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Abstract

Linear hyperbolic partial differential equations in a homogeneous medium, e.g., the wave
equation describing the propagation and scattering of acoustic waves, can be rewritten as
a time-domain boundary integral equation. We propose an efficient implementation of a
numerical discretization of such equations when the strong Huygens’ principle does not
hold.

For the numerical discretization, we make use of convolution quadrature in time and
standard boundary element method in space. The quadrature in time results in a discrete
convolution of weights Wj with the boundary density evaluated at equally spaced time
points. If the strong Huygens’ principle holds, Wj converge to 0 exponentially quickly
for large enough j. If the strong Huygens’ principle does not hold, e.g., in even space
dimensions or when some damping is present, the weights are never zero, thereby presenting
a difficulty for efficient numerical computation.

In this paper we prove that the kernels of the convolution weights approximate in a certain
sense the time domain fundamental solution and that the same holds if both are differenti-
ated in space. The tails of the fundamental solution being very smooth, this implies that the
tails of the weights are smooth and can efficiently be interpolated. We discuss the efficient
implementation of the whole numerical scheme and present numerical experiments.

1. Introduction

A variety of physical applications, such as the propagation or the scattering of electromagnetic or
acoustic waves, lead to the problem of solving linear hyperbolic partial differential equations in
two or three dimensional space. Since these problems are typically considered in an unbounded
homogeneous domain, a method to tackle them is to reformulate the partial differential equation
as an integral equation on the, usually bounded, surface of the domain.

In this paper, the discretization in time is done by using convolution quadrature. The most
attractive feature, beside the excellent stability properties, is that, unlike numerical methods
based purely on Galerkin discretization, it determines the weights using Laplace transform of
the kernel function instead of the kernel function itself. This technique has been introduced by
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Lubich [17, 18, 19] and has since then been successfully applied to many applications, see also
the reviews [20] and [7].

In this work we will concentrate on solving the acoustic wave equation. For the case of
three spatial dimensions in which Huygens’ principle holds, Hackbusch, Kress and Sauter ([11])
present a cutoff strategy that helps to overcome the drawback of densely populated matrices
arising from the spatial discretization of the convolution coefficients. They suggest to replace
the system matrix by a sparse approximation, which is possible due to the finite propagation of
waves and Huygens’ principle.

Here, we focus on the cases where this strategy is not applicable due to the Huygens’ prin-
ciple failing to hold. We show that the convolution weight kernels approximate the tail of the
fundamental solution in time domain to high accuracy. Additionally, we point out, that, since the
tail of the fundamental solution is very smooth, interpolation of the weights can lead to a major
reduction of storage and computational complexity. We show an algorithmic realisation for the
solution of the wave equation by extending the algorithm given in [5] to the present case.

The plan of the paper is as follows. The section following this introduction is dedicated to
a short description of the problem treated in this paper as well as to fixing the notation used
in the forthcoming sections. In Section 3 we discuss the approximation result and describe the
algorithm. Concluding, in Section 4, we give a detailed numerical example underlining the
statement.

2. Notation and statement of the problem

Let Ω be a bounded Lipschitz subdomain of Rn (n = 2, 3) with boundary Γ and complement
Ω+ := Rn \ Ω. The goal is to find a function u(·, t) ∈ H1 (Ω) that solves the dissipative wave
equation with velocity c > 0 and damping factor α ≥ 0 given as follows

∂2
t u(x, t) + α∂tu(x, t)− c2∆u(x, t) = 0, (x, t) ∈ Ω+ × (0, T ) , (2.1a)

with initial conditions u (x, 0) = ∂tu (x, 0) = 0, x ∈ Ω+, (2.1b)

and Dirichlet boundary condition u (x, t) = g (x, t) , (x, t) ∈ Γ× (0, T ) , (2.1c)

on a time interval (0, T ) for some T > 0. It is well-known that u(x, t) exists and that it is unique
for data g(·, t) ∈ H

1
2 (Γ) vanishing near t = 0, see [4].

Since the Huygens’ principle does not hold in two space dimensions even without damping,
to simplify presentation we always set α = 0 in this case. Otherwise, the damping factor α
expresses a non-negative real number.

Employing a single layer potential ansatz we may write

u (x, t) =
∫ t

0

∫
Γ

k (|x− y|, t− τ) ϕ (y, τ) dΓydτ, (x, t) ∈ Ω+ × (0, T ) ,
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for the solution of the partial differential equation (2.1). The density ϕ (·, t) ∈ H− 1
2 (Γ) is

unknown whereas k (d, t) is the fundamental solution of the wave equation (2.1a). That is

k (d, t) =


H(t− d

c )
2π

q
t2− d2

c2

, n = 2

e−αt/2

4πd

(
δ(t− d

c ) + αd
2
√

c2t2−d2
I1

(
α
2

√
t2 − d2

c2

)
H
(
t− d

c

))
, n = 3.

(2.2)

Here, δ(t) denotes Dirac’s delta distribution, H(t) Heaviside’s function, and I1(t) the modified
Bessel function of order one, see [9].

For any density ϕ equation (2.1a) with condition (2.1b) is satisfied. The density ϕ can, hence,
be obtained by applying the boundary condition (2.1c), and solving the resulting boundary inte-
gral equation

g (x, t) =
∫ t

0

∫
Γ

k (|x− y|, t− τ) ϕ (y, τ) dΓydτ, (x, t) ∈ Γ× (0, T ) . (2.3)

When discretizing (2.3) with respect to the time variable, we will make use of convolution
quadrature; for more information on this approach see for instance [17], [18], [19], and [20].
This time-discretization method makes use not of k(d, t) but of its Laplace transform K(d, s) :=
L k(d, t) which is given by

K (d, s) =

{
1
2πK0

(
sd
c

)
, n = 2

e−
d
c

√
s2+αs

4πd , n = 3,
(2.4)

with K0 (s) being the Macdonald function of order zero (see [14]). Here we already see a
possible advantage of convolution quadrature: the time-domain fundamental solutions are dis-
tributional functions and in the case of the dissipative wave equation also given by a lengthy
expression. In contrast, in the Laplace domain, these become simpler, analytic functions of s.

Discretizing (2.3) by convolution quadrature at equally spaced points tj = j∆t, with j =
0, 1, . . . , N and ∆t = T/N > 0, one needs to find the unknown densities ϕ∆t

j (y) := ϕ∆t(y, tj)
satisfying the semi-discrete equivalent of (2.3) which with gn := g(x, tn) reads

gn(x) =
n∑

j=0

∫
Γ

ωn−j (|x− y|) ϕ∆t
j (y)dΓy, n = 0, 1, . . . , N, x ∈ Γ, (2.5)

with kernels (weight functions) ωn−j (d) implicitly defined by the generating function

K (d, ρ(ζ)/∆t) =
∞∑

n=0

ωn(d)ζn. (2.6)

Here, the function ρ(ζ) stands for the quotient of the generating polynomials of a linear multistep
method. In this paper, the A-stable backward differentiation formulae of order p = 1 and p = 2
are used so that we in particular have

ρ (ζ) =
p∑

i=0

1
i

(1− ζ)i . (2.7)

The results of this paper can be extended to A-stable Runge-Kutta methods of arbitrary order,
but to keep the paper at a reasonable length we do not perform this extention here.
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3. Approximation of k(d, t) by the weights ωj(d)

The aim of this section is to investigate more closely the functions d 7→ ωj(d). In [17] and [20]
it has been shown that for a kernel K(s) bounded polynomially in the complement of a sector
with an acute angle to the negative real axis, the corresponding weights ωj approximate ∆tk(tj)
to accuracy O(∆tp+1); p being the order of the underlying linear multistep method. Here we
wish to show a similar result for non-sectorial functions K(s, d) of the previous section. The
result will only hold for large enough j and has already been stated in [21] as a conjecture based
on numerical experiments. In order to simplify the presentation, we set for the rest of the paper
the speed of propagation of waves to c = 1.

Before we go in to more detail pertaining to the approximation of convolution weight func-
tions, we will consider the weights for the shift operator e−sd given by the generating function

e−d
ρ(ζ)
∆t =

∞∑
n=0

ω̂n(d)ζn,

which have a representation as a contour integral,

ω̂n(d) =
1

2πi

∮
C

e−
d

∆t
ρ(ζ)

ζn+1
dζ, (3.1)

where the contour C can be chosen as a circle with centre at the origin and radius smaller than
one. When ρ(ζ) = 1 − ζ, i.e., when backward differentiation formula of order one is the
underlying scheme, these weights are given by

ω̂n(d) = e−
d

∆t
1
n!

(
d

∆t

)n

,

whereas they read

ω̂n(d) =
1
n!

(
d

2∆t

)n/2

e−
3
2

d
∆t Hn

(√
2d

∆t

)

when ρ(ζ) = 3
2 − 2ζ + 1

2ζ2, i.e., when backward differentiation formula of order two is used
(see [6], [11]). In the last equation the functions Hn(d) denote the Hermite polynomials of order
n. Since the weights ω̂(d) play an important role in the analysis of this section, we first state
some of their properties.

Lemma 3.1. Let ∆t > 0, ε > 0, and k ≈ 1.086435 as well as

In,ε :=
[
0,−tnW

(
−1

e
(εk1−p)p/n

)]
,

where p = 1, 2 is the order of the underlying BDF multistep scheme and W is the principle
branch of the Lambert W function.

Then there holds
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(a) For any n ≥ 1
|ω̂n(d)| < ε, ∀d ∈ In,ε.

(b) For any d > 0 ( ∞∑
n=0

|ω̂n(d)|p
)1/p

≤ kp−1,

Proof. For BDF2, a similar result to (a) has appeared in [11]. We will give the proof for the
refined bound (a) and for (b) in the appendix.

The Lambert W function W(x) used in Lemma 3.1 is the multi-valued function W(x) that
satisfies x = W(x)eW(x). If its argument is real and positive then the function is single-valued.
In the interval (−1/e, 0), W(x) has two real branches, the principal branch of W(x) giving
results from the interval (−1, 0). A more detailed definition as well as a review of the history,
theory and applications of the Lambert W function may be found in [8].

We show next that in a certain way the weights ωn(d) given by (2.6) approximate the inverse
Laplace transform k (d, t) of the function K (d, s) at discrete times tn = n∆t with order p + 1,
where p is the order of the underlying multistep method used for time discretization. The details
are given in the following theorem.

Theorem 3.1. Let d ∈ (0, D] and k (d, t) be the inverse Laplace transform of K (d, s). Assume
that edsK (d, s) is analytic in the sector | arg(s)| < π − β, for some β < π/2, and satisfies
there the inequality |edsK(d, s)| ≤ M(d) · |s|µ with µ > −p. Furthermore, let ωj(d) be the
corresponding convolution weights based on BDF multistep scheme of order p ∈ {1, 2}. Then,
for ε < C ·∆t1+p+max(0,µ),

J = min
{

j ∈ N : −jW
(
−1

e
(εk1−p)p/j

)
> D/∆t

}
, (3.2)

arbitrary δ > 0, the inequality

|ωn (d)−∆t · k (d, n∆t)| ≤ C(δ)M(d)∆tp+1, tn ∈ [tJ + δ, T ] (3.3)

holds with a constant C(δ) independent of ∆t, d, and n.

Remark 3.1. Note that this extends Theorem 2.1 in [20] to the present special class of non-
sectorial functions K (d, s).

Proof. At the first step of this proof we develop an equation that connects the weights ωn (d)
and the function k (d, n∆t). At the second step we will derive (3.3).

We begin with the first part by introducing a shifted function

k̃(d, t) := k (d, t + d) . (3.4)

Transforming k̃(d, t) into Laplace domain, we get K̃ (d, s) = edsK(d, s). Hence, recalling (2.6)
and with

K

(
d,

ρ(ζ)
∆t

)
=

∞∑
n=0

ωn(d)ζn, K̃

(
d,

ρ(ζ)
∆t

)
=

∞∑
n=0

ω̃n(d)ζn,
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e−
ρ(ζ)
∆t

d =
∞∑

n=0

ω̂n(d)ζn,

we see that

∞∑
n=0

ωn(d)ζn =

( ∞∑
n=0

ω̂n(d)ζn

)( ∞∑
n=0

ω̃n(d)ζn

)
=

∞∑
n=0

 n∑
j=0

ω̂n−j(d)ω̃j(d)

 ζn.

By comparing the coefficients above, we obtain

ωn(d) =
n∑

j=0

ω̂n−j(d)ω̃j(d).

Due to the assumed analyticity and boundedness of K̃(d, s) = edsK(d, s) within the sector
| arg(s)| < π − β, we may use here the sectorial version of the result we want to prove [20,
Theorem 2.1]. Thereby we obtain

ω̃n(d)−∆tk̃(d, n∆t) = t−µ−1−p
n · εn(d) (3.5)

with
∣∣εn(d)

∣∣ ≤ CM(d)∆tp+1. This leads to

ωn(d) =
n−J−1∑

j=0

ω̂n−j(d)ω̃j(d) +
n∑

j=n−J

ω̂n−j(d)
{

∆tk̃ (d, j∆t) + t−µ−1−p
j εj(d)

}

=
n−J−1∑

j=0

ω̂n−j(d)ω̃j(d) +
n∑

j=n−J

ω̂n−j(d)t−µ−1−p
j εj(d) + ∆t

n∑
j=n−J

ω̂n−j(d)k̃ (d, j∆t) .

(3.6)

We have split the sum into into three terms in order to analyse each term separately.
Let us first focus on the final sum in (3.6). We introduce a cutoff function χ(t) ∈ C∞ (R)

satisfying

χ(t) :=

{
0 if t ≤ δ

2 ,

1 if t ≥ δ
, and |χ(t)| ≤ 1 (3.7)

for the constant δ > 0 from the statement of the theorem. Furthermore, we define

f(d, t) :=

{
χ(t)k̃ (d, t) if t > δ

2 ,

0 if t ≤ δ
2 .

(3.8)

For all n such that tn − tJ > δ we therefore have

∆t

n∑
j=n−J

ω̂n−j(d)k̃ (d, j∆t) = ∆t

n∑
j=n−J

ω̂n−j(d)k̃ (d, j∆t) χ(j∆t)
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= ∆t

n∑
j=0

ω̂n−j(d)f (d, j∆t) + ε̄(d), (3.9)

and with the error term∣∣ε̄(d)
∣∣ = ∆t

∣∣∣∣ n−J−1∑
j=0

ω̂n−j(d)f (d, j∆t)
∣∣∣∣ ≤ ∆t

n−J−1∑
j=1

∣∣ω̂n−j(d)k̃ (d, j∆t)
∣∣.

Now, applying Lemma (3.1) which shows |ω̂k(d)| < ε for k > J and d ∈ (0, D], remembering
(3.2), and using the fact that the assumptions on K̃(d, s) imply that k̃(d, t) is bounded by C ·
M(d)t−1−µ for positive t, see Lemma B.1, it follows

∣∣ε̄(d)
∣∣ ≤ ε∆t

n−J−1∑
j=1

∣∣k̃ (d, j∆t)
∣∣ ≤ ε∆t · C ·M(d)

n−J−1∑
j=1

1
(j∆t)1+µ

= C ·M(d)ε
n−J−1∑

j=1

1
j

1
(j∆t)µ

≤ εC ·M(d) log(3(n− J))

{
∆t−µ, µ > 0
T−µ, µ ≤ 0

. (3.10)

The last step is derived from the bound in [10, (0.131)] for the harmonic sum.
Convolution weights ω̂j(d) are generated by the operator e−sd, see ((3.1)), which corresponds

to a shift by −d in time domain. Therefore, we have from [19, Theorem 3.1] that

∆t

n∑
j=0

ω̂n−j(d)f (d, j∆t) = ∆tf(d, n∆t− d) + ε̂(d, δ)

with |ε̂(d, δ)| ≤ Ĉ(d, δ)∆tp+1. The constant Ĉ(d, δ) is bounded by C(T ) maxt∈[0,T ] |∂m
t f(d, t)|,

with C(T ) being a constant that depends on T and m = p + 2 + µ. Note that

|L (∂m
t f(d, ·))| = |smL f(d, ·)| ≤ C(σ)|s|m, for all Re s ≥ σ > 0,

the last step being valid since f(d, ·) is a C∞ function for t ≥ 0 and increasing at most polyno-
mially. Consequently, we can apply Lemma B.1 to obtain a bound for ∂m

t f(d, t):

max
t∈[0,T ]

|∂m
t f(d, t)| = max

t∈[δ/2,T ]
|∂m

t f(d, t)| ≤ CM(d)δ−m−1.

Let us now have a look at the second sum in (3.6). Denoting ε̃(d) = sup
{∣∣εj(d)

∣∣ : j =
n− J, . . . , n

}
, so that ε̃(d) ≤ C̃M(d)∆tp+1, we have

∣∣∣∣ n∑
j=n−J

ω̂n−j(d)t−µ−1−p
j εj(d)

∣∣∣∣ ≤ ∣∣ε̃(d)
∣∣ n∑

j=n−J

t
−(µ+1+p)p
j

1/p

.

Here we made use of Lemma 3.1 part (b). Therefore, using the assumptions n− J > δ/∆t and
µ > −p, we conclude that∣∣∣∣ n∑

j=n−J

ω̂n−j(d)t−µ−1−p
j εj(d)

∣∣∣∣ ≤ C(δ)M(d)∆tp+1. (3.11)
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Finally, we estimate the first sum of (3.6). We observe that as a consequence of [20, Theorem
2.1] and of the fact that k̃(d, t) is bounded by C ·M(d)t−1−µ for positive t, the modulus of the
weights ω̃n(d) for positive n is bounded by CM(d)∆t · t−1−µ

n , and for ω̃0 = K(ρ(0)/∆t) the
condition |K̃(d, s)| ≤ M(d) · |s|µ implies directly |ω̃0(d)| ≤ CM(d)∆t−µ. Consequently, and
by consulting Lemma (3.1) to bound ω̂n(d), we conclude

n−J−1∑
j=0

∣∣ω̂n−j(d)ω̃j(d)
∣∣ ≤ ε

n−J−1∑
j=0

∣∣ω̃j(d)
∣∣

≤ ε∆tCM(d)
n−J−1∑

j=1

(j∆t)−µ−1 + εCM(d)∆t−µ

≤ εCM(d)

n−J−1∑
j=1

1
j
(j∆t)−µ + ∆t−µ


≤ εCM(d)(log(3(n− J)) + 1)

{
∆t−µ, µ > 0
T−µ, µ ≤ 0

. (3.12)

Combining the above analysis of the three terms in (3.6) gives the required result.

Now we show that the kernel functions of the wave equation in two and three space dimen-
sions, given in (2.2), and their Laplace transforms, given in (2.4), satisfy the assumptions of
Theorem (3.1).

Lemma 3.2. For any α > 0 and d > 0 the following holds:

(a) Function s 7→ eds
(

∂m

∂dm e−d
√

s2+αs
)

is analytic and bounded by C|s|m, m = 0, 1, . . . , on
the cut plane C \ (−∞, 0].

(b) For any β > 0, there exists a constant M > 0, such that for | arg(s)| < π−β and |s| > 0
it holds ∣∣∣edsK0(sd)

∣∣∣ ≤ M

{
1 + log 1

|sd| , |sd| < 1,

|sd|−1/2, |sd| ≥ 1.

and for any m ∈ N with a constant Mm > 0∣∣∣∣eds ∂m

∂dm
K0(sd)

∣∣∣∣ ≤ Mm|s|m
{
|sd|−m, |sd| < 1,

|sd|−1/2, |sd| ≥ 1.

Proof. Part (a) follows from the inequality

Re (s) ≤ Re
(√

s2 + αs
)

,

which we prove next. Consider the function f(s) := s−
√

s2 + αs. Taking the interval [−α, 0]
as the branch cut, the function f(s) is analytic in C \ [−α, 0], and so the real part Re (f) is
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harmonic. Since Re (f) → −α/2 as |s| → ∞ and Re (f(s)) ≤ 0 for all s ∈ [−α, 0] it follows
by the maximum principle, see [3], that Re (f) ≤ 0.

We now address part (b). According to [1], the function K0 (z) is analytic throughout the
complex plane cut along the negative real axis and consequently so is edsK0(ds) as a function
of s.

Splitting the proof of boundedness, we first consider |ds| < 1. Using the power series
expansion given in [1, (9.6.13)] for K0 (z), |z| < 1, we have with the Euler constant γ =
0.5772157 . . .

K0(z) =−
(
log
(z

2

)
+ γ
) ∞∑

n=0

(z

2

)2n 1
n!2

+
∞∑

n=1

(z

2

)2n 1
n!2

n∑
k=1

1
k
.

The bounds in (b) for 0 < |sd| < 1 and m = 0 follow directly from the above expansion,
whereas the bound for m = 1, 2, . . . can be obtained by first differentiating the expansion term
by term.

From the asymptotic expansion [1, (9.7.2)]

K0(z) ∼
√

π

2z
e−z

{
1− 1

8z
+

(−1)(−9)
2!(8z)2

+
(−1)(−9)(−25)

3!(8z)3
+ · · ·

}
,

valid for |z| → ∞ and | arg z| < 3
2π, we see that

|K0(z)| =
√

π

2
|z|−1/2e−Re z + O(|z|−3/2e−Re z).

Therefore |K0(z)| ≤ const|z|−1/2e−Re z and since K0(z) is analytic in the cut plane, by Cauchy
integral formula the same bound holds, with a possibly different constant also for the derivatives
K

(m)
0 (z). With this the proof of (b) is complete.

Corollary 3.1. With µ = m and under the conditions of Theorem 3.1 the following holds for
d ∈ (0, D], δ > 0, tn ∈ (tJ + δ, T ], and J defined as in Theorem 3.1:

(a) For K(s, d) = L k = K0(sd)∣∣∣∣ ∂m

∂dm
ωn(d)−∆t · ∂m

∂dm
k(d, n∆t)

∣∣∣∣ ≤ C(d, δ)∆tp+1.

(b) For K(s, d) = L k = e−d
√

s2+αs/d, α ≥ 0,∣∣∣∣ ∂m

∂dm
[dωn(d)]−∆t · ∂m

∂dm
[dk(d, n∆t)]

∣∣∣∣ ≤ C(d, δ)∆tp+1.

The constant C(d, δ) is bounded by C(δ)(1 + log d) in the 2D case and by a constant C(δ)
independent of d in the 3D case.
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4. Interpolating the weights and efficient implementation

4.1. Interpolating the weights

Let us consider the introductory example (2.1). We have shown that for a fixed time tn, if n is
greater than J for some J > D/∆t, the kernels ωn(d) defined in (2.6) approximate the scaled
fundamental solution in time. Additionally, Corollary 3.1 states that a similar approximation
result with same order of convergence also holds for the (spatial) derivatives of the weight func-
tions. This means that the spatial derivatives of ωn(d) are bounded by spatial derivatives of
k(d, tn) when tn is sufficiently larger than d. Since k(d, t) is very smooth for t > d, i.e., after
the wave front has passed, both ωn(d) and k(d, tn) can be approximated to high accuracy in
space with only a few interpolation points in the interval d ∈ [0, D] if tn is sufficiently larger
than D. Next, we will focus on this interpolation.

Consider a fixed time step tj ≤ T . Let r + 1 distinct interpolation points dk ∈ [0,diam(Γ)],
k = 0, . . . , r, be given, together with corresponding values κk,j = ωj(dk). We introduce an
interpolation operator Ir : C

([
0,diam (Γ)

])
→ Pr which maps a continuous function on[

0,diam (Γ)
]

to a polynomial of order r that interpolates ωj(d) at the points dk. Namely, we
define

(Irωj) (d) :=
r∑

k=0

κk,j · `k(d), (4.1)

where `k(d), k = 0, . . . , r, denote the interpolating polynomials. For numerical realization, we
use Lagrange fundamental polynomials that are given by

`j(d) =
n∏

k=0,k 6=j

d− dk

dj − dk
.

We turn our attention to the convolutional sum (2.5) and apply (4.1) to get∑
j

∫
Γ

ωn−j(|x− y|)ϕ∆t
j (y)dΓy ≈

∑
j

∫
Γ

(Irωn−j) (|x− y|)ϕ∆t
j (y)dΓy

=
r∑

k=0

∫
Γ

`k(|x− y|)

∑
j

κk,n−jϕ
∆t
j (y)

dΓy

=
r∑

k=0

Ik

∑
j

κk,n−jϕ
∆t
j (·)

 (x), (4.2)

where

Ikϕ(x) =
∫

Γ
`k(|x− y|)ϕ(y)dΓy.

The advantage of this approach comes from the fact, that, instead of storing all operators
Wj : ϕ 7→

∫
Γ ωj(|x− y|)ϕ(y)dΓy, j > J , we just need to know the corresponding coefficients

and r+1 additional operators. We also remark, that the inner sum over j in (4.2) can be evaluated
in a fast manner applying the fast Fourier transform.

10



4.2. Algorithmic realization

We consider the semi-discrete convolutional system (2.5) which has to be satisfied by the un-
known densities ϕ∆t

n , n = 0, . . . , N . The corresponding matrix of this linear system then
has the structure of a lower triangular Toeplitz matrix whose first column is given by the vec-
tor (W0,W1, . . . ,WN )T . In our case the convolution weights are boundary integral operators
Wn : H− 1

2 (Γ) → H
1
2 (Γ) defined by

(Wjϕ) (x) =
∫

Γ
ωj(|x− y|)ϕ(y)dΓy, x ∈ Γ.

To solve the lower triangular Toeplitz system we will use the recursive algorithm as introduced
in [13] and modified in [5]. The resulting algorithm has complexity O(N log2 N), uses only the
Laplace domain kernel functions, and requires only the operator W0 to be inverted.

Here, we want to describe how to combine the interpolation approach with the recursive al-
gorithm. We have the time discretized convolutional system (2.5) as a starting point and assume
that for n > J the kernels ωn(d) of the integral operators Wn may be interpolated to high ac-
curacy with few interpolation polynomials `k, k = 0, 1 . . . , r. Since the nth lower diagonal of
the Toeplitz-matrix is given by Wn, all the kernels which may be replaced by an interpolation
are located below the J th lower diagonal. The solution of (2.5) then follows the idea described
below and graphically illustrated in Figure 1.

P1

P2

c

u

c

c

1

Figure 1: Schematic illustration of the recursive solution

We recall the problem (2.5)

Solve: gn =
n∑

j=0

Wn−jϕ
∆t
j , n = 0, 1, . . . , N, tn = n∆t,

11



and divide it into two subproblems P1 and P2. These read like this

P1 Solve:
n∑

j=0

Wn−jϕ
∆t
j = gn for n = 0, 1, . . . ,

⌊
N

2

⌋

P2 Solve:
n∑

j=
⌊

N
2

⌋
+1

Wn−jϕ
∆t
j = gn − υn for n =

⌊
N

2

⌋
+ 1, . . . , N (4.3)

with υn =

⌊
N
2

⌋∑
j=0

Wn−jϕ
∆t
j .

The subproblems P1 and P2 result from splitting the whole problem (2.5) into problems with
half the size. The dashed line in Figure 1 indicates the J th diagonal. Thus, the convolution
weights, whose kernels we want to interpolate, are concentrated in the lower left triangle.

We assume at this point, that P1 is already solved, and hence the densities ϕ∆t
j , j = 0, . . . , bN/2c,

are known. This solution is obtained in a recursive way using the algorithm of [5] in an un-
changed way. Once the right-hand side gn − υn, n = bN/2c + 1, . . . , N , is computed, we
can solve P2 in the same way as P1. To compute the right-hand side a matrix-vector product
with the matrix u in Figure 1 needs to be computed. We observe that, on the one hand we
have already computed the block c, i.e., the upper right part of u, when we solved P1 and can
therefore use the information of this block to evaluate the corresponding part of the sums giving
υn, n = bN/2c + 1, . . . , N . On the other hand, in the remaining part of u, represented by the
shaded L-shaped domain in Figure 1, only operators Wj , where j is greater than J , are involved,
so that here we can apply the interpolation approach of the previous section and obtain υn with-
out computing further operators, provided Ik, k = 0, . . . , r have already been computed. For
larger problems, in the picture Figure 1 a further triangular block P3 can be added, solved recur-
sively with a right-hand side that can again be computed using purely the block c and operators
Wj with j ≥ J .

5. Numerical Results

5.1. Approximation property of weights ωj(d)

In this section we want to illustrate the statement of Theorem 3.1. Therefore, we consider the
problem (2.1) in 3D with damping parameter α = 2 and velocity c = 1. Since we are interested
in a comparison of the weight functions ωn(d) (see (2.6)) and the time domain kernel function
k(d, t) (see (2.2)), let us note that the weight functions are given implicitly as the contour integral

ωn(d) =
1

2πi

∮
C

1
4πd

e−
d

∆t

√
ρ(ζ)2+α∆t·ρ(ζ)

ζn+1
dζ,

with contour C being a circle in the complex plane centered at the origin of radius less than one
and the function ρ (ζ) being the ratio of generating polynomials of the multistep method used for

12



time discretization, see (2.7). These weight functions can numerically be computed by applying
the trapezoidal quadrature rule.

To show convergence for ∆t → 0, we set d = 1 and fix time at t = n∆t = 4. The absolute
error |ωn(d)−∆tk(d, n∆t)| is plotted against ∆t in Figure 2.
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Figure 2: Error |ωj(1)−∆tk(1, tj)| for tj = 4 plotted against ∆t for the wave equation in three
dimensions with damping parameter α = 2.

Figure 2 shows the results for backward differentiation formulas of order one and two. The
numerical results confirm the theorem’s statement: we see that convergence rate is ∆tp+1 for
BDF scheme of order p. We also see, that for BDF1 the asymptotic rate of convergence is
obtained earlier, than for BDF2, where, a faster pre-asymptotic regime seems to exist.

5.2. A large-scale experiment

This example focuses on the three dimensional case. Let Γ be the unit ball in R3, i.e. Γ = S2 ={
x ∈ R3 : |x| = 1

}
and let us consider the homogeneous wave equation (2.1). For convenience,

we set the wave speed c = 1. After having employed the ansatz as a single layer potential and
the boundary condition, the problem is reduced to identifying the unknown density ϕ(x, t) in
the integral equation

g (x, t) =
∫ t

0

∫
Γ

k (|x− y|, t− τ) ϕ (y, τ) dΓydτ

(x, t) ∈ Γ× (0, T ) . (5.1)

For our experiment, we arrange the right-hand side g(x, t) to be separable in time and spatial
variables, so that we have g(x, t) = g(t)e(x) with e(x) an eigenfunction of the single layer
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potential V (s). As pointed out in [6], this choice allows to reduce (5.1) to a problem depending
only on time since also the solution will have a separable form ϕ(x, t) = ϕ(t)e(x). The simplest
choice of right-hand side is to pick g(x, t) to be constant for a fixed time. In particular, we let
g(t) = sin5(t) and e(x) = 2

√
πY0

0 = 1, where Y0
0 a spherical harmonic: an eigenfunction of

the single layer potential. Finally, we fix the damping factor and take α = 2 and use step size
∆t = 0.1 for time discretization.

In this experiment we will discuss the influence on the solution when taking perturbed convo-
lution weights, coming from an interpolation of the weights’ kernel function in question, instead
of taking original weights.

In this numerical example, we take backward differentiation formula of order two for time
discretization and ε of Lemma 3.1 to be 10−6. Furthermore, we observe that the domain’s
diameter is two. The condition (3.2) then gives J = 62. We make use of Lagrange interpolation
with Chebyshev knots of the second kind. The interpolating polynomials are chosen to be of
order r = 6 and r = 10, respectively. This means, that we need to compute the operators Ik and
the interpolation coefficients κk,j for j = J + 1, . . . , N and k = 0, 1, . . . , r; see also (4.2).

Although the problem could be solved without any approximation in space, in order to test
our algorithms for the space discretization we have used standard Galerkin boundary element
method with piecewise constant boundary element basis. The matrices coming from this dis-
cretization were computed and stored in H-matrix format using the HLIBpro library of Ronald
Kriemann ([15], [16]). The computation of all the matrices was done in parallel.

13 15 17 19 21 23 25
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Figure 3: Absolute error |ϕ∆t(x, t)− ϕ̃(x, t)| for ∆t = 0.1 and α = 2

Figure 3 shows for fixed x ∈ Γ and for different number of interpolation points r the abso-
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lute error |ϕ∆t(x, t)− ϕ̃(x, t)|. Here, ϕ∆t(x, t) is the discrete solution obtained by unperturbed
convolution quadrature and ϕ̃(x, t) is the solution obtained with weights approximated by inter-
polation. Note, that the right-hand side was chosen the way, that the solution is constant for a
fixed time, therefore the error is similar for all x on the boundary of the sphere. The implementa-
tion was done according to the algorithm presented in Section 4.2. For the numerical realization
we approximate the weights at time t > 13. So the difference |ϕ∆t(x, t)− ϕ̃(x, t)| vanishes for
t ≤ 13 and a change of accuracy can be detected for t > 13. The plot indicates that the error
does not increase significantly with increasing t.

6. Conclusion

The fact, that, regarding the wave equation, in two space dimensions as well as in three space
dimensions if a dissipative term gets involved, Huygens’ principle does not hold is well-known
([12],[2]). It follows that a cutoff strategy as recommended in [11] is not applicable since the
tail of the convolution weight functions ωn(d) doe not vanish not longer for large tn = n∆t.

Nevertheless, in this paper we have shown, that instead of cutoff, the tail can efficiently be
interpolated. Numerical experiments for the wave equation have illustrated the effectiveness of
this approach. The same procedure is possible for a wider class of linear hyperbolic equations
arising in, e.g., viscoelastodynamics and electromagnetics [7], since there the kernel functions
have a similar form and will satisfy the conditions of Theorem 3.1.

A. Proof of Lemma 3.1

Proof. We recall the representation of the weight functions ω̂n(d). They read

ω̂n(d) = e−
d

∆t
1
n!

(
d

∆t

)n

, (A.1)

in the case of BDF1 and

ω̂n(d) =
1
n!

(
d

2∆t

)n/2

e−
3
2

d
∆t Hn

(√
2d

∆t

)
(A.2)

in the case of BDF2.
In order to get an estimate for the modulus of the weight functions, we make use the bound

ex2/22n/2
√

n!k, where k = 1.086435 · · · , for Hermite polynomials Hn(x) of order n appearing
in (A.2), see [1, 22.14.17]. Therefore

|ω̂n(d)|p ≤ kp(p−1) 1
n!

(
d

∆t

)n

e−
d

∆t . (A.3)

From this part (b) follows immediately.
Next, we apply Stirling’s formula, n! ≥ (n/e)n · (2πn)1/2, that is valid for n ≥ 1, to (A.3) to

obtain

|ω̂n(d)| ≤ 1
(2πn)1/2p

(
de
tn

)n/p

e−d/(p∆t)kp−1 <

(
de
tn

)n/p

e−d/(p∆t)kp−1 ≤ ε.
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We rewrite the last relation and end up with

d

tn
e−d/tn ≤ 1

e
(εk1−p)p/n,

that we solve for d using Lambert’s W function W(x).

d ≤ −tnW
(
−1

e
(εk1−p)p/n

)
.

This proves part (a).

B. A bound on sectorial operators

Lemma B.1. Let K(s) be analytic in | arg(s)| < π − β for some β < π/2, and bounded
there as |K(s)| ≤ M |s|µ. Then, there exists a unique k ∈ C∞(R>0) such that K = L k =∫∞
0 e−stk(t)dt. Further,

|k(t)| ≤ C ·Mt−µ−1, for all t > 0.

Proof. We observe that function k is given by the inverse Laplace transform

k(t) :=
1

2πi

∫
Γ

estK(s)ds,

with contour Γ = Γ1,δ + Γ2,δ + Γ3,δ where

Γ1,δ = (∞ei(π+β′), δei(π+β′)], Γ2,δ = {δeiϕ : ϕ ∈ [−π+β′, π−β′]}, Γ3,δ = [δe−i(π+β′),∞e−i(π+β′)),

with β < β′ < π/2 and δ > 0.
We split the proof and concentrate first on the case µ > −1. Here, we will make use of the

identity ∫ ∞

0
sµe−tsds = Γ(µ + 1)t−µ−1,

that holds for t > 0; see [10, (3.381)]. Concerning the first part of the contour we get

1
2π

∣∣∣ ∫
Γ1,δ

estK(s)ds
∣∣∣ ≤ M

2π

∫ ∞

δ
e−rt cos(β′)rµdr ≤ M

2π cos(β′)µ+1
Γ(µ + 1)t−µ−1.

Concerning the second part of the contour we have

1
2π

∣∣∣ ∫
Γ2,δ

estK(s)ds
∣∣∣ ≤ M

2π
δµ+1

∫ π−β′

−π+β′
etδ cos(ϕ)dϕ ≤ Mδµ+1etδ.

Taking the symmetry of the contours Γ1,δ and Γ3,δ into consideration and letting δ tend to zero
we have the result.
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Let us now focus on the special case µ = −1. With the same contour Γ we get for Γ1,δ

1
2π

∣∣∣ ∫
Γ1,δ

estK(s)ds
∣∣∣ ≤ M

2π

∫ ∞

δ

e−rt cos(β′)

r
dr ≤ M

2π

∫ ∞

δt cos(β′)

e−r

r
dr =

M

2π
Γ(0, δt cos(β′)),

where we made use of the incomplete Gamma function. The treatment of the circular part of
the contour Γ follows the case µ > −1. Choosing δ = 1/t we see that |k(t)| is bounded by a
constant independent of t.

Finally we turn our attention to the case µ < −1. We have k(0) =
∫
Γ K(s)ds and from the

Cauchy integral formula it hence follows that k(0) = 0 and L (k′(t))(s) = sK(s) − k(0) =
sK(s).

Let us now assume that the statement of the lemma holds for µ+1. We show that the statement
then also holds for µ, i.e., for |K(s)| ≤ M |s|µ within the sector:

|k(t)| =
∣∣∣ ∫ t

0
k′(τ)dτ

∣∣∣ ≤ CM
∣∣∣ ∫ t

0
τ−µ−2dτ

∣∣∣ = MCt−µ−1.
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