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1. INTRODUCTION

This note is devoted to the study of the commutability of linearization and homogeniza
at identity in finite elasticity. We consider an open bounded Lipschitz dofain R¢, and a
family of integral functionals

7. : H'(D) = [0, 400, u / We(z, Vu(z)) dx
D

whereW. : D x M?% — [0, +o0] is a Borel function. As it is common in finite elasticity,
we assume thall, is frame indifferent and minimal at identity. Moreover, we assume that
W, is non-degenerate and admits a quadratic expansion at identity with quadratiQ.; as

a consequence, in situations when the deformation is close to a rigid-bodynmedip when
|Vu —1d| ~ h < 1, we can accurately describe the functiofialafter scaling by, —2) by the
guadratic functional

&

- HY(D) — [0,4+00], g~ /D Q-(z,Vg(z))dz with g(z) :== h™ (u(z) — x).
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2 ANTOINE GLORIA AND STEFAN NEUKAMM

Since Q. (-, F) genuinely only depends on the symmetric part of the strain gradierihe
energy&. corresponds to linear elasticity. On the other hand,.ihas some specific struc-
ture in space rescaled hy(think of periodicity for instance), we may expect a homogeniza-
tion property to hold ag vanishes, which justifies to replace the nonlinear oscillating-in-
space energy density, ') — W, (z, F') by a nonlinear homogeneous-in-space energy density
F — Whom(F) (or more generally by an energy densfty, ') — W*(x, F') whose oscilla-
tions inz are independent af).

In this paper, we address the commutability of both limits/{iand <), and prove that they
indeed commute in the following sense: The quadratic expansion of the hainedenergy
Whom (resp. W*) at identity coincides with the homogenization of the quadratic expansion
Q. of the heterogeneous energy density at identity. In Thed2elrwe study functionals
with standard growth and prove that the commutability holds (both, on the |&ddrities

and on the level of the functionals), provid&d can be homogenized in the sense that
I'(L?)-converges to a functional of the form

u»—)/ W*(z, Vu) dz.
D

In Theorem2.2 we study unbounded energies and show that the commutability still holds pro-
vided bothZ. and&. can be homogenized. This theorem covers in particular the case when
We(z,F) = 4 if det F < 0 — as it is desirable in finite elasticity. Our results general-
ize a recent work by S. Mler and the second author iMN] (see alsoNeul() by relaxing

the periodicity assumption oW (as well as the growth condition from above). MN] the
central object in the analysis is a multi-cell homogenization formula that allow®ipehodic
setting to compute the homogenized density,,,, by solving a sequence of periodic mini-
mization problems on cubic domains invadiRg. In [NeulQ the commutability of homog-
enization and linearization (solely ad’aconvergence statement on the level of the energies)
has been extended in the periodic case to energy densities without gavditien from above

by extensive use of two-scale convergence methods. In the geiteadiosn considered in the
present contribution, both the multi-cell homogenization formula and two-scateergence
approaches do not apply. Instead, we study the asymptotic formula

Wp(F) := lim inf 7, + v
p(F) := lim { veHL(D) (ior +) }

which is well defined whenevet, T'-converges and is equi-coercive. In Proposit®h8 we
establish a quadratic expansion at identityifidp, — which is the key insight in our analysis.

As a first application of Theore 1, we show that linearization and stochastic homogenization
commute at identity for energy densities which satisfy standard growth camslitsee Theo-
rem3.2). In a nutshell, what holds ifMN] in the periodic setting is also proved to hold here in
the stochastic setting. This shows that the arguments used bil@rsind the second author in
[MN] are quite stable with respect to the structure assumption which ensuregéoization

— at the core of the proof the quantitative rigidity estimateFafiy102.

As a second application of Theoredl, we prove a “weak local property” of tHe-closure of

a class of integral functionals at identity. The probleni'eflosure consists in characterizing
all the energy densities which can be reachedbgonvergence starting from a composite
made of a finite number of constituents with prescribed volume fraction. bicpkar, thel-
closure is said to be local in some class of integrands if and only if any swaidgenized”
energy density is the pointwise limit of a sequence of homogenized enengitide obtained
by periodichomogenization. In the linear case, this property has been proved irdigly by
Tartar in [Tar89 and Lurie and Cherkaev in.[C84]. The corresponding locality property of the
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G-closure for monotone operators is due to RaitumsRaiQ]] (generalizing an unpublished
work by Dal Maso and Kohn). Related results of locality of fhelosure in the class of convex
integrands can be found iBB09]. Yet, the local character of tHé-closure is an open question
in the class of quasiconvex nonconvex integrands satisfying standasdhgconditions. We
focus here on a smaller class. In particular, we consider energy densitieh are frame
indifferent, non-degenerate, minimal at identity, admit a quadratic Tayjmresion at identity,
and satisfy standard growth conditions. Then, we show that forFary W*(F) in the I'-
closure of this set, there exists a sequence of periodic energy denditose Wwomogenized
energy densities have quadratic Taylor expansions arbitrary close Tayt& expansion of
W* at identity (see Theorer.l). This can be seen as a weak version of the local character
of theI'-closure in this set at identity. Although quite restricted, this is the first seshitrfor
guasiconvex nonconvex energy densities.

This article is organized as follows: In Secti@nwe state and prove our main theorem, the
commutability of linearization and homogenization at identity. In Sec8iove apply this re-
sult to stochastic homogenization. The last section is dedicated to the locatiaof the
I'-closure at identity.

We will make use of the following notation throughout the text:

— Rt := [0, +00) is the set of non-negative real numbers;

— d is the dimension;

— M denotes the space @k d real matrices, and for all € M?, sym F = 1/2(F+F7T)
is the associated symmetric matrix, asidv /¥ = F' — sym F' the associated skew-
symmetric matrix;

— SO(d) is the set of rotations dR¢;

— T, denotes the space of symmetric fourth order tensoi&n

— D denotes an open bounded subseR6fwith a Lipschitz boundary (except for Theo-
rem2.2and Propositior2.3in Section2 whereD is further assumed to h@');

— U = (0,1)%is the unit cell;

— for all ' € M, we define the functiopr : R? — R¢ aspp :  +— F;

— forallp € [1, +oc], LP(D), H'(D), W'(D), H} (D), andW, (D) denote the stan-
dard Lebesgue, Hilbert and Sobolev spaces of maps fiotm R?, and the associated
subspaces of functions vanishing on the bounddpy(in the sense of traces);

— ¢ andh denote generic elements of vanishing families of positive numlagrand (),
respectively.

— p (andp’) denotes a modulus of approximation, ieeis an increasing function fro +
to [0, +o00] such thatimy_,o p(h) = 0.

2. GENERAL COMMUTABILITY RESULTS

Throughout this article, we make the following assumptions on the energytidsn
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Definition1. For alla > 0 and every modulus of approximatipnwe denote byV,, , the set of
measurable energy densitids : M — [0, +oo] which satisfy the following three properties:

(W1) W is frame indifferent, i.e.
W(RF)=W(F) foral F e M% R e SO(d);
(W2) W is non degenerate, i.e.
W(F) > Ldist*(F,S0(d))  forall F € M%
(W3) W is minimal atld and admits the following quadratic expansioddt
(W({d+G) - Q(G)]

5 <p(6)  forallé >0,
0<|Gl<s |G|

whereQ : M? — [0, ) is a quadratic form satisfying
0<Q(G) < alG)? forall G € M.

For some results (in particular Theor&i) we consider continuous energy densities that ad-
ditionally satisfy standard growth conditions:

Definition2. For allp € [1,+00) anda > 0, we denote byV? the set of continuous energy
densities? : M? — R which satisfy the following standard growth condition of orger

(W4) VEeM?: LIF|P —a < W(F) < a|F|P +1).

In addition, we seW?. , := W, , N W4 for every modulus of approximatiop. Note that
WE , =0 forp < 2,andW5 , # () for p > 2.

Remarkl. Let W € W, , and let@ denote the quadratic form associated withthrough
(W3). Because of\(/1) — (W3) the quadratic formQ) generically satisfies conditions that are
common in linear elasticity; namely, the growth and ellipticity condition

(Q1) VG eM? : LlsymG)* < Q(G) < o |G)?
for some positive constant that only depends on, and
(Q2) VG e M¢ : Q(skwG) = 0.

Definition3. We denote byQ,, the set of non-negative quadratic for@s: M?¢ — R* satis-

fying (Q1) and Q2).

Throughout this article we consider measurable mi&pgom D to W,, , such thatV' (-, -) is

a Borel function onD x M¢ (or equivalent to a Borel function), so that— W, (z, Vu(z)) is

a measurable function for all ¢ W1(D). We call such maps “admissible energy densities
from D to W, ,. Note that measurable maps frabhto WY , are Carathodory functions and
therefore admissible.

Let us consider a familylV.) of admissible energy densities frabhto W, ,. For almost every
x € D, we denote by).(z, -) the quadratic form associated withi. (z, -) through {V3); thus,
Q- can be written as the pointwise limit

1
—W.(z,1d +hG),

(,G) — Q:(x,G) := }llli% 2

and therefore inherits the measurability propertieglof We then define two families of inte-
gral functionals, namel§. : H!(D) — [0, +oc] characterized by

(1) /WxVu ) da,



COMMUTABILITY OF HOMOGENIZATION AND LINEARIZATION AT IDEN TITY 5

andé. : H'(D) — [0, +o0) characterized by

(2) E(u) ::/DQE(m,Vu(x))dx.

The main theorem of this paper is the following result, which generaligi$, [Theorems 1
& 2] to the non-periodic setting.

Theorem 2.1. Let2 < p < +o0, and let(W,) denote a family of measurable energy densities
from D to WE ,. Assume that the associated family of energy functiofaldefined in(1)
['(LP)-converges to an integral function@l on W!»(D), defined by

I*(u) == /DW*(m,Vu($))dx,

wherelV* is a Caratteodory function orD x M? with W*(z, -) € WH for almost every: € D.
Then
(@ W*(z,-) e W?, , for aimost every: € D, wherea’ > 0 and the modulus of approxi-

mationp’ only depend omv and p;
(b) there existy” > 0 and a measurable ma@* : D — Q,~ such that the energy func-
tionals&. defined in(2) T'(L?)-converge t&€* : H'(D) — [0, +o00) defined by

E*(u) Z:/DQ*(Z‘,VU(.T))dZU;

(c) the expansion
W*(z,1d+G) = Q*(x,G) + o(|G]*)

holds for almost every € D and forallG € M;
(d) the following diagram commutes

1
gh,s <

@) |®

ghom,h — ghom
(4)

wheregGy, . and Gnom., denote the functionals frofi} (D) to [0, +oo] defined as

1 1
Onelg) = ﬁ@(@ld + hg), Ghom,h(9) == ﬁfhom(wd + hg);

and (1),(4), and (2),(3) meakt-convergence i} (D) with respect to the strong topol-
ogy of L(D) ash — 0 ande — 0, respectively. Moreover, the familiég.) and (&)
are equi-coercive w. r. t. weak convergenceip(D).

Remark2. Due to the compactness of integral functionals with stangeagcowth conditions
w. r. t. I'(LP)-convergence (see for instand}98, Theorem 12.5]), the assumptionsBnare
always satisfied up to extraction of a subsequence.

Remark3. If (WW,) satisfies a growth condition from below of orger 2 (uniformly in €) then

1. = +oo on H'(D) \ W'?(D) and it is natural to study the restricted functionl§ ..

w. r. t. the strong topology ii?(D). In particular,Z.|y1»py is sequentially weakly lower
semicontinuous ifV1?(D) if and only if it is lower semicontinuous w. r. t. strong conver-
gence inLP(D). Note that due to conditiony2), (W;) generically satisfies a uniform growth
condition from below of ordep = 2.
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Remark4. As in [MN], in Theorem2.1 part (d), we can replace the function spaé&(D) by
the space

A, :={geH (D) : g=00nv},
wherey denotes a closed subset with positived — 1-dimensional Hausdorff measure, and
regular enough so that, N W1>°(D) is dense inA, (see MN, Proof of Proposition 1] and
[DMNPOZ for details).

In finite elasticity it is desirable to consider energy densities with the physétedvior
W(z,F)=+oco forall F e M?%with det F < 0.

In order to allow such energy densities we have to droptgeowth condition from above. The
following theorem shows that for unbounded energy densities a lindanzatement holds as
well — although in that case homogenization is an open problem.

Theorem 2.2. Suppose that the domainis C. Let(1¥.) denote a family of admissible energy
densities fromD to W, ,. Suppose that there exist> 2, and homogeneous-in-space energy
densitieVy,om : M¢ — [0, +-00] and Quom : M¢ — R, such that ag — 0

(i) the energy functionalg. |y1.»py defined in(1) I'(L?)-converge to
Thom : WHP(D) — [0, +00], u / Whom (Vu(z)) dz.
D

(i) the quadratic energy functional& defined in(2) I'(L?)-converge tyon, : H(D) —
[0, 4+00) given by

Enom © H' (D) — R, U /D Qnom (Vu(x)) dz.

If the homogenized density,,,, satisfies for all’ € M? the asymptotic formula

(3) Whom(F) = lim g inf{Ze(pp +v) : v € W, ?(D)},

thenWi,, admits a quadratic expansion &t given byQpom, i-€. for all G € M¢, there holds
(4) Whom (Id +G) = Qnom (G) + o(|G|?).

Remarkb. The quadratic expansiod) of W, does not depend on the exponent for which
theI'(LP)-convergence holds.

Theoremg.1 & 2.2follow from a result which is somewhat unrelated to homogenization, and
establishes a quadratic expansioiidator the asymptotic formula

(5) Wp(F) := lim inf  Z.(pr+0)
=0 vewy?(D)

if it exists.

Proposition 2.3. Let2 < p < +oo, let the domainD be C', and let(W.) be a family of
admissible energy densities frabnto W, ,. Suppose that the lim{b) exists in0, 4-oco] (where
7. is as in(1) ) for all F € M¢?, and that the functionals. defined in(2) T'(L?)-converge to
a functional€* on H'(D). Then there exist a constant > 0 that only depends on and a
modulus of approximatiop that additionally depends gmand on the geometry @, such that
ﬁWD € Wagpl and
(Wp(Id+G) — inf E*(pa +v)|
vEH}(D)
G2

(6) < [DI(IG])

for all G € M<.
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Remark6. In the proof of Propositio2.3we makep’ explicit:

44-3p

@ ph) = cmax{p(h+JH)(1+a+p(h))+h4<2“+m(1+a+p(h))w+m,

h2 4 p(h + VR)(1 + h?) }

where the constants, i > 0 only depend orx and on the geometry ab, i.e. C andu are
invariant under dilation, rotation, and translation/of Note that forh < 1, (7) reduces to

p(h) ~ C(p(Vh) + hizm).

Remark?7. The assumption od. is no restriction. In particular, by the compactnessG6f
convergence (see for instanci94 Section 12.2]), we can always extract a subsequence of
(¢) to which Propositior2.3applies.

In the proof of Propositio2.3we will make use of the following higher integrability and Lips-
chitz truncation result for minimizers of quadratic functionals:

Proposition 2.4. Leta > 0, G € M?, and@ : D — Q, be a measurable map. Set
Eq: HY(D) — [0, 400), Ealg) = / Q(z,G + Vg)dz.
D

(@) The functionak admits a unique minimizer € H} (D), characterized by the Euler-
Lagrange equation

/ (L(z)(G+ Vg*, Vy)dz =0 forall p € H}(D)
D

wherellL € L>=(D, T¢, ) is defined by

Qz, A+ B) - Q(z,A) — Q(z, B)

(L(@)A, B) = ;

forall A, B € M? and almost every ¢ D.
(b) (Meyers’ estimate). If in addition the domain is C!, then there exists a Meyers’
exponenj; > 0 and a positive constart’ such that

IV 248, ) < CIDI |G

The exponent and the constant’ only depend o and on the geometry of the domain
D.

(c) (Lipschitz truncation). Lek > 0. If in addition the domairD is C, then there exists a
mapg € W, "> (D) such that

|Vg(z)] <A  forae.z e D,
Ea(9) — Ealg") < CAH|D||G]**,

wherey is a Meyers’ exponent, and the constaiitonly depends om and on the
geometry of the domaiP (in particular, it is independent of, G, and u1).

The first statement of Propositidh4 is standard and relies on Korn’s inequality. The second
statement is a higher integrability result for gradients in linear elasticity, aggrio [SW94.

This is the only place where we use the regularity of the domain. The third statéessen-
tially a combination of Meyers’ estimate and of a Lipschitz truncation argument frJMO02.

The constantg” and . only depend on the geometry of the domain in the sense that they can
be chosen invariant under translation, rotation, and dilation of the domdie.pfioof of this
statement is deferred to the appendix.
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Proof of Propositior2.3. We divide the proof in three steps. In the first step, we introduce a
guadratic form associated witlyp. The last two steps are dedicated to the proobypfoper.

Stepl. Definition of the quadratic forr@ p.

By the assumptions ol¥/; the associated quadratic for@. is a measurable map from to

Qs , Where the > 0 only depends om. Remarkl and Korn’s inequality onD thus imply

that the quadratic energi€s are equi-coercive functionals di} (D), so that the associated
elliptic operators are compact w. .r.(-convergence (see for instanc¥KpP94 Section 12.2]).

In particular, this yield§-convergence of the energy functionals to an integral functional (see
for instance GMT93, Subsection 4.4]): There exigt’ depending only oy, and a measur-
able mapQ* from D to Q4 such that. T'(L?)-converges (up to extraction) to the functional
&* . HY(D) — R characterized by

(8) E urs / Q*(z, Vu(z)) dz.
D
This shows thaE* is a quadratic integral functional.
We are now in position to define the mély, : M?¢ — [0, +-00) as

Qp(G):= inf & (pg+).
vEHJ (D)
Because of the representatid),(the mapQp is a quadratic form of clas€ for a positive
constantx depending only oiav.

We claim thatl%WD is of classW,/ » wherey' is defined by 7). It is clear thatﬁWD is
frame indifferent. It also satisfies a property of type2) as an application ofIN, Lemma 2]
(its proof actually does not use periodicity, but only the asymptotic fornfi))a The expansion
property ¥W3) is equivalent to §). As in [MN] we notice that it is sufficient to prove the

following: For all families(G},) € R with |G,| = 1, we have:

(lower bound) %WD(Id +hGh) > Qp(Gh) — ‘%p’(h),
1
(upper bound) ﬁWD(Id +hGh) < Qp(Ghr) + ‘%p’(h).

We prove both statements separately.

Step2. Proof of the lower bound.
By definition of W (see b)), for all h > 0,

0 < Wp(Id+hGp) < limsup/ W (z,Id +hGp).
e—0 D

From W3), the fact that). (z, G) < a |G|* for a.e.z € D, and the assumptioii’},| = 1, we
infer that

1
) 0 < s5Wp(d+hGr) < [Dl(a+ p(h)).
By definition of W, there exists a sequente, .) € W'?(D) with the properties
(10) Une — Pla+ha, € Wo(D) € HY(D),
(12) lirr(l)Ig(uhﬁ) = WD(Id —i—hGh).
e—

We then define the following sequence of scaled displacements

_ Uhe — PId +hGy,
Ghe = -,
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By constructiory, . € H (D) and the uniform non-degeneracy assumptid2) on W yields
the estimate

1 , 1
w2/ dist*(Id +h (G}, + Vgne(2)),S0(d)) do < o5 Te(une)-

The quantitative geometric rigidity estimate (s€8NM02 Theorem 3.1]) implies the existence
of a rotationR), . € SO(d) such that

1 . 1d _Rh,s
h? N h
Except otherwise stated; denotes a positive constant that may vary from line to line, but can
be chosen only depending enand on the geometry db. Becausey, . vanishes odD, an
integration by parts shows th&tg, . and the (constant) matrik}, . are orthogonal w. r. t. the
inner product inL?(D; M%):

||Fh,a + vgh,a||i2(D) <C—=ZI. (uh,a) with Fh@ : + Gp,.

1 Fhe + Vanelzzpy = IDIFnel® + Vanelzzm) = IV9helZ2(p)-
Hence, the rigidity estimate9), and (1) yield
(12) hmsuPHth,aHiz(D) < C|D[(a+p(h)).
e—0
Next, in order to make use of the quadratic expansionM3)( we focus on the set where

h(Gp, + V) is bounded. To this end, we lgt, . denote the indicator function of the set
Xpe:={x €D :|Vgn.| <h'/?}, and note that

1 1
ﬁIE(uh’E) :h2/ We(z,Id +h(Gp, + Vgp(x))) dz
D
1
Zﬁ Xh.e(@)We(z,Id+h(Gh + Vgne(z))) d
D

1
5 | Welw 1) G + T () da
D

by the non-negativity ofV, and the fact thatV, vanishes ald. We then write the r. h. s. in the
form

1
= /D We(@, 1d +hyne (2) (Gh + Vgne(@))) de

= /D <QE(:E7 Xh,s(x)(Gh + v.gh,(:‘(x)) ) + rh,€($)> dl‘,
where, using assumptiok(3), the remainder,, . satisfies for al: € X}, .

the(@)| = |Gh+ Vgne()
" (We(z,Id +h(Gh + Vg e())) — Qc(z, M(Gh + Vgne(2)))]
h2|Gh + Vgne(x)|?

p(h|Gh| + V1) |G, + Vane(a)[?
= p(h+Vh)|Gh+ Vagn(z)]*,

andry .(z) = 0fora.e.x € D\ Xj .. Thus, we conclude that

1
(13) ﬁza(uh,s) > /D Q- (367 Xh,e(Gn + Vgh,e)) dz — p(h+Vh) |Gy + Vgh,e”%2(p) .
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Appealing to 0.2) and usingGy| = 1, (13) turns into

(14) hmmf h2 T (une)

> lim inf / Qe (& Xne(Gh + Vgne)) dz — C D] p(Vh + h)(1 + o+ p(h)).
€ D

Next, we wish to replace the integral term on the r. h. s1dj by the infimum of€. on the set

va, + H(D). By coercivity of€. on this set, this infimum problem is well-posed, and there

existsgy, . € H{ (D) such thaty, . := ¢¢, + g5, - satisfies

(15) E(vpe) = /DQg(x,Vvh’E(a:))dx = inf / Qe(z, G + Vo(z)) da.

veH (D)

Sinceé&. is equi-coercive orpg, + H} (D), andé. I'(L?)-converges t&€* on H!(D), thel-
limit is coercive, and the sequence of minima converges to the minimufi.ef on g, +
HZ (D). This yields
(16) lim & (vpe) = inf E*(v) = Qp(Gh).

e—0 vepa, +H(D)

We shall actually prove that there exigts> 0 depending only omx and on the geometry ab
such that

@) timipt [ ((Qu(2.20,:(G + Vo)) = Qulo. Vo @) da

44-3u

> —C|DIRT 0 (1 + a + p(h)) T,
Combined with (1), (14) and (6), (17) yields the desired lower bound.
The proof of (L7) is the heart of the matter. L&t € L>°(D, Tgym) denote the uniqgue symmet-
ric 4th order tensor associated with, i.e.
Q:(x,A+ B) — Q:(x,A) — Q:(x, B)
2
forall A,B € M? and a.e.z € D. Note that(L.) is uniformly bounded inL>*(D, T )
because the operator norm@f (z, -) on M is bounded by for all ¢ > 0 and a.e.x € D.
SinceQ.(z, -) is a non-negative quadratic form, the inequality
Qz’:‘(w7 A) - Qs(% B) >2 <]La<x)(A - B)? B>

holds for all A, B € M? and a.e.z € D. We use this estimate witd = y,.(z)(G), +
Vane(x)) andB = Vuy, (), which yields by integration ove:

(18) (Le(2)A, B) =

(19) /D (Qs(xv Xhe(Gr 4+ Vgne)(z)) — Qe(z, Vvh,e(l“))) dz

> 9 /D (Le (xte(Gh + Vane) — Vune ), Vone) da.
Along the lines of MN, Proof of Theorem 1], we rewrite ther. h. s. as
/D (Le(Xn,e(Gh + Vghe) = Ve ), Vope) do = 1,515) ;(125)7
with
1) = [ LGt Vone = Vono), Vo) da,

[;(LQE) = / (Le(1 = Xne)(Gh 4+ Vgne), Vupe) da.
D
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Becausd}(fg is the weak form of the Euler-Lagrange equation of the minimization problem in
(15) with admissible test-functiope, + gn. — vhe € HJ(D), the first termI}(LlE) vanishes
identically. We now deal with the second term, and claim that

44-3p

(20) limsup |I\2] < C|DIh T (1+ a + p(h)) &0,
e—0 ’

Combined with {9) andI,gl) = 0, this implies the desired estimat&7§. To prove @0), we

&
apply the higher integrability result of Propositi@w part (b) toVu, .. In particular, there
exists a Meyers’ exponept > 0 and a positive constait such that

(21) / Vune[*" dz < C|D||Ga*™* = C|D|.
D

By Cauchy-Schwarz’ and &lder’s inequalities, we may estimalgs) by

12| < ClIGH + gl
(22) < C|Gh+ Vgne|

L2(D) H(l - Xh,e)vvh,8||L2(D)

LQ(D) Hl — Xh,a’ La(D) HV’U]%EHLQJ”L(D)

with ¢ := 2284 € (1, 00). By definition of . there holds

1= Xne(@)] < VR = x02(2)) [Vgne(2)] < VA |Vgpe(2)]

fora.e.x € D, so that

/ 11— xnel? dz :/ 11— xhe| do < \/71/ |Vgne| da.
D D D

Hence, by Cauchy-Schwarz’ inequality,
LA ‘ T 1T @)
1 _Xh,EHLq(D) < Ch? |D|? th,EHHI(D) = C|D|1C+m h1e+m th,sHHl(D)’
which, combined with12), (21) & (22), proves 20). This concludes the proof of the lower
bound.

Step3. Proof of the upper bound.

As usual, the proof of the upper bound relies on an explicit construcdisa. first step we apply

the Lipschitz truncation argument of Propositidr part (c): There exists a doubly indexed

sequencégy, .) C Hg (D) and some: > 0 (only depending om and the geometry ab) such

that
ga(SDGh + gh,e) - QD(Gh) < C'hQM‘D’.

Here and below’ denotes a positive constant that may vary from line to line, but only depend
on« and on the geometry db.

Since for alle > 0 the quadratic forng. is Korn-elliptic with some constant’ depending only
on «, the second property ir28) and Poinca’s inequality imply that the sequen¢e, . ). is
bounded inH!(D). Using in addition Step 1 in the form 6@ (G},) < &|D], this yields the
estimate
(24) G+ Vgnellizpy < C(1+h*)|D].
We set

Uhe = PIA+hG), T NGhe-
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By definition we have

(25) Wp(Id+hGp) = lim { inf  Z.(p1d+na, +v) } < liminf 7. (up )
e—0 veHé(D) e—0

= liminf/ We(z,Id +h(Gp, + Vgpe(x))) dz.
D

e—0

As in the proof of the lower bound, we expand ther. h. s. as

(26) /D Wa(xvld +h(Gh+v9h,€(x))) dr = h2 /D (Q&(xa Gh+Vgh,€(x))+rh,a(x)> dx,

where, using assumptiol{3) and property Z3), the remainder is estimated by

[ el do < o+ VB [Gr+ Vol
D
The combination ofZ5), (26), (24), and the second property i&3) then yields

1 .. .
ﬁWD(Id +hGp) < liminf & (g, + gne) + limsup p(h + \/ﬁ) |G + Vgh76||ig(D)
e—0 e—0

< Qp(Gp) +C|D| (h2“ +p(h + VR)(1 + h2“)> .
This proves the upper bound, and concludes the proof of the propositio d
Theorem2.2is an immediate consequence Proposiidh

Proof of Theoren2.2. By assumption th&'-limits 7., and&,.m are integral functionals with
homogeneous integrandi®,,,, and Qnom, respectively. Thus, the expansid) (n Proposi-
tion 2.3 simplifies to

inf / Wiom(Id +G + Vo(@))dz = inf / Qhom (G + Vo(2)) dz + of|G2]).
veW,?(D) JD veHY(D) Jp

The functionalZ,.,, is (as al'(LP)-limit) lower semicontinuous w. r. t. strong convergence in
LP(D). Hence Wi, is WP-quasiconvex, and

inf / Whom(Id +G + Vo(2)) dz = | D| Wom (Id +G).
veW, ?(D) JD

By convexity ofQunom, We also have

inf /Qhom(G+Vv(x))dx:]D\Qhom(G).
D

’UEH(%(D)
This proves4). d

The proof of Theoren2.1relies on the quantitative version of Propositiai3 (see Remari6)
and on a localization argument allowed by ghhgrowth condition.

Proof of Theoren2.1 We split the proof into four steps.

Stepl. Localization of the energy..
Let B denote the collection of all open balls contained’inand define for allB € B and all
u € WP(B) the localized functionals

Z.(u; B) ::/BWS(:U,VU(J;))dx and  Z%(u; B) ::/BW*(J:,Vu(x))dx.

SincelV, satisfies the standagdgrowth conditions]'-convergence is local (seBI[D98, Theo-
rem 12.5]), and for alB € B the functional<. (-; B) I'(LP)-converge ta*(-; B).
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Step2. Localization of€..
We consider a subsequence (not relabeled) suctethatL?)-converges to a functiondl* on
H'(D). As in Step 1 of the proof of Propositi¢h3, £* is of the form

£*(g) = /D Q" (. V() da

for some measurable map* from D to 9., wherea” only depends oa.. Moreover, for all
B € B the localized functionals

E-(g; B) ::/BQg(:U,Vg(m))dw
['(L?)-converge orH!(B) to

E*(g; B) ::/BQ*(Q:,Vg(m))dx.

Step3. Characterization af*.
For all B € BandG € M? we define

(@)= it [ Q.G+ Volw)d
geH;(B) JB

Wp(G) ;== inf / W*(z, G+ Vu(z)) dz.
veW, P (B) /B

SinceZ*(-; B) is theI'(LP)-limit of the sequencé.(-; B), the functionalZ*(-; B) is lower

semicontinuous and its energy dendity* satisfies g-growth condition from below. Hence,

infima converge, and we have:

27) Wg(G) = lim { inf  Z.(pg +v; B) } )

e—0 ’UGWOI’:D(B)
which proves thatg) is well-defined. Sincé3 € B is of classC', we can apply Proposition.3
to each of the functional®. (-; B); and since eacl3 € B can be obtained by translation and
dilation of the unit ball inR¢, we deduce that there exist a constahtand a modulus of ap-
proximationy’ (both only depending oa, and onp), such that the following two properties are
fulfilled: For all B € B andG € M¢ there holds

1

28 — >
( ) |B|WB€Wa,p7

(29) EWB(Id+G) - £Qs(G)| < (GG

In particular, 9) holds for all ballsB(x,r) with centerz € D and sufficiently small radius
r > 0. Because the I. h. s. 029) is independent of andr, and since for almost evenyc D

lim mwBW) (Id+G) = W*(z,1d +G),

r—0

}1—H>(1] mQB(m,r) (Id +G) = Q*(ZE, G)>
(see e.g.[DMM864)), the estimate
(30) W (2,1 +G) — Q*(z,G)| < /'(|G) |G

holds for allG € M? and almost every: € D. On the one hand, this implies thlf* is of
classwg,’p,. On the other hand, this proves tliat can be characterized by

Q*(z,q) = llzli% h2W (z,Id+hG).
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The limit on the r. h. s. does not depend on the extraction of Step 2, so ¢hanmtine sequence
& T(L?)-converges t&*.

Step4. Commutation diagram.
The proof of the diagram, which closely follomsIN, Section 6], is left to the reader. a

3. APPLICATION TO STOCHASTIC HOMOGENIZATION

Let us first recall a standard stochastic homogenization result (seeigiveabcontribution
[DMM86b] in the convex case, and its generalizatitdM94] to the quasiconvex case).

Theorem 3.1.Let(Q2, F,P) be a probability space;r. ) g« be a strongly continuous measure-
preserving ergodic translation group, and gt : R? x M¢ x Q — R* be a map such that

(i) W is Lebesgue-measurable in its first variable,
(i) W is F-measurable in its third variable,
(iiiy W(z,-,w) € W for P-almost every € (2, almost every: € R? and some < (1, 00),
(iv) W is stationary in the sense that fdralmost every € ), almost every: € R?, every
F € M and every: € R?

W(x+ 2z, Fw) = W(z, F,T,w).

Then forP-almost everys € Q, the integral functional. (w) : W'?(D) — R given for all
e > 0 by

() (u) = /D W(z/e, Vu(x),w) dz

I'(LP)-converges, as vanishes, to the integral functiond,.,,, : W'?(D) — R™ given by

Ihom(u) = /DWhom(VU(CC))dSU,

where the deterministic homogeneous-in-space energy dégity is quasiconvex, satisfies
(W4) and the asymptotic formula

(31) Whyom(F) = lim }%dinf{ o W (z, F 4+ Vé(z),w)dz, ¢ € WyP((0, R)d)}

R—o00

for all ¥ € M? andP-almost every € (.
The combination of Theorents2 & 3.1yields

Theorem 3.2. Let W and Wy, be as in Theorem3.1 and assume in addition that for some
p > 2 and a modulus of approximatign

W(l’, '7(*)) € Wg,p

for almost every: € R? andP-almost everys € €. Let@Q denote the quadratic term of the
Taylor expansion ofi” at identity. Then

(a) the density¥},o., is of classwg,vp,, with o’ andp’ as in Theoren2.1;
(b) the energy functionals

& (w): HY(D) = R™, u / Qe(z/e, Vu(z),w) dx
D
I'(L?)-converge fofP-almost every € Q to

Ehom : HY(D) - R,  uw— /D Qnom (Vu(z)) dz
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whereQom IS the deterministic homogeneous-in-space quadratic energy density that
determined by the expansion

VG € M4 : Wiom(Id+G) = Qpom(G) + o(|G[?);

(c) ForP-almost everyw € () the following diagram commutes

Gro(w) — s £ (w)

®)| |®

ghom,h —_— ghom
(4)

wheregGy, - (w) and Gnom,, denote the functionals froi} (D) to [0, +oc] defined as

Ghe(w)(g) == % /[)W(CU/E,IC]. —i—th(x),w) dx

1
ghom,h(g) = ﬁ A Whom(Id +hv9<$)) dx

and (1),(4), and (2),(3) meakt-convergence i (D) with respect to the strong topol-
ogy of L?(D) ash — 0 ande — 0, respectively. Moreover, the famili€Z. (w))
and (€-(w)) are equi-coercive w. . t. weak convergencelp (D) (for P-almost every
w € Q).

Proof. Let Z. (w) andZyom (w) be defined as in Theoretl ThenZ.(w) I'(L?)-converges to
Thom(w) for P-almost everyw € Q. Now, the statement is a direct consequence of The@rém
which applies fotP-almost everyw € €. d

Corollary 3.3. Within the notation and assumptions of Theof®2) we also have

R—o0

(32 Quon(C) = Jim ];inf{ [ Qw6+ To.w s ¢eH&<<o,R>d>}
(0,R)¢

for all G € M¢, and forP-almost everyw € ), where

.. W (y,Id+hG,w)
Qly,G,w) := llin;gf 72 :

Proof. Once we know that. I'(L?)-converges tc,.m, the uniform coercivity of€. and
Enhom iMplies the convergence of the infima, which yields the desired forn8#pa (TheT'-
convergence result is either a consequence of The@r2mpart (b), or of theG-convergence
of the associated elliptic operator proved for instancel94 Section 12.3] (by definition,
Q(y, G,w) is stationary for the ergodic translation group). a

Remarlk8. As can be easily seen, Theor@=2 holds as well in the almost-periodic case (see for
instance Bra84 or [BD98, Section 17.2]) and in variants of the stochastic case (see for instance
[Glo0g).

4. LOCALITY OF THE I'-CLOSURE AT IDENTITY

This section is devoted to the locality of tieclosure inW? , at identity. Givenk homo-
geneous energy densiti€®; }ic1 k) € WK ,, we are interested in characterizing the set of
mapsW*(z, -) that can be reached as energy densities(éf )-limits Z* : Wi?(D) — R

(33) u— I (u) = /DW*(m,Vu(x))dx,
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of energy functionalg, : Wi?(D) — R of the form
k
(34) w s Tyn(u) = / > Wi(Vu(z))xi (z) da
D=1

asn goes to infinity. Abovex™ € L>(D,{0,1}*) denotes a vector field witEf:1 =1
and satisfieg™ —* 6 weakly-* in L>(D, [0, 1]¥). The components of” can be seen as the
characteristic functions of thephases. Note that also in the limit we h@éczl 0; = 1.

The I'-closure of{W;};c(1,... ) is said to be local if the set of such integrands (z, -) for
almost everyr € D coincides with the closure for the pointwise convergence of the set of
energy densitie$ly,,,, obtained by periodic homogenization of mixtures{®¥; } (1, x) in

the proportions{6;(z)}c(1,... k- TO turn this into a rigorous statement, let us recall some
definitions related to periodic homogenization.

Definition 4 (see Mil87] and [Bra8g). Let1 < p < oo, andW be aU = (0,1)¢ periodic,
measurable density fro? to W%. The homogenized energy density associated Witlis
denoted byWom : M? — R and characterized by

R—o0

1
(35)  Whom(F) := lim R inf{ o Wy, F + Vu(y))dy,u € Wol’p((O,R)d)} )

We are now in position to define the set of periodic homogenized energjtidsn

Definition5. Let1 < p < oo, {Wi}ieq1,..ky € Wh, andd € [0,1]" be such thap 6, = 1.
We define the set of periodic homogenized energy densities associatefWith; };c (1 . 1}
as

Po = {(Wx)hom :M? = R : Iy € L2(R?, {0, 1}*) such that

x is U-periodic with/ x: dy = 0;
U

k
and(Wy )hom is associated Wit : (y, F') — > Wi(F)xi(y) through (35)},
=1

and its closure for the pointwise convergence by
Go = {W*:M? 5 R : I(Wyn)hom € Py, (Wyn)hom — W* pointwise}.

The definition of locality of thd -closure now reads:

is local if and only if for every sequenog® € L>°(D,{0,1}*) with Zle X = 1 and such
that
— X" —* § weakly-* in L>(D, [0, 1]%),
— the functionalZ,» : W?(D) — R defined in 84) I'(L?)-converges to the functional
T* : WiP(D) — R defined in 83),
one has
W*(z,-) € Gy(a)

for almost everyr € D.
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If the k& energy densitie$\W; },c(1,... xy are convex functions, then the associafedosure is
local (see for instancéBB09, Theorem 5.1]). In the case of quasiconvex non-convex functions,
the locality (or non-locality) of thd'-closure is an open problem. In the specific case when
W; e Wh ,foralli € {1,...,k}, Theorem2.2 allows us to prove that thE-closure is “local

at identity”. This notion is made precise by the following two definitions.

Definition7. Let2 < p < oo, {Wi}ieq1, 4 € WE,, andé € [0,1]F such thafy"F , 6; = 1.
We define the set of periodic homogenized energy densities associatefWith; };c (1. 1}
at identity as

Péd = {W* ‘M? 5 R : F(Wyx)hom € Po

such than*(Id +G) — (Wy)hom (Id +G)} = o(]G|2)},
and its closure:

G = {W* : M? — R : there exists a sequentd’,» )nom € Py

such thafWw*(Id +G) — lim (Wy» )hom (Id +G)| = o(]G|2)}.

Definition8. Let2 < p < oo, {Wi}icq1,..k} € WE ,. We say that th&-closure o Witicq1,... i}
is local at identity if and only if for every sequeng& ¢ L>(D, {0, 1}*) with Zle XP=1
and such that

— X" —* 6 weakly-* in L>=(D, [0, 1]%),

— the functionalZ,» : WP(D) — R defined in 84) I'(L?)-converges to the functional

7* : WP(D) — R defined in 83),
one has
W*(x,) € Gl

for almost everyr € D.

The above definition is a weakened version of the locality oflthdosure of Definition6
obtained by restricting the property of approximation by periodic homogémizergy densities
to a neighborhood of identity via a Taylor expansion. We have:

Theorem 4.1.Let2 < p < co and{W;};cq1,.. k1 € WA, then thel-closure of{ Wi} i1 iy
is local at identity.

Proof. By [BB09, Theorem 3.5], it is enough to prove the locality property in the so-called
homogeneous case, that is with a repartition functitre L>°(D, {0, 1}*) such that

— x™ weakly-* converges to a constant functiéim L> (D, [0, 1]¥),
— the functionalZ,» : WP(D) — R defined in 84) I'(L?)-converges to the functional
7* : WhP(D) — R defined in 83), wherelV* does not depend on the space variable.

Let&n : HY(D) — R denote the quadratic energy functional associated Hjth that is

k
En (1) = /D S Qi (Vule)x(x) da
=1



18 ANTOINE GLORIA AND STEFAN NEUKAMM

whereQ); € 9, denotes the quadratic form associated Withthrough V3). We then apply
Theorem2.1and deduce that. I'(L?)-converges to

E*: HYD) — [0, 4+00), E* (u) ::/ Q*(Vu(x)) dz,
D

where@* € Q4 for somea > 0, and is characterized by the expansion
(36) W*(1d+G) = Q*(G) + o(|G|?).

Next, we appeal to the locality of tHéclosure for convex linear problems. In particular, there
exists al/-periodic sequencg” € L (R?, {0, 1}*) satisfying [, x}(y) dy = 0; foralln € N
and alli € {1,---,k}, and such that the homogenized quadratic funct@ﬁgfIl associated
with the periodic quadratic energy densit@s : R? x M?¢ — R

k
Q": (y,G) = Y QiG)X}(y)
=1
approximate* in the sense that for afl € M?,
(37) lim Qfn(G) = Q(G).

We are now in position to prove the claim. To this aim, we define a sequenceriotiipe
integrands?™ : RY x M? — R as

k
W™ : (y,G) ZWi(G)X?(y)-

With this sequence of periodic integrands we associate a sequence ajdwizesl integrands
wp ., through @5) with W™ in place ofl¥’. Combined with standard periodic homogenization
results (see for instanc®1f1l87], [Bra8q or [BD98, Section 14.2]), Theorer.1then shows
that

’Wfllom(ld +G) — Qﬁom(G”

< (G
e < 7 (G,
and the theorem follows fron86), (37), and the uniformity of the validity of the Taylor expan-
sion since for alk, W}, andW* are of class\?, » for the same functiop’. 0
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APPENDIXA. PROOF OFPROPOSITIONZ2.4

The proof is divided in three steps. In the first two steps we prove thersatdor a fixed
domainD by combining Meyers’ estimate and the Lipschitz truncation argumeriNp2
Proposition A.3]. We then prove in the third step that the constants can bercbaly depend-
ing on« and on the geometry ap.

Stepl. Control of energy differences.
Letg* € HE(D) denote the unique minimizer of the functior&} on H{ (D). We claim that
for all g € H}(D) there holds

(38) / Qe G + Vo) de — / Q(z,G + V") dz < a||Vg - Vg [z
D D
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To prove this we first expand the formula f@(x, Vg — Vg¢*) (use (8) with A = G + Vg*
andB = Vg — Vg*):
Q(z,G+Vyg) — Q(z,G+Vg*) = Q(z,Vg — Vg*) + (L(z)(G + Vg*),Vg — Vg*).

We integrate this identity oveb and note that the second term on the r. h. s. vanishes as the
first variation of the minimization problem characterizigig Thus, @8) follows from the fact
thatQ(z,-) € Q, fora.e.xz € D.

Step2. Proof of the claim for a fixed domain.
We assert that there exiét > 0 andp > 0 such that for all\ > 0 there exists a map <
W, > (D) that satisfies

(39) 9l () < A,
(40) Vg — Vg [220m) < CAH Vg 2L,

We construct the map as follows. By Meyers’ estimate (see Propo§1t4kpart (b)), there exist
C > 0 andy > 0 depending only o andD such that for allc' € M?,

IVg* [ 734 ) < CIDIIGIH.

L2+1(D

Hence, FIM02 Proposition A.2] yields a map € W01’°°(D) that satisfies39), and the esti-
mate

4) DA€ o VG . Dri={weD:g(@) £4°@)}

( \2tn

for someC' independent o and g*. Let us prove thay also satisfies40). From Holder's
inequality with exponent§*3£, 211), we have

2
PR

IVg = Vg lli20) = /D Vg — Vg*[? dz < |Dy|27 (/D Vg~ Vgl d:c>
A
On the one hand, the combination 88f and @1) yields

/ Vg — Vg* "™ dz = / Vg — Vg* "™ da
D Dy

<C </ Vg dx—i—/ IVg*|*TH d:v)
Dy D

<c <|DA|A2+”+ [ vgpe dx)
D

<C ||v9*||iJ2rfu(D) :
On the other hand4() also implies
(2
DA < OA I 9| T = OAH Vg | )

Estimate 89) follows from these last three inequalities.

Step3. Dependence of the constantsion

Step 2 provides a function satisfying the desired properties with some constangd C
which only depend om and the domairD. Let us quickly show that both constants can be
chosen invariant under dilations, translations, and rotatiois dfssume thab is a translated,
rotated, and dilated version of some reference domgini.e. D := 7 + rRDg with 7 € R¢,

R € SO(d), andr > 0. We shall prove that’ andy only depend orx and Dy. To this end we
set

go(x) :== %g* (t+rRz) and Qo(z,G):=Q (1 +rRz,G).
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Thengg is the unique minimizer of

Hi(Do) 3 go—~ | Qolz, G+ Vgo) da.
Dy

For all A > 0, Step 2 yields a mag, < W(}"’O(DO) with

Vgo(z)] < A fora.e.xz € Dy,

Qo(w,G + Vgo(z))de — | Qo(w,G + Vgi(x))dz < CoA™ | Dol [GI*T,
Do DO

wherepu andCy only depend o and Dy. A simple change of variables shows that the map

olo) = ran (T

satisfies 89) & (40) with y = o andC = Cy.
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