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Abstract

We investigate the convergence rate of approximations by finite sums of rank-1
tensors of solutions of multi-parametric elliptic PDEs. Such PDEs arise, for example, in
the parametric, deterministic reformulation of elliptic PDEs with random field inputs,
based for example, on the M -term truncated Karhunen-Loève expansion.

Our approach could be regarded as either a class of compressed approximations of
these solution or as a new class of iterative elliptic problem solvers for high dimensional,
parametric, elliptic PDEs providing linear scaling complexity in the dimension M of
the parameter space.

It is based on rank-reduced, tensor-formatted separable approximations of the high-
dimensional tensors and matrices involved in the iterative process, combined with the
use of spectrally equivalent low-rank tensor-structured preconditioners to the para-
metric matrices resulting from a Finite Element discretization of the high-dimensional
parametric, deterministic problems.

Numerical illustrations for the M -dimensional parametric elliptic PDEs resulting
from sPDEs on parameter spaces of dimensions M ≤ 100 indicate that the gain from
employing low-rank tensor-structured matrix formats in the numerical solution of such
problems might be substantial.
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1 Introduction

Recent advances in the numerical methods based on separation of variables applied to the
functions and operators in R

d, lead to the natural idea of solving multi-dimensional boundary
value and spectral problems in tensor-product data formats. This idea was for the first
time formulated in [2] in a very general framework. Tensor-structured techniques in higher
dimensions [7, 13, 15, 23, 26] have already demonstrated their solid potential in electronic
structure calculations [3, 12, 23, 24, 25], in PDEs with random input [34, 37, 35, 4], and in
machine learning [1].

In the present paper, we introduce the low rank tensor approximation method for solv-
ing the deterministic parametric elliptic equations in a high (possibly infinite) dimensional
parameter space, arising as a projection of the stochastic PDE via a truncated M-term Kar-
hunen-Loève expansion. We consider a class of model elliptic problems characterized by
the additive dependence of the equation coefficients on the multivariate parameter, corre-
sponding to a random field that is linear in the random variable. Exploiting sparsity in
the solutions polynomial chaos expansion leads to superalgebraic (subexponential) conver-
gence rates of Galerkin as well as of collocation approximations in terms of the number N
of deterministic diffusion problems to be solved, [37, 4] in the case that the Karhunen-Loève
expansion of the input random field converges exponentially and to algebraic convergence
rates of best N -term polynomial approximations of the parametric solution [6]. N -term
truncated polynomial chaos expansions are separable expansions. Therefore, we can adapt
the concept of rank structured approximation to tensor products of solution spaces in the
physical domain D and to multi-dimensional parametric spaces. We show that the FEM-
Galerkin approximation in a tensor-product basis allows for approximate low tensor-rank
representations of arising stiffness matrices and right-hand sides. The principal idea of our
approach is the iterative solution of a single coupled system of discrete, multiparametric
elliptic equations projected onto the nonlinear manifold of low rank tensor-structured vec-
tors. The numerical cost of the matrix-vector multiplication in our setting scales linear in
M , and at most quadratically in the univariate discrete problem size. In this way, the use
of adaptive low rank tensor formats allows to avoid the exponentially in M , the dimension
of the parameterspace, increasing complexity of tensor approximations while, at the same
time, preserving the convergence rate of the stochastic Galerkin approximations.

To enhance the convergence of the global solver, we propose the preconditioned block
Jacobi-type iteration accomplished with the rank optimization at each iterative step. Our
basic preconditioner is constructed using the tensor-product approximation to the parametric
elliptic operator inverse with the spatially homogeneous random coefficients.

In the case of constant stochastic coefficients the method is proved to have almost linear
complexity in the univariate discrete problem size, as well as in the dimension of stochastic
variable, M . In general, it leads to algebraic complexity O(Mε−q) with respect to the model
accuracy ε > 0, where q > 0 is some fixed constant independent on M . In summary, this
asymptotic performance is achieved by combining the following ingredients:

• low-rank tensor-structured matrix formats used for the separable representation of all
multidimensional matrices and vectors involved,

• efficient rank optimisation algorithms via tensor-structured nonlinear approximation,

2



• application of spectrally close rank-structured preconditioners to the FEM-Galerkin
matrix leaving in higher dimensional space.

The rest of the paper is organized as follows. In §2, we set up the problem, and recall
the regularity results for the solution of the initial equation in terms of analyticity domain
in parametric space [35]. We also present the definitions of tensor structured vector- and
matrix-formats to be used in the paper. In §3, we discuss the tensor-product FEM, describe
the basic low tensor rank preconditioner, prove its spectral equivalence, and then introduce
the respective iterative solvers with adaptive rank optimization via best R-term nonlinear
approximation. In §4, we first present some numerical illustrations for the case of constant
coefficients in a high-dimensional setting, which provide the base for efficient precondition-
ing. Second, we give numerical examples with variable stochastic coefficients, corresponding
to random fields that are linear in the random variable. We investigate the case of both poly-
nomial and exponential decay of stochastic coefficients. In §5, we formulate the preliminary
conclusions.

2 High-Dimensional Parametric Elliptic Problem

2.1 Strong formulation

We consider parametric, elliptic problems which are posed in the physical domain D :=
(0, 1)d0 of dimension d0 = 1, 2, 3, and which depend on a vector of M parameters which
take values in the hypercube in the M-dimensional parametric space Γ := (−1, 1)M ≡ IM ,
M ∈ N+. To formulate the problems, we introduce the tensor-product Hilbert space (cf.
[32])

V := Vy ⊗ Vx with Vy := L2(Γ) =
M⊗

m=1

L2(I), Vx := H1
0 (D) .

We are given a parametric elliptic operator

A(y) := −divx (a(y, x)gradx) and f ∈ L2 (D) , y ∈ Γ

where the coefficient a(y, x) is a smooth function of x ∈ D and the parameter vector y =
(y1, ..., yM) ∈ Γ with a possibly very large number M of parameters. We are interested in the
efficient numerical solution of the parametric elliptic problem: for every y ∈ Γ, find uM ∈ V ,
such that

AuM(y, x) = f(x) in D, uM(y, x) = 0 on ∂D. (2.1)

In this problem setting the dimension M of the parametric space corresponds to the trun-
cation parameter in the Karhunen-Loève expansion (see, e.g., [35]). In discretizations of
diffusion problems with random inputs, the dimension M of the parameter space could
become arbitrarily large.

3



2.2 The unique solvability of weak equation

We consider the class of problems, with the coefficient function defined by

aM (y, x) := a0(x) + ay(y, x), where ay(y, x) =
M∑

m=1

am(x)ym, (2.2)

with am ∈ L∞(D), m = 1, ..., M . Hence, for y ∈ Γ, one can introduce the associated
parametric bilinear form in the physical space Vx,

A(u, v) := 〈Au, v〉L2(D) =

∫

D

aM(y, x)∇xu · ∇xvdx ∀u, v ∈ Vx,

so that we can use the respective to (2.2) additive splitting

A(u, v) = A0(u, v) + Ay(u, v) ∀u, v ∈ Vx,

where A0 does not depend on y ∈ Γ. Concerning the coefficient function aM(y, x), we assume
that there exists amin > 0, such that

1. amin ≤ a0(x) < ∞,

2.

∣∣∣∣
M∑

m=1

am(x)ym

∣∣∣∣ < γamin with γ < 1, and for |ym| < 1 (m = 1, ..., M).

Conditions 1) - 2) imply the strong ellipticity of the problem (2.1) uniformly in y, i.e.,

aM(y, x) ≥ (1 − γ)amin > 0. (2.3)

Hence, under assumptions 1) - 2), we have the unique solvability for the corresponding
weak formulation: for any f ∈ H−1(D) and for any y ∈ Γ, there exists a unique solution
uM(y, ·) ∈ H1

0 (D) of the problem: Find uM ∈ Vx, such that

Find uM ∈ Vx, such that A(uM , v) =

∫

D

f(x)v(x)dx ∀ v ∈ Vx. (2.4)

The parametric weak equation (2.4) can be reformulated as the variational equation in the
tensor-product Hilbert space V . Introducing the respective bilinear form

AM(u, v) :=

∫

Γ

∫

D

aM(y, x)∇xu · ∇xvdxdy ∀ u, v ∈ V,

we arrive at the following variational problem : Find uM ∈ V , such that

AM(uM , v) =

∫

Γ

∫

D

f(x)v(y, x)dxdy =: bM(v) ∀ v ∈ V. (2.5)

Lemma 2.1 The equation (2.5) is uniquely solvable in V .

Proof. Using the strong ellipticity condition (2.3) we obtain

AM(v, v) :=

∫

Γ

∫

D

aM(y, x)∇xv · ∇xvdxdy ≥ (1 − γ)amin

∫

Γ

‖v(y, ·)‖2
Vx

dy,

which proves the strong ellipticity of the bilinear form AM : V × V → R. Conditions 1) - 2)
also imply the continuity of AM . The result then follows.

We discretize the parametric equation (2.5) by Galerkin FEM in both domains, Γ and
D. In order to assess the convergence of these methods, we first review some results on
regularity of the solution.
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2.3 Regularity

In [37] it is proved that the weak solution u(y, ·) ∈ H1
0 (D) is analytic as a map

y 7→ u(y, ·) ∈ H1
0 (D) from Γ to H1

0 (D) .

A precise analysis with quantitative bounds on the size of the domain of analyticity is based
on a-priori assumptions on the decay of the coefficients in (2.2). We distinguish two basic
cases of coefficient decay:

1. Exponential decay (see [37], (4.5)):

ρm := ‖am‖L∞(D) ≤ C0 exp(−C1m
1/d0) ∀m ∈ N+. (2.6)

Note that the sequence ρ = (ρm)∞m=1 in (2.6) belongs to ℓp(N) for every p > 0.

2. Algebraic decay (see e.g. [6, 5]): there is a constant s > 0 such that in the coefficient
bound

ρm := ‖am‖L∞(D) ≤ C0m
−s/d0 ∀m ∈ N+. (2.7)

Note that the sequence ρ = (ρm)∞m=1 in (2.7) belongs to ℓp(N) for every p > d0/s.

Based on the coefficient decay (2.6) it was proved in [37] that the domain of analyticity
of the solution u of (2.1) as a function of ym, increases exponentially in size as m ր ∞.

Explicit bounds on all derivatives of u with respect to ym which are applicable in either
case 1. and 2. are given by the following statement.

Proposition 2.2 ([37]) If u = uM(y, ·) solves (2.1), then assumption (2.6) implies

‖∂α
y uM(y, ·)‖H1

0(D) ≤

(
C |α|

a · |α|! ·
M∏

m=1

ραm
m

)
(2.8)

∀y ∈ IM , ∀α ∈ N
M
0 , and for all M large enough.

A class of parametric, elliptic PDEs with polynomial decay of coefficients am is specified
by the algebraic rate of decay s > 0 in the coefficient bound as in (2.7).

Based on assumption (2.6) and on Proposition 2.2 it is shown in [6] that there exists a
sequence {ΣM,N}

∞
N=1 ⊂ N

M
0 of index sets of cardinality not exceeding N and corresponding

so-called best N-term polynomial chaos approximations uM,N(y, ·) being linear combinations
of monomials yα, α ∈ ΣM,N , with coefficient uα ∈ Vx, which converge algebraically to uM at
an algebraic rate r(s). Moreover it was shown in [37] for case 1. that there exists a sequence
{uΣM

}∞M=1 of tensor-product approximations of uM specified by monomials yα = yα1
1 yα2

2 ... of
degrees αm of magnitude at most O(Mκ) (m = 1, ..., M) of the form

uΣM
:=

∑

α∈ΣM

Φα(x)yα, Φα ∈ Vx, (2.9)

such that, as M → ∞,

‖uM − uΣM
‖L∞(IM ,H1

0 (D)) ≤ Ce−βMκ

, κ = 1/d0,
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where β, C > 0 do not depend on M . Furthermore, the cardinality R of the index sets ΣM

satisfies the bound
R := #ΣM ≤ C1e

β1Mκ/(κ+1) log(M+2), (2.10)

where β1, C1 > 0 are independent of M (see [37], Corollary 4.16).
In case 2., it was shown in [6] that there exists a sequence {ΣM}∞M=1 of sets of finitely

supported multiindices α ∈ N
N

0 of cardinality R not exceeding M and corresponding separable
approximations

uΣM
=
∑

α∈ΣM

Φα(x)Lα1(y1)Lα2(y2)... Φα ∈ Vx

where Lα1(y1)Lα2(y2) · ·· denote finite products of Legendre Polynomials of degrees αm. The
products are finite due to the multi-index set ΣM being “finitely supported”, i.e. ∀α ∈ ΣM ,
|α|1 < ∞, such that the algebraic decay (2.7) implies the error bound

‖uM − uΣM
‖L2(IM ,H1

0 (D)) ≤ C(r)R−θ, 0 < θ <
s

d
−

1

2
(2.11)

as R := #ΣM → ∞, where C(r) is independent of M .

2.4 Tensor-structured Approximations

We use the above approximation results to infer convergence rates of several formatted matrix
tensor approximations of the solution uM . Importantly, there are nonlinear rank truncation
algorithms which operate on several formatted matrix/vector classes and ensure certain qua-
sioptimality properties of the reduced rank-structured tensor approximations. Combining
the above approximation bounds and observing that “polynomial chaos” type approxima-
tions such as (2.9) are particular, separated low rank approximations, the above regularity
results allow to infer convergence rates of formatted low tensor rank approximations for
several low-rank tensor-structured matrix formats which we recapitulate next.

2.4.1 Tensor Formats for d-dimensional Arrays

Let H = H1⊗ ...⊗Hd denote a tensor-product Hilbert space (see [32]), where Hℓ (ℓ = 1, ..., d)
is a separable Hilbert space of functions over R

mℓ (continuous setting) or over finite/infinite
index sets (discrete setting)1. This implies that each w ∈ H can be represented in a unique
fashion by (possibly infinite) sums of rank-1 tensors

W =
∑

k

w
(1)
k ⊗ w

(2)
k ⊗ . . . ⊗ w

(d)
k (w

(ℓ)
k ∈ Hℓ).

A scalar product in H which is consistent with the scalar products 〈·, ·〉Hℓ
in the Hℓ is defined

first on rank-1 elements in H by

〈w(1) ⊗ . . . ⊗ w(d), v(1) ⊗ . . . ⊗ v(d)〉 :=
d∏

ℓ=1

〈w(ℓ), v(ℓ)〉Hℓ
.

1For simplicity, we consider here only finite tensor products of d < ∞ many factors; we emphasize,
however, that all concepts introduced below can be generalized to tensor products of countably many factors
and that such countable tensor products do arise in the applications of interest to us.
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It is then extended to all of H by continuity, see, e.g. [32].
A tensor of order d is a multidimensional array of data, I1 × ... × Id → R, considered as

an element a tensor-product Hilbert space H = R
I , I = I1 × . . .× Id. Its entries take values

in R and are indexed by corresponding multi indices taking values in a Cartesian product
of index sets I. The index sets I1, ..., Id could be finite or infinite, and need not have the
same cardinality. For examples, for d = 2 and Hℓ = R

n, we obtain order two tensors which
coincide with n × n square matrices of real-valued entries: here, H = R

n×n ≃ R
n2

.
In the applications we have in mind, the dimension parameter d is related to the trunca-

tion parameter M in the separable expansion (2.2) by d = M + 1. We write

V = [vi1,...,id : iℓ ∈ Iℓ] ∈ R
I , Iℓ = {1, ..., nℓ}, ℓ = 1, ..., d,

to denote a d-th order tensor of finite size n, where n = (n1, ..., nd) denotes the d-tuple. A
tensor V is an element of the tensor-product Hilbert space H = Vn = ⊗d

ℓ=1Vℓ of real-valued d-
fold arrays with Vℓ = R

Iℓ, and equipped with the Euclidean inner product 〈·, ·〉 : Vn×Vn → R

and related Frobenius norm.
To avoid exponential scaling with respect to the dimension parameter d in the standard

multilinear algebra, we use approximate representations in certain classes S ⊂ Vn of “rank
structured” elements based on sums of rank-1 tensors. In this way, the outer product of
vectors tℓ = {tℓ,iℓ}iℓ∈Iℓ

∈ Vℓ (ℓ = 1, ..., d) forms the canonical rank-1 tensor

T ≡ [ti]i∈I = t1 ⊗ ... ⊗ td ∈ Vn with entries ti = t1,i1 · · · td,id ,

which requires dn numbers to store it (now linear scaling in the dimension). When d = 2,
the outer product of two vectors represents a rank-1 matrix.

We next review several data sparse representations of high order tensors based on the
Tucker, canonical and the so-called Tensor-Train/Tensor-Chain models commonly used in
low rank formatted matrix/vector algebras.

Definition 2.3 The rank-(r1, . . . , rd) Tucker approximation [7] is based on subspaces Tn :=
⊗d

ℓ=1Tℓ of Vn for certain Tℓ ⊂ Vℓ with rℓ := dim Tℓ ≤ nℓ. Given the vector-valued rank
parameter r = (r1, ..., rd), we denote by T r,n (or simply T r) the subset of tensors in Vn

represented in the so-called Tucker format

T(r) =
∑r1

ν1=1
. . .
∑rd

νd=1
βν1,...,νd

tν1
1 ⊗ . . . ⊗ tνd

d , (2.12)

with some vectors tνℓ
ℓ ∈ Vℓ = R

Iℓ (1 ≤ νℓ ≤ rℓ), which form the orthonormal basis of
Tℓ = span{tνℓ}

rℓ
ν=1 (ℓ = 1, ..., d). The parameter r = max

ℓ
{rℓ} is called the maximal Tucker

rank, while the coefficient tensor β = [βν1,...,νd
] is known as the core tensor.

In many applications we have r ≪ N , say r = O(log N) with N = max
ℓ

nℓ. In our con-

text, the Tucker format corresponds to the separable approximation (say, via interpolation)
by tensor product orthogonal polynomials in y. An adaptive selection process with some
optimality properties with respect to the index set ΣM could be interpreted as a procedure
of cancellation of small elements in the Tucker core β.
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Definition 2.4 Given a rank parameter R ∈ N, we denote by CR,n = CR ⊂ Vn a set of
tensors which can be represented in the canonical format

U(R) =
∑R

ν=1
µνu

ν
1 ⊗ . . . ⊗ uν

d, µν ∈ R, (2.13)

with normalized vectors uν
ℓ ∈ Vℓ (ℓ = 1, ..., d). The minimal parameter R in (2.13) is called

the rank (or canonical rank) of a tensor.

The rank-r three-dimensional tensor (TT) format is defined in the spirit of Tucker model,
but with essentially reduced “connectivity” constraints (see [28]). As in the case of canonical
format it scales linearly in both d and N = max{nℓ}. The generalization of the TT-format
to the case of “periodic” index chain is given by the following definition (cf. [22]).

Definition 2.5 (Tensor chain format). Given the rank parameter r = (r0, ..., rd), and the
respective index sets Jℓ = {1, ..., rℓ} (ℓ = 0, 1, ..., d), with the periodicity constraints J0 = Jd.
The rank-r tensor chain (TC) format contains all elements V in Vn that can be represented as
the chain of contracted products of 3-tensors over the d-fold product index set J :=

∏d
ℓ=1 Jℓ,

V =
d∏

ℓ=1

G(ℓ) with given 3-tensors G(ℓ) ∈ R
Jℓ−1×Iℓ×Jℓ . (2.14)

Denote this set of tensors by TC[r, d] ≡TC[r,n, d]⊂ Vn. The parameters d,n can be skipped
upon the context.

In the case J0 = Jd = {1} (disconnected chain), this construction coincides with the
respective definition of TT format in [28], thus implying TT[r, d] ⊂ TC[r, d].

In the following, we assume that rℓ = r (ℓ = 1, ..., d), then the storage requirements for
the Tucker (resp. canonical, TC) decomposition is given by rd+drN (resp. R+dRN , dr2N),
where usually r ≪ R. It is worth to note that TC[r, d] ⊂ Cr,n, hence any rank estimate
derived for the canonical approximation can be applied to TT/TC formats as well.

Since T r,n, CR,n, and TC[r,n,d] are not linear spaces we are led to the nonlinear approx-
imation problem

A ∈ S0 ⊂ Vn : σ(A,S) := inf
X∈S

‖A − X‖ (2.15)

with S ∈ {T r,n, CR,n, TC[r,n,d]}, where the target tensor A might inherit certain data-sparse
structure as follows S0 ∈ {Vn, CR0,n, T r0,n}.

In the case S = T r,n, the existence of the best approximation element in (2.15) can
be proven since it is reduced to maximization over the compact Grassmannian manifold.
Moreover, in the case S ∈ {T r,n, TC[r,n,d]}, the quasi-best approximation can be calculated
by using direct QR/SVD-based algorithms described and proved in [8, 23] for the Tucker
format, and in [28, 31] for the TT-model. The proof of quasi-optimality for the closely
related hierarchical dimension splitting [17] is given in [11].

Notice that in the case of canonical approximation, i.e., S = CR,n, the problem (2.15) is
equivalent to finding the best R-term approximation with respect to the dictionary of rank-1
tensors. In this case the best R-term approximation might not exist, and, in general, there
are no well defined numerical algorithms to compute the quasi-optimal approximation. In
our numerical scheme the canonical approximation is calculated approximately by certain
heuristic ALS-based algorithm at each step of truncated preconditioned iteration.
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2.4.2 Formatted Tensor Representation of Matrices

In the following we also need the Kronecker-product representation of (operators) matrices
A ∈ R

I×I , acting as the linear mapping A : Vn → Vn. To this end, we introduce, the
canonical sum of matrix products (see [15])

A =
∑R

ν=1
βνA

ν
1 ⊗ . . . ⊗ Aν

d, βν ∈ R, Aν
ℓ ∈ R

nℓ×nℓ ,

where matrices Aν
ℓ (ℓ = 1, ..., d), in turn, may have fully populated, q-diagonal, low rank,

hierarchical, Toeplitz or wavelet related structure. We denote this class of matrices as MR,n.
The rank R matrix-vector multiplication of a matrix A ∈ MR,n with a rank-1 tensor T ∈ Vn

is defined by the rank-R canonical sum

AT =
∑R

ν=1
βνA

ν
1t1 ⊗ ... ⊗ Aν

dtd ∈ CR,n.

The numerical cost of this matrix-vector product depends on the sparsity pattern of the
Kronecker factors. In particular, for O(N)-sparse matrices Aν

ℓ it amounts to O(dRN), while
in the case of fully populated Kronecker factors the cost is bounded by O(dRN2) (cf. [15]).

The above classes of rank-structured tensors and matrices will be applied in tensor-
product Galerkin Finite Element discretizations of the parametric, deterministic problem
(2.1).

2.5 Low Rank Tensor Approximations of uM(x, y)

The constant R estimated by (2.10) can be viewed as upper bound on the separation rank
of the solution uM corresponding to the best R-term approximation over the formatted rank
decompositions with fixed number of terms (cf. the canonical model and related nonlinear
approximation problem).

Though the adapted index set ΣM mentioned above does not have tensor product struc-
ture, it can be embedded into the product index set ΣM ⊂ J M with J := {1, ..., ⌈c1M

κ⌉}.
Hence, the above construction does provide also an upper bound on the rank parameter in
the orthogonal Tucker decomposition, r ≤ C⌈Mκ⌉, based on nonlinear approximation with
a fixed tensor-product index set J M as the domain for the core tensor.

The rank estimates (2.10) are derived before the discretization in the physical variable
x ∈ D. Analogous bounds for fully discrete solutions of the Galerkin system of equations
will be addressed in §3 (cf. Proposition 3.3 there).

In the case of exponential decay of the input’s fluctuation, i.e. (2.6), the low rank approx-
imation (2.9) exhibits a superalgebraic (though subexponential) convergence rate in terms of

the cardinality R of the index sets. The number of terms in (2.9) amounts to O(eβ1Mκ/(κ+1)
),

κ = 1/d0, indicating exponential complexity in M for the respective discretizations; note,
however, that this is offset by the exponential convergence bound C exp(−βM1/κ).

The following Proposition indicates that in the case of constant coefficients am(x) = am,
(m = 0, 1, ..., M) we can achieve the exponential convergence rate in the number of terms.
Hence, in the case of variable coefficients, the actual separation rank might be expected as
much smaller compared with the (possibly pessimistic) upper bound R = #ΣM appearing in
(2.10). Based on the above conjecture and applying efficient tensor approximation methods,
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the number of terms in the separable expansion (2.9) can be reduced so as to remove the
“curse of dimensionality”.

In the case of spatially homogeneous coefficients, we denote the associated coefficient
function and bilinear form by aM and AM(·, ·), respectively.

Proposition 2.6 Assume that the stochastic coefficients are constant, am(x) = am (m =
0, 1, ..., M). Then the solution of equation (2.1) can be presented by explicit formula

uM(y, x) =
1

a0 +
∑M

m=1 amym

(−∆x)
−1f(x), (2.16)

where ∆x is the Laplace operator on H1
0 (D) in variable x ∈ R

d0.
Under assumptions 1. - 2. on aM(x, y) as in §2.2, the multivariate coefficient function

in (2.16) allows the following R-term separable approximation

G(y) :=
1

a0 +
∑M

m=1 amym

≈

R∑

k=1

gk
1(y1)...g

k
M(yM), ∀y ∈ IM ,

that converges exponentially in R,

‖G(y)−

R∑

k=1

gk
1(y1)...g

k
M(yM)‖L∞(Γ) ≤ Ce−βR/ log R, (2.17)

where β > 0 does not depend on M and R.

Proof. Since assumptions 1. - 2. in §2.2 imply aM ≥ (1−γ)amin > 0, we apply the improved
sinc-quadrature (see [13], Lemma 4.3, Proposition 2.1) to the function 1/x, with substitution
x = a0 +

∑M
m=1 amym,

1/x =

∫ ∞

0

e−xtdt ≈

M∑

k=−M

cke
−xtk , for x ∈ [(1 − γ)amin, (1 + γ)amin].

Following [13], Lemma 4.3, the coefficients ck, tk > 0 can be derived from the integral repre-
sentation

1/x =

∫

R

f2(ω)dω, f2(ω) =
cosh(ω)

1 + e−sinh(ω)
e−x log(1+esinh(ω))

by applying the improved sinc-quadrature in [13], Proposition 2.1. To that end, we set
R0 = xmax/xmin = 1+γ

1−γ
(corresponds to the scaling x ∈ [1, R0] in [13], Lemma 4.3), and

h = log(πM)/M, tk = log(1 + esinh(kh)), ck = h
cosh(kh)

1 + e−sinh(kh)
,

that ensures the convergence rate as in (2.17) with R = 2M +1. Notice that each term in the

quadrature representation has rank 1 since e−xtk = e−tka0

M∏
k=−M

e−tkamym , which completes

the proof.
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Proposition 2.6 implies that the number of terms R in the above constructed decom-
position, that allows to achieve an accuracy ε = Ce−C1Mκ

, κ = 1/d0, is equal to R =
O(Mκ log M), which follows from the analysis of the equation

R

log R
= Mκ, M ≫ 1.

Hence, in this case, we arrive at even better than linear-logarithmic complexity in M (sub-
linear complexity for d0 ≥ 2).

One can expect that in the case of “smooth” coefficients am(x) the situation might be very
similar to those described in Proposition 2.6. Moreover, we will show that the operator with
constant coefficients am(x) = am, is a good candidate for the spectrally close preconditioner.

3 Sparse Tensor-Product Galerkin Discretization

So far, the approximations of the solution uM were semidiscrete, i.e. we assumed that the
coefficients Φα(x) ∈ Vx were available exactly. Now, we consider the numerical approxima-
tion of these coefficients from Finite Element spaces in the domain D. The sparse tensor
FEM-Galerkin approximation of (2.1) is based on the weak formulation (2.5) in the tensor-
product Hilbert space V . A key problem is the possibly high dimension M of the parameter
domain Γ.

Our goal is to adapt Galerkin discretization schemes of the parametric, deterministic
elliptic problems (2.1) to the low rank tensor-structured matrix formats introduced in §2.4.1.

3.1 Galerkin approximation

We consider the case of tensor-product basis functions {φj},

φj(y, x) = φj0(x)
M∏

m=1

φjm(ym), j ∈ J = J0 × JM , J := {1, ..., n},

where {φj0(x)} is chosen as the basis set in the Galerkin subspace XN0 = (Xn0)
d0 ∈ H1

0 (D) =
(H1

0 (0, 1))d0 of tensor-product piecewise linear functions in variable x. In turn, φjm are
piecewise polynomials in variable ym ∈ I (m = 1, ..., M), that span the tensor product space
YM = (Yn)M , where Yn is either
(A) the set of the univariate Legendre polynomials of degree n − 1 in ym (m = 1, ..., M), or
(B) Yn could be the space of piecewise constant basis functions in variable ym, corresponding
to the equidistant grid of size h = 2/n (see §4 for numerics).

To build the Galerkin approximation of the initial boundary value problem (2.5) on the
tensor-product Hilbert space

Vn := YM ⊗ XN0 ⊂ V =
M⊗

m=1

L2(I) ⊗ H1
0 (D),

we search for the solution in the form uh
M =

∑
j∈J

ujφj ∈ Vn, that satisfies

AM(uh
M , v) = f(v) ∀v ∈ Vn. (3.1)

11



Lemma 3.1 The Galerkin equation (3.1) has a unique solution which is quasioptimal

‖uM − uh
M‖V ≤ C inf

v∈Vn

‖uM − v‖V ,

where the constant C > 0 does not depend on M , n and N0.

Proof. The bilinear form AM is coercive (cf. Lemma 2.1) and continuous uniformly in M .
Then the result follows by Lax-Milgram lemma.

To derive the Galerkin matrix equation, let us choose some rank-1 test and trial functions
in the set {φj}, j ∈ J ,

u(y, x) = u(0)(x)ΠM
m=1u

(m)(ym), v(y, x) = v(0)(x)ΠM
m=1v

(m)(ym),

then the associated bilinear form can be written as follows

AM(u, v) = A0(u, v) + Ay(u, v)

with the separable representations,

A0(u, v) =

[
d0∑

i=1

〈
a0(x)

∂

∂xi

u(0)(x),
∂

∂xi

v(0)(x)

〉

L2(D)

]
M∏

ℓ=1

〈
u(ℓ)(yℓ), v

(ℓ)(yℓ)
〉

L2(I)
,

Ay(u, v) =
M∑

m=1

[
d0∑

i=1

〈
am(x)

∂

∂xi

u(0)(x),
∂

∂xi

v(0)(x)

〉

L2(D)

]
M∏

ℓ=1

〈
yδmℓ

ℓ u(ℓ)(yℓ), v
(ℓ)(yℓ)

〉
L2(I)

,

where δmℓ is the Kronecker delta.
With the notation U = {uj}j∈J ∈ R

J for the coefficient tensor, the Galerkin system of
linear algebraic equations now reads

AU ≡ (A0 +

M∑

m=1

Am)U = F U, F ∈ R
J , (3.2)

with the following tensor-product representation of the stiffness matrix and of the respective
right-hand side,

Am =
M⊗

ℓ=0

A(ℓ)
m , F =

M⊗

ℓ=0

F (ℓ),

where
A(ℓ)

m ∈ R
n×n, F (ℓ) ∈ R

n ℓ = 1, ..., M, A(0)
m ∈ R

N0×N0, F (0) ∈ R
N0,

such that for m = 0, ..., M , we have

A(0)
m =

{
d0∑

i=1

〈
am(x)

∂

∂xi

φp0(x),
∂

∂xi

φq0(x)

〉

L2(D)

}N0

p0,q0=1

, F (0) =
{
〈f, φq0〉L2(D)

}N0

q0=1
,

and

A(ℓ)
m =

{〈
yδmℓ

ℓ φp(yℓ), φq(yℓ)
〉

L2(I)

}n

p,q=1

, F (ℓ) =
{
〈1, φq(yℓ)〉L2(I)

}n

q=1
, ℓ = 1, ..., M.

The next lemma characterizes the tensor-structured representation of the matrix A and
loading vector F in (3.2).
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Lemma 3.2 We have A ∈ MM+1,n and F ∈ C1,n with n = (N0, n, ..., n). The storage
requirements to represent the matrix A and the rank-1 vector F are estimated by

Q(A) = O(N0M + nαM), α = 1, 2, Q(F ) = O(N0 + nM),

respectively. Here α = 1 corresponds to the piecewise constant elements, and α = 2 appears
in the case of Legendre polynomials. The matrix-times-vector multiplication of A with an
rank-1 tensor in C1,n, scales linearly in M , O(N0M + nM).

Proof.
The storage for sparse FEM stiffness matrices A

(0)
m , (m = 0, ..., M), is estimated by

O(N0M). Depending on the choice of basis functions in YM , the sparsity of matrices A
(ℓ)
m

(ℓ = 1, ..., M , m = 1, ..., M) is characterized by the value nα, α = 1, 2, where the set of

matrices A
(ℓ)
m , (1 < m ≤ M), is obtained by cyclic repetition of A

(ℓ)
1 . Considerations for the

loading vector F are similar.
Suppose now that the vector U ∈ R

J has rank-1 tensor representation (see Appendix)

U = u(0) ⊗ ... ⊗ u(M), u(ℓ) ∈ R
n, ℓ = 1, ..., M ; u(0) ∈ R

N0 .

Then the matrix-times-vector multiplication with A is reduced to the univariate algebraic
operations,

AU =

M∑

m=0

M⊗

ℓ=0

A(ℓ)
m u(ℓ),

that proves the second assertion, taking into account the repeating terms in the respective
tensor products.

We complete §3.1 by an illustration on the tensor structure of the stiffness matrix A.
Example 1. Let d0 = 1, M = 2, and let Yn be the space of piecewise constant basis

functions over the uniform grid of size n in each variable ym, m = 1, 2. Then A
(0)
m ∈ R

n0×n0 ,
m = 0, 1, 2 are symmetric, positive definite and tridiagonal matrices. The mass matrices in
variable ym are diagonal ones. Denoting A

(1)
1 = A

(2)
2 = Z ∈ R

n×n, and A
(ℓ)
m = W = hIn ∈

R
n×n (scaled identity), otherwise, the resultant rank-3 stiffness matrix takes the form

A = W ⊗ W ⊗ A
(0)
0 + Z ⊗ W ⊗ A

(0)
1 + W ⊗ Z ⊗ A

(0)
2 .

To construct the preconditioner, this matrix can be first factorized as

A = (W ⊗ W ⊗ A
(0)
0 )B,

with

B = In ⊗ In ⊗ In0 + W−1Z ⊗ In ⊗ (A
(0)
0 )−1A

(0)
1 + In ⊗ W−1Z ⊗ (A

(0)
0 )−1A

(0)
2 ,

where W−1Z is spectrally equivalent to In uniformly in n, while both the matrix (A
(0)
0 )−1A

(0)
1 ,

and (A
(0)
0 )−1A

(0)
2 , are spectrally equivalent to In0. Preconditioning matrix is then given by

W−1 ⊗ W−1 ⊗ A
(0)
0

−1
.
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3.2 Canonical and Tucker rank estimates

Application of tensor formats for solution of large linear system of equations (3.2) requires
the low tensor rank representations of all matrices and vectors arising in the computational
process.

The rank estimates for the solutions of the discrete Galerkin equation can be derived
from [4]. Let the index set ΣM,µ,ν ⊂ J M ⊂ N

M
0 be defined by

ΣM,µ,ν := {α ∈ J M : |α|0 ≤ ν, |α|1 ≤ µ}.

Introducing the respective approximation

uh
ΣM,µ,ν

=
∑

α∈ΣM,µ,ν

uαyα, uα ∈ XN0 ,

as in [4, Proposition 3.11], the relation between the approximation error and the cardinality
bound can be derived as follows.

Proposition 3.3 There exist constants CM , cµ, cν > 0, independent of M, µ, ν, such that
for any ε > 0, by choosing h = O(ε),

M = ⌈cM | log ε|d0⌉ µ = ⌈cµMκ⌉, ν := ⌈cνM
κ/κ+1⌉, κ = 1/d0,

we have
‖uM − uh

ΣM,µ,ν
‖Vx ≤ ε, ∀y ∈ Γ,

and for any fixed s > 0, as ε → 0, we have the bound

#ΣM,µ,ν ≤ Cε−1/s.

The rank estimates for the solution of the discrete Galerkin equation (3.2) is a conse-
quence of Proposition 3.3.

Lemma 3.4 For given ε > 0, and for any fixed s > 0, the solution uM with parameters
M, µ, ν, chosed as above, has the canonical and Tucker ranks at most

R = O(ε−1/s), and r = O(max{M1/d0 , N0}),

respectively. There is the sparse Tucker approximation with the number of nonzero terms
not exceeding Cε−1/s.

Proof. Choose the approximation uh
ΣM,µ,ν

of uM with parameters M, µ, ν, as in Proposition

3.3 and take into account that ΛM,µ,ν ⊂ J M holds. Then the first assertion follows directly
from definitions of the canonical and Tucker ranks as in Appendix. To prove the second
statement, we note that the approximand uh

ΛM,µ,ν
is just the Tucker sum over index set

J M × R
N0 , with the number of nonzero terms bounded by #ΛM,µ,ν. This completes our

proof.
There is still an open question either some better estimates on the canonical and Tucker

ranks of the respective nonlinear approximations are possible (cf. Proposition 2.6). Finding
the rigorous answer on this question, first, requires the extensive numerical study.
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3.3 Analysis of low tensor rank preconditioners

For the robust and fast convergence of the iterative solvers for high-dimensional equation
(3.2), we need the simple spectrally close preconditioners that can be also represented in the
low tensor rank format (see Appendix). In this section we describe two classes of low rank
preconditioners.

Introduce the bilinear form AM on the tensor-product Hilbert space V ,

AM(u, v) :=

∫

Γ

∫

D

aM(y, x)∇xu · ∇xvdxdy, u, v ∈ V,

where the coefficient is given by constants am (m = 0, 1, ..., M) as follows

aM(y, x) := a0 +

M∑

m=1

amym.

Next statement gives the spectral equivalence estimates for preconditioners generated by
the bilinear forms A0 and AM .

Lemma 3.5 The spectral equivalence

(1 − γ) 〈A0U, U〉Vn
≤ 〈AU, U〉Vn

≤ (1 + γ) 〈A0U, U〉Vn
∀ U ∈ Vn, (3.3)

holds uniformly in N0 and n. Moreover, assume that the operator coefficient am(x), is a
”small” perturbation of its meanvalue am ≥ 0 over D,

|am(x) − am| ≤ αam, m = 0, ..., M, (3.4)

with some 1 > β > 0, such that γ ≤ 1
1−β

, and 1
1−β

+ γ < 1−γ
β

. Then the bilinear form AM

generates the spectrally equivalent preconditioner AM to A, characterized by the equivalence

constants C0 =
[
1 + β

1+γ
( 1

1−β
− γ)

]−1

, and C1 =
[
1 − β

1−γ
( 1

1−β
+ γ)

]−1

.

Proof. Using conditions 1) - 2) (cf. §2.2) and the strong ellipticity criteria (2.3), the first
spectral equivalence estimate then follows from the two-sided bound

(1 − γ)A0(u, u) ≤ AM (u, u) ≤ (1 + γ)A0(u, u) ∀u ∈ V,

to be considered on the Galerkin subspace Vn ⊂ V .
The second assertion is obtained by estimating aM (y, x) by means of the respective

coefficient expansion,

aM(y, x) := aM(y, x) + a0(x) − a0 +
M∑

m=1

(am(x) − am)ym,

and taking into account (3.4),

aM(y, x) − β(1/(1 − β) − γ)a0(x) ≤ aM(y, x) ≤ aM(y, x) + β(1/(1 − β) + γ)a0(x).
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Based on (3.3), the latter inequalities imply,

[
1 +

β

1 + γ
(

1

1 − β
− γ)

]−1

AM ≤ A ≤

[
1 −

β

1 − γ
(

1

1 − β
+ γ)

]−1

AM ,

which complets the proof.
The previous lemma ensures that one class of efficient preconditioners is generated by

the bilinear form A0, i.e., it is defined by any low rank approximation to the matrix A−1
0 .

Detailed discussion on such kind of approximation can be found in [20].
The second class is based on the averaging approximation with constant coefficients am,

m = 1, ..., M . In this case, the low rank representation to A
−1

M is described in Proposition
2.6.

3.4 Tensor-structured iteration with rank truncation

Lemmata 3.2 and 3.5 provide the starting point to design the fast tensor methods of almost
linear complexity in both N0 and n, and with exponential scaling like rM (r = O(| log ε|))
when using the Tucker format. In the case of rank-R solution uM , we can expect even the
linear-logarithmic scaling O(MR(N0 + n)).

To fix the point, consider the system of linear algebraic equations

U ∈ S ⊂ R
J : AU = F, F ∈ C1, (3.5)

posed on certain nonlinear manifold S of rank-structured tensors. We apply the simple
preconditioned Jacobi iteration accomplished with the rank optimization procedure at each
iterative step. To that end, let us introduce the truncation operator TR : R

J → S, which is
the nonlinear operator that defines the best rank-structured approximation in the form

A ∈ R
J : TR(A) := argmin

X∈S
‖X − A‖. (3.6)

The truncation operator in (3.6) can be defined on different classes of rank structured tensors,
say, on the Tucker or two-level Tucker formats [18]. Furthermore, the recently analysed
dimension splitting TC/TT tensor formats can be considered [30, 28, 22].

Several heuristic methods for computing the corresponding rank structured approxima-
tions in different classes of input/output tensors were discussed in the literature [7, 26, 36,
23, 29, 18]. It is worth to note that the orthogonal Tucker approximation as well as ap-
proximations in the dimension splitting tensor formats [28, 31, 11, 22] can be realized by
using QR/SVD-based schemes with the quasioptimal error bound. We also stress that using
the recently introduced quantics-type approximation of tensors (cf. [22]) it might be possi-
ble to achieve the log-scaling of the numerical algorithm in both the volume size and the
approximation error, O(M log n log ε−1).

Based on the results in [22, Proposition 3.5], [31], [8, 23], next statement shows that
the tensor truncation operator TS , associated with the Tucker and TC-formats, provides the
quasioptimal SVD-based approximation on the tensor manifold with fixed rank parameters.

Proposition 3.6 (Tensor truncation). The operator TS : Vn,d → S := TC[r,n, d] is well
defined. The same holds true for the Tucker truncation operator.
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For given A0 ∈ TT [r0,n, d] ⊂ Vn,d, and r < r0, the quasioptimal approximation to TSA0

can be computed by finite QR/SVD based algorithm in O(ndr3
0) operations. The Tucker

truncation can be computed by the ALS iteration provided that the initial guess is given by
the higher order SVD (cf. [8]).

If A0 ∈ CR, then the quasioptimal rank-r Tucker approximation can be computed by
SVD-based RHOSVD algorithm (cf. [23]).

In our numerical experiments we test the tensor truncation to the set of rank-R canonical
tensors, S = CR. Respectively, we denote TS = TR. In this case, the only approximate
solution of the problem (3.6) can be (iteratively) computed. In the current implementation,
we apply the heuristic multistep enhanced ALS iteration to perform the rank optimisation
in the canonical format [21].

To proceed with, we introduce the tensor-truncated iteration as follows. Given U (0) ∈ CR,
calculate for m = 1, 2, ... till termination:

Ũ (m+1) := U (m) − ωB
(
AU (m) − F

)
, U (m+1) = TR(Ũ (m+1)) → U, (3.7)

with some ω > 0, where B can be chosen as one of the low tensor rank preconditioners

introduced above, B = A−1
0 or B = A

−1

M .
For example, with the choice B = A−1

0 , ω = 1, TR = I, the spectral bounds sp(A−1
0 A) ∈

[1 − γ, 1 + γ] can be proved (see Lemma 3.5), and we obtain in (3.7) the exact fixed point
iteration with the contraction factor q = γ < 1. Hence, if the truncation operator is accurate
enough, that can be achieved by increasing the truncation rank in the intermediate iterative
steps to some R′ > R, the contraction factor in (3.7) can be controlled by some q′ < 1.

In the (nonlinear) iteration (3.7) the truncation operator TR can be applied to the residual
vectors AU (m) − F , and B

(
AU (m) − F

)
, as well.

Notice that the target tensor X ∈ R
J in (3.6) can be approximated by a sum of rank-1

tensors as in (2.12), and (2.13). In the case M = 1, i.e. for d = 2, these two representations
are equivalent, and they can be computed by the so-called “truncated” SVD. In the general
case of M ≥ 2, the action of truncation operator is reduced to the nonlinear approximation
problem in the corresponding multilinear algebra setting as in (3.6).

4 Numerical illustrations

4.1 Performance of the low tensor rank preconditioners

Consider the case of spatially homogeneous stochastic coefficients,

a(y, x) = a(y) := 1 +
M∑

m=1

amym with γ = ‖a‖ℓ1 :=
M∑

m=1

|am| < 1, (4.1)

for the truncated sequence of (spatially homogeneous) coefficients am = (1 + m)−α, (m =
1, ..., M) with algebraic decay rates α = 2, 3, 5 (In this section the parameter α corresponds
to the decay rate parameter s introduced in §2.3). We compute the rank-R tensor approxi-

mation to the preconditioning matrix A
−1

M , corresponding to the multivariate function a(y)−1
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over the tensor-product grid of size n⊗M . For different values of the rank parameter R, di-
mension parameter M = 10, 20, 50, 100, and for the univariate grid size n = 2p, p = 6, we
use the rank-R approximation based on the sinc-quadratures, as in Proposition 2.6, where
R = 2L + 1.

We present the results for y-dependent factor in the rank-R approximation to the inverse

matrix A
−1

M (see Lemma 3.5 and Proposition 2.6) tested on the rank-1 random vector of size
n⊗M . The approximation error is measured at fixed sampling points of the M-fold tensor
product space Y

M
n . The results are depicted in Figures 4.1, 4.2, 4.3, and 4.4.
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Figure 4.1: Approximation error vs. rank R for A
−1

M with M = 10, am = am(α).
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Figure 4.2: Approximation error vs. rank R for A
−1

M with M = 20, am = am(α).
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Figure 4.3: Approximation error vs. rank R for A
−1

M with M = 50, am = am(α).
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Figure 4.4: Approximation error vs. rank R for A
−1

M with M = 100.

We observe fast exponential convergence of the rank-R approximation even in the case
of slow, algebraic decay of the expansion coefficients (e.g. for α = 2). Another important
observation is that the convergence rate with respect to R is uniform in the stochastic
dimension, at least in the range 10 ≤ M ≤ 100.

4.2 Preconditioning: spatially homogeneous random coefficients

In the next example, we apply the truncated iteration (3.7) with the rank-1 preconditioner
B = A−1

0 for solving the discrete sPDE with the constant stochastic coefficient am(x) =
const (m = 1, ..., M) as in (4.1) and with given right-hand side f = 1. Since in the case
am(x) = const, we are able to calculate the exact solution with any prescribed accuracy, we
present the results on the approximation error vs. the rank parameter for the rank structured
solutions of the equation (3.5). We consider the case d0 = 1 for the physical dimension, and
discretise the elliptic part by piecewise linear finite elements with same grid size as for the
stochastic variables.

The results on low tensor-rank approximation of the exact solution U , calculated for
different dimension parameters M = 10, 20, 50, and grid size n = 31, 63, are presented in
Figures 4.5, 4.6, and 4.7.

The convergence history for the rank-structured truncated iteration for solving the system
of linear equations (3.5) in the total dimension d = M + 1, with M = 20, 30, 40, and
am = am(α), is depicted in Figure 4.8. Here T-iter means the number of truncated iterations,
performed for different values of the truncation rank parameter R.
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Figure 4.5: Low rank approximation for solutions of sPDE with M = 10, and am(x) = const.
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Figure 4.6: Low rank approximation for solutions of sPDE with M = 20, and am(x) = const.
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Figure 4.7: Low rank approximation for solutions of sPDE with M = 40, 50, and am(x) =
const.

4.3 Preconditioned iteration: variable stochastic coefficients

In the following example, we apply the truncated iteration (3.7) with the rank-1 precondi-
tioner A−1

0 to the equation (2.1) with variable coefficients (polynomial decay)

am(x) = (1 + m)−αsin(mx), m = 1, 2, ...., M, x ∈ (0, π),

and with a0 = 1. The right-hand side in (2.1) is given by f(x) = sin(x). We present the
convergence history for the dimension parameter M = 20, and fixed grid-size n = 31, in
all variables x ∈ (0, π), and ym ∈ (−1, 1). Again, we use piecewise linear finite elements
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Figure 4.8: Convergence history for truncated preconditioned iteration to solve sPDE with
M = 20, 30, 40, and am(x) = const.
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in x and piecewise constant approximation in the stochastic variables ym. We also vary
the parameter α = 2, 3, 4 and the truncation rank R = 1, 2, 3. Figure 4.9 represents the
approximation error vs. rank parameter, while Figure 4.10 gives the convergence history vs.
the number of truncated iterations.
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Figure 4.9: Low rank approximation for solutions of sPDE with M = 20, and am(x) =
cm(α) sin(mx) (polynomial decay).

1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Dim=21, alpha=2, rank=4, grid=31

T−iter

R
es

id
ua

l

1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Dim=21, alpha=3, rank=4, grid=31

T−iter

R
es

id
ua

l

1 2 3 4 5 6
10

−6

10
−4

10
−2

10
0

10
2

Dim=21, alpha=5, rank=4, grid=31

T−iter

R
es

id
ua

l

Figure 4.10: Convergence history for tensor truncated iteration to solve the sPDE with
M = 20, and am(x) = cm(α) sin(mx) (polynomial decay).

In the last numerical example, we consider variable coefficients with exponential decay,

am(x) = 0.5 e−αmsin(mx), m = 1, 2, ...., M, x ∈ (0, π).

The results for α = 1, 2, n = 63, R = 5, are depicted in Figures 4.11, 4.12 and 4.13. In
particular, examples of canonical vectors for rank-R solutions of sPDE are given in Figure
4.13.

5 Conclusions

In the present paper we proposed a new class of low-rank tensor based numerical methods
for solving PDEs with random inputs. We presented theoretical and numerical evidence that
our method scales linearly in the dimension M of stochastic input parameter space.

Our approach is based on low rank separable representation to the discrete multivariate
functions and operators (matrices) involved in the FEM-Galerkin approximation.
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Figure 4.11: Low rank approximation for solutions of sPDE with M = 10, 20 and am(x) =
e−αm sin(mx) (exponential decay).
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Figure 4.12: Iteration history for solutions of sPDE with M = 10, 20 and am(x) =
e−αm sin(mx) (exponential decay).

Preliminary conclusions based on the numerical experiments in the present paper are the
following:

1. The solutions of parametric sPDEs can be well represented with low separation rank.
2. The preconditioned truncated iteration demonstrates the monotone and robust geo-

metric convergence (as expected).
3. The convergence of rank-reduced formatted tensor approximations is faster for larger

values of α, i.e., for faster decay of the stochastic coefficients (as expected).
4. For the fixed error bound ε0 > 0, the dimensionality parameter M should be related

to the decay rate α by the equations (1 + M)−α ≈ ε0, or e−αM ≈ ε0 (as expected).
5. For larger dimension M , the approximation ranks determined by the proposed algo-

rithms remain uniformly bounded independently of M .
6. Computational time and storage requirements scale linearly in the univariate grid-

size n and nearly linearly in M . Therefore, solutions of parametric deterministic PDEs
with smooth dependence on the parameters resulting from random input parameters can be
solved at least for a moderately large number M of input parameters (in the present work,
M ≤ 50).

7. Low rank approximations converge faster in the case of exponential decay of coefficients
am compared to the case of polynomial decay.

8. There are still many open questions, hence further theoretical and algorithmic devel-
opments are required. In particular, applications of the more flexible rank-decompositions
than the canonical tensor format can be addressed in the future works.
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Figure 4.13: First of ℓ-mode canonical vectors (ℓ = 1, 2, 3) for solutions of sPDE with
d0 = 1, M = 10, 20 and spatially inhomogeneous random coefficients am(x) = e−αm sin(mx)
(exponential decay).

9. The preliminary conclusion from the present work is that low-rank structured tensor
approximations of the solution of parametric deterministic PDEs on high dimensional pa-
rameter spaces seems to be a promising concept. It allows for the efficient, matrix based
numerical solution of discretized deterministic PDEs on high dimensional parameter spaces
with linear scaling complexity on the dimension of the parameter space.
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