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Abstract

In this paper we discuss how to combine two approaches: a Quantized Tensor Train

(QTT) model and an advanced optimization method Density Matrix Renormalization Group

(DMRG) to obtain e�cient numerical algorithms for high-dimensional eigenvalue problems

arising in quantum molecular computations. The QTT-format is used to approximate molec-

ular Schr�odinger operators. Theoretical estimates on the TT/QTT-ranks are provided for

the case of multivariate polynomial potential energy surfaces (PES).

The numerical experiments are presented for the approximation of a 6-dimensional PES

of a HONO molecule, as well as for the computation of the ground state of Henon-Heiles

Hamiltonian with a large number of degrees of freedom up to 256.
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1 Introduction

In the recent years essential progress has been achieved in the numerical solution of high-

dimensional problems in scienti�c computing by using di�erent dimensionality and model re-

duction techniques. This paper focuses on the numerical solution of the so-called molecular

Schr�odinger equation, which describes the vibrational behaviour of the nuclei.

Several low-parametric formats were successfully used to represent multidimensional so-

lutions to such equations, for example see the book [32]. These formats include a multi-

con�gurational time-dependent Hartree (MCTDH) method proposed by Meyer et. al in 1990

[36, 35] and its hierarchical, cascadic or multilayer versions [33, 32], with which particular sys-

tems up to 500 degrees of freedom have been treated. However, the complicated hierarchical

structure of such methods limits their wide applicability, and the original MCTDH method,

which has exponential scaling in the dimension is still preferable for systems with moderate

number of degrees of freedom [35].
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If only a few lowest eigenvalues and eigenvectors of a molecular Hamiltonian are required, a

vibrational self-consistent �eld iteration (VSCF ) [6, 2, 3, 4, 5, 15, 16], which relies on rank-1

approximation to the wavefunction1 , is usually used. VSCF and its enhancements are imple-

mented in many state-of-art quantum chemistry software packages.

On the other hand, a great development was made in the modelling of quantum spin many-

body systems. The so-called density matrix renormalization group (DMRG) [51, 52, 45] is a

numerical variational technique devised to obtain the low energy physics of quantum many-body

systems with high accuracy. It was invented in 1992 by Steven R. White and it is nowadays the

most e�cient method for 1-dimensional quantum systems, but its generalization to multidimen-

sional case is still an open question. It was then noticed, that DMRG is a minimization method

for the Rayleigh quotient in the Matrix Product States (MPS) [45], which also arise in the study

of entanglement in quantum systems. The \meeting" of these two communities (the one that

uses DMRG and the quantum information community) has led to deeper understanding of the

role of the matrix product states in the modelling of quantum many-body systems. Also, several

results were obtained by applying more complex tensor networks to two- and three- dimensional

quantum many-body systems [50, 14].

In all above mentioned problems the main computational task is the e�cient low-complexity

representation of large multidimensional data arrays, commonly named tensors in the numerical

multilinear algebra community, see a recent review [30]. The main problems considered in

this community are related to the e�cient computations of the canonical decomposition of a

tensor or the Tucker decomposition of it. These two decompositions has known drawbacks:

the canonical decomposition can not be computed via robust algorithms and complexity of

the Tucker decomposition has exponential dependence from the dimension, which make them

computationally infeasible for large-scale applications. However, in the case of moderate spacial

dimension the proper combination of both models leads to e�cient tensor-structured numerical

methods [21, 25, 26, 19, 18].

In 2009 an active development of new MPS-type tensor formats began. The �rst attempt

used the hierarchical splitting of dimensions (see the hierarchical-type dimension splitting in [20],

the H-Tucker format [12, 10] and the Tree-Tucker format [43, 38]), which are free from the curse

of dimensionality, and what is important, basic MLA operations can be implemented in O(d)
cost, so the general approach of tensor-structured iterations can be used. However, recursive

structures are not always easy to implement, and it was found that the simplest choice of the

tree, that leads to the so-called Tensor Train (TT) format [39, 42] is usually preferable: it

retains the same complexity and leads to much simpler algorithms. For more detailed discussion

on theoretical aspects of H-Tucker and TT formats, see [11, 7].

One of the main advantages of the TT-format is the existence of a fast and robust rounding

procedure with guaranteed accuracy, which is based on standard SVD and QR decompositions.

The existence of the robust compression tool allowed, �rst experimentally, to �nd hidden tensor

structures in unusual cases. For example, if a vector of length n = 2L, {vk}, comprised from

values of regular function g on some grid xk (i.e., vk = g(xk)) is considered as a 2× 2× . . .× 2
L-dimensional tensor (this can be called the quantization of a vector) then in many cases it has

surprisingly low TT-ranks [40, 23]. Generalization of this idea to the functions of f variables

leads to the log-volume complexity to represent certain high-order n×n× . . .×n f-dimensional
function-related tensors. This format is called the QTT-format.

1In this paper the computation of vibrational states is considered thus no antisymmetry/symmetry conditions

are imposed on the solution. The adaptation of the TT-format to the antisymmetric case can be in principle

considered, but this is beyond the scope of this paper.
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Recently, new theoretical estimates were obtained for QTT-ranks of certain classes of multi-

variate functions, but still the gap between theoretical and experimental results is large. There-

fore, in the QTT-approach, the high-dimensional tensor, representing a function on n×n×. . .×n
tensor grid is transformed into a L logn-dimensional tensor with mode sizes 2, and then repre-

sented (approximated) in the TT-format. The resulting approximation is very close in form to

the MPS states used in the DMRG. The connection between TT and DMRG was discussed by

R. Schneider et. al., see [13, 48].

It is worth to note, that the QTT-format was already successfully applied to solving high-

dimensional elliptic equations [28], multiparametric SPDEs [27], and in electronic structure

calculation [18] and the log-volume complexity was con�rmed numerically and theoretically [9],

so it is a natural idea to apply this format to other high-dimensional problems, in particular to

the spectral problem that arises in the computation of the vibrational ground state. We refer to

survey and lecture notes [24, 22] addressing the recent advances in tensor numerical methods.

We will consider the computation of the lowest eigenpair of the molecular Hamiltonian,

which has the form

Hψ = (−
1

2
∆+ V)ψ = Eψ. (1.1)

The equation (1.1) will be solved in the QTT-format.

Note, that one of the bottlenecks in the quantum molecular computations is the representa-

tion of the potential V in high dimensions. The QTT-model is a very promising candidate, and

moreover when no analytical representation is available, one can use a TT-cross approximation

approach [44] (see also a related work [1]), which interpolates a high-dimensional function on the

adaptively chosen points, and if a low TT-rank approximation exists, then such approximation

is guaranteed to recover the full potential. In this paper, we con�ne ourselves to a class of poten-

tials represented analytically, where in several cases (for example, for Henon-Heiles potentials

considered in [37] , generic cubic and quadrics potentials, etc.) we will obtain estimates for the

QTT-ranks.

Suppose now, that V is approximated in the QTT-format. How to compute the wavefunc-

tion? Now is the main message of the paper. Let us note that the MPS used in the DMRG

are closely related to the QTT representations, and since the DMRG algorithm has shown its

e�ectiveness for calculating the ground-state wavefunctions and energies of certain spin Hamilto-

nians, it turns out that after the transformation of the Hamiltonian in (1.1) to the QTT-format,

the DMRG approach can be adapted to �nd the ground state wavefunction.

The combination of the e�ective variational approach, based on the DMRG in the QTT-

format and well-known numerical algorithms creates a new tool for dealing with high-dimensional

quantum molecular problems.

The rest of the paper is organized as follows. In Section 2 the formulation of the problem

is given, while in Section 3 the description of TT/QTT tensor formats is presented. Section

4 contains theoretical analysis on the tensor structure for matrices arising in the discretization

process. Section 5 describes the numerical scheme for the solution of eigenvalue problem by

the DMRG iteration. Numerical experiments are presented in Section 6, and directions for the

future work are outlined in Section 7.

2 Formulation of the problem

We are going to solve an eigenvalue problem

Hψ = Eψ, ψ = ψ(q1, . . . , qf), qk ∈ R, k = 1, . . . , f, (2.1)
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where H is a molecular Schr�odinger operator

H = −
1

2
∆+ V,

∆ is a f-dimensional Laplace operator, V = V(q1, . . . , qf) is the so-called potential energy

surface (PES). This equation is describing the vibrational motion of molecules. The variables

q1, . . . , qf are the degrees of freedom (for example, the coordinates of atoms in a molecule) and

the values of V should be obtained from the solution of the electronic Schr�odinger equation

using any reliable electronic structure calculation method. An e�cient representation of the

PES is computationally di�cult but important problem. A lot of successful approaches exist

for the particular molecules (see, for example, [31, 34, 46]), which are based on the interpolation

of multivariate functions.

In this paper we assume, that V is given in some low-parametric form that we can work

with. A simple, but practically important approximation to V is based on normal coordinates.

Suppose the molecule contains N atoms, and initially, the molecular Schr�odinger equation is

formulated in 3N natural coordinates. When the molecule has no additional symmetries, the

number of independent degrees of freedom is equal to 3N − 6, due to the translational and

rotational symmetry of a molecule as a rigid body. The equilibrium state of the molecule

corresponds to the minimum of the potential V(r1, . . . , r3N). A classical approach to study the

vibrations of the molecule is to expand V around the equilibrium into Taylor series. The �rst

term vanishes since it is an equilibrium:

V ≈ V∗ +
3N∑
i,j=1

∂2V

∂ri∂rj
∆ri∆rj + . . . . (2.2)

If the Taylor series are truncated at the second-order terms then a harmonic approximation is

obtained. Eigenvalues and eigenfunctions of the corresponding Hamiltonian can be computed

analytically from the eigenvalues of the Hessian matrix ∂2V
∂ri∂rj

. These eigenvalues are called

vibrational frequencies. Despite being very simple, the harmonic approximation often gives

a very good agreement with the true eigenvalues and experimental data. However there are

molecules where the PES is not well-approximated by a polynomial of second order. One can

improve the approximation by considering high-order terms in the Taylor series: 4-th order

polynomials, 6-th order, etc. For example, the vibrational ground state of a protein BPTI [49]

was computed using a 4-th order polynomial. Thus, case of a polynomial potential is very

important.

The eigenvalues of the Hessian of V give the vibrational frequencies, whereas its eigenvectors

provide a linear transformation of the independent variables into normal coordinates. A second-

order polynomial in the normal coordinates becomes a sum of squares:

V =

f∑
k=1

w2kq
2
k,

where wk are the vibrational frequencies, and f is the number of degrees of freedom, which is

de�ned as the number of non-zero eigenvalues of the Hessian of V. The transformation into the

normal coordinates is often very useful and gives wavefunctions with better structure, and it is

a good idea to work with the PES in the normal coordinates.

Equation (2.1) lacks boundary conditions, however in the normal coordinates it is usually

su�cient to impose Dirichlet boundary conditions, i.e. we work in the coordinates qk and
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suppose that ψ(q1, . . . , qf) → 0 uniformly, as |qk| → ∞. Then, the computational domain can

be chosen to be a f-dimensional cube. In this cube, a uniform tensor grid with n points in

each direction is introduced, and the unknowns will be the values of ψ on this grid. The total

number of unknowns is equal to nf.

Now consider the discretization of the Hamiltonian. The multiplication by V reduces to the

multiplication by a diagonal matrix. For the Laplace operator, the simplest �nite-di�erence

approximation is used. It yields a matrix ∆(f) which can be written as

∆(f) = ∆1 ⊗ I⊗ . . .⊗ I+ . . .+ I⊗ . . .⊗ ∆f, (2.3)

where ∆i, i = 1, . . . , f, are the discretizations of a one-dimensional Laplace operator with Dirich-

let boundary conditions, and ⊗ is a tensor (Kronecker) product of matrices. In the simplest

case of uniform grid, we have ∆i = γtridiag[−1, 2,−1].

3 TT and QTT solution ansatz

Usually, some iterative method is used to solve the obtained eigenvalue problem. However, if

an eigenvector is stored as a full vector, it requires nf memory cells, which becomes too large

even for moderate f, and one has to approximate the solution somehow. The eigenvector ψ on

a tensor grid in Rf can be naturally considered as a f-dimensional array Ψ with elements

Ψ(i1, . . . , if) = ψ(x1(i1), . . . , xf(if)), 1 ≤ ik ≤ n,

where xk(ik) are the nodes on one-dimensional grids chosen for the discretization. This multi-

dimensional array (tensor) has to be approximated by some low-parametric representation, and

in order to do that, we will use the QTT nonlinear approximation scheme.

We will assume that the number of grid points in one dimension is a power of 2, n = 2L. In

this case, the QTT-format consists in the quantization of the array Ψ. It proceeds as follows.

An f-dimensional array with mode sizes 2L can be naturally treated as a Lf-dimensional array

Φ with mode sizes 2. Each \one-dimensional" mode index ik is represented by its binary digits:

ik =

L−1∑
s=0

2sjks, k = 1, . . . , f,

where jkl take values 0 and 1.

Then, the element of Φ in position (j11, j12, . . . , j1L, j2L, . . . , jf1, . . . jfL) is equal to Ψ(i1, . . . , if).

Maybe the simplest way to describe this process is in terms of the MATLAB reshape function:

Φ = reshape(Ψ, 2*ones(1,L*f)).

The elements of Ψ can be indexed by a Lf-tuple iks, k = 1, . . . , L, s = 1, . . . , f, where the index

s corresponds to the initial degree of freedom, and the index k | to the introduced \virtual

dimensions". Such tensorization allows the application of high-dimensional tensor techniques

even for one-dimensional objects (i.e. values of a univariate function on a grid with 2L points),

and that lead to the reduced complexity and storage. The main format we will use is the TT-

approximation of the quantized tensor. For a general tensor A with elements A(i1, . . . , id) the

TT-decomposition is de�ned as a representation of form

A(i1, . . . , id) = G1(i1)G2(i2) . . . Gd(id), (3.1)
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where Gk(ik) is a rk−1 × rk matrix depending on the integer parameter ik, and r0 = rd =

1. Elements of the matrices Gk(ik) can be put into a three-dimensional array with elements

Gk(αk−1, ik, αk)
2 where αk vary from 1 to rk, and (3.1) can be written in the index form

A(i1, . . . , id) =
∑

α0,...,αd

G1(α0, i1, α1)G1(α1, i2, α2) . . . Gp(αd−1, id, αd). (3.2)

The TT-format comes with all basic MLA operations that can be implemented in linear

in d and polynomial in r = max rk complexity, thus if the (approximate) TT-ranks are small,

then it gives a low-parametric approximation to the solution. Moreover, the TT-format has a

robust rounding procedure, which allows fast reduction of the TT-ranks, while maintaining the

accuracy.

The solution of the f-dimensional problem can be naturally associated with a f-dimensional

tensor (in the TT-case) and with a Lf-dimensional tensor in the QTT-case, and the resulting

tensor can be approximated by a tensor in the TT-format. But what about matrices? By

a \vector in TT-format" we implicitly assume, that such vector has length N = n1 · . . . ·
nd and can be associated with a d-dimensional array. A square matrix M, acting on such

vector, must have the size N × N. Then the elements of M can be naturally indexed by a

2d-tuple (i1, . . . , id), (j1, . . . , jd), where the multiindex (i1, . . . , id) enumerates the rows of M,

and (j1, . . . , jd) | the columns of M. The matrix M is said to be in the TT-format, if

M(i1, . . . , id; j1, . . . , jd) =M1(i1, j1) . . .Md(id, jd), (3.3)

where Mk(ik, jk), k = 1, . . . , d are mk−1 ×mk matrices, m0 = md = 1. This is equivalent to

the permutation of the dimensions of a 2d-dimensional tensor M and treating (ik, jk) as a long

index. Such permutation is standard in the compression of high-dimensional operators, and is

motivated by the observation, that for mk = 1 the TT-format turns into a tensor (Kronecker)

product of matrices:

M =M1 ⊗M2 ⊗ . . .⊗Mp,

which is a direct generalization of a rank-1 tensor to the matrix case. To be able to do computa-

tions with vectors in TT(QTT) formats, the matrix itself (in our case, the Hamiltonian H) has

to be transformed into the TT(QTT) format. In this case the basic operation, the matrix-by-

vector product, can be implemented in terms of cores of a matrix and a vector in complexity,

that is linear in the dimension. So the �rst step is the representation of the speci�c matrix in

the QTT format, which will be used later on for the solution of (2.1).

The potential V in (2.1) can be given in some analytical form, obtained using other methods,

i.e. as a polynomial in q1, . . . , qf. In this case, the estimation of the TT-ranks can be done

on the functional level. Indeed (3.1) can be generalized to the continuous case by replacing

the discrete indices ik by continuous variables xk. It gives the functional TT-decomposition

(FTT) [41] which for a function F = F(x1, . . . , xp) has the form

F(x1, . . . , xp) ≈ G1(x1)G2(x2) . . . Gd(xp), (3.4)

where Gk(xk) is an rk−1 × rk matrix, that depends on xk. If a function has low FTT-ranks,

then its function-related tensors (i.e. tensors, constructed from the values of this function on a

tensor grid) also have low TT-ranks. This will be helpful in deriving theoretical estimates for

the TT-ranks in the cases where V is given analytically.

2An abuse of notation is present: Gk is used to denote three entities: the parameter-dependent matrix Gk(ik),

the three-dimensional core Gk of the TT-decomposition and the elements of this array Gk(αk−1, ik, αk). The

precise meaning should be clear from the context
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4 Representation of the matrix

4.1 Theoretical rank estimates for the polynomial PES

The discrete Hamiltonian consists of two terms: the discretization of the Laplace operator and

the discretization of the potential. First, let us consider the Laplace operator. It allows a

TT-decomposition with TT-ranks equal to 2.

Proposition 4.1 [39, 17] The following rank estimate holds

rankTT(∆(f)) ≤ 2.

As for the QTT-ranks, they depend on the one-dimensional discretization. Suppose, a uniform

grid is chosen, and ∆i in (2.3) are

∆i = γitridiag[−1, 2,−1].

For such case, the QTT-ranks are bounded by 4.

Proposition 4.2 (Lemma 2.1 in [17]) The following rank bound holds

rankQTT(∆(f)) ≤ 4.

The second term in (2.1), the potential V is discretized by the collocation at the grid points,

becoming a diagonal matrix. Thus, only TT-ranks of the function V have to be estimated.

For the important case of the polynomial potential, one can obtain the following estimate

for the TT-ranks of the corresponding tensors.

Theorem 4.3 For a general homogeneous polynomial potential of form

V(q1, . . . , qf) =

f∑
i1,...,is=1

a(i1, . . . , is)

s∏
k=1

qik ,

there exists a TT-decomposition with

rk = S(k) =

s∑
j=0

min
(
P(k, s− j), P(f− k, j)

)
, k = 1, . . . , f− 1, (4.1)

where

P(k, j) =
1

j!
k(k+ 1) · . . . · (k+ j− 1), P(k, 0) = 1. (4.2)

Proof. First note, that without any loss of generality it can be assumed that the coe�cient tensor

a(i1, . . . , is) is \triangular", i.e. its element a(i1, . . . , is) is non-zero only if i1 ≥ i2 ≥ i3 . . . ≥ is.
To prove the statement, we will separate qk one-by-one. This is exactly how the numerical

algorithm for the computation of the TT-decomposition (called TT-SVD) works [39].

At the �rst step, q1 is separated:

V = p
(0)
1 q

s
1 + p

(1)
1 q

s−1
1 + . . .+ p

(s)
1 . (4.3)

Here p
(i)
1 , i = 0, . . . , s are homogeneous polynomials of the variables q2, . . . , qf of degree not

greater than i. Thus,

V = V1(q1)


p
(0)
1
...

p
(s)
1

 ,
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where V1(q1) is a row of length (s + 1). Therefore, r1 ≤ s + 1. At the second step, one can in

the analogous way separate the variable q2 from other variables for each p
(i)
1 :

p
(i)
1 = Hi2(q2)


p
(0)
2i
...

p
(i)
2i

 ,
where Hi2(q2) is a row of length (i + 1). Using this representation, we obtain an intermediate

decomposition

V = V1(q1)V̂2(q2)W(q3, . . . , qf),

where V̂2 is a block matrix

V̂2(q2) =

 H12
...

Hs2

 .
The column vector W(q3, . . . , qf) is comprised from all functions p

(j)
2i , j = 0, . . . , i, i = 0, . . . , s.

Thus, the second rank is bounded by the dimension of the linear span of these functions. Let us

look at the functions p
(j)
2i more closely. They came from the functions p

(i)
1 . The function p

(i)
1 is a

homogeneous polynomial of degree not higher than i. After the second step, the i− th function

\produced" exactly i functions which are homogeneous polynomials in remaining variables of

degrees 0, . . . , i. For example, after the second step there will be exactly 2 linear functions

among p
(i)
1 , three functions that are quadratic and so on. These functions will be splitted later

on.

In Table 4.1 one can see how many di�erent polynomials appear at the �rst steps of the

algorithm for the case s = 4. It is not di�cult to obtain a recursive formula for these numbers.

Step Order 1 Order 2 Order 3 Order 4

1 1 1 1 1

3 4 3 2 1

4 10 6 3 1

5 20 10 4 1
...

...
...

...
...

Table 4.1: The number of polynomials of di�erent degrees for the case s = 4

Denote by C(k, j) the number of polynomials of degree j that appear after the k-th step of

the algorithm. Evidently, they can come only from the previous step and from polynomials of

degree not smaller than j, thus

C(k, j) =

s∑
i=j

C(k− 1, i). (4.4)

An obvious initial condition is C(k, s) = 1 | there is always only one function of degree s and

C(1, j) = 1, j = 1, . . . , s | only one function of each degree at the �rst step. The solution of

(4.4) is obviously unique, since the values at the step (k − 1) determine the values at the step

k. It is easy to verify that

C(k, s− 1) = k.
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Using that one can obtain

C(k, s−2) = C(k−1, s−2)+C(k−1, s−1)+C(k, s) = C(k−1, s−2)+k = . . . =

k∑
i=1

i =
k(k+ 1)

2
.

By analogous computations for C(k, s−3) and so on, the following formula for C(k, s−j), j =

1, . . . , s− 1 is obtained:

C(k, s− j) = P(k, j) =
1

j!
k(k+ 1) · . . . · (k+ j− 1). (4.5)

Once the formula is found, it is easy to prove that it solves (4.4) by the induction argument.

It is important to note, that there is also another bound on the dimension of the linear span

of functions that appear during the algorithm. At the k-step all the polynomials in question

are homogeneous polynomials of (f − k) variables. What is the dimension of the space of such

polynomials? Suppose the variables are qj1 , . . . , qjp p = (f− k) and the degree is bounded by l.

Then, the dimension of such space is equal to the p-fold sum

D(p, l) =

l∑
j1=1

j1∑
j2=1

. . .

jp−1∑
jp=1

1,

which satis�es a simple recurrence relation

D(p, l) =

l∑
j=1

D(p− 1, i). (4.6)

Note that (4.6) and (4.4) are actually the same recurrence relations. Thus,

D(p, l) = P(p, l) =
1

l!
p(p+ 1) · . . . · (p+ l− 1). (4.7)

Finally, at the k-th step the dimension of the linear span of the polynomials of degree j is

bounded by

min(P(k, s− j), P(f− k, j)),

and the value of the k-th rank is bounded by (2 comes from polynomials of degree 0 and s).

rk ≤ 2+
s−1∑
j=1

min(P(k, s− j), P(f− k, j)).

Together with the de�nition of P(k, 0) that completes the proof of the Theorem.

The formula (4.1) allows to compute upper bounds for the ranks for all values of f and s.

The behaviour of these \rank curves" is di�erent for odd and even values of s, see the Figure 4.1

It can be seen, that for the even values of s rk, as a function of k has one maximum located

at f
2 . If f is odd, then it has two maxima b f2c and d

f
2e. For the odd values of s the situation is

more complicated: there are at least two maxima.

It is obvious that the function S(k) in (4.1) is a piecewise-polynomial function of k, since

P(k, j) is a polynomial of degree j in the variable k. Moreover, this function is symmetric against
f
2 , thus it is su�cient to study its structure only on the interval [0, f2 ]. The following Lemma

allows to simplify in some sense the expression (4.1) for S(k).
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Figure 4.1: Rank bounds (4.1) for f = 20 and di�erent values of s versus the mode number k

Lemma 4.4 The function S(k) in (4.1) is a polynomial function on the intervals [kq, kq+1],

q = 0, 1, . . . , qmax,, where

qmax = ds
2
e, k0 = 0

and kq is the unique solution of the polynomial equation

P(kq, s− q) = P(f− kq, q).

Moreover, on the q-th interval

S(k) = P(k+ 1, s− q) + P(f− k+ 1, q).

Proof. The strict proof is rather technical and is omitted to the save space. The idea of the

proof is simple. It is su�cient to consider pairs of terms in the de�nition of S(k) and accurately

determine their form and points of discontinuity. Then the �nal result comes from the recurrence

relation for the P(s, k).

For the important cases of cubic and quartic potentials, the exact form of S(k) is as follows.

Corollary 4.5 For a homogeneous cubic potential,

S(k) =

{
(k+1)(k+2)

2 + f− k+ 1, k ≤ k1,
f+ 2, k1 ≤ k ≤ f

2 ,
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where k1 solves
k(k+ 1)

2
= f− k.

The maximal rank is then f+ 2.

Corollary 4.6 For a homogeneous quartic potential,

S(k) =

{
(k+1)(k+2)(k+3)

6 + f− k, k ≤ k1,
(k+1)(k+2)

2 + (f−k+1)(f−k+2)
2 , k1 ≤ k ≤ f

2 ,

where k1 solves the equation
k(k+ 1)(k+ 2)

6
= f− k.

The maximal rank occurs for k = f
2 and is equal to the integer part of (f+2)(f+4)

4 .

Corollary 4.7 In the setting of Theorem 4.3 we have: for an even s maximum of S(k)

occurs at k = f
2 and it is equal to

2P
( f
2
+ 1,

s

2

)
;

for an odd s maximum of S(k) occurs at k∗ and f − k∗, where k∗ solves the polynomial

equation

P
(
k∗,

s+ 1

2

)
= P

(
f− k∗,

s− 1

2

)
.

In this case, the maximal value of S(k) is then given by

P
(
k∗ + 1, s+12

)
+ P
(
f− k∗ + 1, s−12

)
=

= P
(
f− k∗, s−12

)
·
(
k∗+ s+1

2
k∗ +

f−k∗+ s−1
2

f−k∗

)
≤ P

(
f− 1, s−12

)(
s+1
2 + s−1

2(f−1)

)
.

In the following proposition uniform grid is assumed.

Proposition 4.8 For a general homogeneous polynomial potential of form

V(q1, . . . , qf) =

f∑
i1,...,is=1

a(i1, . . . , is)

s∏
k=1

qik ,

rankQTT (V) ≤ 2(s+ 1)rankTT (V).

Proof. It is su�cient to notice that the TT-decomposition obtained in the proof of Proposi-

tion 4.3 gives rise to the functional TT decomposition of form

V(q1, . . . , qf) = v1(q1)V2(q2) · . . . · Vf−1(qf−1)vf(qf),

where Vp for p = 2, . . . , f − 1 are rp−1 × rp matrices with elements which are polynomials of

degree at most s, and rp are TT-ranks of V. After discretization in the variable qp with 2k

points a discrete representation for Vp as a rp−1 × 2 × 2 × . . . × 2 × rp tensor is obtained, and

analogously to the proof in the scalar case (Theorem 6 in [41]) it can be shown that for the

matrix polynomial case the QTT-ranks are bounded by (rp−1 + rp)(s+ 1).

The following Hypothesis summarized the results of our numerical experiments for the par-

ticular values of s.
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Hypothesis 4.9 If the uniform grid is used the following rank estimates hold.

1. For a general quadratic potential

V(q1, . . . , qf) =

f∑
ij

aijqiqj,

rankQTT (V) ≤ f+ 1.

2. For a general cubic potential

V(q1, . . . , qf) =

f∑
ijk

aijkqiqjqk,

rankQTT (V) ≤ f+ 1.

3. For a general quartic potential

V(q1, . . . , qf) =

f∑
ijkl

aijklqiqjqkql,

rankQTT (V) ≤ f(f+ 1).

However, these are upper estimates for general coe�cients of polynomials. For particular

potentials the QTT-ranks can be much smaller.

Lemma 4.10 For the Henon-Heiles potential [37] of form

V(q1, . . . , qf) =
1

2

f∑
k=1

q2k + λ

f−1∑
k=1

(
q2kqk+1 −

1

3
q3k

)
, (4.8)

the QTT-ranks are bounded by 4 (the TT-ranks are bounded by 3).

Proof. Since the maximal QTT-rank of discretized monomial q2 is 3, the result for harmonic

potential follows from the Theorem 2 of [41]. To get a decomposition for the Henon-Heiles

potential, �rst separate q1:

V =
(
−λ
3q
3
1 +

1
2q
2
1 λq1 1

) 1

q2
V2(q2, . . . , qf)

 ,
where V2(q2, . . . , qf) is the Henon-Heiles potential from q2, . . . , qf. Separation of q2 gives

V =
(
−λ
3q
3
1 +

1
2q
2
1 λq1 1

) 1 0 0

q2 0 0
1
2q
2
2 −

λ
3q
3
2 q2 1

 1

q3
V3(q3, . . . , qf)

 ,
which justi�es the general structure of the FTT cores at the subsequent steps: they are 3 × 3
matrices

Gk(qk) =

 1 0 0

qk 0 0
1
2q
2
k −

λ
3q
3
k qk 1

 ,
12



thus TT-ranks are equal to 3. To obtain a QTT-decomposition, one should consider a binary

representation of qk, qk = a + h(
∑L−1
s=0 is2

s−1), where a is the start of the interval where qk is

de�ned, h is a step size, and is take values 0 and 1 (for simplicity, index k is omitted, of course

a, h, is will depend on k). Introduces new variables

xs =
a

d
+ his2

s−1,

then

qk = x1 + . . .+ xL.

Estimation of the QTT-ranks is reduced to the separation of indices in a block parameter-

dependent matrix

G(q) =

 1 0 0

q 0 0
1
2q
2 − λ

3q
3 q 1

 .
To separate x1 (the �rst QTT mode) consider q as

q = x1 + v,

where v = x2 + . . .+ xL. A simple algebra shows that

G(x1 + v) = G1(x1)


1 0 0

v 0 0

v2 1 0

v3 v 1

 ,
thus the �rst rank is bounded by 4. At the next step, v = x2 +w, and

1 0 0

v 0 0

v2 1 0

v3 v 0

 = G2(x2)


1 0 0

w 0 0

w2 1 0

w3 w 1

 ,
and so on for x3, . . . , xL. Thus the upper bound for the QTT-ranks of the Henon-Heiles potential

is 4.

4.2 How to get the QTT representation numerically

From the previous subsection we know, that the polynomial PES can be well-approximated

in the QTT-format. The question is how to get such decompositions numerically. A general

framework can be based on the interpolation of the tensor at certain points. Suppose it is known

that V has low QTT-ranks, but only a subroutine that allows a computation of any prescribed

element of a tensor is given. Then V can be recovered by the TT-cross interpolation formula

[44]. When V is given analytically, a more simple approach is applicable. Often, V can be

represented as a separable expansion of form

V(q1, . . . , qf) ≈
R∑
α=1

h1(q1, α) . . . hf(qf, α), (4.9)

but with large number of terms R. This is true for the polynomial PES, but we will con-

sider an approximation of a 6-dimensional PES for HONO, which is de�ned through a certain
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analytic expansion, and it can also be put into the form (4.9). The conversion of V de�ned

by (4.9), into the QTT-format is performed using the following steps. Each summand is con-

verted into the QTT-format, by converting one-dimensional functions hk(q1, α), k = 1, . . . , f

into the QTT-format using either the compression of the full array to the TT-format [42], or

in the case of certain functions, like polynomial or sine functions, by using known analytical

QTT-representations [41]. Then their Kronecker product is computed by

Vα = A1 ×A2 × . . .Af,

which is a Lf-dimensional tensor. In fact, no operations are performed and the Kronecker

product reduces to the concatenation of cores. Thus, the required tensor V in the QTT-format

is now given as a sum of R tensors in the QTT-format:

V =

R∑
α=1

Vα.

These additions can be performed in the QTT-format directly, yielding a tensor with rank

equal to R (maxα rankQTT(Vα)). However, R can be very large, and to avoid rank growth, Vα

are added one-by-one approximately by using the following scheme:

V(1) := V1, V(k+1) = Tε(V
(k) +Vk),

where Tε is the rounding operator with relative accuracy ε in the QTT-format. If we assume,

that the QTT-ranks of the intermediate tensors V(k) are or order r, then the complexity of the

algorithm is O(Rdfr3). If no intermediate compression is used, the complexity would be cubic

in R and is unacceptable.

To see how algorithm works, consider the following example, which was kindly provided to

us by H.-D. Meyer and is described in details in [47]. It is a 6-dimensional system (i.e., f = 6),

with the potential of form

V(R1, R2, R3, θ1, θ2, τ) = S0 + e
−D(R1,R2,R3,θ1,θ2)

×
∑
ijklmn

cijklmnQ
i
1Q

j
2Q

k
3Q

l
4Q

m
5 cos(nQ6),

with

D =

3∑
i=1

di(Ri − R
ref)2i +

2∑
j=1

dj+3(θj − θ
refj)2,

and

Q1/2/3 = 1− e
−0.7(R1/2/3−R

ref

1/2/3
)
, Q4/5 = θ1/2 − θ

ref
1/2, Q6 = τ− τ

ref .

As discussed before, to approximate it in the QTT-format, each normal coordinate is put into

a segment, and a uniform grid with 2L points is introduced, and the QTT-approximation is

computed via add-and-compress method. In variablesQ1, . . . , Q5, V is a polynomial, whereas

in Q6 it is a trigonometric function, and these univariate functions can be decomposed into

the QTT-format with uniform rank bounds in grid size, see [41]. To check the accuracy, an

approximation of the potential with ε = 10−12 is computed, and then used as a \true" potential.

The computational time for the largest example (n = 210) was about 1 minute to get the

approximation with the relative accuracy 10−12 in the Frobenius norm. It can be seen, that the
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approximation of this potential energy surface is very good with the QTT-ranks independent of

the dimension and also depending logarithmically on the accuracy, so the QTT-format for this

PES looks very promising (see Table 4.2).

n rank(10−2) rank(10−4) rank(10−7)

24 3.2 7.3 12.0

25 3.3 7.9 12.5

26 3.4 8.0 12.6

27 3.4 8.1 12.7

28 3.4 8.1 12.7

29 3.7 8.0 12.7

210 3.6 8.0 12.7

Table 4.2: Rank of the HONO potential for di�erent accuracies.

5 Solution of eigenvalue problem by DMRG method

5.1 Formulation as nonlinear optimization problem

Now, after the PES is transformed into the QTT-format, (∆(f) is already in the QTT-format)

we can safely assume that the Hamiltonian H in (2.1) is also in the QTT-format. From now on

we also forget about the fact that actual dimension of the tensor is equal to Lf and denote the

dimensions of the space by d, since our results apply to any matrix that is represented in the

QTT-format and are purely algebraic. So,

H(i1, . . . , id, j1, . . . , jd) = H1(i1, j1) . . . Hd(id, jd), (5.1)

where

Hk(ik, jk) = Hk(αk−1, ik, jk, αk)

are the cores of the QTT-representation of H, and

1 ≤ αk ≤ Rk, k = 1, . . . , d,

and

1 ≤ ik, jk ≤ nk.

For the QTT-format nk = 2, but the results are also applicable to other mode sizes. We want

to �nd an eigenvector ψ that solves

Hψ = Eψ. (5.2)

Since the complexity of solving (5.2) in the full space is exponential in the dimension, the vector

ψ is sought in the set of QTT-structured tensors with small QTT-ranks. The vector ψ can be

naturally associated with a d-dimensional tensor Ψ with elements Ψ(i1, i2, . . . , id). This tensor

is then approximated by another tensor in the TT-format:

Ψ(i1, . . . , id) ≈ G1(i1) . . . Gd(id). (5.3)

Let us denote this class of tensors (with the QTT-ranks bounded by some number R) by S.
What are equations for parameters, de�ning representation? A natural way is to formulate (5.2)
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as a minimization problem, and replace the minimization over the whole space (which contains

nd variables) by the minimization over ψ ∈ S. This yields a nonlinear minimization problem,

but with fewer parameters. For the eigenvalue problem (5.2) the standard way is to minimize

the Rayleigh quotient:

ψ = argmin(Hψ,ψ), (ψ,ψ) = 1,

so we seek for the minimizer of the Rayleigh quotient for the QTT-structured tensors:

ψ = argmin(Hψ,ψ), ψ : (ψ,ψ) = 1, ψ ∈ S (5.4)

The parameter R here controls the memory, required for the storage of the approximate solution,

and has to be chosen as a compromise between accuracy and storage.

How to solve (5.4)? One can use general-purpose minimization approaches. This requires

computation of the function values and its gradients. This is an interesting and important

research direction, but it has several drawbacks. First of all, it does not take into account

directly a special structure of the functional. For this particular problem one can hope that

specialized methods can be developed.

The second problem is not that obvious, but is encountered by many people that tried to

solve high-dimensional problems in tensor formats: the selection of ranks. There are (d−1) TT-

ranks, and they have to be selected somehow, and an adaptive procedure should be available,

since a simple guess-and-try method is not always the best choice. For example, the alternating

least squares method (ALS), which is very popular in multilinear algebra (especially for the

computation of the canonical decomposition) can be implemented to solve (5.4) in the following

way. If we �x all the cores, except Gk, then the minimization over Gk becomes a quadratic

optimization, and can be solved as a \small" eigenvalue problem. In this case, all rk have to be

speci�ed, and it is unclear, how to do this.

Our experiments show that the ALS method can converge slowly. However, it can be mod-

i�ed for the QTT-format (when all modes sizes nk are small) to solve both problems: how to

determine the QTT-ranks given only the required accuracy ε, and how to speed up the con-

vergence. A simple modi�cation is to minimize over two adjacent cores, Gk and Gk+1. This

approach originates from the solid state physics in the study of quantum spin systems, where

the representations of form (5.3) are used for quite a long time [45, 8]. The wavefunctions of

spin systems depend can be considered as tensors with small modes size, usually nk = 2 or

nk = 4. The numerical modelling of quantum spin systems thus leads to algebraically the same

problem, as we consider in this paper, but with an important di�erence: The Hamiltonians are

usually given in form, that is analogous to the canonical format, and we use the QTT-format

for matrices also.

The minimization over a pair of adjacent cores leads to the DMRG (Density Matrix Renor-

malization Group) algorithm, �rst proposed by White [51], and its variational nature was un-

derstood in [45]. The DMRG-type algorithms for the eigenvalue problems were also recently

considered in [48]. The DMRG algorithm is, in fact, a modi�ed Gauss-Seidel method (i.e. the

minimization is over Gk and Gk+1, then over Gk+1 and Gk+2 and so on) but it has exceptional

convergence properties, which are uncommon to the ALS algorithms. This an experimental fact,

and no convergence theory is available by now.

5.2 DMRG algorithm

How does the DMRG look like? If all cores except Gk and Gk+1 are �xed, we are left with a

\small" minimization problem. The optimization problem in Gk and Gk+1 is still nonlinear. To
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make it linear, a new superblock is introduced:

W(ik, ik+1) = Gk(ik)Gk+1(ik+1),

which can be represented as a rk−1×nk×nk+1× rk+2 tensor. This is equivalent to the merge of
two modes, k and k+ 1 in the TT-representation, which leads to a n1× . . .×nk−1× (nknk+1)×
nk+2 . . .×nd tensor, and the \middle" core is optimized. The problem inW is quadratic and can

be reduced to the eigenvalue problem for W. The initial eigenvalue problem had an important

constraint, ||ψ|| = 1. This constraint is trivially imposed on W also due to the properties of the

TT-format. If, before the minimization, we ensure that in the TT-representation of ψ (5.3) the

�xed cores Gs, s = 1, . . . , k− 1 are left-orthogonal, i.e.∑
is

G>s (is)Gs(is) = Irs ,

and the cores Gs, s = k+ 2, . . . , d are right-orthogonal, i.e.∑
is

Gs(is)G
>
s (is) = Irs−1

,

then, as in the TT-rounding procedure [39], it can be shown that for a such orthogonalized

representation the norm of ψ is the norm of the cores that we optimize, i.e. in the matrix form√ ∑
ik,ik+1

||W(ik, ik+1)||
2
F = ||ψ|| = 1. (5.5)

After W is obtained from the \local" eigenvalue problem, the solution W is approximated

to recover Gk and Gk+1.

W(ik, ik+1) ≈ Gk(ik)Gk+1(ik+1), (5.6)

with some prescribed accuracy ε. It is called the decimation step.To compute the approximation

(5.6) one SVD is required. The equation (5.6) in the index form is

W(αk−1, ik, ik+1, αk+1) ≈
∑
αk

Gk(αk−1, ik, αk)Gk+1(αk, ik+1, αk+1),

and it can be computing via the reshaping ofW into a rk−1nk×nk+1rk+1 matrix and computing

its ε-truncated SVD. The rank rk is computed here from the accuracy parameter ε, and is

determined adaptively, which is a big advantage over the standard ALS approach.

Then, the whole DMRG step (called sweep) consists of the following. First, the cores

G3, . . . , Gd are made right-orthogonal, then we optimize for G1, and G2, then for G2 and G3 and

so on, keeping the cores G1, . . . , Gk−1 left-orthogonal so that (5.5) can be used. After the last

core is reached, the sweep can be made from right to left 3, and the process continues until the

convergence (which can be detected either by the stabilization of the Rayleigh quotient, or by

the stabilization of the ψ itself).

3One can use either two-sided DMRG or one-sided DMRG, when from right-to-left we only orthogonalize cores

of the solution. It is not clear to us which method is better.
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5.3 Local eigenvalue problem

Now we have to obtain an eigenvalue problem for W. Ψ is represented as

Ψ(i1, . . . , id) = G1(i1) . . . Gk−1(ik−1)W(ik, ik+1)Gk+2(ik+2) . . . Gd(id).

In order to the simplify the expression for (Hψ,ψ), recall how two basic operations in the TT-

format look like: the matrix-by-vector product and the scalar product. The matrix-by-vector

product

y = Hψ,

if H and ψ are in the TT-format, is also in the TT-format with the cores [39]

Yk(ik) =
∑
jk

(
Hk(ik, jk)⊗Gk(jk)

)
.

For two tensors A and B their scalar product∑
i1,...,id

A(i1, . . . , id)B(i1, . . . , id)

can be computed in two steps. First, the Hadamard (elementwise) product C = A ◦ B is

computed, its cores are

Ck(ik) = Ak(ik)⊗ Bk(ik),

and then the sum of all elements of Ck is computed via the contraction with the tensor of all

ones. Summing everything up, the following representation for (Hψ,ψ) is obtained:

(Hψ,ψ) = Γ1Γ2 . . . Γk−1 · Γ · Γk+2Γd,

where

Γs =
∑
is,js

Hs(is, js)⊗Gs(is)⊗Gs(js), s = 1, . . . d, s 6= k, s 6= k+ 1,

and

Γ =
∑

ik,ik+1,jk,jk+1

Hk(ik, jk)Hk+1(ik+1, jk+1)⊗W(ik, ik+1)⊗W(jk, jk+1).

From its de�nition it can be seen, that Γs is a matrix of size Rsr
2
s ×Rs+1r2s+1 and can be indexed

(in principle) as a 6-dimensional array, and Γ (corresponding to the merged core) is a matrix of

size Rk−1r
2
k−1 × Rk+1r2k+1.

The expression for the Rayleigh quotient can be simpli�ed. Γ1 is indeed a row vector (since

r0 = R0 = 1) and the product

pk = Γ1 . . . Γk−1

is also a row vector of length Rk−1r
2
k−1, which can be considered as a three-dimensional array

Pk−1(α,β, γ). The same is for the product

qk = Γk+2 . . . Γd,

which is a column vector of length Rk+1r
2
k+1. The cost of computing ps+1 when ps is known is

the cost of a evaluating matrix-by-vector product

psΓs = ps
∑
is,js

Hs(is, js)⊗Gs(is)⊗Gs(js) =
∑
is,js

w(is, js),
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where

w(is, js) = ps

(
Hs(is, js)⊗Gs(is)⊗Gs(js)

)
.

The computation of w(is, js) for each �xed pair (is, js) is a multiplication of a tensor rank-1

matrix by a full vector. To estimate the complexity, assume that rs ∼ r, Rs ∼ R, then it is

well known that such product can be realized in O(Rr3) operations, and the total cost for the

computation of ps is O(n2Rr3) operations. Since n = 2 in our case, the complexity is linear in

the matrix rank and cubic in the rank of the solution. The same is for qk. After pk and qk are

computed (recall that we assumed that the corresponding cores are �xed) the expression for the

Rayleigh quotient becomes

(Hψ,ψ) = pk

( ∑
ik,ik+1,jk,jk+1

Hk(ik, jk)Hk+1(ik+1, jk+1)⊗W(ik, ik+1)⊗W(jk, jk+1)
)
qk.

Now let us for a moment use simpler notations. As noted above, the DMRG optimization step

is equivalent to the ALS approach applied to the tensor with modes k, k + 1 merged, so let us

consider (ik, ik+1) as one long index (denote it by i) and (jk, jk+1) | as another (denote it by

j). Our main goal is to solve the optimization problem for W, so and this local problem will be

described in more details. The function to be minimized has form

f(W) = p
(∑

i,j

M(i, j)⊗W(i)⊗W(j)
)
q,

where M(i, j), i, j = 1, . . . ,m are R1 × R2 matrices, W(i), i = 1, . . . ,m are r1 × r2 matrices, p is

a row vector of length R1r
2
1 and q is a column vector of length R2r

2
2. For our case m = n2 = 4,

i.e., is small compared to r1, r2, R1, R2. Now we have the following optimization problem:

p
(∑

i,j

M(i, j)⊗W(i)⊗W(j)
)
q→ min,

∑
i

||W(i)||2F = 1. (5.7)

The problem (5.7) is a quadratic optimization problem in W, thus it can be reduced to the

eigenvalue problem for W, which has form

M̂w = Ew, ||w|| = 1,

and w is the tensor W transformed into the \long vector" (in MATLAB notation, w = W(:)).

In our case, W contains 4r2 elements (n = 2 is assumed), thus the matrix M̂ is 4r2 × 4r2. If

it is formed as a full matrix, the TT-ranks no more than 50 can be chosen, since 4r2 > 10000

for r = 50, and in practice one can encounter TT-ranks of order several hundreds. However,

the storage of M̂ requires only the storage of M(i, j) which is only 16r2 memory cells, and

moreover, the matrix-by-vector product M̂w can be computed in O(Rr3 + R2r2) operations.

Thus an iterative method for the computation of the lowest eigenvalue can be used. In the

DMRG calculations, usually Jacobi-Davidson algorithms or Lanczos algorithms are employed.

We will use Locally Optimal Block Preconditioned Conjugate Gradient Algorithm (LOBPCG)

by Knyazev [29] for this task. To select initial approximation to the eigenvector for the local

problem, an eigenvector from the previous DMRG sweep is used:

Ŵ = Gk−1(ik−1)Gk(ik).

The computational scheme is summarized in Algorithm 1, and the matrix-by-vector product

subroutine | in Algorithm 2. To describe the matrix-by-vector product, we have to use index

notations.
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Algorithm 1 DMRG algorithm

Require: Matrix H in QTT format, accuracy ε, Initial approximation to eigenvector ψ in QTT

format.

Ensure: Improved approximation ψ to eigenvector

1: not converged = .true.

2: while not converged = .true. do

3: not converged = .false.

4: fright-to-left sweepg

5: R := [1], Ψd = [1].

6: for k = d to 3 step −1 do

7: Gk(ik) := Gk(ik)R.

8: [Gk(βk−1; ikβk), R(αk−1, βk−1)] := QRrows(Gk(αk−1; ikβk)).

9: fCompute new q g

10: w(ik, jk) :=
(
Hk(ik, jk)⊗Gk(ik)⊗Gk(jk)

)
qk.

11: qk−1 :=
∑
ik,jk

w(ik, jk).

12: end for

13: fleft-to-right sweep, main cycleg

14: for k = 1 to k = d− 1 do

15: fCompute approximation from previous step Ŵ to the solution of (5.7)g

16: W(ik, ik+1) = Gk(ik)Gk(ik+1).

17: Solve (5.7) using LOBPCG with Ŵ as initial vector and obtain new W

18: fCheck convergenceg

If ||W − Ŵ||F > ε||W||F not converged=.true..

19: fTruncationg Compute truncated SVD of W(αk−1ik; ik+1αk+1)

W(ik, ik+1) ≈ Ĝk(ik)Ĝk+1(ik+1), and Ĝk, Ĝk+1 are left-orthogonal,

and truncation error is bounded by ε√
d−1

||W||F.

20: Gk := Ĝk, Gk+1 := Ĝk+1.

21: fCompute new pkg

22: w(ik, jk) := pk

(
Hk(ik, jk)⊗Gk(ik)⊗Gk(jk)

)
23: pk+1 :=

∑
ik,jk

w(ik, jk).

24: end for

25: fIf two-sided DMRG is used, perform sweep from right-to-leftg

26: end while
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Algorithm 2 Fast matrix-by-vector product in DMRG

Require: M̂ speci�ed implicitly by

Hk(αk−1, ik, jk, αk), Hk+1(αk, ik+1, jk+1, αk+1)pk−1(αk−1, βk−1, γk−1), qk+1(αk+1, βk+1, γk+1),

vector w indexed as W(βk−1, jk, jk+1, βk+1),

Ensure: Matrix-by-vector product Y = M̂w = Y(γk−1, ik, ik+1, γk+1).

1: Preprocessing

H̃k(βk−1, γk−1, ik, jk, αk) =
∑
αk−1

Hk(αk−1, ik, jk, αk)pk−1(αk−1, βk−1, γk−1)

Complexity: O(n2R2r2)
H̃k+1(αk, ik+1, jk+1, βk+1, γk+1) =

∑
αk+1

Hk+1(αk, ik+1, jk+1, αk+1)qk+1(αk+1, βk+1, γk+1)

Complexity: O(n2R2r2)
2: fMatvecg

3: Y(γk−1, ik, αk, jk+1, βk+1) :=
∑
βk−1,jk

H̃k(βk−1, γk−1, ik, jk, αk)Y(βk−1, jk, jk+1, βk+1)

Complexity: O(n3Rr3)
4: Y(γk−1, βk+1, ik+1, αk+1) :=

:=
∑
αk,jk+1,βk+1

H̃k+1(αk, ik+1, jk+1, βk+1, γk+1)Y(γk−1, ik, αk, jk+1, βk+1)

Complexity: O(n3Rr3)

The total complexity of Algorithm 2 is estimated as O(n2R2r2) operations at the prepro-

cessing step and O(n2Rr3) for all subsequent matrix-by-vector products. All these steps are

implemented using matrix-by-matrix products, which leads to high e�ciency of such operations

provided that the optimized BLAS libraries are used.

6 Numerical experiments

6.1 Model 3-body problem

As a �rst example, consider model 3-body problem [6]. The Hamiltonian has the form

H = Hx +Hy +Hz + Vc(x, y, z), (6.1)

where

Hx =
1

2

(
−
∂2

∂x2
+w2xx

2 + 2ληx3
)
,

Hy =
1

2

(
−
∂2

∂y2
+w2yy

2 + 2µζy3
)
,

Hz =
1

2

(
−
∂2

∂z2
+w2zz

2

)
,

and

Vc = λxy
2 + µyz2.

The values of the parameters were chosen as in [6]. They are w2x = 0.49,w
2
y = 1.69,w

2
z = 1.0, λ =

µ = −0.10 and ν = ζ = 0.10. We discretize the problem in a cube [−a, a]3 with su�ciently

large a, on a uniform grid with n = 2L points in each direction.

The potential is a polynomial of the third order, so our estimates give us a rank bound 12 for

the diagonal part, plus 4 for the kinetic part, so the upper bound for the rank is 16. To compute
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the solution, we �rst set up the DMRG-method with a low accuracy, wait until it converges and

then increase the accuracy. Three thresholds are used: ε = 10−3, ε = 10−5, ε = 10−7, and the

solution of each problem gives a starting vector for the solution of the next one. We need a

reference solution and a reference eigenvalue eigenvalue to measure the accuracy. As a reference

solution, we use the solution computed with the following parameters: d = 13, a = 7, ε = 10−10.

The computed reference solution is E∗ = 1.4895990. The convergence of the eigenvalues is shown

in Table 6.1.

n E(10−2) − E∗ E(10−4) − E∗ E(10−7) − E∗

24 -0.0688173 -0.0689082 -0.0689082

25 -0.0163878 -0.0176922 -0.0176922

26 -0.0030445 -0.0045148 -0.0045155

27 0.0004258 -0.0005373 -0.0011436

28 0.0025507 0.0003197 -0.0002879

29 0.0238319 0.0005368 -0.0000715

210 0.0244351 0.0005914 -0.0000173

Table 6.1: Accuracy of computed eigenvalues

This shows, that the parameter ε has to be chosen adaptively with the grid size n: the larger

is n is, the higher the accuracy should be.

6.2 Henon-Heiles potential

The proposed approach was tested on the Henon-Heiles potential (4.8). First, the matrix was

approximated in the QTT-format by using add-and-compress algorithm. Then, DMRG method

(Algorithm 1) was applied. The grid size was set to 128, and the number of degrees of freedom f

is varying from 4 to 256. In Figure 6.1 the time required to approximate the matrix is presented,

in Figure 6.2 the dependence of maximal and e�ective ranks on the number of degrees of freedom

is given. The Figure 6.3 shows, how the QTT-ranks of the solution look like. Note that the

minima of this oscillating picture correspond to the TT-ranks, i.e. when no quantization is used,

and for the new (virtual) dimensions the QTT-ranks are larger but still acceptable.
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Figure 6.1: Solution and approximation timings for Henon-Heiles potentials with d = 7 and f

is varying, ε = 10−6
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Figure 6.2: Maximal and e�ective rank behaviour, d = 7, f is varying, ε = 10−6
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Figure 6.3: QTT-ranks for the solution with f = 32, d = 7 for di�erent modes, vertical lines

correspond to \physical" modes

7 Conclusions and future work

In this paper we presented a numerical algorithm for the calculation of the vibrational ground

state of the high-dimensional molecular Schr�odinger operator. It is based on two ingredients:

• QTT-representation of the potential energy surface (PES)

• DMRG algorithm for the minimization of the Rayleigh quotient in the QTT-format.

For the polynomial PES the estimates on TT and QTT ranks were obtained, and they are

polynomial in the number of degrees of freedom. The DMRG algorithm was initially designed for

handling quantum spin systems. However, quantization of the solution of the high-dimensional

molecular Schr�odinger equation and the representation of the solution in the QTT-format leads

literally to the same problem, but now the binary indices correspond not to spins, but to the

binary digits of the grid point index.

For a HONO PES, having an analytical representation but with many terms we showed,

that it can be well-approximated in the QTT-format with very small ranks. Similar results have

been obtained for the Henon-Heiles potential.

Being a block relaxation with overlapping, the DMRG method showed a very good con-

vergence properties, which are uncommon for the ALS method, making the DMRG approach

very promising for solving optimization problems in the QTT-format. The experiments on a

model 3-body problem and on a benchmark high-dimensional Henon-Heiles potential show the

e�ectiveness of our approach.

In the next steps we plan to apply the QTT+DMRG approach to solve problems with more

complicated PES, and to improve its robustness by using multigrid ideas.
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The computation of several smallest vibrational states is very important, so one has to design

a block version of the DMRG in the QTT-format. A prototype realization in MATLAB has been

already developed by us, and it works good.

For the quantum molecular dynamics the time evolution is of great importance. For this

case, one has to use a time-dependent version of the DMRG in the combination with the TT-

format, and this is a separate study. However, for all these problems, the approximation of the

Hamiltonian in the QTT-format seems to be a good idea.

To conclude, we hope that the ideas of the QTT with the help of the advanced optimization

algorithm (DMRG) will lead to very e�cient numerical scheme for solving quantum molecular

dynamics problems with a large number of degrees of freedom.
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