2.4) (see also Sec. II B). Therefore, especially the bottleneck in storing the vab
cd can be

moderated by using the new CP tensor format in a low rank approximation. It should be

noted that the overall scaling of the number of parameters for representing the two-electron

integrals with approximately O(N2) to O(N3) is similar to RI/DF and CD. For these, the

representing matrices are of size N2 · R. For CD, for example, it has been found that the

rank scales approximately linear with systems size if a stable error is maintained27. For the

CP format on the other hand, the size of the representing vectors are with N · R of lower

dimensionality, while the rank itself exhibits a steeper scaling with system size.

C. MP2 algorithm with decomposed integrals

If the MO integrals are available in the decomposed format, the MP2 amplitudes tab
ij can

also be obtained in the CP format (c.f. Sec. II C). For the approximation of the energy

denominator currently a very high accuracy is used - a rank of 42 is chosen, for which an
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error in the ℓ2-norm of the energy denominator of ε = 7 · 10−12 is obtained52. As already

mentioned in Sec. II C the initial rank of the t2 amplitudes is always larger than the rank

of the corresponding vab
ij integral tensor due to the construction of this object, so it must be

possible to reduce the initial rank of tab
ij . In Figure 7, the scaling of the final ranks of MP2

amplitudes with system and basis set size for LiH chains and the H2O molecule are given.

For the t2 amplitudes the ranks can be reduced to similar or even better values than

the ranks of the MO integrals. For the lowest accuracy (ε = 10−2) the scaling with system

and basis set size is almost linear (O(n1.4) and O(N1.2), respectively). This means that

the number of parameters for the t2 tensor can be decreased from a scaling with O(N4)

to O(N2.2). Especially the low scaling with basis set size should be pointed out, as other

approximations, for example local correlation methods, that exhibit low scaling with system

size often do not show advantageous scaling with basis set size.

For any application of the tensor decomposition techniques presented here the error in the

total energy and its dependence on the value of the ε-threshold is important, also because

this parameter has an impact on the overall scaling of the method. Thus, the MP2 energy is

calculated with all tensors in the CP format as explained in Sec. II C. Table III shows the

absolute errors in the MP2 energy for the test molecules calculated using the 6-31G basis

set. For the calculation of the MP2 energy two schemes have been applied: First, quantities

obtained from decomposed and reduced AO integrals are used. In the second case, the t2

amplitudes and the corresponding MO integrals are obtained from a conventional calculation

and then transformed into the CP format and reduced to the given accuracy. From Table III

it can be seen that for the latter case (amplitudes and integrals obtained conventionally) the

accuracy relative to the full MP2 result is better than for successive application of the rank

reduction. The errors can be decreased by more than 3 orders of magnitude by changing the

ε-parameter of the reduction from 10−2 to 10−4. Thus, the error propagation during multiple

approximations must be considered carefully and the ε-threshold of the approximation has

to be adjusted.

Figure 8 shows the errors in the MP2 energy for a series of alkyl chains calculated using the

6-31G basis set. As the quantities used here are obtained from a conventional calculation

and only one rank reduction has to be applied to the amplitudes and integrals also larger

values of ε are tested in the approximation. For values of ε between 10−1 and 10−2 the

error in the MP2 energy is in the range of 1 mHartree. If µHartree accuracy is required or
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multiple rank reductions are applied the value of ε should be decreased to 10−3 or 10−4.

V. DISCUSSION AND OUTLOOK

In this paper we have presented the application of a novel tensor decomposition technique

to electronic structure methods. Using the canonical tensor format together with a low rank

approximation / rank reduction procedure provides the opportunity to reduce the storage

requirements and computational effort of post-HF ab initio methods drastically.

For the AO integrals, the scaling for the rank with system and basis set size is found to be

O(N1.8) if a sliced reduction followed by a full reduction with ε = 10−2 is applied. In contrast

the full AO integral tensor, for which the rank scales as O(N3), storage requirements are

decreased from N4 to 4 · R · N = 4 · N2.8.

As the rank of the decomposed tensors is independent of the basis chosen, it does not

change during the AO MO transformation. However, it is possible to compress the rank of

the MO integrals further so that the scaling of the rank R′ with system size can be reduced

to O(N1.4) for vab
ij with ε = 10−2 or slightly higher depending on the type of MO integral

and applied ε-parameter. As a consequence, the memory required for storage of the MO

integrals is reduced to 4 ·R′ ·N = 4 ·N2.4. Furthermore, the complexity of the transformation

operation itself is decreased from the formal O(N5) scaling of the canonical transformation

to approximately O(virt · N · R) ≈ O(N3.8), if R scales as O(N1.8) as shown for ε = 10−2.

In order to assess the implications for CC theory, an estimate for the t2 amplitudes as

obtained from MP2 has been investigated. In this case, the amplitudes can be obtained

by conversion to the CP format if a Laplace-like decomposition is applied to the energy

denominator. After the reduction procedure, the rank of the amplitudes is found to be

reduced to almost linear scaling with system and basis set size (O(n1.4) or O(N1.2) for

ε = 10−2). The storage requirements for the amplitudes are thus reduced from a formal

scaling with N4 to 4 · Q · N ≈ 4 · N2.2 for ε = 10−2.

Once amplitudes and integrals are available in the CP format, the MP2 energy can

be calculated by simple scalar products of the corresponding representing vectors. Using

amplitudes and integrals that have been reduced with ε values between 10−1 to 10−2 still

yields mHartree accuracy in the MP2 energy. With slightly smaller values of ε for the rank

reduction even µHartree accuracy can be achieved. The complexity of the evaluation of the

17



energy expression in the CP format scales as O(R′ · Q · N) = O(N3.6) if a scaling of R′ as

O(N1.4) and Q as O(N1.2) as described above is assumed for a value of ε = 10−2. However,

as the conventional algorithm based on canonical orbitals scales with O(N4), the complexity

for the MP2 energy equation can not be reduced much by the introduction of decomposed

tensors in the CP format.

The largest benefit can be expected for the evaluation of more complex tensor contractions

like in the CC amplitude equations. Contractions between amplitudes and MO integrals can

be evaluated by simple scalar products over inner contraction variables and copy operations

for the remaining representing vectors. Therefore, these contractions would scale no longer

with O(N6) but rather with O(N3.6), assuming rank reductions with ε = 10−2 that yield

amplitude and integral representations for which the ranks scale as O(N1.2) and O(N1.4),

respectively. While this should hold for arbitrary order CC theory the scaling of ranks for

higher order amplitudes still has to be investigated.

In conclusion, tensor decomposition techniques and their rigorous application bears the

potential to overcome the “curse of dimensionality” for post-HF ab initio methods. If all

quantities are expressed in decomposed representing vectors the high scaling of tensor con-

tractions and storage requirements are drastically reduced trough tensor decomposition and

low rank approximation. Ultimately, the rank reduction algorithm will become the time

determining step. This step scales approximately as O(initial rank · final rank). Due to the

trivial decomposition technique currently used, the initial rank scales as O(N3) while the

final rank scales roughly as O(N2) depending on the quantity of interest and the ε param-

eter chosen. In consequence, the overall scaling of the rank reduction would be O(N5), if

the scaling with the number of iterations of the current algorithm is eliminated, and can be

further decreased if the initial tensor is sliced into smaller parts. Treating the representing

vectors by slices of ranks also allows for an efficient parallelization of the reduction and

contraction procedures. The refinement of the rank reduction algorithm and the implemen-

tation of a full CC code are the subject of current work in our group and will be discussed

in a forthcoming paper.
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39O. Vahtras, J. Almlöf, and M. Feyereisen, Chem. Phys. Lett. 213, 514 (1993).

40M. Feyereisen, G. Fitzgerald, and A. Komornicki, Chem. Phys. Lett. 208, 359 (1993).

41R. Ahlrichs, Phys. Chem. Chem. Phys. 6, 5119 (2004).

42W. Kutzelnigg, Theor. Chim. Acta. 68, 445 (1985).

43E. F. Valeev and H. F. Schaefer, J. Chem. Phys. 113, 3990 (2000).

20

http://dx.doi.org/10.1073/pnas.0709146104
http://dx.doi.org/10.1016/j.cplett.2007.10.087
http://dx.doi.org/10.1063/1.3142592
http://dx.doi.org/10.1039/b304550a


44S. Ten-No, Chem. Phys. Lett. 398, 56 (2004).

45W. Klopper, F. R. Manby, S. Ten-No, and E. F. Valeev, Int. Rev. Phys. Chem. 25, 427

(2006).

46T. B. Adler, H. J. Werner, and F. R. Manby, J. Chem. Phys. 130, 054106 (2009).

47T. B. Adler and H. J. Werner, J. Chem. Phys. 130, 241101 (2009).

48M. Häser and J. Almlöf, J. Chem. Phys. 96, 489 (1992).
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FIGURES
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FIG. 1. Example for a trivial decomposition and a reduced rank representation in two dimensions.
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1: Choose initial Ã
0 ∈ V R̃×d and parameter ε ∈ R>0. Define iteration count k := 0, compute the

gradient G
0 := ∇J(Ã0) and D

0 := −G
0.

2: while the gradient ‖Gk‖ > ε do

3: Compute the smallest root αk ∈ [0, 1] of the polynomial p(α) :=
〈

∇J(Ãk + αd
k),Dk

〉

, i.e.

αk := min
{

α ∈ R≥0 : p(α) :=
〈

∇J(Ãk + αD
k),Dk

〉

= 0
}

.

4: Update the representation system of Ã, i.e. Ã
k+1 := Ã

k + αkD
k.

5: Compute the gradient for the updated system, i.e. G
k+1 := ∇J(Ãk+1).

6: Compute βk :=
〈Gk+1−G

k,Gk+1〉
‖Gk‖2 , γk := max{0, βk}.

7: Update the new search direction, i.e. D
k+1 := −G

k+1 + γkD
k.

8: k 7→ k + 1.

FIG. 2. Schematic representation for the Accelerated Gradient (AG) Method.
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FIG. 3. Schematic representation of the parallel rank reduction currently used for large examples.
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TABLES
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TABLE I. Initial and final ranks for different accuracies for the AO-integrals in H2O, NH3 and CH4

using the 6-31G basis set. a N denotes the number of elements per dimension that is equivalent

to the number of basis functions.

sliced reduction (sr) sliced + full (sfr) full reduction (fr)

(size=1000) reduction (size=1000)

molecule N

initial ε ε ε

rank 10−2 10−4 10−6 10−2 10−4 10−6 10−2 10−4 10−6

H2O 13 2005 205 598 852 148 337 403 142 337 403

NH3 15 3375 307 966 1409 183 488 603 172 476 599

CH4 17 4793 398 1397 2233 210 648 844 199 632 840

a The following geometries were used for the molecules (distance R [pm], angle θ [degree]): H2O:

ROH = 95.72, θHOH = 104.52106; NH3: RNH = 101.1, θHNH = 106.7107; CH4: RCH = 108.58,

θHCH = 109.47108
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TABLE II. Reduced ranks for sliced reductions (sr) with different slice sizes for AO integrals in

H2O using different basis sets.

slice = 500 slice = 1000 slice = 2000

basis
N

initial ε ε ε

set rank 10−2 10−4 10−6 10−2 10−4 10−6 10−2 10−4 10−6

6-31G 13 1283 253 698 1000 205 598 852 149 346 474

cc-pVDZ 24 8553 1610 5207 7066 1107 4180 6914 782 3257 5555

aug-cc-pVDV 41 49054 9029 30436 41108 5380 21466 34449 3501 15493 31350

cc-pVTZ 58 150771 27293 95480 127789 15562 68872 109808 9219 45369 87386
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TABLE III. Errors in MP2 energies in mHartree for different values of ε using the 6-31G basis.

The results in the first column are obtained with quantities build from a decomposed and reduced

AO integral tensor. The results in the second column are calculated with quantities obtained from

a conventional calculation which are then transformed to the new format and reduced.

from decomposed AO integrals from canonical quantities

ε H2O NH3 CH4 H2O NH3 CH4

10−2 1.503023 5.308963 5.978639 -0.039275 -0.032095 -0.032298

10−4 0.002606 0.004576 0.002512 0.000017 0.000234 0.000126

10−6 0.000026 -0.000208 0.000016 -0.000001 0.000001 0.000002
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