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We study a complementarity game as a systematic tool for the investigation of the inter-
play between individual optimization and population effects and for the comparison of
different strategy and learning schemes. The game randomly pairs players from opposite
populations. It is symmetric at the individual level, but has many equilibria that are
more or less favorable to the members of the two populations. Which of these equilib-
ria is then attained is decided by the dynamics at the population level. Players play
repeatedly, but in each round with a new opponent. They can learn from their previ-
ous encounters and translate this into their actions in the present round on the basis
of strategic schemes. The schemes can be quite simple, or very elaborate. We can then
break the symmetry in the game and give the members of the two populations access to
different strategy spaces. Typically, simpler strategy types have an advantage because
they tend to go more quickly toward a favorable equilibrium which, once reached, the
other population is forced to accept. Also, populations with bolder individuals that may
not fare so well at the level of individual performance may obtain an advantage toward
ones with more timid players. By checking the effects of parameters such as the gener-
ation length or the mutation rate, we are able to compare the relative contributions of
individual learning and evolutionary adaptations.

Keywords: Evolutionary complementarity game; individual learning; population dynam-
ics; evolutionary adaptation.

1. Introduction

Our first aim is to investigate the relation between individual optimization and

the resulting collective dynamics in an evolving environment. This topic has a long

history, starting (at least) with Mandeville’s essay [12] on bee colonies and Adam

Smith’s [22] invisible hand. From a scientific point of view, it is important to analyze

the validity and generality of the many claims that have been put forward since then

and to identify their necessary and sufficient assumptions. For that purpose, we need

a simplified formal model in which one can isolate the key mechanisms and features

without all the contingent details of real world situations. In order to proceed in

that direction, we utilize an agent-based model that can be readily simulated and
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is also amenable to formal analysis. This model is a population game where the

equilibrium at the individual level is degenerate so that the selection among the

possible equilibria results from the collective dynamics at the population level.

Our second aim is to compare the strength of different learning schemes in an

evolving competitive situation, i.e. where the opponents also try to learn efficiently.

For this purpose, in the sense of statistical learning theory, every agent needs to have

a stream of stochastic input data on the basis of which he can develop his models.

In order to overcome the limitations of classical game theory, an agent encounters

in each round an opponent that is randomly chosen from an opponent population.

When all agents in one population employ a particular learning strategy, and all

agents from the opponent population employ another strategy, we can see in favor

of which population the equilibrium develops.

Our third aim is to connect and compare the two previous aspects, evolution

and learning. Thus, we want to see what is better for agents and for populations of

agents: to adapt by evolution or to learn by individual experience.

Our model is the following complementary game played between members of

opposite populations, as introduced in Ref. 10: A buyer and a seller meet and

independently each makes an offer between 0 and K (K is a sufficiently large

integer, usually taken to be 50 in our simulations). If the buyer’s offer kb is at least

as large as the seller’s offer ks, a deal is concluded and the buyer gains K − kb, the

seller ks; otherwise, they gain nothing. Thus, in order to be the most successful,

the buyer should offer not less than what the seller is asking, because otherwise he

will not get a deal, but also not much more, in order not to pay too much. We note

that every integer between 0 and K is an equilibrium in the sense that no player

can do any better than playing that value if his opponent does so. This game is

then played repeatedly between members of two opposing populations of the same

size: the buyers and the sellers. In each round, the members of the two populations

are randomly paired, i.e. every buyer is paired with a randomly chosen seller. After

a fixed number of rounds, the accumulated gains of the agents in each population

are compared, and on the basis of this fitness function some evolutionary scheme

constructs a new population. Thus, the basic situation is symmetric between the

two players, the buyer and the seller, and also between the two populations. We can

then break that symmetry by equipping the buyers and the sellers with different

strategy spaces. The differences here could simply be differences of memory span,

i.e. how many encounters an agent can remember and utilize for determining his

own current bid. The agents could also employ totally different strategies. Here,

the possible strategies could range from playing a random number to an elaborate

scheme for computing a bid on the basis of all information available from the agent’s

experience or even including the experiences of his friends in his own population.

In general, the agents of each population will adapt through individual learning

and through fitness-based evolution. Thus, even if the agents in a population act

completely independently of each other, they will feel the long term effects of the



Learning, Evolution and Population Dynamics 903

actions of their fellows through the collective adaptation of the agents of the other

populations.

If the members of one population — say, the sellers — could coordinate their

actions, their best strategy would consist in always choosing that bid that is optimal

for them, K in this case. The other population would then have no choice but to

accept that and also play the same bid. However, as long as the buyer population

has not evolved to that state that is so unfavorable to them, it pays for any indi-

vidual seller to lower his bid and to increase his chance for a successful deal. Thus,

such an agent would be more successful than the ones keeping to the population

optimum K, and because of his higher fitness, his strategy would then be more

frequently represented in the next generation. Thus, in this evolving scheme, the

group optimum is not stable against defections in the own population. In particular,

those agents in a population that are individually the fittest can cause a decrease

in the fitness of the population as a whole. This relates to our first aim.

Also, since the members of both populations are trying to maximize their fitness,

one cannot expect that either population can enforce that equilibrium that is opti-

mal for itself on the other population. In a symmetric situation, we would expect

K/2 to be the eventual steady state. When the buyers and the sellers employ differ-

ent strategies, we can simply decide which strategy is superior by checking whether

the steady state reached in that situation is smaller or larger than K/2. In the first

case, the buyers are doing better; in the second, the sellers. This then allows us to

address our second aim.

We can also play with such parameters as the generation length or the mutation

rate in the evolutionary step. In that way, we can compare the relative contributions

of individual learning and evolutionary adaptations, as formulated in our third aim.

Although the rules of our game are extremely simple, the action takes place

at three different levels: the individual agents evaluate the information they obtain

from their interactions and use that to compute their next own actions (first level —

information evaluation and learning), they compete with each other inside a popula-

tion (second level — adaptation and evolution), and the populations are compared

with each other (third level — competition between strategy spaces). The link

between the first two levels is provided by the fitness function; the one between the

higher levels, by the collective dynamics at the population level resulting from the

individual optimizations.

While what we present here clearly does not yet constitute a complete theory,

we believe that we have found a formal model that on one hand is simple enough

for easy simulations and also permits formal analysis, but on the other hand is rich

enough to capture many of the essential features of the conceptual problems we

wish to address.

We shall first put our model in the perspectives of game theory and of certain

traditions in economics. After that, we shall start with some mathematical con-

siderations before we present various simulations that both illustrate some of our

formal reasoning and yield insightful results beyond those that we can demonstrate

formally.
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2. Game Theory

In order to put the present work into perspective, we now shall discuss in more

detail how it fits into modern game theory. In the classical model of game theory,

as introduced by von Neumann and Morgenstern [27], we have two players that

meet once. They have a finite set of action options, and the payoff for each of

them is determined by his own and his opponent’s action. They are both perfectly

rational and possess and can utilize all relevant information. Thus, they both try

to maximize their payoff function, each also knowing his opponent’s payoff function

and therefore choosing that action that best anticipates the opponent’s move, which

is assumed to be anticipating in the same way. In such a situation, there exists a

Nash equilibrium [15] in which no player can improve his payoff by changing his

action, given that the opponent will react correspondingly in his own best interest.

That Nash equilibrium need not be unique; in fact, in our basic model game, each

value k between 0 and K, when played by both players, is a pure strategy Nash

equilibrium. In addition, there are mixed strategy equilibria. In particular, there is

no rational way for a player to decide which bid to play because each bid is a pure

Nash equilibrium when also played by his opponent.

We are therefore interested in the mechanisms that can select between all those

equilibria. Since in our model the game is played repeatedly, and the agents can

benefit from their own experience (or those of other players in some version of

our game), this brings us to the theory of learning in games; see e.g. Ref. 5 as a

reference for our discussion of this topic. Also, the game is played in populations of

agents, which leads us into evolutionary game theory, where we can use, for example

Ref. 28 as a reference. Leaving the issue aside for the moment that in our model we

have two distinct populations, we are considering a random-matching model where

in each round all players are randomly matched, but can observe only their own

matches. Also, in our model, no player acts in the interest of the population, but only

myopically pursues his own aims. With regard to learning and evolution, we have a

case of fictitious play where players only observe (and perhaps memorize) the results

of their own matches. (Nevertheless, we shall also consider scenarios where players

have information about the performance of selected other players in their own

population — their “friends.”) The players then evolve after many rounds of play

according to their relative fitness in their population (as in evolutionary algorithms),

in contrast for example to replicator dynamics, where the relative frequencies of

strategies continuously change according to their actual performance [9]. In fact,

we shall discuss below the issue of generation length, i.e. after how many rounds

the fitness of the players is evaluated; the extreme case of generation length 1 could

be made to correspond to discrete time replicator type dynamics. Such an on-line

evolutionary adaptation, however, would prevent individual agents from improving

their performance on the basis of their own experience, i.e. learning. In other words,

we are interested in a hybrid of games with learning and evolutionary games, in

order to assess the relative strengths and problems of the two schemes.
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Coming to evolutionary aspects, the concept of an evolutionarily stable strat-

egy (ESS) as introduced by Price and Maynard Smith [13] is not directly appli-

cable to our setting because the matches are played between members of different

populations. (Also, as emphasized for instance in Ref. 26, the concept of an ESS

takes as its base situation a monomorphic population, i.e. one where all members

utilize the same strategy. In many applications, however, one is naturally interested

in the stability of a polymorphic population against invasions of mutants. But, in

our case, the basic equilibria that we shall take as our default situation do consist of

monomorphic populations applying pure strategies.) Versions of evolutionary sta-

bility for multipopulation games have been developed in Refs. 24 and 2, for instance

(see Ref. 28 for further references). In those definitions, a population with a rare

mutant in one of the populations is compared with the original population in its

performance against the other unchanged populations. By the result of Ref. 20,

a strategy is evolutionarily stable iff it is a strict Nash equilibrium. In particular,

when the game is at a pure Nash equilibrium, any mutant strategy performs less well

than the dominant strategy — provided that the opposite population does not adapt

to those mutants. This provision shows that the concept of evolutionary stability

is essentially a static one and therefore not so well suited for our setting. Whether

it will be advantageous for members of a population to adapt to a rare mutant

in the opposite population, however, depends on the relations between the various

parameters, as the following heuristic reasoning shows. If the generation length is

short, i.e. each player plays only a few rounds before his fitness is evaluated, then it

will not pay off to adapt to a possible rare mutant in the opposite camp. Namely, in

that situation, a player is unlikely to encounter such a rare mutant in his lifetime,

and there is this point in playing a strategy that is most likely to be inferior in

all encounters. If the number of matches played becomes higher, comparable to the

size of the population, then there is a substantial chance to encounter a rare mutant

at least once. Let us assume that the player is a buyer, and the rare mutant is a

seller that asks a higher price — say, k +1 — than the population equilibrium k. If

the buyer offers k +1 in all m matches, his accumulated gain is m(K − k− 1). If he

offers only k and encounters the mutant once, he will accumulate (m − 1)(K − k).

So, adapting to the mutant will be advantageous when m < K − k. As a typical

evolutionary outcome of our game is that k ∼ K/2, this means that evolutionary

stability will depend on the population size. In the preceding heuristics, we have

assumed that there is only a single mutant. If there are more of them, of course,

they can destabilize the reaction of the opposite population more easily. In any

case, we arrive at the heuristic conclusion that in a sufficiently large population,

invasions of rare mutants should not lead to a response adaptation of the other

population that ultimately makes the performance of the mutants superior. This

is, of course, in accordance with the general idea of an ESS. The issue of stability

of strategies in multipopulation games can, however, also be addressed through the

inherently dynamical framework of replicator dynamics. This approach has been

developed in Refs. 1, 8 and 28. In particular, in our game, mixed Nash equilibria
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are no longer (Lyapunov or asymptotically) stable for the replicator dynamics, as

follows from the analysis of Ref. 10. The pure Nash equilibria, however, remain

stable attractors, and which one is ultimately approached depends on the initial

conditions. This fits, of course, the general theory. A strategy combination of the

two populations is evolutionarily stable iff it is a strict Nash equilibrium (which

necessarily is pure) (by Ref. 20, as already mentioned) iff it is asymptotically sta-

ble for the standard replicator dynamics [7, 8, 28]. In a similar direction, we have

the regular and payoff monotonic evolutionary systems of Ref. 26, a replicator type

dynamical model of multipopulation games, whose asymptotically stable states also

yield Nash equilibria.

In summary, in the context of game theory, the distinctive features of our model

are the following. A priori rational reasoning, as in the standard game-theoretic

paradigm, does not lead to a unique solution because there exist multiple equilib-

ria. Which one is achieved depends on the historical contingencies of the evolution

process. Those in turn are governed by the available strategic options for utilizing

the information obtained by repeated interactions with different opponents. Since

we have a two-population game, we can equip the two populations with different

strategy spaces, particularly different learning schemes, and can then see which one

fares better. In other words, the game-theoretic degeneracy of our model allows us

the comparison of evolutionary and learning mechanisms that can break that degen-

eracy favorably. In our game, players can have full information about the payoffs of

themselves and their opponents, but this information is not so helpful as the popu-

lation dynamics are not only shaped by their own actions and the responses of their

opponents, but also by those of their conspecifics with whom they compete via their

fitness function. The players, however, do not have information about the previous

actions of their current opponents, but only information about the actions of their

previous opponents in their past encounters with them. We shall also investigate

the situation where a player also has information about the behavior of the oppo-

nents of some other members of his own population, his “friends,” but since in any

case the opponents are randomly sampled, this will not lead to decisive advantages

in our evolutionary simulations. Thus, for instance, some of the learning schemes

analyzed in Ref. 26 are not applicable. In particular, a player cannot distinguish

between his different opponents and so there is no way a player could respond to

his opponent individually.

3. Economic Ideas About the Evolution of Institutions

While we have mentioned Adam Smith in the introduction, a conceptually closer

starting point for our model is the work of Carl Menger [14], the founder of the Aus-

trian school of economics, with his (direct or indirect) disciples F. von Wieser, E. von

Böhm-Bawerk, L. von Mises, F. von Hayek and J. Schumpeter (see e.g. Ref. 19).

For Menger, economic phenomena were the emergent product of individual ratio-

nal actions in situations where information is meagre and where actions are costly.
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Methodological individualism kept Menger and his school critical of techniques of

aggregations as they underly neoclassical economics (see e.g. the standard refer-

ence Ref. 17), and of ideas of central planning or welfare economics, and emphasis

on rational actions clearly distinguished them from philosophies like utilitarianism.

More recent work on the evolution of institutions as the individually unintended

collective result of individual actions that are rationally optimizing their own target

functions in the presence of limited information includes Refs. 18, 23 and 16. For a

pertinent case study, see for instance Ref. 6. This approach has been cast into the

framework of game theory by P. Young [30]. Young’s setting makes the assumptions

that players are randomly drawn from large populations, that their probability of

interactions depends on exogeneous factors like spatial proximity, and that they try

to act rationally on the basis of the limited information that they have available.

Whereas the second point is not elaborated upon in our model, the other two con-

stitute also a basis for our contribution. We should point that in our model, there

is no room for bargaining. While this restricts its applications to certain economic

situations, it is essential for simplifying the strategy space available to the individ-

ual players so that their rational strategy choice behavior can be investigated more

easily. Nevertheless, our scenario can be extended to include more complex forms

of social interaction, like punishment [11].

Also, Young [30] considers the effects of random perturbations caused by unpre-

dictable exogenous events or agent behaviors. Although we do not elaborate upon

all these aspects here, this can also be naturally incorporated into our model, and

of course it also relates to the discussion of the stability concepts in the formal

analysis [3, 29].

4. Adapting to Random Distributions

Let kb(n) and ks(n) be the bids of a buyer and a seller that interact at time n ∈ N. If

the seller chooses his bid k with probability p(k), then his expected gain at time n is

K∑

k=0

k p(k) p(k ≤ kb(n)), (1)

because he gains k if his bid is not larger than that of the buyer he encounters.

If the populations are sufficiently large (compared to the generation length),

the chance that our seller encounters the same buyer repeatedly is small and

can be neglected. In particular, this implies that the buyer’s bids will not reflect

previous bids of that seller, but rather constitute a response to the action of

other sellers that are randomly sampled from the population. Assuming that

our seller is not in contact with his fellow seller, the action of the buyer will

then be random for him, i.e. kb(n) can be treated as a random number. The

underlying distribution will in general not be stationary in time because the

buyers may also learn from their previous encounters and adapt their bids

correspondingly.
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(1) leads to the following simple observation. If we consider kb(n) as a random

variable, the seller should find that response 0 ≤ ks ≤ K which satisfies

ks = argmax k p(k ≤ kb(n)). (2)

If that value is unique, it is the best strategy to always play that number, because

(1) is a convex combination of the different k values since
∑

k
p(k) = 1 as we are

dealing with probabilities. If that value is not unique, he can choose any convex

combination of the maximizers.

Given the probability distribution for kb(n), we can then determine the optimal

bid ks (of course, the crucial point is that this probability distribution for the buyer’s

bids is not known to the seller, and so, in general, he will not be able to identify

that optimal value, but nevertheless it is instructive to compare possible strategies

with the optimal one). If the distribution for kb(n) is a Dirac distribution with

the value k0, i.e. if the buyer always selects the same value, k0, then obviously the

seller’s best choice is to utilize the same value. If the values of kb(n) are distributed

uniformly, i.e. p(kb(n)) = 1
K+1 for kb(n) = 0, . . . , K, then the expected gain for the

seller’s choice k is k(K+1−k)
K+1 , where the optimal value is k = K+1

2 , which leads to

the expected gain K+1
4 . This then is better than any other response. For example,

if the seller also chooses his bid k randomly with the same uniform distribution, his

expected gain is

1

K + 1

K∑

k=0

k p(k ≤ kb(n)) =
1

K + 1

∑
k

K + 1 − k

K + 1
=

K(K + 2)

6(K + 1)
, (3)

which is smaller than K+1
4 . This also applies if the seller chooses as his bid at time

n his opponent’s bid kb(n − 1) from the previous round. The reason is that we are

assuming here that the buyer’s bid is random, and so, when following the buyer’s

previous bid, the seller simply takes a random value for k. If, in contrast, the seller

averages the buyers’ previous bids, i.e. chooses

ks(n) =
1

n − 1

n−1∑

i=1

kb(i) (4)

[where kb(i) is the value of his opponent encountered at time i], then, when n

gets large, by the central limit theorem, ks(n) approaches the mean value of kb(n),

assuming that the underlying distribution is stationary. When that distribution is

uniform, we end up with the optimal value k = K+1
2 . So, at least in this simple case,

we can deduce that averaging over previous bids is a better strategy than simply

taking the value encountered in the last step. [This argument generalizes to certain

(but not all) more general distributions for the buyer’s bids.]

We also see the following. If seller and buyer start with the same random distri-

bution for their bids and adopt the strategy of copying the previously encountered
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opponent’s bid, then they will stay with that same random distribution forever.

Thus, no progress is made in that case. This is somewhat analogous to persistent

miscoordination in iterated two-player games; see e.g. Ref. 4. In fact, in our game,

copying the previous opponent’s bid is the rule that follows from Cournot adjust-

ment, i.e. from always choosing the best response to the previous round [5]. If, in

contrast, both players average, then they are both expected to end up with the

same value, k = K+1
2 , if the time n is sufficiently long. Also, if they both try to

optimize according to (2), even though they do not know the other’s strategy, they

are expected to end up with the same fixed value, which if they both act optimally

will be the value k = K+1
2 , which we had already found to be the optimal against

a uniform random strategy. But this already leads us to the issue of learning.

5. Learning

In our setting here, learning consists in using the experience from previous encoun-

ters to determine the bid for the present round. The problem then is to utilize the

information from those previous encounters in the most efficient manner, without

wasting too much effort with useless or disadvantageous trials. Since both popula-

tions are adapting, we have a more subtle situation than simply trying to learn an

unknown, but fixed probability distribution as for example in statistical learning

theory [25].

In principle, the learning strategy should compute the actual bid as a function

of all previously encountered opponent bids. However, to learn such a function

from experience takes a long time. In fact, that time will be too long if the other

population settles more quickly at some value that is advantageous for it. Therefore,

it makes sense to do some preprocessing of the experience before trying to figure out

the response. A natural such complexity reduction consists in taking some suitable

average of the encountered opponent values. We have already seen above that in

a simple model situation, this is an asymptotically optimal strategy. Of course, if

the two populations adapt at the same time, but perhaps according to different

strategies, that analysis is no longer strictly valid, and in certain cases it might

be better to use some weighted average, with higher weights for the more recently

encountered values. In fact, if both populations employ such an averaging strategy,

then giving higher weights to the more recently encountered values can lead to a

faster convergence to the optimal value.

Although, as already mentioned, the problem here is more difficult than the one

addressed by statistical learning theory, it is nevertheless instructive to consider

how the latter would go about it. Here, a seller would try to model the probability

distribution utilized by the buyers. The models are taken from some model class

Λ parametrized by a parameter α. Let q(k ≤ kb; α) be the probability that for the

model corresponding to α, the value k is not larger than the buyer’s bid kb. The

underlying assumption on which the seller models the buyer here is that the latter’s

probability distribution is stationary, i.e. does not depend on n. If the seller then
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selects his bid k according to a probability distribution q(k; α), his empirical risk

after encountering the buyer’s bids kb(1), . . . , kb(n) is

Remp(α) = K −
1

n

n∑

i=1

∑

k

k q(k; α) q(k ≤ kb(i); α). (5)

Here, he assumes that those bids kb(1), . . . , kb(n) represent an i.i.d. sample of the

buyer’s distribution. Of course, in general, this assumption is not valid because

the buyers also adapt, but we nevertheless proceed. The seller then chooses that

parameter α(n) ∈ Λ for which the empirical risk Remp(α(n)) is minimized. By

the same convexity argument as before, instead of selecting k according to some

distribution q(k; α), he finds that it suffices to take a single value, k(α(n)), i.e. to

choose a single-valued distribution. His empirical risk then becomes

Remp(α(n)) = K −
1

n

n∑

i=1

k(α(n)) q(k(α(n)) ≤ kb(i); α(n)). (6)

In particular, he will then play that value k(α(n)) at the next step. In principle,

as a heuristic strategy, this should also be useful in the case where his opponents

are also adapting, even though the values kb(i) then no longer represent an i.i.d.

sample.

6. Dynamics at the Population Level

As explained, we are less interested in the competition between individual agents

within a population than in the relative performance of populations with differ-

ent types of agents. This relative performance is then gauged by the value of the

equilibrium eventually reached via the repeated interactions of the agents from the

opposite populations. We can make the following simple observations: If the players

of one population always play the value k0, then the other population has no choice

but to adapt to that value. This implies that a population whose members converge

faster than the ones from the other camp to a value that is favorable to them will be

at an advantage. According to the above analysis, an averaging strategy dampens

fluctuations and thereby improves the convergence rate. This speed of convergence,

however, does not only depend on the own strategies, i.e. need not reflect an abso-

lute superiority of those strategies, but also reflects their reactions and adaptations

to the actions of the members of the other population. Thus, it also depends on the

state of the dynamics inside the other population. Let us consider an extreme case:

the opposite population plays rather randomly — say, chooses offers from the uni-

form distribution of integers between 0 and K. The population under consideration,

however, is subject to quick and strong selection between its agents. That means

(1) that the generation length between the evolutionary steps is very short, perhaps

even = 1. Thus, each agent has only one encounter, after which his performance is

evaluated. That also means (2) that only the very best agents, perhaps only a sin-

gle best one reproduces, and his identical or slightly mutated offspring constitutes
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the next generation. In that case, chances are high (and easily computed) that in

each generation there is some agent in each generation that strikes a successful deal

with a very advantageous offer; for example, a buyer offering very little may by

chance encounter a seller asking even less. Thus, because of the speed of evolution

assumed, our population will quickly settle around a very favorable value. If the

other population then adapts at all, it is forced to accept that value.

Thus, the speed of evolution in one population and the incoherent state of the

other population together lead to an equilibrium value that is very favorable to the

first population.

In contrast, for any averaging strategy, the speed of convergence will be slower

when playing against a more random opposite camp.

For more complex strategies, a more erratic state of the opposite population may

also slow down the own convergence. If a particular response needs to be created

for each previous opponent bid (as in the complex one-round opponent strategy

described below), then an erratic opponent population forces the players to test

many different options, and a player that has already created good responses for

many bids may still acquire a low fitness it he is by chance exposed to bid values not

yet encountered by himself or his ancestors. Conversely, if the opposite population

is rather homogeneous and constant, the players may evolve quickly to seemingly

stable states, but this may hide the fact that they do not possess adequate responses

to situations that, while possible by the rules of the game, they and their ancestors

never experienced.

7. Different Strategies and Simulations

Before presenting the simulation results, we need to introduce some notations for

the system parameters and the strategies that will be used in this paper.

First, we present the parameters for the evolutionary scheme of replacing a

population of players by a new one composed of possibly mutated members of the

present one with a fitness-based selection: (1) generation length (time) — the num-

ber of rounds played (time steps) between two consecutive selections (if applicable);

(2) selection percentage — the percentage of the players who will be chosen as par-

ents to generate the offspring during the evolutionary process; (3) mutation rate —

the rate of random mutation during the evolutionary process.

Next, we list the main strategies investigated, classified on the basis of the types

of information they use:

(1) Single-number: players use no information at all; each player chooses a fixed

random offer that will be updated through the selection.

(2) Average-previous-opponent: the average of one’s opponents’ bids in the previ-

ous — say, m (limited and usually much smaller than the generation length) —

rounds.

(3) For m = 1, that strategy is called one-round opponent: each player utilizes the

offer of his opponent in the most recent round.



912 J. Jost and W. Li

(4) n-round opponent: each player can use the offers his opponents make in the

last n rounds (and not only their average) — here, we consider only the values

n = 1 (which is the previous strategy) and 2, as otherwise the scheme gets

computationally too complex and performs too poorly.

(5) Average-all-previous-opponent: the average of one’s opponents’ bids in all pre-

vious rounds (thus, there is no fixed m here).

(6) Average-friend-opponent: the average of one’s friends’ opponents’ bids in the

most recent round (here, each player has a certain number of friends within his

own population).

(7) Average-all-friend: the average of one’s friends’ bids in the most recent round

(thus, here, in contrast to the previous strategies, no information about the

other population is used).

(8) Friendship network (average-successful-friend): the average of one’s friends’ suc-

cessful bids in the most recent round (here, information from the other popula-

tion is used indirectly, but selectively, because their offers decide which of the

friends are successful).

For the n-round opponent, for n > 1, a scheme is needed to convert the n numbers

remembered into a single response. Of course, we could simply take their average,

which would then reduce this to strategy 2, but we could also employ some other

scheme. One possibility is to evolve a look-up table that lists the responses for any

pair of numbers between 0 and K. Similarly, we can also utilize look-up tables for the

other strategies except strategy 1, i.e. instead of simply playing the corresponding

average, each agent could have a look-up table that specifies a specific response

to each number between 0 and K (formally, strategy 1 is also a special case of

this, the output of the look-up table simply being reduced to a single number that

is uniformly applied to any input). Thus, a strategy comes in two variants — a

direct one and another with a look-up table. We call these two variants “simple”

and “complex”, respectively. As noted, the two-round opponent strategy does not

possess a simple version.

First of all, we would like to have a stable setting for our model. The stability of

the model may primarily depend on the values of the system parameters, i.e. gen-

eration length, selection percentage and mutation rate. The effect of the generation

length is somewhat dependent on the complexity of the strategy under considera-

tion. We will go into this issue further later on. Generally, if the selection process

takes place, accompanied by evolving the look-up tables, then an appropriate gen-

eration length will be any number ranging from 100 to 1000 time steps (rounds of

the game). As one knows from evolutionary optimization methods, an appropriate

choice of the selection percentage is essential. If it is too small, then the selection

will be severe and some potentially good strategies can get eliminated too easily.

If it is too large, then the selection will be very loose and the optimization will

take much longer. According to our numerous simulations, an effective selection
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percentage will be 0.5. For the random mutation rate, a good choice will be 1–5%,

and in our simulations it is set to be 1%. Our population size is always 400.

7.1. The effects of the generation length

The generation length, i.e. the number of rounds played before an evolutionary

update, expresses the relation between the time allocated to learning in the more

complex strategies and the evolutionary adaptation. A short generation length

means that individual agents have little time to improve their performance on the

basis of memory and learning, but rather are evaluated according to their short

time performance. In other words, their experience is quickly transferred to the

next generation. That generation can then explore new responses not on the basis

of systematic learning, but on the basis of random mutations.

We can then simply check this issue in our simulations by letting two populations

with the same strategy space, but with different generation lengths, play against

each other, and see which one performs better.

For the single-number strategy, it then turns out that the minimal generation

length, 1, is optimal. This is rather obvious because a more quickly evolving pop-

ulation should have an advantage. This is confirmed by the simulation results. For

more complex strategies such as the one- or two-round opponent strategy or the

friendship network strategy, the situation is not so clear, as there is a tradeoff

between individual improvements based on more experience and the speed of the

evolutionary search. The simulations results are not yet conclusive. In some sim-

ulations, there is a small chance for the two-round opponent strategy to gain a

slight advantage over the one-round opponent strategy if the generation length is

as long as 20,000 steps or even longer. Note that for shorter generation lengths, we

have demonstrated in Ref. 10 that the one-round strategy is superior to the two-

round because the latter takes too long to evolve. Further simulations with very

long generation times are required.

7.2. Efficient information use

A simple analysis uses the Shannon entropy [21],

S = −

K∑

k=0

p(k) log2 p(k), (7)

where p(k) is the probability (frequency) that offer k has been chosen. In fact, this

will generally depend on the time step n, and so we should rather write p(k, n)

[which may approach a stationary p(k) as n → ∞].

S is maximal for a uniform distribution of the values of k and becomes 0 when

only a single value of k is played. In other words, the evolution of S expresses how

quickly a population reaches a unique response. One may argue that (7) expresses

uncertainty and that therefore a fast decrease of this entropy corresponds to fast
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utilization of information. Figure 1 gives some simulation results. In particular,

populations with a fast decrease of this entropy are more successful.

The simulations behind Fig. 2 show that the complex average-all-previous-

opponent strategy performs better than the complex one-round opponent strategy.

One could argue that this should be so because the former utilizes more information

in each step than the latter. A simpler reason is that averaging reduces fluctuations

and therefore speeds up convergence. Further figures (Figs. 4 and 5) demonstrate

that simple strategies converge faster and perform better than complex ones. How-

ever, the simple one-round opponent strategy performs poorly when compared with

strategies utilizing some nontrivial averaging. This is in line with our mathematical

analysis above.

7.3. Ranking different strategies

So far, we have investigated many different types of strategies. It is of interest to

check whether we can consistently rank their performances. The basis for such a

ranking is of course a pairwise comparison, i.e. we let one population — say, the

buyers — employ one type of strategy and the sellers another. Here, we need to

fix the other parameters, like generation length or mutation rate, to have a ceteris

paribus comparison, even though we realize that in principle the ranking could

change with different parameter values. In the simulations presented below, the

generation length is 1000, the selection percentage 0.5 and the random mutation

rate 1%.

In Ref. 10, some of the complex strategies have been compared. The one-round

opponent strategy can beat the two-round opponent strategy because the former

settles down to equilibrium more quickly. The performance of the friendship net-

work strategy is comparable to that of the one-round opponent strategy, neither of

them showing consistent superiority. The friendship network strategies do not prefer

any specific type of network topology (keeping the average degree of the networks

fixed).

For a more systematic investigation, however, we should compare different types

of averaging strategies, in particular the average-previous-opponent and average-

friend-opponent strategies. In the former, the average is performed over the player’s

own opponents’ offers in the previous — say, five — rounds, whereas in the latter

he averages his friends’ opponents’ bids in the last round. In the average-friend-

opponent strategy, one can include the player’s own experience, i.e. his own oppo-

nent’s bid in the last round. Because the opponents are randomly taken from the

opposite population, for sampling purposes this makes no difference, as long as

the average is computed from the same number — say, five — of bids from the

opposite camp. As the network topology might affect the speed of convergence of

the averaging scheme, this might have some effect here, however. In any case, for

a valid comparison between strategies, we assume that the numbers of offers taken

for both averaging procedures are the same — say, five.
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Fig. 1. The top panel shows the time evolution of distribution of offers made by the sellers during
the first 50 generations (1000 rounds per generation). Here both populations use the one-round
opponent strategy. As shown, the peak where the most favorable offer appears becomes higher as
the evolution continues. The final value of the peak in this figure is 300, which shows the number
of players who have bid 25. The bottom panel shows the time evolution of the entropy related to
the distribution of sellers’ offers.
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(a)

(b)

Fig. 2. The complex average-all-previous-opponent strategy, where the player bids according to
all his previous encounters’ offers by taking an average, versus the complex one-round opponent
strategy, where the player recalls only his most recent interaction (“complex” here means devel-
oping look-up tables). In both (a) and (b), the population with the average-all-previous-opponent
strategy is doing better. Learning is quick and the equilibrium is rather stable. The standard
deviation is calculated from 100 samples with different realizations.
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(a)

(b)

Fig. 3. The complex average-all-previous-opponent strategy versus the two-round opponent strat-
egy. In both (a) and (b), the averaging strategy is superior. Compared to the situation in Fig. 2,
the optimization takes much longer and there also exist some fluctuations even after the equi-
librium has been reached. This occurs mainly due to the excessive information embedded in the
two-round opponent strategy.
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(a)

(b)

Fig. 4. The simple versus the complex average-all-previous-opponent strategy. The simple averag-
ing strategy is superior to the complex one. The median fee, namely the gap, is still somewhat high
in both (a) and (b). This happens mainly because the players who employ the simple averaging
strategy can converge more quickly and set an early advantage. The players who use the complex
averaging strategy have to adapt accordingly and are forced into a disadvantageous situation.
Learning is quick because of the convergence due to the simple averaging.
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(a)

(b)

Fig. 5. Comparison between the simple average-all-previous-opponent strategy and the complex
one-round opponent strategy. The former is better.

We first compare the simple average-previous-opponent to the simple average-

friend-opponent, i.e. the strategies not employing look-up tables, but taking the

computed average directly as the next own bid. The first one uses a somewhat

larger sample, because it takes the bid of one member of the opposite population

at five different times, i.e. it takes a spatiotemporal average; whereas the second
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Fig. 6. The complex average-previous-opponent strategy versus the complex average-friend-
opponent strategy. The former can do slightly better than the latter, mainly because it has
a slight larger sample by doing spatiotemporal averaging and the latter is doing only spatial
averaging.

averages over five bids taken at the same time, i.e. it takes only a spatial average.

In any case, both averaging strategies quickly converge to their equilibrium, the

population average of the opposite population, typically 25. It also appears that

the average-previous-opponent converges slightly more slowly than the average-

friend-opponent, because the latter uses a more recent sample from the opposite

camp.

When we look at the complex strategies, i.e. where look-up tables are used to

convert the computed average into a response,we see from Fig. 6 that in general the

average-previous-opponent can be slightly better than the average-friend-opponent.

Thus, the larger sample space, even though it uses partly outdated information, can

yield an advantage.

We now turn to the average-successful-friend strategy. Here, each player takes

the average only of those offers of his friends and himself from the last round that

have led to a successful deal. (If none of those offers is successful, then a random

offer between 0 and K is chosen.) (This average-successful-friend strategy is the

friendship network strategy examined in Ref. 10.) At the beginning of the game,

some randomness is introduced due to the low success rate. Also, apparently, choos-

ing only successful offers for averaging makes the players more and more timid in

making their offers. This is the reason why the average-previous-opponent strategy
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Fig. 7. The simple average-previous-opponent strategy versus the simple average-successful-
friend strategy. The former is superior. Distinguishing the friends by success makes the players
too cautious. The standard deviation of equilibrium values for both buyers and sellers is zero.

is superior to the average-successful-friend strategy, in both the simple and the com-

plex setting. In Fig. 7, the buyers who use the simple average-previous-opponent

strategy can achieve the equilibrium value 14 by adapting to the sellers who use the

average-successful-friend strategy. (A coarse estimate would in fact expect the even

lower equilibrium value 12.5.) Figure 8 presents the competition between the two

strategies with look-up tables. Now the difference in the performance between the

two strategies is not that large, compared to the case without look-up tables. This

is partly due to the fact that the players are learning. We also notice that it takes

the average-previous-opponent a little longer than the average-successful-friend to

reach the equilibrium.

In the average-all-friend strategy, a player does not distinguish whether his

friends are successful or not, but simply averages all their bids. The simple average-

all-friend strategy matches the simple average-previous-opponent strategy, with

both converging to 25. This happens because the two now make use of the same triv-

ial random distribution. Not surprisingly, the complex average-previous-opponent
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Fig. 8. The complex average-previous-opponent strategy versus the complex average-successful-
friend strategy, with the former defeating the latter. Here the advantage is not significant as in
Fig. 7, primarily due to effective learning.

strategy performs better than the complex average-all-friend strategy; see Fig. 9.

The reason, as above, is that the former is using a larger sample space.

We have also compared the efficiency of different spatial averaging strategies,

namely average-friend-opponent, average-successful-friend and average-all-friend.

The comparison between the last two is rather straightforward, with average-all-

friend prevailing over average-successful-friend. The average-friend-opponent strat-

egy was found to be better than the average-successful-friend strategy, with and

without look-up tables. Figure 10 shows an example of our simulations. It is inter-

esting to see that the average-friend-opponent strategy is performing nearly equiva-

lently to the average-all-friend strategy, without and with look-up tables (Fig. 11).

This observation again confirms that using less selective information can be advan-

tageous. This is not surprising, since we have already observed that the one-round

opponent strategy can beat the two-round opponent strategy.

We can now rank the different strategies. The best strategy should be sim-

ple average-all-previous-opponent. We have found that average-previous-opponent

is nearly as good as average-all-previous-opponent if the number of rounds for

averaging is not too small. Hence the second rank consists of complex average-all-

previous-opponent and average-previous-opponent. The third position is taken by

average-all-friend and average-friend-opponent. At the fourth position, we would

put one-round opponent and average-successful-friend. The lowest position belongs

to two-round opponent. There is yet one strategy that needs to be placed: the
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Fig. 9. The complex average-previous-opponent strategy versus the complex average-all-friend
strategy, with the former being slightly better.

Fig. 10. The comparison between the complex average-friend-opponent strategy and the complex
average-successful-friend strategy. The former is better, which indicates again that selecting only
successful friends makes the players too timid.
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Fig. 11. The complex average-friend-opponent strategy is almost equivalent to the complex
average-all-friend strategy. Compared to what has been shown in Fig. 10, using less selective
information is not inevitably disadvantageous.

single-number strategy. This last strategy does not use any information but can

still be favored in the competition with other, more complex ones that use more

information.

From the above ranking we see that whether a strategy is good or bad is not

completely decided by how much information it has used. Rather, a good strategy

should be capable of processing the information more efficiently and thus setting

an early advantage as quickly as it can. In our simulations, we find that a weighted

averaging strategy is not doing better than the normal averaging strategy. The

weighted averaging is perhaps more reasonable by assigning the most probable

offers more chances but its adaptation also takes longer. Being simpler and more

flexible is also good for a strategy. In this regard, the simple averaging strategy that

does not need to evolve look-up tables can beat the complex one that does; not to

mention the fast that the single-number strategy can beat a lot of more complex

strategies.

8. Conclusion

We have investigated an iterated game played between members of opposite popula-

tions. The individual optimization leads to a population dynamics that determines

the final equilibrium reached. Equipping the members of the two populations with

different strategic options will in general lead to an equilibrium that is more favor-

able to one of the two populations. A set of strategies that is good for a population
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when consistently employed by all its members incorporates quick and efficient use

of the available information without a long learning phase, i.e. rather than foregoing

careful optimization when it takes too long to converge. Also, a population with

bolder players does better than one with more timid players.

It remains for us to investigate the dynamics within populations more system-

atically when the individual players have different strategic options. The ones that

would cause advantageous effects at the population level might themselves be dis-

advantaged inside their population and therefore get eliminated by the evolutionary

scheme, which would then also cause a disadvantage for the population.
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