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Abstract

Ranks and explicit structure of some matrices in the Quantics Tensor Train

format, which allows representation with logarithmic complexity in many cases,

are investigated. The matrices under consideration are Laplace operator with

various boundary conditions in D dimensions and inverse Laplace operator with

Dirichlet and Dirichlet-Neumann boundary conditions in one dimension. The

minimal-rank explicit QTT representations of these matrices presented are suit-

able for any high mode sizes and, in the multi-dimensional case, for any high

dimensions.

Keywords: tensor decompositions, tensor rank, low-rank approximation, Ten-

sor Train, TT, Quantics Tensor Train, QTT, virtual levels, tensorization, inverse

Laplace operator.

AMS Subject Classification: 15A69, 65F99.

Introduction

Recent surveys on tensor methods in scientific computing [11] and data anal-

ysis [16, 5, 2] propose these methods as a mainstream means of computation in

high dimensions, yielding a way to overcome the so-called “curse of dimensional-

ity“ [1]. These papers present plenty of various formats for tensor data, canonical

decomposition and Tucker decomposition being the most time-honoured ones. Un-

fortunatelly, these two decompositions alleviate computations in high dimensions

in a way rather than break the “curse of dimensionality“.

We focus on a more recent format introduced in the community of numeri-

cal mathematics in 2009 by Oseledets and Tyrtyshnikov in [24] and referred to as
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Tensor Train (TT). This format makes possible to tackle high dimensions in a much

more general case than the two ones mentioned above do. On the one hand, it

provides the scaling of storage costs and complexity, that is linear in respect of di-

mensionality and linear or even sublinear (Quantics Tensor Train, QTT) in respect

of number of points along a dimension. And, on the other hand, this format comes

with robust algorithms of structured data handling [22].

In this paper we aim to present low-rank QTT structure of such the important

matrices as Laplace operator in both one-dimensional and D-dimensional cases;

and its inverse, in one-dimensional case. But we also have a secondary goal that is

to highlight convenience and terseness of TT and contribute to a graphic compre-

hension of how it works.

Tensors. Canonical and Tucker decompositions

In fact, this is just a multiway array what we mean by a tensor. Such the ob-

jects arise naturally in discrete data analysis or after discretization of equations in

scientific computing and could be recognized as arrays of coefficients of multilinear

forms in some fixed basis. We refer to some tensor formats for a vector A (i1, . . . , iD)

of a discretized D-dimensional space below keeping in mind that a linear operator

A (i1, j1, . . . , iD, jD) over such a space can be represented in these formats just the

same way, terms of decompositions having extra mode indices: another mode index

jk along with each mode index ik, k = 1 . . . D.

Once it holds for a D-dimensional n1 × . . . × nD-tensor A that

A (i1, . . . , iD) =
r
∑

α=1

U1 (i1, α) U2 (i2, α) · . . . · UD−1 (iD−1, α) UD (iD, α)

for all the values of indices ik = 1 . . . nk, k = 1 . . . D, the tensor A is said to have

a rank-r canonical decomposition given by the matrices UK ∈ R
nk×r, k = 1 . . . D.

Note that in canonical decomposition the terms UK are tied globally throughout

the product by the only rank index α. This makes the decomposition much more

restrictive than, for instance, Tucker decomposition written as

A (i1, . . . , iD) =

r1
∑

α1=1

. . .

rD
∑

αD=1

C (α1, . . . , αD)

· U1 (i1, α1) U2 (i2, α2) · . . . · UD−1 (iD−1, αD−1) UD (iD, αD) ,

C being a Tucker core and each matrix UK ∈ R
nk×rk , k = 1 . . . D, being a k-th mode

Tucker basis. This decomposition links the matrices UK via the Tucker core C only,

summation being performed by a single rank index αk for each of them.

Tensor Train

Tensor A is said to be represented in the Tensor Train [22] format in terms of

TT cores U1 ∈ R
n1×r1 , U2 ∈ R

r1×n2×r2 . . . UD−1 ∈ R
rD−2×nD−1×rD−1 , UD ∈ R

rD−1×nD if it

holds for all the values of indices ik = 1 . . . nk, k = 1 . . . D, that

A (i1, . . . , iD) =

r1
∑

α1=1

. . .

rD−1
∑

αD−1=1

U1 (i1, α1) U2 (α1, i2, α2) · . . . ·
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· UD−1 (αD−2, iD−1, αD−1) UD (αD−1, iD) . (1)

It is plain to see that the cores are linked each to other subsequently forming a

linear structure just like cars of a train, which accounts for the name TT. The sum-

mation limits r1 . . . rD−1 are referred to as ranks of the tensor train.

As we mentioned above, such a representation may be applied to an operator

A over a vector space as well as to a vector from it, which could be recognized as a

“matricization“ of TT-cores of a “vectorized“ matrix, e. g.

A (i1, j1, . . . , iD, jD) =

r1
∑

α1=1

. . .

rD−1
∑

αD−1=1

U1 (i1, j1, α1) U2 (α1, i2, j2, α2) · . . . ·

· UD−1 (αD−2, iD−1, jD−1, αD−1) UD (αD−1, iD, jD) . (2)

Tensor Train format was proposed by Oseledets and Tyrtyshnikov in 2009

[21, 20, 24]. It is beneficial in many aspects. First, it is based on SVD so that

the problem of approximation of a tensor in this format is well-posed and robust al-

gorithms of quasi-optimal both best rank-r approximation and ǫ-approximation are

available, while this is not the case for canonical decompositon [3, 9]. Second, un-

like the Tucker format, storage costs and computation complexity are linear with

respect to dimensionality. Third, unlike to quite similar to the Hierarchical Tensor

Format introduced in [8], TT keeps its “linear structure” throughout computations

[22], which makes the algorithms in this format easier to derive, implement and

understand. Further details on TT can be found in the papers [22, 24, 25, 23]; a

review of tensor formats including TT is presented in [11].

Further tensorization. Quantics Tensor Train

The next step is made on the way towards efficient tensor computations is

futher “tensorization“ of tensors to higher-dimensional representation by quantics-

type folding [19, 10]. For any index i varied from 1 to 2d we consider its binary

representation i = 1 +
∑d

k=1 2d−k (ik − 1), each of the subindices i1 . . . id being equal

to either 1 or 2. These subindices compose a new multi-index i = (i1 . . . id), and

hence a vector A indexed by the scalar index i is to be treated as a d-dimensional

2 × . . . × 2-tensor indexed by the multi-index i. And similarly a D-dimensional

2d1 × . . . × 2dD -tensor A subjected to such an index transformation is presented

as a (d1 + . . . + dD)-dimesional 2 × . . . × 2-tensor. In short, this is nothing more that

just a reshaping into a 2 × . . . × 2-tensor, possibly rather high-dimensional.

Such an approach allows us to deal with high numbers of points along each

dimension, dimensionality growing logarithmicaly in respect of them. Thus, a ten-

sor format with storage costs and complexity linear with respect to dimensionality

being employed along with such a reshaping, logarithmic scaling with respect to

grid step can be the case.

The idea of virtual levels is not new at all. As early as in 2003 it was applied to

analysis of canonical decompostion of asimptotically smooth functions [26], which

in fact was done by bounding of ranks of TT cores (see also discussion in [10]). In
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view of TT it was considered deliberately in [19]. Being applied to TT, the idea of

“tensorization” leads us to the Quantics Tensor Train (QTT) format with beneficial

approximation properties of low-rank approximation, which was discovered in the

paper [10] substantiating the computational background of the quantics folding.

Tensorization has aslo been considered with respect to the Hierarchical Tucker

format in [7].

The TT and QTT formats have been successfully applied recently to tensor-

structured solution of stochastic PDEs [15, 14], elliptic PDEs [13, 4] and problems

of quantum molecular dynamics [12], these examples being comparable to a Hier-

archical Tucker-structured Krylov subspace solver for multi-parametric problems,

introduced in [18]. So efficient QTT-structured iterative solvers, calling up the ones

relying upon the preceding formats (for example, a tensor Krylov subspace method

in canonical format presented in [17]) are already available.

TT rank

As follows from the basic paper on TT [24], the minimal possible k-th rank of

an exact rather than approximate TT decomposition of a tensor A is nothing else

than the rank of the corresponding unfolding of A, that is the matrix A
(k) with the

elements

A
(k) (i1 . . . ik ; ik+1 . . . iD) = A(i1 . . . iD),

obtained from A by reshaping, indices 1 . . . k and k+1 . . . D being considered as row

and column indices respectively. This is referred to as the k-th TT rank of A [24].

Definition 0.1. A multi-way n1 × . . . × nD-vector

A ∈ R
n1 × . . . × R

nD

is given, its k-th TT rank is the rank of its unfolding A
(k) with the elements

A
(k) (i1 . . . ik ; ik+1 . . . iD) = A(i1 . . . iD),

1 ≤ k ≤ D − 1.

Once we apply this to a multi-way matrix rather than vector, TT decomposi-

tion of which is given by (2), we arrive at the same concept of TT rank. But, as it

has been already noticed, this implies application of TT to a “vectorization” of the

matrix. In fact, a matrix is considered merely as a vector in (2), and its neither

possibility to map vectors to vectors nor related properties are taken into consider-

ation. To emphasize this, we refer to this ranks as vector TT ranks.

Definition 0.2. A multi-way m1 × n1 × . . . × mD × nD-matrix

A : R
n1 × . . . × R

nD 7→ R
m1 × . . . × R

mD

is given, its k-th vector TT rank is the rank of its unfolding A
(k) with the elements

A
(k) (i1j1 . . . ikjk ; ik+1jk+1 . . . iDjD) = A(i1j1 . . . iDjD),

1 ≤ k ≤ D − 1.
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In particular this means that the minimal vector ranks of TT decomposition

of a certain matrix are somewhat independent from one other, depending on the

matrix in the aggregate. So we may consider a minimal rank decomposition, which

it holds for that no one of D − 1 ranks can be reduced without introducing an

error in (2) even if we allow the others to grow. And the same holds even for a

decomposition with non-minimal ranks as soon as it is orthogonal [22]. Anyway,

with no regard to if orthogonality of a decomposition holds or not, this makes it

reasonable to compare ranks elementwise.

Definition 0.3. Let us say that a multiway matrix (vector) is of rank not greater

than r1 . . . rD−1 if and only if for any k: 1 ≤ k ≤ D − 1 its k-th vector TT rank is not

greater than rk.

Vector TT rank of a matrix is of great importance in view of storage costs and

complexity of such basic operations as dot product, multi-dimensional contraction,

matrix-by-vector multiplication, rank reduction and orthoganalization of a tensor

train. Their complexity upper bounds are linear with respect to vector TT rank

upper bound raised to the power 2 or 3 [22].

Operators to be considered

In this paper we focus on QTT structure of finite difference discretization

∆
(d1...dD) of Laplace operator, considered over a D-dimensional cube on tensor uni-

form grids, and, in one-dimensional case, of its inverse as well. The grids in ques-

tion are tensor products of D one-dimensional uniform grids, each k-th of them

comprising 2dk points. Specifically, by discrete Laplace operator we mean a matrix

∆
(d1...dD) = a1∆

(d1)
1 ⊗ I2d2 . . .⊗ I2dD + . . . + I2d1 ⊗ . . .⊗ I2dD−1

⊗ aD∆
(dD)
D , (3)

summed by D terms here, Im being an m × m identity matrix. The weights ak are

to take into consideration both the difference in grid steps and anisotropy. For the

sake of brevity these weights are let be 1 below unless otherwise stated. Each of

∆
(dk)
k may be any of the following 2dk × 2dk -matrices, depending on the boundary

conditions imposed:

∆
(dk)
DD =

















2 −1

−1 2
. . .

. . .
. . . −1

−1 2 −1

−1 2

















, ∆
(dk)
NN =

















1 −1

−1 2
. . .

. . .
. . . −1

−1 2 −1

−1 1

















(4)

are the ones for Dirichlet and Neumann boundary conditions respectively,

∆
(dk)
DN =

















2 −1

−1 2
. . .

. . .
. . . −1

−1 2 −1

−1 1

















, ∆
(dk)
ND =

















1 −1

−1 2
. . .

. . .
. . . −1

−1 2 −1

−1 2

















(5)
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are the ones for various boundary conditions in the two boundary points and

∆
(dk)
P =

















2 −1 −1

−1 2
. . .

. . .
. . . −1

−1 2 −1

−1 −1 2

















(6)

is the one for periodic boundary conditions.

Notation

QTT structure of the operators described above and some other related ones

is to be revealed in terms of the following 2 × 2-matrices:

I =

(

1 0

0 1

)

, J =

(

0 1

0 0

)

, I1 =

(

1 0

0 0

)

, I2 =

(

0 0

0 1

)

, P =

(

0 1

1 0

)

,

E =

(

1 1

1 1

)

, F =

(

1 −1

−1 1

)

, K =

(

−1 0

0 1

)

, L =

(

0 −1

1 0

)

. (7)

To deal with 3 and 4-dimensional TT cores efficiently in the paper, we use

matrix notation for them and their convolutions a lot. For instance, if n×m-matrices

Aαβ, α = 1 . . . r1, β = 1 . . . r2 are the TT blocks of a TT core U of mode sizes n and m,

left rank r1 and right rank r2, so that U (α, i, j, β) = (Aαβ)
ij
for all the values of the

indices, then we write it just as a matrix

U =







A11 · · · A1r2

...
...

...

Ar11 · · · Ar1r2






,

a core matrix, in square braces. As long as we aim to present TT structure in terms

of a narrow set of TT blocks, we need to focus on rank structure of the cores, and

that is why such a notation is convenient in handling the cores of TT decomposition.

Definition 0.4. For two TT cores U and V of sizes p × n × m × q and q × k × l × r

respectively, consisting of TT blocks Aαγ, α = 1 . . . p, γ = 1 . . . q and Bγβ, γ = 1 . . . q,

β = 1 . . . r respectively, let us define their inner core product U ⋊⋉ V as a TT core of

size p × nk × ml × r, comprising TT blocks
∑q

γ=1 Aαγ ⊗Bγβ, α = 1 . . . p, β = 1 . . . r.

In other words, we define U ⋊⋉ V as a regular matrix product of the two core

matrices, their elements (TT blocks) being multiplied by means of tensor product.

For example,

[

A11 A12

A21 A22

]

⋊⋉

[

B11 B12

B21 B22

]

=

[

A11 ⊗B11 + A12 ⊗B21 A11 ⊗B12 + A12 ⊗B22

A21 ⊗B11 + A22 ⊗B21 A21 ⊗B12 + A22 ⊗B22

]

.
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Definition 0.5. For two TT cores U and V of sizes p × n × k × q and r × k × m × s

respectively, consisting of TT blocks Aαβ, α = 1 . . . p, β = 1 . . . q and Bαβ, α = 1 . . . r,

β = 1 . . . s respectively, let us define their outer core product U •V as a TT core of

size pr×n×m× qs, comprising TT blocks Aαβ ·Bγδ, α = 1 . . . p, β = 1 . . . q, γ = 1 . . . r,

δ = 1 . . . s.

The latter operation is very similar to the former one, regular matrix and ten-

sor multiplications being interchanged. For instance,

[

A11 A12

A21 A22

]

•

[

B11 B12

B21 B22

]

=









A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22









.

In order to avoid confusion we use square braces for TT cores, which are to be

multiplied by means of inner or outer core product, and round braces for regular

matrices, which are to be multiplied as usual.

Remark 0.6. Both core products introduced above arise naturally from the TT

format. For instance, (2) could be recast as

A = U1 ⋊⋉ U2 ⋊⋉ . . . ⋊⋉ UD−1 ⋊⋉ UD.

Let B = V1 ⋊⋉ V2 ⋊⋉ . . . ⋊⋉ VD−1 ⋊⋉ VD, then a linear combination of A and B could be

put down as following:

αA + βB =
[

U1 V1

]

⋊⋉

[

U2

V2

]

⋊⋉ . . . ⋊⋉

[

UD−1

VD−1

]

⋊⋉

[

αUD

βVD

]

;

a tensor product of A and B, as following:

A⊗B = U1 ⋊⋉ U2 ⋊⋉ . . . ⋊⋉ UD−1 ⋊⋉ UD ⋊⋉ V1 ⋊⋉ V2 ⋊⋉ . . . ⋊⋉ VD−1 ⋊⋉ VD;

a matrix product of A and B, as following:

AB = (U1 •V1) ⋊⋉ (U2 •V2) ⋊⋉ . . . ⋊⋉ (UD−1 •VD−1) ⋊⋉ (UD •VD) .

It is also plain to see that a transpose A
′ of A is equal to an inner core product of

the same TT cores, their TT blocks being transposed.

Finally, by A⊗ k, k being natural, we mean a k-th tensor power of A. For ex-

ample, I⊗ 3 = I ⊗ I ⊗ I, and the same way for the core product operations “⋊⋉“ and

“•“.

1 Some examples of derivation TT and QTT struc-

ture

Next we will derive TT and QTT decompositions of some matrices to manifest

the notation introduced above, bring into play our basic technique allowing us to

do the same job with the other matrices under consideration and prepare impor-

tant preliminaries. In fact, the idea is very simple. We apply two sequential steps

recursively. First, we pick a higher level of TT structure in terms of the basic TT

blocks chosen. Second, we get rid of redundancy of a decomposition, which turns

out to be evident thanks to a wise choice of the basic blocks.

7



1.1 TT structure of a “D-dimensional” Laplace-like operator

We start off with the operator 3, that was announced above to be of the most

interest for us in this paper. Below we will also need a similar Laplace-like operator

L
(D), D ≥ 2, with a slightly more general structure:

L
(D) = M1 ⊗R2 ⊗R3 ⊗ . . .⊗RD−2 ⊗RD−1 ⊗RD

+ L1 ⊗M2 ⊗R3 ⊗ . . .⊗RD−2 ⊗RD−1 ⊗RD + . . .

+ L1 ⊗L2 ⊗L3 ⊗ . . .⊗LD−2 ⊗MD−1 ⊗RD

+ L1 ⊗L2 ⊗L3 ⊗ . . .⊗LD−2 ⊗LD−1 ⊗MD, (8)

matrices Lk, Mk and Rk being of size mk × nk, 1 ≤ k ≤ D.

Lemma 1.1. For any D ≥ 2 the Laplace-like operator L
(D) allows the following

rank-2 . . . 2 TT representation in terms of the blocks Lk, Mk and Rk:

L
(D) =

[

L1 M1

]

⋊⋉

[

L2 M2

R2

]

⋊⋉ . . . ⋊⋉

[

LD−1 MD−1

RD−1

]

⋊⋉

[

MD

RD

]

.

Proof. The first level of TT structure of this operator is trivially exposed right from

the definition (8) given by means of canonical format. Indeed,

L
(k+1) = L

(k) ⊗Rk+1 + L1 ⊗ . . .⊗Lk ⊗Mk+1,

which holds for any k ≥ 2 and can also be recast by means of core inner product

into the following:

L
(k+1) =

[

L1 ⊗ . . .⊗Lk L
(k)
]

⋊⋉

[

Mk+1

Rk+1

]

,

the latter, being applied to itself recusively, allows us to draw up a rank-2 TT de-

composition of the “D-dimensional” operator L
(D) in terms of ”one-dimensional“

operators Lk, Mk and Rk, 1 ≤ k ≤ D:

L
(D) =

[

L1 ⊗ . . .⊗LD−1 L
(D−1)

]

⋊⋉

[

MD

RD

]

=
[

L1 ⊗ . . .⊗LD−2 L1 ⊗ . . .⊗LD−2 L
(D−2)

]

⋊⋉





LD−1

MD−1

RD−1



⋊⋉

[

MD

RD

]

=
[

L1 ⊗ . . .⊗LD−2 L
(D−2)

]

⋊⋉

[

LD−1 MD−1

RD−1

]

⋊⋉

[

MD

RD

]

= . . .

=
[

L1 ⊗L2 L
(2)
]

⋊⋉

[

L3 M3

R3

]

⋊⋉ . . . ⋊⋉

[

LD−1 MD−1

RD−1

]

⋊⋉

[

MD

RD

]

=
[

L1 M1

]

⋊⋉

[

L2 M2

R2

]

⋊⋉ . . . ⋊⋉

[

LD−1 MD−1

RD−1

]

⋊⋉

[

MD

RD

]

. (9)
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Remark 1.2. Once QTT decompositions of each of “one-dimensional“ operators

Lk, Mk and Rk, 1 ≤ k ≤ D, are known, they can easily be merged into a QTT

decomposition of the “D-dimensional“ operator L
(D) according to Lemma 1.1. For

instance, if L = U1 ⋊⋉ . . . ⋊⋉ Ud, M = V1 ⋊⋉ . . . ⋊⋉ Vd and R = W1 ⋊⋉ . . . ⋊⋉ Wd, Uk, Vk and

Wk, 1 ≤ k ≤ d being QTT cores, then

[

L M

R

]

=

[

U1 V1

W1

]

⋊⋉





U2

V2

W2



⋊⋉ . . . ⋊⋉





Ud−1

Vd−1

Wd−1



⋊⋉





Ud

Vd

Wd



 ,

[

L M
]

=
[

U1 V1

]

⋊⋉

[

U2

V2

]

⋊⋉ . . . ⋊⋉

[

Ud−1

Vd−1

]

⋊⋉

[

Ud

Vd

]

,

[

M

R

]

=

[

V1

W1

]

⋊⋉

[

V2

W2

]

⋊⋉ . . . ⋊⋉

[

Vd−1

Wd−1

]

⋊⋉

[

Vd

Wd

]

, (10)

core product is to be applied with no respect to the extra block structure of cores

marked by lines. In general case such the cores U1 . . . Ud, V1 . . . Vd and W1 . . . Wd, that

the ranks of these representations cannot be reduced, do exist. But we tackle par-

ticular L, M and R, which mostly allow us to lessen ranks of the QTT decomposition

(10) of L
(D).

Now we are prepared to proceed easily from a sum of D tensor products of

rank-1 TT cores L
(D) to a sum of D products of TT cores of arbitrary compatible

ranks

M
(D) =

D
∑

k=1

U1 ⋊⋉ . . . ⋊⋉ Uk−1 ⋊⋉ Γk ⋊⋉ Vk+1 ⋊⋉ . . . ⋊⋉ VD, (11)

Uk, Γk and Vk, 1 ≤ k ≤ D, being cores of consistent rank and mode sizes, so that

each of the summands in (11) and the sum itself are correctly defined. Note that

M
(D) is a straightforward generalization of L

(D). Indeed, (11) turns into (8) as long

as Uk =
[

Lk

]

, Γk =
[

Mk

]

and Vk =
[

Rk

]

, 1 ≤ k ≤ D.

It is to be pointed out that we do not limit M
(D) to a sum of D “complete”

tensor trains. We consider the case when the left rank of U1 and Γ1, as well as the

right rank of ΓD and VD are not required to be equal to 1, and hence M
(D) may

in general depend also on two rank indices. The following statement, similar to

Lemma 1.1, holds for such the structured matrix.

Lemma 1.3. For any D ≥ 2 the operator M
(D) allows the following rank-2 . . . 2 TT

representation in terms of the cores Uk, Γk and Vk:

M
(D) =

[

U1 Γ1

]

⋊⋉

[

U2 Γ2

V2

]

⋊⋉ . . . ⋊⋉

[

UD−1 ΓD−1

VD−1

]

⋊⋉

[

ΓD

VD

]

.

Proof. Follows the proof of Lemma 1.1 owing to the properties of the inner core

product inherited from the matrix multiplication and tensor product, “⊗” being

replaced with “⋊⋉”; Lk, Mk and Rk, with Uk, Γk and Vk respectively.

9



1.2 “One-dimensional” shift and gradient matrices

Let us now go ahead with QTT structure of the two such recognizable “one-

dimensional” operators as shift and gradient matrices:

S
(d) =















0 1 0
. . .

. . .
. . .

0 1 0

0 1

0















and G
(d) =















1 −1 0
. . .

. . .
. . .

1 −1 0

1 −1

1















,

size of both being equal 2d. A simple recursive block structure of G
(k)

G
(k) =

(

G
(k−1) −J ′ ⊗(k−1)

G
(k−1)

)

= I ⊗G
(k−1) − J ⊗ J ′ ⊗(k−1),

in our core product notation leads straightforwardly to

G
(d) =

[

I J
]

⋊⋉

[

G
(d−1)

−J ′ ⊗(d−1)

]

=
[

I J
]

⋊⋉

[

I J

J ′

]

⋊⋉





G
(d−2)

−J ′ ⊗(d−2)

−J ′ ⊗(d−2)





=
[

I J
]

⋊⋉

[

I J

J ′

]

⋊⋉

[

G
(d−2)

−J ′ ⊗(d−2)

]

= . . . =
[

I J
]

⋊⋉

[

I J

J ′

]⋊⋉(d−2)

⋊⋉

[

G
(1)

−J ′

]

=
[

I J
]

⋊⋉

[

I J

J ′

]⋊⋉(d−2)

⋊⋉

[

I − J

−J ′

]

. (12)

Decomposition of a shift matrix is obtained by the same token:

S
(d) =

[

I J
]

⋊⋉

[

I J

J ′

]⋊⋉(d−2)

⋊⋉

[

S
(1)

J ′

]

=
[

I J
]

⋊⋉

[

I J

J ′

]⋊⋉(d−2)

⋊⋉

[

J

J ′

]

. (13)

Likewise, for periodical shift and gradient matrices

S
(d)
P = S

(d) +

(

1

)

= S
(d) +

[

J ′
]

⋊⋉d
,

G
(d)
P = G

(d) −

(

1

)

= G
(d) −

[

J ′
]

⋊⋉d

it holds that

S
(d)
P =

[

I J J ′
]

⋊⋉





I J

J ′

J ′





⋊⋉(d−2)

⋊⋉





J

J ′

J ′





=
[

I P
]

⋊⋉

[

I J

J ′

]⋊⋉(d−2)

⋊⋉

[

J

J ′

]

, (14)

G
(d)
P =

[

I J J ′
]

⋊⋉





I J

J ′

J ′





⋊⋉(d−2)

⋊⋉





I − J

−J ′

−J ′



 .

=
[

I P
]

⋊⋉

[

I J

J ′

]⋊⋉(d−2)

⋊⋉

[

I − J

−J ′

]

. (15)
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Remark 1.4. Transposition of Tensor Trains notation require no effort in core no-

tation, all one needs to do is to transpose all the TT blocks. For instance, inverse

periodical shift matrix has the following QTT representation:

G
(d)
P

′

=
[

I J ′ + J
]

⋊⋉

[

I J ′

J

]⋊⋉(d−2)

⋊⋉

[

I − J ′

−J

]

.

Remark 1.5. As long as ∆
(d)
DN = G

(d)
G

(d)′, ∆
(d)
ND = G

(d)′
G

(d) and ∆
(d)
P = G

(d)
P G

(d)
P

′

, we

could now use (12) and (15) to derive QTT decompositions of these “one-dimensional”

Laplace operators. For instance,

∆
(d)
P =

([

I P
]

•
[

I P
])

⋊⋉

([

I J

J ′

]

•

[

I J ′

J

])⋊⋉(d−2)

⋊⋉

([

I − J

−J ′

]

•

[

I − J ′

−J

])

=
[

II IP PI PP
]

⋊⋉









II IJ ′ JI JJ ′

IJ JJ

J ′I J ′J ′

J ′J









⋊⋉(d−2)

⋊⋉









(I − J) (I − J ′)

− (I − J) J

J ′ (I − J ′)

J ′J









,

which could be simplified to a rank-2, 3 . . . 3 decomposition to be obtained another

way below.

2 Laplace operator

2.1 One dimension

Consider “one-dimensional” Laplace operator ∆
(d)
DD (4). Like the gradient ma-

trix dealt with above it has a low-rank QTT structure, as it follows from the next

lemma.

Lemma 2.1. For any d ≥ 2 it holds that

∆
(d)
DD =

[

I J ′ J
]

⋊⋉





I J ′ J

J

J ′





⋊⋉(d−2)

⋊⋉





2I − J − J ′

−J

−J ′



 .

Proof. Similarly to a gradient matrix, ∆
(d)
DD exhibits a recursive block structure:

∆
(k)
DD =

(

∆
(k−1)
DD −J ′ ⊗(k−1)

−J⊗(k−1)
∆

(k−1)
DD

)

= I ⊗∆
(k−1)
DD − J ′ ⊗ J⊗(k−1) − J ⊗ J ′ ⊗(k−1),

which yields us its low-rank QTT representation:

∆
(d)
DD =

[

I J ′ J
]

⋊⋉





∆
(d−1)

−J⊗(d−1)

−J ′ ⊗(d−1)



 =
[

I J ′ J
]

⋊⋉





I J ′ J

J

J ′



⋊⋉













∆
(d−2)

−J⊗(d−2)

−J ′ ⊗(d−2)

−J⊗(d−2)

−J ′ ⊗(d−2)













11



=
[

I J ′ J
]

⋊⋉





I J ′ J

J

J ′



⋊⋉





∆
(d−2)

−J⊗(d−2)

−J ′ ⊗(d−2)



 = . . . =

=
[

I J ′ J
]

⋊⋉





I J ′ J

J

J ′





⋊⋉(d−2)

⋊⋉





2I − J − J ′

−J

−J ′



 .

This lemma leads us to similar results for a discretized one-dimensional Laplace

operator in case of other boundary conditions.

Lemma 2.2. For any d ≥ 4 it holds that

∆
(d)
DN =

[

I J ′ J I2

]

⋊⋉









I J ′ J

J

J ′

I2









⋊⋉(d−2)

⋊⋉









2I − J − J ′

−J

−J ′

−I2









,

∆
(d)
ND =

[

I J ′ J I1

]

⋊⋉









I J ′ J

J

J ′

I1









⋊⋉(d−2)

⋊⋉









2I − J − J ′

−J

−J ′

−I1









,

∆
(d)
NN =

[

I J ′ J I2

]

⋊⋉









I J ′ J I1

J

J ′

I2 −I1









⋊⋉













I J ′ J

J

J ′

I2

I1













⋊⋉(d−4)

⋊⋉













I J ′ J

J

J ′

I2

−1
2
I1

1
2
I1

1
2
I1 −I1













⋊⋉









2I − J − J ′

−J

−J ′

−I2









,

∆
(d)
P =

[

I P
]

⋊⋉

[

I J ′ J

J J ′

]

⋊⋉





I J ′ J

J

J ′





⋊⋉(d−3)

⋊⋉





2I − J − J ′

−J

−J ′



 .

Proof. Since ∆
(d)
DN = ∆

(d)
DD − I⊗ d

2 and ∆
(d)
ND = ∆

(d)
DD − I⊗ d

1 , we arrive at the decompo-

sitions of these operators at once in view of Lemma 2.1. In the same way, as long

as ∆
(d)
NN = ∆

(d)
DD − I⊗ d

1 − I⊗ d
2 , it follows that

∆
(d)
NN =

[

I J ′ J I2 I1

]

⋊⋉













I J ′ J

J

J ′

I2

I1













⋊⋉(d−2)

⋊⋉













2I − J − J ′

−J

−J ′

−I2

−I1













,
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and due to the fact that I1 + I2 = I we can reduce both the terminal ranks down to

4:

∆
(d)
NN =

[

I J ′ J I2

]

⋊⋉









1 1

1

1

1 −1









⋊⋉













I J ′ J

J

J ′

I2

I1













⋊⋉(d−2)

⋊⋉













1

1

1

1

−1
2

1
2

1
2

−1













⋊⋉









2I − J − J ′

−J

−J ′

−I2









,

For periodic boundary conditions, since ∆
(d)
P = ∆

(d)
DD −J⊗ d−J ′ ⊗ d, we elicit the

following QTT decomposition.

∆
(d)
P =

[

I J ′ J J J ′
]

⋊⋉













I J ′ J

J

J ′

J

J ′













⋊⋉(d−2)

⋊⋉













2I − J − J ′

−J

−J ′

−J

−J ′













=
[

I J ′ J J J ′
]

⋊⋉













I J ′ J

J

J ′

J

J ′













⋊⋉(d−2)

⋊⋉













1

1

1

1

1













⋊⋉





2I − J − J ′

−J

−J ′





=
[

I J ′ J J J ′
]

⋊⋉













I J ′ J

J

J ′

J

J ′













⋊⋉(d−3)

⋊⋉













1

1

1

1

1













⋊⋉





I J ′ J

J

J ′



⋊⋉





2I − J − J ′

−J

−J ′





= . . . =
[

I J ′ J J J ′
]

⋊⋉













1

1

1

1

1













⋊⋉





I J ′ J

J

J ′





⋊⋉(d−2)

⋊⋉





2I − J − J ′

−J

−J ′





=
[

I P
]

⋊⋉

[

1

1 1

]

⋊⋉





I J ′ J

J

J ′





⋊⋉(d−2)

⋊⋉





2I − J − J ′

−J

−J ′





=
[

I P
]

⋊⋉

[

I J ′ J

J J ′

]

⋊⋉





I J ′ J

J

J ′





⋊⋉(d−3)

⋊⋉





2I − J − J ′

−J

−J ′



 ,
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which consequently has ranks smaller or equal to those of ∆
(d)
DD that we started

with.

2.2 D dimensions

As soon as Mk = ak∆
(dk)
k and Lk = Rk = I⊗ dk for any k = 1 . . . D, L

(D) (8) is

a Laplace operator ∆
(d1...dD) (3), and hence the following corollary to Lemma 1.1

holds.

Corollary 2.3. For any D ≥ 2 the “D-dimensional” Laplace operator defined by (3)

has the following QTT structure in terms of the “one-dimensional” Laplace opera-

tors ak∆
(dk)
k , 1 ≤ k ≤ D:

∆
(d1...dD) =

[

I⊗ d1 a1∆
(d1)
1

]

⋊⋉

[

I⊗ d2 a2∆
(d2)
2

I⊗ d2

]

⋊⋉ . . . ⋊⋉

[

I⊗ dD−1 aD−1∆
(dD−1)
D−1

I⊗ dD−1

]

⋊⋉

[

aD∆
(dD)
D

I⊗ dD

]

.

Next we match this with results of Lemma 2.1 and Lemma 2.2 according to the

Remark 1.2. As soon as we derive low-rank QTT representations of the supercores

involved in (10), we will have the one of the Laplace operator comprising these

supercores at once.

In case of Dirichlet boundary conditions we put QTT cores into the supercores

involved in (10) and do the same thing as before: reduce ranks as possible by elimi-

nation of dependent QTT blocks, which could be conceived as sweeping column (in

regard to the left core) or row (in regard to the right core) transformation matrices

through the “tensor train” just as it was done in the proof of Lemma 2.2. In cases of

other boundary conditions QTT decompositions may be derived by the same token

and the alterations to the Dirichlet boundary conditions case required are quite

evident.

Corollary 2.4. For any d ≥ 3 the following QTT representations hold.

[

I⊗ dk ak∆
(dk)
DD

I⊗ dk

]

=

[

I J ′ J

I

]

⋊⋉









I J ′ J

J

J ′

I









⋊⋉(d−2)

⋊⋉









I ak (2I − J − J ′)

−akJ

−akJ
′

I









,

[

I⊗ dk ak∆
(dk)
DD

]

=
[

I J ′ J
]

⋊⋉





I J ′ J

J

J ′





⋊⋉(d−2)

⋊⋉





I ak (2I − J − J ′)

−akJ

−akJ
′



 ,

[

ak∆
(dk)
DD

I⊗ dk

]

=

[

I J ′ J

I

]

⋊⋉









I J ′ J

J

J ′

I









⋊⋉(d−3)

⋊⋉









akI akJ
′ akJ

akJ

akJ
′

1
2
I −1

2
I −1

2
I









⋊⋉





2I − J − J ′

−J

−J ′



 .
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Proof.

[

I⊗ dk ak∆
(dk)
DD

I⊗ dk

]

=

[

I I J ′ J

I

]

⋊⋉













I

I J ′ J

J

J ′

I













⋊⋉(d−2)

⋊⋉













I

ak (2I − J − J ′)

−akJ

−akJ
′

I













=

[

I J ′ J

I

]

⋊⋉









I J ′ J

J

J ′

I









⋊⋉(d−2)

⋊⋉









I ak (2I − J − J ′)

−akJ

−akJ
′

I









,

for a middle supercore. The terminal supercores are subcores of that, which allows

to reduce ranks of them similarly to how it was done in the proof of Lemma 2.2.

Corollary 2.5. For any d ≥ 3 the following QTT representations hold:

[

I⊗ dk ak∆
(dk)
DN

I⊗ dk

]

=

[

I J ′ J I2

I

]

⋊⋉













I J ′ J

J

J ′

I2

I













⋊⋉(d−2)

⋊⋉













I ak (2I − J − J ′)

−akJ

−akJ
′

−akI2

I













,

[

I⊗ dk ak∆
(dk)
DN

]

=
[

I J ′ J I2

]

⋊⋉









I J ′ J

J

J ′

I2









⋊⋉(d−2)

⋊⋉









I ak (2I − J − J ′)

−akJ

−akJ
′

−akI2









,

[

ak∆
(dk)
DN

I⊗ dk

]

=

[

I J ′ J I2

I

]

⋊⋉













I J ′ J

J

J ′

I2

I













⋊⋉(d−3)

⋊⋉













akI akJ
′ akJ

akJ

akJ
′

akI2
1
2
I −1

2
I −1

2
I













⋊⋉









2I − J − J ′

−J

−J ′

−I2









,

and the same representations for supercores with ∆
(dk)
ND instead of ∆

(dk)
DN , I2 being

replaced with I1.
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Proof.

[

ak∆
(dk)
DN

I⊗ dk

]

=

[

I J ′ J I2

I

]

⋊⋉













I J ′ J

J

J ′

I2

I













⋊⋉(d−2)

⋊⋉













ak (2I − J − J ′)

−akJ

−akJ
′

−akI2

I













=

[

I J ′ J I2

I

]

⋊⋉













I J ′ J

J

J ′

I2

I













⋊⋉(d−3)

⋊⋉













akI akJ
′ akJ

akJ

akJ
′

akI2
1
2
I −1

2
I −1

2
I













⋊⋉









2I − J − J ′

−J

−J ′

−I2









,

proof for other supercores is similar to that of Corollary 2.4.

Corollary 2.6. For any d ≥ 4 the following QTT representations hold:

[

I⊗ dk ak∆
(dk)
NN

I⊗ dk

]

=

[

I J ′ J I2

I

]

⋊⋉













I J ′ J I1

J

J ′

I2 −I1

I













⋊⋉

















I J ′ J

J

J ′

I2

I1

I

















⋊⋉(d−4)

⋊⋉

















I J ′ J

J

J ′

akI2

akI1

−I −I

















⋊⋉













I ak (2I − J − J ′)

−akJ

−akJ
′

−I2

−I1













,

[

I⊗ dk ak∆
(dk)
NN

]

=
[

I J ′ J I2

]

⋊⋉









I J ′ J I1

J

J ′

I2 −I1









⋊⋉













I J ′ J

J

J ′

I2

I1













⋊⋉(d−3)

⋊⋉













I ak (2I − J − J ′)

−akJ

−akJ
′

−akI2

−akI1













,

[

ak∆
(dk)
NN

I⊗ dk

]

=

[

I J ′ J I2

I

]
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⋊⋉













I J ′ J I1

J

J ′

I2 −I1

I













⋊⋉

















I J ′ J

J

J ′

I2

I1

I

















⋊⋉(d−4)

⋊⋉

















akI akJ
′ akJ

akJ

akJ
′

akI2
1
2
akI1 −1

2
akI1 −1

2
akI1 −akI1

1
2
I −1

2
I −1

2
I

















⋊⋉









2I − J − J ′

−J

−J ′

−I2









.

Proof. Is similar to that of Corollary 2.4 and Corollary 2.5.

Corollary 2.7. For any d ≥ 4 the following QTT representations hold:

[

I⊗ dk ak∆
(dk)
P

I⊗ dk

]

=

[

I P

I

]

⋊⋉





I J ′ J

J J ′

I





⋊⋉









I J ′ J

J

J ′

I









⋊⋉(d−3)

⋊⋉









I ak (2I − J − J ′)

−akJ

−akJ
′

I









,

[

I⊗ dk ak∆
(dk)
P

]

=
[

I P
]

⋊⋉

[

I J ′ J

J J ′

]

⋊⋉





I J ′ J

J

J ′





⋊⋉(d−3)

⋊⋉





I ak (2I − J − J ′)

−akJ

−akJ
′



 ,

[

ak∆
(dk)
P

I⊗ dk

]

=

[

I P

I

]

⋊⋉





I J ′ J

J J ′

I



⋊⋉









I J ′ J

J

J ′

I









⋊⋉(d−4)

⋊⋉









akI akJ
′ akJ

akJ

akJ
′

1
2
I −1

2
I −1

2
I









⋊⋉





2I − J − J ′

−J

−J ′



 .

Proof. Is similar to those of Corollary 2.4, Corollary 2.5 and Corollary 2.6.

3 Inverse Laplace operator in one dimension

Next we derive low-rank QTT decompositions of inverse of a discretized Laplace

operator, Dirichlet-Neumann or Dirichlet-Dirichlet boundary conditions being im-

posed. We will proceed from explicit representation of ∆
(d)
DD

−1
and ∆

(d)
DN

−1
.
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Proposition 3.1. Let

∆DD =

















2 −1

−1 2
. . .

. . .
. . . −1

−1 2 −1

−1 2

















, ∆DN =

















2 −1

−1 2
. . .

. . .
. . . −1

−1 2 −1

−1 1

















be n × n-matrices. Then

∆DD
−1

ij =
1

n + 1

{

i(n + 1 − j), 1 ≤ i ≤ j ≤ n

(n + 1 − i)j, 1 ≤ j < i ≤ n
,

∆DN
−1

ij =
1

n + 1

{

i(n + 1), 1 ≤ i ≤ j ≤ n

(n + 1)j, 1 ≤ j < i ≤ n
.

Proof. Follows at once from either explicit expressions of Green’s functions of the

corresponding Sturm-Liouville problems (see, for example, [27]) or a direct check.

Lemma 3.2. For any d ≥ 2 it holds that

∆
(d)
DN

−1
=

[

I I2 J J ′
]

⋊⋉









I I2 J J ′

2E

I2 + J ′ E

I2 + J E









⋊⋉(d−2)

⋊⋉









E + I2

2E

E + I2 + J ′

E + I2 + J









.

Proof. According to Proposition 3.1, the inverse of the matrix ∆
(d)
DN has the follow-

ing form:

∆
(d)
DN

−1
=

















1 · · · · · · · · · 1
... 2 · · · · · · 2
...

... 3 · · · 3
...

...
...

. . .
...

1 2 3 · · · 2d

















,

(16)

and hence, introducing matrices

K
(k) =

















1 2 3 · · · 2k

... · · · · · · · · ·
...

... · · · · · · · · ·
...

... · · · · · · · · ·
...

1 2 3 · · · 2k

















,

1 ≤ k ≤ D − 1, which it holds for that

K
(k) =

(

K
(k−1) 2k−1E⊗(k−1) + K

(k−1)

K
(k−1) 2k−1E⊗(k−1) + K

(k−1)

)

=
[

I2 + J E
]

⋊⋉

[

2k−1E⊗(k−1)

K
(k−1)

]

,

18



we draw up the following:

∆
(d)
DN

−1
=

[

I I2 J J ′
]

⋊⋉











∆
(d−1)
DN

−1

2d−1E⊗(d−1)

K
(d−1)′

K
(d−1)











=
[

I I2 J J ′
]

⋊⋉









I I2 J J ′

2E

I2 + J ′ E

I2 + J E









⋊⋉

































∆
(d−2)
DN

−1

2d−2E⊗(d−2)

K
(d−2)′

K
(d−2)

2d−2E⊗(d−2)

2d−2E⊗(d−2)

K
(d−2)′

2d−2E⊗(d−2)

K
(d−2)

































=
[

I I2 J J ′
]

⋊⋉









I I2 J J ′

2E

I2 + J ′ E

I2 + J E









⋊⋉











∆
(d−2)
DN

−1

2d−2E⊗(d−2)

K
(d−2)′

K
(d−2)











= . . . =
[

I I2 J J ′
]

⋊⋉









I I2 J J ′

2E

I2 + J ′ E

I2 + J E









⋊⋉(d−2)

⋊⋉









E + I2

2E

E + I2 + J ′

E + I2 + J









.

Lemma 3.3. Let d ≥ 2 and

ξk =
2k−1 + 1

2k + 1
, ηk =

2k−2

2k + 1
, ζk =

2k−1 + 1

2k−1
ξk

for 1 ≤ k ≤ d. Then ∆
(d)
DD

−1
has a rank-5 . . . 5 QTT representation

∆
(d)
DD

−1
= Wd ⋊⋉ Wd−1 ⋊⋉ . . . ⋊⋉ W2 ⋊⋉ W1,

which consists of the TT cores

Wd =
[

I 1
4
ξdI + 1

4
ζdP ξdI − ζdP −ξdK ζdL

]

Wk =













I 1
4
ξkI + 1

4
ζkP ξkI − ζkP −ξkK ζkL

2E

2η2
kF 2ξ2

kE 2ξkηkK ξkηkL

4ηkK 2ξkE

−4ηkL 2ξkE













, 2 ≤ k ≤ d − 1,

W1 =













1
3
(I + E)

2E
1
18

F
2
3
K

−2
3
L













.
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Proof. Let Q(k) be a 2k × 2-matrix comprising columns 2k−1 and 2k−1 + 1 of I⊗ k and

D(k) = I ⊗∆
(k−1)
DD . Then, as it is plain to see from (4),

∆
(k)
DD = I ⊗∆

(k−1)
DD − Q(k)

(

0 1

1 0

)

Q(k)′,

and, according to the Sherman-Morrison-Woodbury formula [6, p. 51],

∆
(k)
DD

−1
= I ⊗∆

(k−1)
DD

−1
+ A(k), (17)

A(k) = D(k)−1
Q(k)B(k)Q(k)′D(k)−1

,

B(k) =

(

(

0 1

1 0

)−1

− Q(k)′D(k)−1
Q(k)

)−1

,

where D(k)−1
= I ⊗∆

(k−1)
DD

−1
, and using Proposition 3.1 we arrive at

B(k) =

(

− 2k−1

2k−1+1
1

1 − 2k−1

2k−1+1

)−1

=
2k−1 + 1

2k + 1

(

2k−1 2k−1 + 1

2k−1 + 1 2k−1

)

= 2k−1

(

ξk ζk

ζk ξk

)

= 2k−1 (ξkI + ζkP ) .

Next, we define 2k-component vectors

e(k) = 2k







1
...

1






and z(k) =

2k

2k + 1







1
...

2k






−

1

2
e(k) =

1

2
·

2k

2k + 1







1 − 2k

...

2k − 1






,

x(k) = 1
2
e(k) + z(k) and y(k) = 1

2
e(k) − z(k). Then, according to Proposition 3.1, 2−kx(k)

and 2−ky(k) are respectively the last and the first columns of ∆
(k)
DD

−1
; 2−kx(k)′ and

2−ky(k)′, rows, k ≥ 2, and hence

A(k) =
1

2k−1

(

x(k−1)x(k−1)′ ζkx
(k−1)y(k−1)′

ζky
(k−1)x(k−1)′ y(k−1)y(k−1)′

)

. (18)

Now let us express the blocks involved in the last equality in terms of the vectors

e(k−1) and z(k−1). For any k ≥ 2 it holds by definition of x(k) and y(k) that

x(k)x(k)′ =
1

4
e(k)e(k)′ +

1

2

(

e(k)z(k)′ + z(k)e(k)′
)

+ z(k)z(k)′,

y(k)y(k)′ =
1

4
e(k)e(k)′ −

1

2

(

e(k)z(k)′ + z(k)e(k)′
)

+ z(k)z(k)′,

x(k)y(k)′ =
1

4
e(k)e(k)′ −

1

2

(

e(k)z(k)′ − z(k)e(k)′
)

− z(k)z(k)′,

y(k)x(k)′ =
1

4
e(k)e(k)′ +

1

2

(

e(k)z(k)′ − z(k)e(k)′
)

− z(k)z(k)′. (19)

The right-hand matrices have simple recursive structure. Indeed,

e(k) = 2

(

e(k−1)

e(k−1)

)

and z(k) = 2

(

ξkz
(k−1) − ηke

(k−1)

ξkz
(k−1) + ηke

(k−1)

)

,

therefore

e(k)e(k)′ = 4E ⊗ e(k−1)e(k−1)′,
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z(k)z(k)′ = 4ξ2
kE ⊗ z(k−1)z(k−1)′ + 4η2

kF ⊗ e(k−1)e(k−1)′

+ 4ξkηkK ⊗
(

e(k−1)z(k−1)′ + z(k−1)e(k−1)′
)

+ 4ξkηkL⊗
(

e(k−1)z(k−1)′ − z(k−1)e(k−1)′
)

e(k)z(k)′ + z(k)e(k)′ = 8ηkK ⊗ e(k−1)e(k−1)′

+ 4ξkE ⊗
(

e(k−1)z(k−1)′ + z(k−1)e(k−1)′
)

e(k)z(k)′ − z(k)e(k)′ = −8ηkL⊗ e(k−1)e(k−1)′

+ 4ξkE ⊗
(

e(k−1)z(k−1)′ − z(k−1)e(k−1)′
)

,

and in core notation this can be recast to

1

2k











e(k)e(k)′

z(k)z(k)′

e(k)z(k)′ + z(k)e(k)′

e(k)z(k)′ − z(k)e(k)′











= Vk ⋊⋉
1

2k−1











e(k−1)e(k−1)′

z(k−1)z(k−1)′

e(k−1)z(k−1)′ + z(k−1)e(k−1)′

e(k−1)z(k−1)′ − z(k−1)e(k−1)′











with the cores Vk, k ≥ 2, defined as

Vk =









2E

2η2
kF 2ξ2

kE 2ξkηkK 2ξkηkL

4ηkK 2ξkE

−4ηkL 2ξkE









As long as this holds for any k ≥ 2 and e(1)e(1)′ = 4E, z(1)z(1)′ = 1
9
F , e(1)z(1)′+z(1)e(1)′ =

4
3
K, e(1)z(1)′ − z(1)e(1)′ = −4

3
L, we conclude that

1

2k











e(k)e(k)′

z(k)z(k)′

e(k)z(k)′ + z(k)e(k)′

e(k)z(k)′ − z(k)e(k)′











= Vk ⋊⋉ . . . ⋊⋉ V2 ⋊⋉ V1, V1 =









2E
1
18

F
2
3
K

−2
3
L









. (20)

Now we introduce

Γk =
[

1
4
ξkI + 1

4
ζkP ξkI − ζkP −ξkK ζkL

]

,

k ≥ 2, and join (18), (19) and (20):

A(k) = Γk ⋊⋉
1

2k−1











e(k−1)e(k−1)′

z(k−1)z(k−1)′

e(k−1)z(k−1)′ + z(k−1)e(k−1)′

e(k−1)z(k−1)′ − z(k−1)e(k−1)′











= Γk ⋊⋉ Vk−1 ⋊⋉ . . . ⋊⋉ V1

Applying (17) recursively, we attain the following expression for ∆
(d)
DD

−1
:

∆
(d)
DD

−1
= I⊗(d−1) ⊗∆

(1)
DD

−1
+

d
∑

k=2

I⊗(d−k) ⊗A(k).
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Let Uk =
[

I
]

, 1 ≤ k ≤ d, Γ1 =
[

∆
(1)
DD

−1
]

, then

∆
(d)
DD

−1
= Ud ⋊⋉ Ud−1 ⋊⋉ Ud−2 ⋊⋉ . . . ⋊⋉ U3 ⋊⋉ U2 ⋊⋉ Γ1

+ Ud ⋊⋉ Ud−1 ⋊⋉ Ud−2 ⋊⋉ . . . ⋊⋉ U3 ⋊⋉ Γ2 ⋊⋉ V1

+ . . .

+ Ud ⋊⋉ Γd−1 ⋊⋉ Vd−2 ⋊⋉ . . . ⋊⋉ V3 ⋊⋉ V2 ⋊⋉ V1

+ Γd ⋊⋉ Vd−1 ⋊⋉ Vd−2 ⋊⋉ . . . ⋊⋉ V3 ⋊⋉ V2 ⋊⋉ V1,

which can be represented as following in accordance with Lemma 1.3:

∆
(d)
DD

−1
=

[

I Γd

]

⋊⋉

[

I Γd−1

Vd−1

]

⋊⋉ . . . ⋊⋉

[

I Γ2

V2

]

⋊⋉

[

Γ1

V1

]

.

That is the QTT representation was to be proven.

It is obvious that the rank-5 . . . 5 representation given by Lemma 3.3 is a little

excessive since it has ranks of terminal cores are greater than 4, which is trivial to

amend. Let us now get rid of this redundancy and obtain a rank-4, 5 . . . 5, 4 decom-

position.

Remark 3.4. Lemma 3.3 holds for d ≥ 4, the cores Wd, Wd−1, W2, W1 being the

following:

Wd =
[

1
4
ξdI + 1

4
ζdP ξdI − ζdP −ξdK ζdL

]

Wd−1 =











2
ξd

1
1

2ξd

1

1

1











⋊⋉













I 1
4
ξd−1I + 1

4
ζd−1P ξd−1I − ζd−1P −ξd−1K ζd−1L

2E

2η2
d−1F 2ξ2

d−1E 2ξd−1ηd−1K ξd−1ηd−1L

4ηd−1K 2ξd−1E

−4ηd−1L 2ξd−1E













,

W2 =













1
4
ξ2I + 1

4
ζ2P + 1

4
I ξ2I − ζ2P + 3I −ξ2K ζ2L

2E

2η2
2F 2ξ2

2E 2ξ2η2K ξ2η2L

4η2K 2ξ2E

−4η2L 2ξ2E













,

W1 =









2E
1
18

F
2
3
K

−2
3
L









.

4 Vector QTT rank estimates

Let us now recur to the equations (1) and (2) and set forth some QTT ranks

estimates appearing from our results obtained in the previous sections.
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Theorem 4.1. The following upper bounds of vector QTT ranks of the correspond-

ing matrices hold.

∆
(d)
DD : 3 . . . 3

(Lemma 2.1)

∆
(d)
DN , ∆

(d)
ND : 4 . . . 4

∆
(d)
NN : 4, 5 . . . 5, 4

∆
(d)
P : 2, 3 . . . 3

(Lemma 2.2)

∆
(d)
DD

−1
: 4, 5 . . . 5, 4

(Lemma 3.3 and Remark 3.4)

∆
(d)
DN

−1
, ∆

(d)
ND

−1
: 4 . . . 4

(Lemma 3.2)

∆
(d1...dd)
DD : 3 . . . 3,2, 4 . . . 4,2 . . . . . .2, 4 . . . 4,2, 4 . . . 4, 3

(Corollary 2.4)

∆
(d1...dd)
DN , ∆

(d1...dd)
ND : 4 . . . 4,2, 5 . . . 5,2 . . . . . .2, 5 . . . 5,2, 5 . . . 5, 4

(Corollary 2.5)

∆
(d1...dd)
NN : 4, 5 . . . 5,2, 5, 6 . . . 6, 5,2 . . . . . .2, 5, 6 . . . 6, 5,2, 5, 6 . . . 6, 4

(Corollary 2.6)

∆
(d1...dd)
P : 2, 3 . . . 3,2, 3, 4 . . . 4,2 . . . . . .2, 3, 4 . . . 4,2, 3, 4 . . . 4, 3

(Corollary 2.7)

Proof. Follows straighforwardly from the lemmas, corollaries and the remark re-

ferred and presenting explicit QTT representation of the mentioned ranks.

Remark 4.2. Numerical experiments carried out with Ivan Oseledets’1 TT Toolbox2

prove all the upper bounds for vector QTT ranks given in Theorem 4.1 to be sharp;

the corresponding explicit representations, to be of minimal rank.

5 Operator TT rank

In Introduction we considered vector TT rank of matrices in view of storage

costs and complexity of the basic operations. But, on the other hand, even if we

manage to perform, for instance, a matrix-by-vector multiplication, this may not

be enough for solution of the problem involved. For example, developing iterative

solvers we are likely to be concerned with vector TT ranks of a matrix-by-vector

product, which is certainly the case in Krylov subspace methods. Formally, ranks

of TT decompositions are multiplied when two matrices or a matrix and a vector

are multiplied. But often this obvious estimate of ranks of the product leads to

unaffordable complexity estimates, but, fortunately, is not sharp, so that low-rank

approximation is possible with an endurable error [4]. A reasonable a priori es-

timate of ranks would allow one to rely upon such the approximation procedure,

1Institute of Numerical Mathematics, Russian Academy of Sciences. Moscow, Russia
2Available for free at http://spring.inm.ras.ru/osel
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complexity of which is cubic in respect of ranks. That is why we are also to take

into account operator TT rank defined below.

Definition 5.1. A multi-way matrix A : R
n1 × . . .×R

nD 7→ R
m1 × . . .×R

mD given, for

any vector X ∈ R
n1 × . . .×R

nD let us denote vector TT ranks of the matrix-by-vector

product AX by r1 . . . rD−1. Then let us refer to

max
k=1...D−1,

X is of vector TT rank 1...1

rk

as the operator TT rank of A.

Actually we have already arrived above at the following obvious inequality

between the two ranks introduced in Definition 0.2 and Definition 5.1.

Proposition 5.2. Operator TT rank does not exceed the maximum component of

vector TT rank.

This estimate is essentially not sharp. For example, consider two vectors

X, Y ∈ R
n1 × . . . × R

nD such that X is of vector TT rank 1 . . . 1. Then for any

vector Z ∈ R
n1 × . . . × R

nD of vector TT rank 1 . . . 1 the tensor (XY
′) Z = 〈Y , Z〉X

is of vector TT rank 1 . . . 1, while (Y X
′) Z = 〈X, Z〉Y is of the same vector TT rank

as Y . Consequently, operator TT rank of XY
′ is equal to 1, while that of Y X

′ is as

high as the maximum rank of TT cores of Y , which can be random and have a very

bad QTT structure resulting in a high vector TT rank of XY
′.

6 Relation to multigrid

The representations obtained above highlight a close relation between Quan-

tics Tensor Train and multigrid methods. For example, in order to proceed to a

twice finer grid one need just to put another core in the middle of the tensor train

involved in the decompositions given by Lemma 2.1, Lemma 2.2, Lemma 3.2, and

this extra core is exactly the same as the ones present in the initial tensor train.

For the decomposition of ∆
(d)
DD given by Lemma 3.3 this is slightly more compli-

cated, but still very similar. This observation leads to the idea of using QTT along

with multigrid techniques in high-dimensional problems on fine grids. But this idea

involves also restriction and prolongation of vectors, and QTT structure of the cor-

responding operators is of interest too.

Example 6.1. Consider a one-dimensional problem over [0, 1] with a Dirichlet bound-

ary condition at 0 and non-Dirichlet one at 1, discretized on a sequence of grids x(k):

x
(k)
i = i

2k , 1 ≤ i ≤ 2k, by means of Finite Element Method with base functions

x 7→ ϕ
(k)
i (x) =















1 + 1
2k

(

x − x
(k)
i

)

, x ∈
(

x
(k)
i−1, x

(k)
i

]

∩ [0, 1],

1 − 1
2k

(

x − x
(k)
i

)

, x ∈
(

x
(k)
i , x

(k)
i+1

]

∩ [0, 1],

0, otherwise.
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Let us define a prolongation operator from span
{

ϕ
(d)
i

}2d

i=1
to span

{

ϕ
(d−1)
i

}2d−1

i=1
so that

its 2d × 2d−1-matrix is

P
(d) =



































1
2

1
1
2

1
2

1

1
2

. . .

. . . 1
2

. . . 1
1
2

1
2

1



































and a restriction operator with a matrix R
(d) = 1

2
P

(d)′. Then it is easy to draw

up a rank-2 . . . 2 QTT-like decomposition of P
(d) similarly to as we did it with QTT

decompositions of shift and gradient matrices in the section 1.2:

P
(d) =

[

I J ′
]

⋊⋉





P
(d−1)

1
2
J⊗(d−2) ⊗

(

1

0

)



 = . . . =
1

2

[

I J ′
]

⋊⋉

[

I J ′

J

]⋊⋉(d−2)

⋊⋉









(

1

2

)

(

1

0

)









,

and hence

R
(d) =

1

4

[

I J
]

⋊⋉

[

I J

J ′

]⋊⋉(d−2)

⋊⋉

[(

1 2
)

(

1 0
)

]

.

This is by far the most simple example of geometric multigrid approach con-

sidering a problem with 2d unknowns on the d-th grid, and in a more general case

prolongation and restriction operators may not have such a nice QTT-like structure.

Conclusion

We have investigated QTT ranks and explicit structure of Laplace operator for

various boundary conditions in D dimensions, taking into account the anisotropy

involved in (3). Though representations and rank estimates can be obtained nu-

merically, our results allow one to avoid these computations which can be rather

expensive and not precise enough, D and, especially, d being very high. “One-

dimensional” inverse Laplace operators for Dirichlet and Dirichlet-Neumann bound-

ary condition has been also considered and represented in the QTT format with a

low rank and well-balanced TT cores.

We believe that this work contributes to comprehension of the Tensor Train

format and its “tensorized” version, the Quantics Tensor Train format, as long as

it is the first paper on explicit QTT representation of operators, and we hope that

further research would allow one to put forward new ideas of solving particular

problems of scientific computing.
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On the other hand, while deriving the explicit QTT representations presented

in the paper and performing numerical experiments with them we found out that

QTT fits some special matrices quite well. Experiments prove inverse of a tridiag-

onal Toeplitz matrix to have vector QTT rank 4, 5 . . . 5, 4, and it seems that Lemma

3.3 can be generalized to this case. This result for discretized Laplace operator and

observations for Toeplitz matrices conform to the theorem stated in [28] and as-

serting that inverse of a band Toeplitz matrix of bandwidth s has vector QTT ranks

bounded above by 4s2 + 1. In a way, this topic marries applications of QTT in scien-

fitic computing and the algebraic point of view on it and hence is of great interest

for further research.
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