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ABSTRACT. In this note we prove under some general assumptions on elastic energy densities
(namely, frame indifference, minimality at identity, non-degeneracy and existence of a qua-
dratic expansion at identity) that homogenization and linearization commute at identity. This
generalizes a recent result by S. Müller and the second author by dropping their assumption
of periodicity. As a first application, we extend theirΓ-convergence commutation diagram for
linearization and homogenization to the stochastic setting under standard growth conditions. As
a second application, we prove that theΓ-closure is local at identity for this class of energy
densities.
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1. INTRODUCTION

This note is devoted to the study of the commutability of linearization and homogenization
at identity in finite elasticity. We consider an open bounded Lipschitz domainD ⊂ R

d, and a
family of integral functionals

Iε : H1(D) → [0,+∞], u 7→
∫

D
Wε(x,∇u(x)) dx

whereWε : D × M
d → [0,+∞] is a Borel function. As it is common in finite elasticity,

we assume thatWε is frame indifferent and minimal at identity. Moreover, we assume that
Wε is non-degenerate and admits a quadratic expansion at identity with quadratictermQε; as
a consequence, in situations when the deformation is close to a rigid-body motion, say when
|∇u− Id | ∼ h ≪ 1, we can accurately describe the functionalIε (after scaling byh−2) by the
quadratic functional

Eε : H1(D) → [0,+∞], g 7→
∫

D
Qε(x,∇g(x)) dx with g(x) := h−1(u(x)− x).

Date: November 30, 2010.
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2 ANTOINE GLORIA AND STEFAN NEUKAMM

SinceQε(·, F ) genuinely only depends on the symmetric part of the strain gradientF , the
energyEε corresponds to linear elasticity. On the other hand, ifIε has some specific struc-
ture in space rescaled byε (think of periodicity for instance), we may expect a homogeniza-
tion property to hold asε vanishes, which justifies to replace the nonlinear oscillating-in-
space energy density(x, F ) 7→ Wε(x, F ) by a nonlinear homogeneous-in-space energy density
F 7→ Whom(F ) (or more generally by an energy density(x, F ) 7→ W ∗(x, F ) whose oscilla-
tions inx are independent ofε).

In this paper, we address the commutability of both limits (inh andε), and prove that they
indeed commute in the following sense: The quadratic expansion of the homogenized energy
Whom (resp. W ∗) at identity coincides with the homogenization of the quadratic expansion
Qε of the heterogeneous energy density at identity. In Theorem2.1 we study functionals
with standard growth and prove that the commutability holds (both, on the level of densities
and on the level of the functionals), providedIε can be homogenized in the sense thatIε
Γ(L2)-converges to a functional of the form

u 7→
∫

D
W ∗(x,∇u) dx.

In Theorem2.2we study unbounded energies and show that the commutability still holds pro-
vided bothIε andEε can be homogenized. This theorem covers in particular the case when
Wε(x, F ) = +∞ if detF ≤ 0 — as it is desirable in finite elasticity. Our results general-
ize a recent work by S. M̈uller and the second author in [MN] (see also [Neu10]) by relaxing
the periodicity assumption onWε (as well as the growth condition from above). In [MN] the
central object in the analysis is a multi-cell homogenization formula that allows in the periodic
setting to compute the homogenized densityWhom by solving a sequence of periodic mini-
mization problems on cubic domains invadingRd. In [Neu10] the commutability of homog-
enization and linearization (solely as aΓ-convergence statement on the level of the energies)
has been extended in the periodic case to energy densities without growth condition from above
by extensive use of two-scale convergence methods. In the general situation considered in the
present contribution, both the multi-cell homogenization formula and two-scaleconvergence
approaches do not apply. Instead, we study the asymptotic formula

WD(F ) := lim
ε→0

{
inf

v∈H1
0 (D)

Iε(ϕF + v)

}

which is well defined wheneverIε Γ-converges and is equi-coercive. In Proposition2.3 we
establish a quadratic expansion at identity forWD — which is the key insight in our analysis.

As a first application of Theorem2.1, we show that linearization and stochastic homogenization
commute at identity for energy densities which satisfy standard growth conditions (see Theo-
rem3.2). In a nutshell, what holds in [MN] in the periodic setting is also proved to hold here in
the stochastic setting. This shows that the arguments used by S. Müller and the second author in
[MN] are quite stable with respect to the structure assumption which ensures homogenization
— at the core of the proof the quantitative rigidity estimate of [FJM02].

As a second application of Theorem2.1, we prove a “weak local property” of theΓ-closure of
a class of integral functionals at identity. The problem ofΓ-closure consists in characterizing
all the energy densities which can be reached byΓ-convergence starting from a composite
made of a finite number of constituents with prescribed volume fraction. In particular, theΓ-
closure is said to be local in some class of integrands if and only if any such “homogenized”
energy density is the pointwise limit of a sequence of homogenized energy densities obtained
by periodichomogenization. In the linear case, this property has been proved independently by
Tartar in [Tar85] and Lurie and Cherkaev in [LC84]. The corresponding locality property of the
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G-closure for monotone operators is due to Raitums in [Rai01] (generalizing an unpublished
work by Dal Maso and Kohn). Related results of locality of theΓ-closure in the class of convex
integrands can be found in [BB09]. Yet, the local character of theΓ-closure is an open question
in the class of quasiconvex nonconvex integrands satisfying standard growth conditions. We
focus here on a smaller class. In particular, we consider energy densities which are frame
indifferent, non-degenerate, minimal at identity, admit a quadratic Taylor expansion at identity,
and satisfy standard growth conditions. Then, we show that for anyF 7→ W ∗(F ) in theΓ-
closure of this set, there exists a sequence of periodic energy densities whose homogenized
energy densities have quadratic Taylor expansions arbitrary close to theTaylor expansion of
W ∗ at identity (see Theorem4.1). This can be seen as a weak version of the local character
of theΓ-closure in this set at identity. Although quite restricted, this is the first such result for
quasiconvex nonconvex energy densities.

This article is organized as follows: In Section2 we state and prove our main theorem, the
commutability of linearization and homogenization at identity. In Section3 we apply this re-
sult to stochastic homogenization. The last section is dedicated to the local character of the
Γ-closure at identity.

We will make use of the following notation throughout the text:

– R
+ := [0,+∞) is the set of non-negative real numbers;

– d is the dimension;
– M

d denotes the space ofd×d real matrices, and for allF ∈ M
d, symF = 1/2(F+F T )

is the associated symmetric matrix, andskwF = F − symF the associated skew-
symmetric matrix;

– SO(d) is the set of rotations ofRd;
– T

d
sym denotes the space of symmetric fourth order tensors onR

d;
– D denotes an open bounded subset ofR

d with a Lipschitz boundary (except for Theo-
rem2.2and Proposition2.3 in Section2 whereD is further assumed to beC1);

– U = (0, 1)d is the unit cell;
– for allF ∈ M

d, we define the functionϕF : Rd → R
d asϕF : x 7→ Fx;

– for all p ∈ [1,+∞], Lp(D), H1(D), W 1,p(D), H1
0 (D), andW 1,p

0 (D) denote the stan-
dard Lebesgue, Hilbert and Sobolev spaces of maps fromD to R

d, and the associated
subspaces of functions vanishing on the boundary∂D (in the sense of traces);

– ε andh denote generic elements of vanishing families of positive numbers(ε) and(h),
respectively.

– ρ (andρ′) denotes a modulus of approximation, i.e.ρ is an increasing function fromR+

to [0,+∞] such thatlimh→0 ρ(h) = 0.

2. GENERAL COMMUTABILITY RESULTS

Throughout this article, we make the following assumptions on the energy densities.
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Definition1. For allα > 0 and every modulus of approximationρ, we denote byWα,ρ the set of
measurable energy densitiesW : Md → [0,+∞] which satisfy the following three properties:

W is frame indifferent, i.e.(W1)

W (RF ) = W (F ) for all F ∈ M
d, R ∈ SO(d);

W is non degenerate, i.e.(W2)

W (F ) ≥ 1
α dist2(F, SO(d)) for all F ∈ M

d;

W is minimal atId and admits the following quadratic expansion atId:(W3)

sup
0<|G|≤δ

|W (Id+G)−Q(G)|
|G|2

≤ ρ(δ) for all δ > 0,

whereQ : Md → [0,∞) is a quadratic form satisfying

0 ≤ Q(G) ≤ α |G|2 for all G ∈ M
d.

For some results (in particular Theorem2.1) we consider continuous energy densities that ad-
ditionally satisfy standard growth conditions:

Definition2. For all p ∈ [1,+∞) andα > 0, we denote byWp
α the set of continuous energy

densitiesW : Md → R which satisfy the following standard growth condition of orderp:

∀F ∈ M
d : 1

α |F |p − α ≤ W (F ) ≤ α(|F |p + 1).(W4)

In addition, we setWp
α,ρ := Wα,ρ ∩ Wp

α for every modulus of approximationρ. Note that
Wp

α,ρ = ∅ for p < 2, andWp
α,ρ 6= ∅ for p ≥ 2.

Remark1. Let W ∈ Wα,ρ and letQ denote the quadratic form associated withW through
(W3). Because of (W1) – (W3) the quadratic formQ generically satisfies conditions that are
common in linear elasticity; namely, the growth and ellipticity condition

(Q1) ∀G ∈ M
d : 1

α′ |symG|2 ≤ Q(G) ≤ α′ |G|2

for some positive constantα′ that only depends onα, and

(Q2) ∀G ∈ M
d : Q(skwG) = 0.

Definition3. We denote byQα′ the set of non-negative quadratic formsQ : M
d → R

+ satis-
fying (Q1) and (Q2).

Throughout this article we consider measurable mapsW from D to Wα,ρ such thatW (·, ·) is
a Borel function onD ×M

d (or equivalent to a Borel function), so thatx 7→ Wε(x,∇u(x)) is
a measurable function for allu ∈ W 1,1(D). We call such maps “admissible energy densities”
from D to Wα,ρ. Note that measurable maps fromD to Wp

α,ρ are Carath́eodory functions and
therefore admissible.

Let us consider a family(Wε) of admissible energy densities fromD toWα,ρ. For almost every
x ∈ D, we denote byQε(x, ·) the quadratic form associated withWε(x, ·) through (W3); thus,
Qε can be written as the pointwise limit

(x,G) 7→ Qε(x,G) := lim
h→0

1

h2
Wε(x, Id+hG),

and therefore inherits the measurability properties ofWε. We then define two families of inte-
gral functionals, namelyIε : H1(D) → [0,+∞] characterized by

(1) Iε(u) :=
∫

D
Wε(x,∇u(x)) dx,
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andEε : H1(D) → [0,+∞) characterized by

(2) Eε(u) :=
∫

D
Qε(x,∇u(x)) dx.

The main theorem of this paper is the following result, which generalizes [MN, Theorems 1
& 2] to the non-periodic setting.

Theorem 2.1. Let2 ≤ p < +∞, and let(Wε) denote a family of measurable energy densities
from D to Wp

α,ρ. Assume that the associated family of energy functionalsIε defined in(1)
Γ(Lp)-converges to an integral functionalI∗ onW 1,p(D), defined by

I∗(u) :=

∫

D
W ∗(x,∇u(x)) dx,

whereW ∗ is a Carath́eodory function onD×M
d withW ∗(x, ·) ∈ Wp

α for almost everyx ∈ D.
Then

(a) W ∗(x, ·) ∈ Wp
α′,ρ′ for almost everyx ∈ D, whereα′ > 0 and the modulus of approxi-

mationρ′ only depend onα andρ;
(b) there existα′′ > 0 and a measurable mapQ∗ : D → Qα′′ such that the energy func-

tionalsEε defined in(2) Γ(L2)-converge toE∗ : H1(D) → [0,+∞) defined by

E∗(u) :=

∫

D
Q∗(x,∇u(x)) dx;

(c) the expansion

W ∗(x, Id+G) = Q∗(x,G) + o(|G|2)
holds for almost everyx ∈ D and for allG ∈ M

d;
(d) the following diagram commutes

Gh,ε
(1)−−−−→ Eε

(2)

y
y(3)

Ghom,h −−−−→
(4)

Ehom

whereGh,ε andGhom.h denote the functionals fromH1
0 (D) to [0,+∞] defined as

Gh,ε(g) :=
1

h2
Iε(ϕId + hg), Ghom,h(g) :=

1

h2
Ihom(ϕId + hg);

and (1),(4), and (2),(3) meanΓ-convergence inH1
0 (D) with respect to the strong topol-

ogy ofL2(D) ash → 0 andε → 0, respectively. Moreover, the families(Iε) and(Eε)
are equi-coercive w. r. t. weak convergence inH1

0 (D).

Remark2. Due to the compactness of integral functionals with standardp-growth conditions
w. r. t. Γ(Lp)-convergence (see for instance [BD98, Theorem 12.5]), the assumptions onIε are
always satisfied up to extraction of a subsequence.

Remark3. If (Wε) satisfies a growth condition from below of orderp ≥ 2 (uniformly in ε) then
Iε ≡ +∞ onH1(D) \W 1,p(D) and it is natural to study the restricted functionalsIε|W 1,p(D)

w. r. t. the strong topology inLp(D). In particular,Iε|W 1,p(D) is sequentially weakly lower
semicontinuous inW 1,p(D) if and only if it is lower semicontinuous w. r. t. strong conver-
gence inLp(D). Note that due to condition (W2), (Wε) generically satisfies a uniform growth
condition from below of orderp = 2.
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Remark4. As in [MN], in Theorem2.1part (d), we can replace the function spaceH1
0 (D) by

the space
Aγ := { g ∈ H1(D) : g = 0onγ },

whereγ denotes a closed subset of∂D with positived−1-dimensional Hausdorff measure, and
regular enough so thatAγ ∩ W 1,∞(D) is dense inAγ (see [MN, Proof of Proposition 1] and
[DMNP02] for details).

In finite elasticity it is desirable to consider energy densities with the physical behavior

W (x, F ) = +∞ for all F ∈ M
d with detF ≤ 0.

In order to allow such energy densities we have to drop thep-growth condition from above. The
following theorem shows that for unbounded energy densities a linearization statement holds as
well — although in that case homogenization is an open problem.

Theorem 2.2.Suppose that the domainD isC1. Let(Wε) denote a family of admissible energy
densities fromD to Wα,ρ. Suppose that there existp ≥ 2, and homogeneous-in-space energy
densitiesWhom : Md → [0,+∞] andQhom : Md → R, such that asε → 0

(i) the energy functionalsIε|W 1,p(D) defined in(1) Γ(Lp)-converge to

Ihom : W 1,p(D) → [0,+∞], u 7→
∫

D
Whom(∇u(x)) dx.

(ii) the quadratic energy functionalsEε defined in(2) Γ(L2)-converge toEhom : H1(D) →
[0,+∞) given by

Ehom : H1(D) → R, u 7→
∫

D
Qhom(∇u(x)) dx.

If the homogenized densityWhom satisfies for allF ∈ M
d the asymptotic formula

(3) Whom(F ) = lim
ε→0

1
|D| inf{Iε(ϕF + v) : v ∈ W 1,p

0 (D)},

thenWhom admits a quadratic expansion atId given byQhom, i.e. for allG ∈ M
d, there holds

(4) Whom(Id+G) = Qhom(G) + o(|G|2).
Remark5. The quadratic expansion (4) of Whom does not depend on the exponent for which
theΓ(Lp)-convergence holds.

Theorems2.1& 2.2 follow from a result which is somewhat unrelated to homogenization, and
establishes a quadratic expansion atId for the asymptotic formula

(5) WD(F ) := lim
ε→0

{
inf

v∈W 1,p
0 (D)

Iε(ϕF + v)

}

if it exists.

Proposition 2.3. Let 2 ≤ p < +∞, let the domainD beC1, and let(Wε) be a family of
admissible energy densities fromD toWα,ρ. Suppose that the limit(5) exists in[0,+∞] (where
Iε is as in(1) ) for all F ∈ M

d, and that the functionalsEε defined in(2) Γ(L2)-converge to
a functionalE∗ onH1(D). Then there exist a constantα′ > 0 that only depends onα and a
modulus of approximationρ′ that additionally depends onρ and on the geometry ofD, such that
1
|D|WD ∈ Wα′,ρ′ and

(6)

∣∣WD(Id+G)− inf
v∈H1

0 (D)
E∗(ϕG + v)

∣∣

|G|2 ≤ |D|ρ′(|G|)

for all G ∈ M
d.
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Remark6. In the proof of Proposition2.3we makeρ′ explicit:

(7) ρ′(h) = Cmax

{
ρ(h+

√
h)(1 + α+ ρ(h)) + h

µ
4(2+µ) (1 + α+ ρ(h))

4+3µ
4(2+µ) ,

h2µ + ρ(h+
√
h)(1 + h2µ)

}
,

where the constantsC, µ > 0 only depend onα and on the geometry ofD, i.e. C andµ are
invariant under dilation, rotation, and translation ofD. Note that forh ≪ 1, (7) reduces to

ρ′(h) ∼ C(ρ(
√
h) + h

µ
4(2+µ) ).

Remark7. The assumption onEε is no restriction. In particular, by the compactness ofG-
convergence (see for instance [JKO94, Section 12.2]), we can always extract a subsequence of
(ε) to which Proposition2.3applies.

In the proof of Proposition2.3we will make use of the following higher integrability and Lips-
chitz truncation result for minimizers of quadratic functionals:

Proposition 2.4. Letα > 0, G ∈ M
d, andQ : D → Qα be a measurable map. Set

EG : H1
0 (D) → [0,+∞), EG(g) :=

∫

D
Q(x,G+∇g) dx.

(a) The functionalEG admits a unique minimizerg∗ ∈ H1
0 (D), characterized by the Euler-

Lagrange equation∫

D
〈L(x)(G+∇g∗, ∇ϕ〉 dx = 0 for all ϕ ∈ H1

0 (D)

whereL ∈ L∞(D,Td
sym) is defined by

〈L(x)A, B〉 = Q(x,A+B)−Q(x,A)−Q(x,B)

2

for all A,B ∈ M
d and almost everyx ∈ D.

(b) (Meyers’ estimate). If in addition the domainD is C1, then there exists a Meyers’
exponentµ > 0 and a positive constantC such that

‖∇g∗‖2+µ
L2+µ(D)

≤ C |D| |G|2+µ .

The exponentµ and the constantC only depend onα and on the geometry of the domain
D.

(c) (Lipschitz truncation). Letλ > 0. If in addition the domainD is C1, then there exists a
mapg ∈ W 1,∞

0 (D) such that

|∇g(x)| ≤ λ for a.e.x ∈ D,

EG(g)− EG(g∗) ≤ Cλ−µ |D| |G|2+µ ,

whereµ is a Meyers’ exponent, and the constantC only depends onα and on the
geometry of the domainD (in particular, it is independent ofλ, G, andµ).

The first statement of Proposition2.4 is standard and relies on Korn’s inequality. The second
statement is a higher integrability result for gradients in linear elasticity, as proved in [SW94].
This is the only place where we use the regularity of the domain. The third statement is essen-
tially a combination of Meyers’ estimate and of a Lipschitz truncation argument from [FJM02].
The constantsC andµ only depend on the geometry of the domain in the sense that they can
be chosen invariant under translation, rotation, and dilation of the domain. The proof of this
statement is deferred to the appendix.
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Proof of Proposition2.3. We divide the proof in three steps. In the first step, we introduce a
quadratic form associated withWD. The last two steps are dedicated to the proof of (6) proper.

Step1. Definition of the quadratic formQD.
By the assumptions onWε the associated quadratic formQε is a measurable map fromD to
Qα̃′ , where theα̃′ > 0 only depends onα. Remark1 and Korn’s inequality onD thus imply
that the quadratic energiesEε are equi-coercive functionals onH1

0 (D), so that the associated
elliptic operators are compact w. .r. t.G-convergence (see for instance [JKO94, Section 12.2]).
In particular, this yieldsΓ-convergence of the energy functionals to an integral functional (see
for instance [GMT93, Subsection 4.4]): There exist̃α′′ depending only onα, and a measur-
able mapQ∗ from D to Qα̃′′ such thatEε Γ(L2)-converges (up to extraction) to the functional
E∗ : H1(D) → R characterized by

(8) E∗ : u 7→
∫

D
Q∗(x,∇u(x)) dx.

This shows thatE∗ is a quadratic integral functional.

We are now in position to define the mapQD : Md → [0,+∞) as

QD(G) := inf
v∈H1

0 (D)
E∗(ϕG + v).

Because of the representation (8), the mapQD is a quadratic form of classQα̃ for a positive
constant̃α depending only onα.

We claim that 1
|D|WD is of classWα′,ρ′ whereρ′ is defined by (7). It is clear that 1

|D|WD is
frame indifferent. It also satisfies a property of type (W2) as an application of [MN, Lemma 2]
(its proof actually does not use periodicity, but only the asymptotic formula (5)). The expansion
property (W3) is equivalent to (6). As in [MN] we notice that it is sufficient to prove the
following: For all families(Gh) ∈ R

d with |Gh| = 1, we have:

1

h2
WD(Id+hGh) ≥ QD(Gh)− |D|

2 ρ′(h),(lower bound)

1

h2
WD(Id+hGh) ≤ QD(Gh) +

|D|
2 ρ′(h).(upper bound)

We prove both statements separately.

Step2. Proof of the lower bound.
By definition ofWD (see (5)), for all h > 0,

0 ≤ WD(Id+hGh) ≤ lim sup
ε→0

∫

D
Wε(x, Id+hGh).

From (W3), the fact thatQε(x,G) ≤ α |G|2 for a.e.x ∈ D, and the assumption|Gh| = 1, we
infer that

(9) 0 ≤ 1

h2
WD(Id+hGh) ≤ |D|(α+ ρ(h)).

By definition ofWD, there exists a sequence(uh,ε) ∈ W 1,p(D) with the properties

uh,ε − ϕId+hGh
∈ W 1,p

0 (D) ⊂ H1
0 (D),(10)

lim
ε→0

Iε(uh,ε) = WD(Id+hGh).(11)

We then define the following sequence of scaled displacements

gh,ε :=
uh,ε − ϕId+hGh

h
.
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By constructiongh,ε ∈ H1
0 (D) and the uniform non-degeneracy assumption (W2) onWε yields

the estimate

1

h2

∫

D
dist2(Id+h(Gh +∇gh,ε(x)), SO(d)) dx ≤ α

1

h2
Iε(uh,ε).

The quantitative geometric rigidity estimate (see [FJM02, Theorem 3.1]) implies the existence
of a rotationRh,ε ∈ SO(d) such that

‖Fh,ε +∇gh,ε‖2L2(D) ≤ C
1

h2
Iε(uh,ε) with Fh,ε :=

Id−Rh,ε

h
+Gh.

Except otherwise stated,C denotes a positive constant that may vary from line to line, but can
be chosen only depending onα and on the geometry ofD. Becausegh,ε vanishes on∂D, an
integration by parts shows that∇gh,ε and the (constant) matrixFh,ε are orthogonal w. r. t. the
inner product inL2(D;Md):

‖Fh,ε +∇gh,ε‖2L2(D) = |D||Fh,ε|2 + ‖∇gh,ε‖2L2(D) ≥ ‖∇gh,ε‖2L2(D).

Hence, the rigidity estimate, (9), and (11) yield

(12) lim sup
ε→0

‖∇gh,ε‖2L2(D) ≤ C|D|(α+ ρ(h)).

Next, in order to make use of the quadratic expansion in (W3), we focus on the set where
h(Gh + ∇gh,ε) is bounded. To this end, we letχh,ε denote the indicator function of the set
Xh,ε := {x ∈ D : |∇gh,ε| ≤ h−1/2}, and note that

1

h2
Iε(uh,ε) =

1

h2

∫

D
Wε(x, Id+h(Gh +∇gh,ε(x))) dx

≥ 1

h2

∫

D
χh,ε(x)Wε(x, Id+h(Gh +∇gh,ε(x))) dx

=
1

h2

∫

D
Wε(x, Id+hχh,ε(x)(Gh +∇gh,ε(x))) dx

by the non-negativity ofWε and the fact thatWε vanishes atId. We then write the r. h. s. in the
form

1

h2

∫

D
Wε(x, Id+hχh,ε(x)(Gh +∇gh,ε(x))) dx

=

∫

D

(
Qε

(
x, χh,ε(x)(Gh +∇gh,ε(x))

)
+ rh,ε(x)

)
dx,

where, using assumption (W3), the remainderrh,ε satisfies for allx ∈ Xh,ε

|rh,ε(x)| = |Gh +∇gh,ε(x)|2

×|Wε(x, Id+h(Gh +∇gh,ε(x)))−Qε(x, h(Gh +∇gh,ε(x)))|
h2|Gh +∇gh,ε(x)|2

≤ ρ(h |Gh|+
√
h) |Gh +∇gh,ε(x)|2

= ρ(h+
√
h) |Gh +∇gh,ε(x)|2 ,

andrh,ε(x) = 0 for a. e.x ∈ D \Xh,ε. Thus, we conclude that

(13)
1

h2
Iε(uh,ε) ≥

∫

D
Qε

(
x, χh,ε(Gh +∇gh,ε)

)
dx− ρ(h+

√
h) ‖Gh +∇gh,ε‖2L2(D) .
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Appealing to (12) and using|Gh| = 1, (13) turns into

(14) lim inf
ε→0

1

h2
Iε(uh,ε)

≥ lim inf
ε→0

∫

D
Qε(x, χh,ε(Gh +∇gh,ε)) dx− C |D| ρ(

√
h+ h)(1 + α+ ρ(h)).

Next, we wish to replace the integral term on the r. h. s. of (14) by the infimum ofEε on the set
ϕGh

+H1
0 (D). By coercivity ofEε on this set, this infimum problem is well-posed, and there

existsg∗h,ε ∈ H1
0 (D) such thatvh,ε := ϕGh

+ g∗h,ε satisfies

(15) Eε(vh,ε) =
∫

D
Qε(x,∇vh,ε(x)) dx = inf

v∈H1
0 (D)

∫

D
Qε(x,Gh +∇v(x)) dx.

SinceEε is equi-coercive onϕGh
+ H1

0 (D), andEε Γ(L2)-converges toE∗ onH1(D), theΓ-
limit is coercive, and the sequence of minima converges to the minimum ofEhom on ϕGh

+
H1

0 (D). This yields

(16) lim
ε→0

Eε(vh,ε) = inf
v∈ϕGh

+H1
0 (D)

E∗(v) = QD(Gh).

We shall actually prove that there existsµ > 0 depending only onα and on the geometry ofD
such that

(17) lim inf
ε→0

∫

D

(
Qε

(
x, χh,ε(G+∇gh,ε)

)
−Qε(x,∇vh,ε(x))

)
dx

≥ −C|D|h
µ

4(2+µ) (1 + α+ ρ(h))
4+3µ
4(2+µ) .

Combined with (11), (14) and (16), (17) yields the desired lower bound.

The proof of (17) is the heart of the matter. LetLε ∈ L∞(D,Td
sym) denote the unique symmet-

ric 4th order tensor associated withQε, i.e.

(18) 〈Lε(x)A, B〉 = Qε(x,A+B)−Qε(x,A)−Qε(x,B)

2

for all A,B ∈ M
d and a.e.x ∈ D. Note that(Lε) is uniformly bounded inL∞(D,Td

sym)

because the operator norm ofQε(x, ·) onM
d is bounded byα for all ε > 0 and a.e.x ∈ D.

SinceQε(x, ·) is a non-negative quadratic form, the inequality

Qε(x,A)−Qε(x,B) ≥ 2 〈Lε(x)(A−B), B〉
holds for allA,B ∈ M

d and a.e.x ∈ D. We use this estimate withA = χh,ε(x)(Gh +
∇gh,ε(x)) andB = ∇vh,ε(x), which yields by integration overD:

(19)
∫

D

(
Qε(x, χh,ε(Gh +∇gh,ε)(x))−Qε(x,∇vh,ε(x))

)
dx

≥ 2

∫

D

〈
Lε

(
χh,ε(Gh +∇gh,ε)−∇vh,ε

)
, ∇vh,ε

〉
dx.

Along the lines of [MN, Proof of Theorem 1], we rewrite the r. h. s. as∫

D

〈
Lε

(
χh,ε(Gh +∇gh,ε)−∇vh,ε

)
, ∇vh,ε

〉
dx = I

(1)
h,ε − I

(2)
h,ε ,

with

I
(1)
h,ε :=

∫

D
〈Lε(Gh +∇gh,ε −∇vh,ε), ∇vh,ε〉 dx,

I
(2)
h,ε :=

∫

D
〈Lε(1− χh,ε)(Gh +∇gh,ε), ∇vh,ε〉 dx.
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BecauseI(1)h,ε is the weak form of the Euler-Lagrange equation of the minimization problem in

(15) with admissible test-functionϕGh
+ gh,ε − vh,ε ∈ H1

0 (D), the first termI
(1)
h,ε vanishes

identically. We now deal with the second term, and claim that

(20) lim sup
ε→0

|I(2)h,ε | ≤ C|D|h
µ

4(2+µ) (1 + α+ ρ(h))
4+3µ
4(2+µ) .

Combined with (19) andI(1)h,ε ≡ 0, this implies the desired estimate (17). To prove (20), we
apply the higher integrability result of Proposition2.4 part (b) to∇vh,ε. In particular, there
exists a Meyers’ exponentµ > 0 and a positive constantC such that

(21)
∫

D
|∇vh,ε|2+µ dx ≤ C|D| |Gh|2+µ = C|D|.

By Cauchy-Schwarz’ and Ḧolder’s inequalities, we may estimateI(2)h,ε by
∣∣∣I(2)h,ε

∣∣∣ ≤ C ‖Gh +∇gh,ε‖L2(D) ‖(1− χh,ε)∇vh,ε‖L2(D)

≤ C ‖Gh +∇gh,ε‖L2(D) ‖1− χh,ε‖Lq(D) ‖∇vh,ε‖L2+µ(D)(22)

with q := 2(2+µ)
µ ∈ (1,∞). By definition ofχh,ε there holds

|1− χh,ε(x)| ≤
√
h(1− χh,ε(x)) |∇gh,ε(x)| ≤

√
h |∇gh,ε(x)|

for a.e.x ∈ D, so that
∫

D
|1− χh,ε|q dx =

∫

D
|1− χh,ε| dx ≤

√
h

∫

D
|∇gh,ε| dx.

Hence, by Cauchy-Schwarz’ inequality,

‖1− χh,ε‖Lq(D) ≤ Ch
1
2q |D|

1
2q ‖gh,ε‖

1
q

H1(D)
= C|D|

µ
4(2+µ)h

µ
4(2+µ) ‖gh,ε‖

µ
2(2+µ)

H1(D)
,

which, combined with (12), (21) & (22), proves (20). This concludes the proof of the lower
bound.

Step3. Proof of the upper bound.
As usual, the proof of the upper bound relies on an explicit construction.As a first step we apply
the Lipschitz truncation argument of Proposition2.4 part (c): There exists a doubly indexed
sequence(gh,ε) ⊂ H1

0 (D) and someµ > 0 (only depending onα and the geometry ofD) such
that

(23)

{
‖∇gh,ε‖L∞(D) ≤ h−1/2,

Eε(ϕGh
+ gh,ε)−QD(Gh) ≤ Ch2µ|D|.

Here and below,C denotes a positive constant that may vary from line to line, but only depends
onα and on the geometry ofD.

Since for allε > 0 the quadratic formEε is Korn-elliptic with some constantα′ depending only
onα, the second property in (23) and Poincaŕe’s inequality imply that the sequence(gh,ε)ε is
bounded inH1(D). Using in addition Step 1 in the form ofQD(Gh) ≤ α̃|D|, this yields the
estimate

(24) ‖Gh +∇gh,ε‖2L2(D) ≤ C(1 + h2µ) |D| .
We set

uh,ε := ϕId+hGh
+ hgh,ε.
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By definition we have

(25) WD(Id+hGh) = lim
ε→0

{
inf

v∈H1
0 (D)

Iε(ϕId+hGh
+ v)

}
≤ lim inf

ε→0
Iε(uh,ε)

= lim inf
ε→0

∫

D
Wε(x, Id+h(Gh +∇gh,ε(x))) dx.

As in the proof of the lower bound, we expand the r. h. s. as

(26)
∫

D
Wε(x, Id+h(Gh+∇gh,ε(x))) dx = h2

∫

D

(
Qε(x,Gh+∇gh,ε(x))+rh,ε(x)

)
dx,

where, using assumption (W3) and property (23), the remainder is estimated by
∫

D
|rh,ε(x)| dx ≤ ρ(h+

√
h) ‖Gh +∇gh,ε‖2L2(D) .

The combination of (25), (26), (24), and the second property in (23) then yields

1

h2
WD(Id+hGh) ≤ lim inf

ε→0
Eε(ϕGh

+ gh,ε) + lim sup
ε→0

ρ(h+
√
h) ‖Gh +∇gh,ε‖2L2(D)

≤ QD(Gh) + C |D|
(
h2µ + ρ(h+

√
h)(1 + h2µ)

)
.

This proves the upper bound, and concludes the proof of the proposition. �

Theorem2.2 is an immediate consequence Proposition2.3:

Proof of Theorem2.2. By assumption theΓ-limits Ihom andEhom are integral functionals with
homogeneous integrandsWhom andQhom, respectively. Thus, the expansion (6) in Proposi-
tion 2.3simplifies to

inf
v∈W 1,p

0 (D)

∫

D
Whom(Id+G+∇v(x)) dx = inf

v∈H1
0 (D)

∫

D
Qhom(G+∇v(x)) dx+ o(

∣∣G2
∣∣).

The functionalIhom is (as aΓ(Lp)-limit) lower semicontinuous w. r. t. strong convergence in
Lp(D). Hence,Whom isW 1,p-quasiconvex, and

inf
v∈W 1,p

0 (D)

∫

D
Whom(Id+G+∇v(x)) dx = |D|Whom(Id+G).

By convexity ofQhom, we also have

inf
v∈H1

0 (D)

∫

D
Qhom(G+∇v(x)) dx = |D|Qhom(G).

This proves (4). �

The proof of Theorem2.1 relies on the quantitative version of Proposition2.3 (see Remark6)
and on a localization argument allowed by thep-growth condition.

Proof of Theorem2.1. We split the proof into four steps.

Step1. Localization of the energyIε.
Let B denote the collection of all open balls contained inD, and define for allB ∈ B and all
u ∈ W 1,p(B) the localized functionals

Iε(u;B) :=

∫

B
Wε(x,∇u(x)) dx and I∗(u;B) :=

∫

B
W ∗(x,∇u(x)) dx.

SinceWε satisfies the standardp-growth conditions,Γ-convergence is local (see [BD98, Theo-
rem 12.5]), and for allB ∈ B the functionalsIε(·;B) Γ(Lp)-converge toI∗(·;B).
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Step2. Localization ofEε.
We consider a subsequence (not relabeled) such thatEε Γ(L2)-converges to a functionalE∗ on
H1(D). As in Step 1 of the proof of Proposition2.3, E∗ is of the form

E∗(g) =

∫

D
Q∗(x,∇g(x)) dx

for some measurable mapQ∗ from D to Qα′′ , whereα′′ only depends onα. Moreover, for all
B ∈ B the localized functionals

Eε(g;B) :=

∫

B
Qε(x,∇g(x)) dx

Γ(L2)-converge onH1(B) to

E∗(g;B) :=

∫

B
Q∗(x,∇g(x)) dx.

Step3. Characterization ofQ∗.
For allB ∈ B andG ∈ M

d we define

QB(G) := inf
g∈H1

0 (B)

∫

B
Q∗(x,G+∇g(x)) dx,

WB(G) := inf
v∈W 1,p

0 (B)

∫

B
W ∗(x,G+∇v(x)) dx.

SinceI∗(·;B) is theΓ(Lp)-limit of the sequenceIε(·;B), the functionalI∗(·;B) is lower
semicontinuous and its energy densityW ∗ satisfies ap-growth condition from below. Hence,
infima converge, and we have:

(27) WB(G) = lim
ε→0

{
inf

v∈W 1,p
0 (B)

Iε(ϕG + v;B)

}
,

which proves that (5) is well-defined. SinceB ∈ B is of classC1, we can apply Proposition2.3
to each of the functionalsIε(·;B); and since eachB ∈ B can be obtained by translation and
dilation of the unit ball inRd, we deduce that there exist a constantα′ and a modulus of ap-
proximationρ′ (both only depending onα, and onρ), such that the following two properties are
fulfilled: For allB ∈ B andG ∈ M

d there holds
1

|B|WB ∈ Wα′,ρ′ ,(28)
∣∣∣ 1
|B|WB(Id+G)− 1

|B|QB(G)
∣∣∣ ≤ ρ′(|G|) |G|2 .(29)

In particular, (29) holds for all ballsB(x, r) with centerx ∈ D and sufficiently small radius
r > 0. Because the l. h. s. of (29) is independent ofx andr, and since for almost everyx ∈ D

lim
r→0

1
|B(x,r)|WB(x,r)(Id+G) = W ∗(x, Id+G),

lim
r→0

1
|B(x,r)|QB(x,r)(Id+G) = Q∗(x,G),

(see e.g. [DMM86a]), the estimate

(30) |W ∗(x, Id+G)−Q∗(x,G)| ≤ ρ′(|G|) |G|2

holds for allG ∈ M
d and almost everyx ∈ D. On the one hand, this implies thatW ∗ is of

classWp
α′,ρ′ . On the other hand, this proves thatQ∗ can be characterized by

Q∗(x,G) := lim
h→0

1

h2
W ∗(x, Id+hG).
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The limit on the r. h. s. does not depend on the extraction of Step 2, so that the entire sequence
Eε Γ(L2)-converges toE∗.

Step4. Commutation diagram.
The proof of the diagram, which closely follows [MN, Section 6], is left to the reader. �

3. APPLICATION TO STOCHASTIC HOMOGENIZATION

Let us first recall a standard stochastic homogenization result (see the original contribution
[DMM86b] in the convex case, and its generalization [MM94] to the quasiconvex case).

Theorem 3.1.Let(Ω,F ,P) be a probability space,(τz)z∈Rd be a strongly continuous measure-
preserving ergodic translation group, and letW : Rd ×M

d × Ω → R
+ be a map such that

(i) W is Lebesgue-measurable in its first variable,
(ii) W isF-measurable in its third variable,

(iii) W (x, ·, ω) ∈ Wp
α for P-almost everyω ∈ Ω, almost everyx ∈ R

d and somep ∈ (1,∞),
(iv) W is stationary in the sense that forP-almost everyω ∈ Ω, almost everyx ∈ R

d, every
F ∈ M

d and everyz ∈ R
d

W (x+ z, F, ω) = W (x, F, τzω).

Then forP-almost everyω ∈ Ω, the integral functionalIε(ω) : W 1,p(D) → R
+ given for all

ε > 0 by

Iε(ω)(u) =

∫

D
W (x/ε,∇u(x), ω) dx

Γ(Lp)-converges, asε vanishes, to the integral functionalIhom : W 1,p(D) → R
+ given by

Ihom(u) =

∫

D
Whom(∇u(x)) dx,

where the deterministic homogeneous-in-space energy densityWhom is quasiconvex, satisfies
(W4) and the asymptotic formula

(31) Whom(F ) = lim
R→∞

1

Rd
inf

{∫

(0,R)d
W (x, F +∇φ(x), ω) dx, φ ∈ W 1,p

0 ((0, R)d)

}

for all F ∈ M
d andP-almost everyω ∈ Ω.

The combination of Theorems2.2& 3.1yields

Theorem 3.2. Let W andWhom be as in Theorem3.1 and assume in addition that for some
p ≥ 2 and a modulus of approximationρ

W (x, ·, ω) ∈ Wp
α,ρ

for almost everyx ∈ R
d andP-almost everyω ∈ Ω. LetQ denote the quadratic term of the

Taylor expansion ofW at identity. Then

(a) the densityWhom is of classWp
α′,ρ′ , withα′ andρ′ as in Theorem2.1;

(b) the energy functionals

Eε(ω) : H1(D) → R
+, u 7→

∫

D
Qε(x/ε,∇u(x), ω) dx

Γ(L2)-converge forP-almost everyω ∈ Ω to

Ehom : H1(D) → R, u 7→
∫

D
Qhom(∇u(x)) dx
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whereQhom is the deterministic homogeneous-in-space quadratic energy density thatis
determined by the expansion

∀G ∈ M
d : Whom(Id+G) = Qhom(G) + o(|G|2);

(c) For P-almost everyω ∈ Ω the following diagram commutes

Gh,ε(ω)
(1)−−−−→ Eε(ω)

(2)

y
y(3)

Ghom,h −−−−→
(4)

Ehom

whereGh,ε(ω) andGhom,h denote the functionals fromH1
0 (D) to [0,+∞] defined as

Gh,ε(ω)(g) :=
1

h2

∫

D
W

(
x/ε, Id+h∇g(x), ω

)
dx

Ghom,h(g) :=
1

h2

∫

D
Whom

(
Id+h∇g(x)

)
dx

and (1),(4), and (2),(3) meanΓ-convergence inH1
0 (D) with respect to the strong topol-

ogy ofL2(D) as h → 0 and ε → 0, respectively. Moreover, the families(Iε(ω))
and(Eε(ω)) are equi-coercive w. r. t. weak convergence inH1

0 (D) (for P-almost every
ω ∈ Ω).

Proof. Let Iε(ω) andIhom(ω) be defined as in Theorem3.1. ThenIε(ω) Γ(Lp)-converges to
Ihom(ω) for P-almost everyω ∈ Ω. Now, the statement is a direct consequence of Theorem2.1
which applies forP-almost everyω ∈ Ω. �

Corollary 3.3. Within the notation and assumptions of Theorem3.2, we also have

(32) Qhom(G) = lim
R→∞

1

Rd
inf

{∫

(0,R)d
Q(x,G+∇φ(x), ω) dx, φ ∈ H1

0 ((0, R)d)

}

for all G ∈ M
d, and forP-almost everyω ∈ Ω, where

Q(y,G, ω) := lim inf
h→0

W (y, Id+hG, ω)

h2
.

Proof. Once we know thatEε Γ(L2)-converges toEhom, the uniform coercivity ofEε and
Ehom implies the convergence of the infima, which yields the desired formula (32). TheΓ-
convergence result is either a consequence of Theorem3.2 part (b), or of theG-convergence
of the associated elliptic operator proved for instance in [JKO94, Section 12.3] (by definition,
Q(y,G, ω) is stationary for the ergodic translation group). �

Remark8. As can be easily seen, Theorem3.2holds as well in the almost-periodic case (see for
instance [Bra85] or [BD98, Section 17.2]) and in variants of the stochastic case (see for instance
[Glo08]).

4. LOCALITY OF THE Γ-CLOSURE AT IDENTITY

This section is devoted to the locality of theΓ-closure inWp
α,ρ at identity. Givenk homo-

geneous energy densities{Wi}i∈{1,...,k} ∈ Wp
α,ρ, we are interested in characterizing the set of

mapsW ∗(x, ·) that can be reached as energy densities ofΓ(Lp)-limits I∗ : W 1,p(D) → R

(33) u 7→ I∗(u) =

∫

D
W ∗(x,∇u(x)) dx,
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of energy functionalsIχn : W 1,p(D) → R of the form

(34) u 7→ Iχn(u) =

∫

D

k∑

i=1

Wi(∇u(x))χn
i (x) dx

asn goes to infinity. Above,χn ∈ L∞(D, {0, 1}k) denotes a vector field with
∑k

i=1 χ
n
i ≡ 1

and satisfiesχn ⇀∗ θ weakly-* in L∞(D, [0, 1]k). The components ofχn can be seen as the
characteristic functions of thek phases. Note that also in the limit we have

∑k
i=1 θi ≡ 1.

TheΓ-closure of{Wi}i∈{1,...,k} is said to be local if the set of such integrandsW ∗(x, ·) for
almost everyx ∈ D coincides with the closure for the pointwise convergence of the set of
energy densitiesWhom obtained by periodic homogenization of mixtures of{Wi}i∈{1,...,k} in
the proportions{θi(x)}i∈{1,...,k}. To turn this into a rigorous statement, let us recall some
definitions related to periodic homogenization.

Definition 4 (see [Mül87] and [Bra85]). Let 1 < p < ∞, andW be aU = (0, 1)d periodic,
measurable density fromRd to Wp

α. The homogenized energy density associated withW is
denoted byWhom : Md → R and characterized by

(35) Whom(F ) := lim
R→∞

1

Rd
inf

{∫

(0,R)d
W (y, F +∇u(y)) dy, u ∈ W 1,p

0 ((0, R)d)

}
.

We are now in position to define the set of periodic homogenized energy densities.

Definition5. Let 1 < p < ∞, {Wi}i∈{1,...,k} ∈ Wp
α, andθ ∈ [0, 1]k be such that

∑k
i=1 θi = 1.

We define the set of periodic homogenized energy densities associated with{Wi, θi}i∈{1,...,k}
as

Pθ =

{
(Wχ)hom : Md → R : ∃χ ∈ L∞(Rd, {0, 1}k) such that

χ isU -periodic with
∫

U
χi dy = θi

and(Wχ)hom is associated withWχ : (y, F ) 7→
k∑

i=1

Wi(F )χi(y) through (35)

}
,

and its closure for the pointwise convergence by

Gθ =
{
W ∗ : Md → R : ∃(Wχn)hom ∈ Pθ , (Wχn)hom → W ∗ pointwise

}
.

The definition of locality of theΓ-closure now reads:

Definition6. Let1 < p < ∞, {Wi}i∈{1,...,k} ∈ Wp
α. We say that theΓ-closure of{Wi}i∈{1,...,k}

is local if and only if for every sequenceχn ∈ L∞(D, {0, 1}k) with
∑k

i=1 χ
n
i ≡ 1 and such

that

– χn ⇀∗ θ weakly-* inL∞(D, [0, 1]k),
– the functionalIχn : W 1,p(D) → R defined in (34) Γ(Lp)-converges to the functional
I∗ : W 1,p(D) → R defined in (33),

one has

W ∗(x, ·) ∈ Gθ(x)

for almost everyx ∈ D.
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If the k energy densities{Wi}i∈{1,...,k} are convex functions, then the associatedΓ-closure is
local (see for instance [BB09, Theorem 5.1]). In the case of quasiconvex non-convex functions,
the locality (or non-locality) of theΓ-closure is an open problem. In the specific case when
Wi ∈ Wp

α,ρ for all i ∈ {1, . . . , k}, Theorem2.2allows us to prove that theΓ-closure is “local
at identity”. This notion is made precise by the following two definitions.

Definition7. Let 2 ≤ p < ∞, {Wi}i∈{1,...,k} ∈ Wp
α,ρ, andθ ∈ [0, 1]k such that

∑k
i=1 θi = 1.

We define the set of periodic homogenized energy densities associated with{Wi, θi}i∈{1,...,k}
at identity as

PId
θ =

{
W ∗ : Md → R : ∃(Wχ)hom ∈ Pθ

such that
∣∣W ∗(Id+G)− (Wχ)hom(Id+G)

∣∣ = o(|G|2)
}
,

and its closure:

GId
θ =

{
W ∗ : Md → R : there exists a sequence(Wχn)hom ∈ Pθ

such that
∣∣W ∗(Id+G)− lim

n→0
(Wχn)hom(Id+G)

∣∣ = o(|G|2)
}
.

Definition8. Let2 ≤ p < ∞, {Wi}i∈{1,...,k} ∈ Wp
α,ρ. We say that theΓ-closure of{Wi}i∈{1,...,k}

is local at identity if and only if for every sequenceχn ∈ L∞(D, {0, 1}k) with
∑k

i=1 χ
n
i ≡ 1

and such that

– χn ⇀∗ θ weakly-* inL∞(D, [0, 1]k),
– the functionalIχn : W 1,p(D) → R defined in (34) Γ(Lp)-converges to the functional
I∗ : W 1,p(D) → R defined in (33),

one has

W ∗(x, ·) ∈ GId
θ(x)

for almost everyx ∈ D.

The above definition is a weakened version of the locality of theΓ-closure of Definition6
obtained by restricting the property of approximation by periodic homogenized energy densities
to a neighborhood of identity via a Taylor expansion. We have:

Theorem 4.1.Let2 ≤ p < ∞ and{Wi}i∈{1,...,k} ∈ Wp
α,ρ, then theΓ-closure of{Wi}i∈{1,...,k}

is local at identity.

Proof. By [BB09, Theorem 3.5], it is enough to prove the locality property in the so-called
homogeneous case, that is with a repartition functionχn ∈ L∞(D, {0, 1}k) such that

– χn weakly-* converges to a constant functionθ in L∞(D, [0, 1]k),
– the functionalIχn : W 1,p(D) → R defined in (34) Γ(Lp)-converges to the functional
I∗ : W 1,p(D) → R defined in (33), whereW ∗ does not depend on the space variable.

Let Eχn : H1(D) → R
+ denote the quadratic energy functional associated withIχn , that is

Eχn(u) :=

∫

D

k∑

i=1

Qi(∇u(x))χn
i (x) dx
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whereQi ∈ Qα′ denotes the quadratic form associated withWi through (W3). We then apply
Theorem2.1and deduce thatEε Γ(L2)-converges to

E∗ : H1(D) → [0,+∞), E∗(u) :=

∫

D
Q∗(∇u(x)) dx,

whereQ∗ ∈ Qα̂ for someα̂ > 0, and is characterized by the expansion

(36) W ∗(Id+G) = Q∗(G) + o(|G|2).
Next, we appeal to the locality of theΓ-closure for convex linear problems. In particular, there
exists aU -periodic sequencẽχn ∈ L∞(Rd, {0, 1}k) satisfying

∫
Q χ̃n

i (y) dy = θi for all n ∈ N

and all i ∈ {1, · · · , k}, and such that the homogenized quadratic functionsQ̃n
hom associated

with the periodic quadratic energy densitiesQ̃n : Rd ×M
d → R

Q̃n : (y,G) 7→
k∑

i=1

Qi(G)χ̃n
i (y)

approximateQ∗ in the sense that for allG ∈ M
d,

(37) lim
n→∞

Qn
hom(G) = Q∗(G).

We are now in position to prove the claim. To this aim, we define a sequence of periodic
integrands̃Wn : Rd ×M

d → R as

W̃n : (y,G) 7→
k∑

i=1

Wi(G)χ̃n
i (y).

With this sequence of periodic integrands we associate a sequence of homogenized integrands
Wn

hom through (35) with W̃n in place ofW . Combined with standard periodic homogenization
results (see for instance [Mül87], [Bra85] or [BD98, Section 14.2]), Theorem2.1 then shows
that

|Wn
hom(Id+G)−Qn

hom(G)|
|G|2 ≤ ρ′(|G|),

and the theorem follows from (36), (37), and the uniformity of the validity of the Taylor expan-
sion since for alln, Wn

hom andW ∗ are of classWp
α′,ρ′ for the same functionρ′. �
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APPENDIX A. PROOF OFPROPOSITION2.4

The proof is divided in three steps. In the first two steps we prove the statement for a fixed
domainD by combining Meyers’ estimate and the Lipschitz truncation argument of [FJM02,
Proposition A.3]. We then prove in the third step that the constants can be chosen only depend-
ing onα and on the geometry ofD.

Step1. Control of energy differences.
Let g∗ ∈ H1

0 (D) denote the unique minimizer of the functionalEG onH1
0 (D). We claim that

for all g ∈ H1
0 (D) there holds

(38)
∫

D
Q(x,G+∇g) dx−

∫

D
Q(x,G+∇g∗) dx ≤ α ‖∇g −∇g∗‖2L2(D) .
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To prove this we first expand the formula forQ(x,∇g − ∇g∗) (use (18) with A = G + ∇g∗

andB = ∇g −∇g∗):

Q(x,G+∇g)−Q(x,G+∇g∗) = Q(x,∇g −∇g∗) + 〈L(x)(G+∇g∗),∇g −∇g∗〉.
We integrate this identity overD and note that the second term on the r. h. s. vanishes as the
first variation of the minimization problem characterizingg∗. Thus, (38) follows from the fact
thatQ(x, ·) ∈ Qα for a.e.x ∈ D.

Step2. Proof of the claim for a fixed domain.
We assert that there existC > 0 andµ > 0 such that for allλ > 0 there exists a mapg ∈
W 1,∞

0 (D) that satisfies

‖g‖W 1,∞(D) ≤ λ,(39)

‖∇g −∇g∗‖2L2(D) ≤ Cλ−µ ‖∇g∗‖2+µ
L2+µ(D)

.(40)

We construct the map as follows. By Meyers’ estimate (see Proposition2.4part (b)), there exist
C > 0 andµ > 0 depending only onα andD such that for allG ∈ M

d,

‖∇g∗‖2+µ
L2+µ(D)

≤ C |D| |G|2+µ .

Hence, [FJM02, Proposition A.2] yields a mapg ∈ W 1,∞
0 (D) that satisfies (39), and the esti-

mate

(41) |Dλ| ≤
C

λ2+µ
‖∇g∗‖2+µ

L2+µ(D)
, Dλ := {x ∈ D : g(x) 6= g∗(x) }

for someC independent ofλ andg∗. Let us prove thatg also satisfies (40). From Ḧolder’s
inequality with exponents(2+µ

2 , 2+µ
µ ), we have

‖∇g −∇g∗‖2L2(D) =

∫

Dλ

|∇g −∇g∗|2 dx ≤ |Dλ|
µ

2+µ

(∫

D
|∇g −∇g∗|2+µ dx

) 2
2+µ

.

On the one hand, the combination of (39) and (41) yields
∫

D
|∇g −∇g∗|2+µ dx =

∫

Dλ

|∇g −∇g∗|2+µ dx

≤C

(∫

Dλ

|∇g|2+µ dx+

∫

D
|∇g∗|2+µ dx

)

≤C

(
|Dλ|λ2+µ +

∫

D
|∇g∗|2+µ dx

)

≤C ‖∇g∗‖2+µ
L2+µ(D)

.

On the other hand, (41) also implies

|Dλ|
µ

2+µ ≤ Cλ
−(2+µ) µ

2+µ ‖∇g∗‖(2+µ) µ
2+µ

L2+µ(D)
= Cλ−µ ‖∇g∗‖µ

L2+µ(D)
.

Estimate (39) follows from these last three inequalities.

Step3. Dependence of the constants onD.
Step 2 provides a functiong satisfying the desired properties with some constantsµ andC
which only depend onα and the domainD. Let us quickly show that both constants can be
chosen invariant under dilations, translations, and rotations ofD. Assume thatD is a translated,
rotated, and dilated version of some reference domainD0, i.e. D := τ + rRD0 with τ ∈ R

d,
R ∈ SO(d), andr > 0. We shall prove thatC andµ only depend onα andD0. To this end we
set

g∗0(x) :=
1

r
g∗ (τ + rRx) and Q0(x,G) := Q (τ + rRx,G) .
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Theng∗0 is the unique minimizer of

H1
0 (D0) ∋ g0 7→

∫

D0

Q0(x,G+∇g0) dx.

For allλ > 0, Step 2 yields a mapg0 ∈ W 1,∞
0 (D0) with

|∇g0(x)| ≤ λ for a.e.x ∈ D0,∫

D0

Q0(x,G+∇g0(x)) dx−
∫

D0

Q0(x,G+∇g∗0(x)) dx ≤ C0λ
−µ0 |D0| |G|2+µ0 ,

whereµ0 andC0 only depend onα andD0. A simple change of variables shows that the map

g(x) := rg0

(
R−1x− τ

r

)

satisfies (39) & (40) with µ = µ0 andC = C0.
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