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Abstract

In this review, we introduce well-known Bell inequalities, the relations

between the Bell inequality and quantum separability, and the entangle-

ment distillation of quantum states. It is shown that any pure entangled

quantum state violates one of Bell-like inequalities. Moreover, quantum

states that violate any one of these Bell-like inequalities are shown to

be distillable. New Bell inequalities that detect more entangled mixed

states are also introduced.
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I. INTRODUCTION

The contradiction between local realism and quantum mechanics was first highlighted

by the paradox of Einstein, Podolsky and Rosen (EPR) [1]. Nonlocality can be determined

from violation of conditions, called Bell inequalities[2], that are satisfied by any local variable

theory. In 1964, Bell formulated an inequality that is obeyed by any local hidden-variable

theory. However, he showed that the EPR singlet state |ψ+〉 = 1√
2
(|00〉 + |11〉) violates the

inequality. In fact, the Bell inequality provided the first possibility to distinguish experi-

mentally between quantum-mechanical predictions and predictions of local realistic models.

Bell inequalities are of great importance in understanding the conceptual foundations of

quantum theory and investigating quantum entanglement, as they can be violated by quan-

tum entangled states. On the other hand, violation of the inequalities is closely related
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to the extraordinary power of realizing certain tasks in quantum information processing,

which outperforms its classical counterpart, such as building quantum protocols to decrease

communication complexity [3] and providing secure quantum communication [4, 5].

One of the most important Bell inequalities is the Clauser-Horne-Shimony-Holt (CHSH)

inequality [6] for two-qubit systems. It can be generalized to the N -qubit case, known

as the Mermin-Ardehali-Belinskii-Klyshko(MABK) inequality [7–9]. A set of multipartite

Bell inequalities has been elegantly derived in terms of two dichotomic observables per

site [10, 11]. The set includes the MABK inequality as a special case [12] and can detect

entangled states that the MABK inequality fails to detect. [13] introduced another family of

Bell inequalities for N -qubit systems that are maximally violated by all Greenberger-Horne-

Zeilinger states. A method of extending Bell inequalities from n to (n + 1)-partite states

is described in [14]. In the higher dimensional bipartite case, Collins et al. constructed

a CHSH-type inequality for arbitrary d-dimensional (qudit) systems known as the Collins-

Gisin-Linden-Masser-Popescu (CGLMP) inequality [15].

Gisin presented a theorem in 1991 that states that any pure entangled two-qubit state

violates the CHSH inequality [16]. Specifically, the CHSH inequality is both sufficient and

necessary for the separability of two-qubit states. Soon after, Gisin and Peres provided an

elegant proof of this theorem for the case of pure two-qudit systems [17]. Chen et al. showed

that all pure entangled three-qubit states violate a Bell inequality [18]. Nevertheless, it has

remained an open problem for a long time whether Gisin’s theorem can be generalized to

the multi-qudit case. In addition, Bell inequalities that can detect more (mixed) entangled

quantum states are being searched for.

Bell inequalities are also useful in verifying the security of quantum key distribution

protocols [19, 20]. There is a simple relation between nonlocality and distillability: if any

two-qubit [21] or three-qubit [22] pure or mixed state violates a specific Bell inequality, then

the state must be distillable. Dür showed that for the case N ≥ 8, there exist N -qubit

bound entangled (non-distillable) states that violate Bell inequalities [23] . However, Aćın

has demonstrated that for all states violating an inequality, there exists at least one kind

of bipartite decomposition of the system such that a pure entangled state can be distilled

[24, 25]. However generally it is an open problem whether violation of a Bell inequality

implies distillability.

In this review, we first give a brief introduction of several important Bell inequalities

in section II. We introduce a set of Bell-like inequalities in section III that can be shown

to be both sufficient and necessary for the separability of general pure quantum states

in arbitrary dimensions. We then show that pure entangled states can be distilled from

quantum mixed states that violate one of these Bell inequalities. New Bell operators are

constructed in section IV and used to detect more entangled quantum states. We further
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derive the maximal violation of such Bell inequalities. We give conclusions and remarks in

section V.

II. SOME WELL-KNOWN BELL INEQUALITIES

In this section we recall several useful Bell inequalities including the CHSH inequality,

WWZB inequality (including the MABK inequality as a special case), CGLMP inequality

and some other generalized inequalities.

A. Bell inequalities for two and three-qubit systems

The famous CHSH [6] inequality is a kind of improved Bell inequality that is more feasible

for experimental verification. Suppose two observers, Alice and Bob, are separated spatially

and share two qubits. Alice and Bob each measure a dichotomic observable with possible

outcomes ±1 in one of two measurement settings: A1, A2 and B1, B2 respectively. The CHSH

inequality is a constraint on correlations between Alice’s and Bob’s measurement outcomes

if a local realistic description is assumed. The Bell function for the CHSH inequality has

been given as[26]

B(λ) = A1(λ)(B1(λ) +B2(λ)) + A2(λ)(B1(λ) − B2(λ)), (1)

where λ is a collection of local hidden variables and the variables Ai(λ) and Bj(λ) take

values ±1. According to the local hidden-variable theory, the statistical average of the

Bell function must satisfy the inequality [6, 26], |〈B(λ)〉| ≤ 2, where the statistical average

〈B(λ)〉 =
∫

ρ(λ)B(λ)dλ with ρ(λ) the probability density distribution.

Quantum mechanically the statistical average of the Bell function is replaced by a quan-

tum average of the corresponding operator given by

B = A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗B2, (2)

where Ai = ~ai ·~σA = axi σ
x
A+ayi σ

y
A+aziσ

z
A, Bj = ~bj ·~σB = bxjσ

x
B +byjσ

y
B +bzjσ

z
B, ~ai = (axi , a

y
i , a

z
i )

and ~bj = (bxj , b
y
j , b

z
j ) are real unit vectors satisfying |~ai| = |~bj | = 1 with i, j = 1, 2, and

σx,y,zA/B are Pauli matrices. The CHSH inequality says that if there exist local hidden-variable

models to describe the system, the inequality

|〈B〉| ≤ 2 (3)

must hold.

For entangled states, it is always possible to find suitable observables A1, A2, B1 and B2

such that inequality (3) is violated. For instance, taking |ψ+〉 = (|01〉 − |10〉)/
√

2, A1 = σx,
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A2 = σz, B1 = (σx + σz)/
√

2, and B2 = (σx − σz)/
√

2, we obtain |〈B〉| = 2
√

2, which gives

the maximal violation [27].

For three-qubit states, the Mermin inequality states that [7–9],

|〈A2B1C1〉 + 〈A1B2C1〉 + 〈A1B1C2〉 − 〈A2B2C2〉| ≤ 2, (4)

where observables Ai, Bi, and Ci, i = 1, 2, are associated with three qubits respectively.

The maximal violation of the inequality (4) is 4. The quantum mechanical violation of the

Bell inequalities has been demonstrated experimentally, e.g. [28].

B. Bell inequalities for Multipartite qubit systems

The MABK inequality is a kind of Bell inequality for multipartite qubits [7–9] whereas

the WWZB inequality [10, 11] is a kind of generalization of the MABK inequality. Here we

introduce the WWZB inequality and consider the MABK inequality as a special case of the

WWZB inequality.

Consider an N -qubit quantum system and allow each part to choose independently be-

tween two dichotomic observables Aj, A
′

j for the jth observer, specified by local parameters.

Each measurement has two possible outcomes 1 and −1. The WWZB quantum mechanical

Bell operator is defined by

BN =
1

2N

∑

s1,s2,··· ,sN=±1

S(s1, s2, · · · , sN)
∑

k1,k2,··· ,kN=±1

sk11 s
k2
2 · · · skNN ⊗N

j=1 Oj(kj), (5)

where S(s1, s2, · · · , sN) is an arbitrary function taking only values ±1 and Oj(1) = Aj and

Oj(2) = A
′

j with kj = 1, 2. It is shown in [10, 11] that local realism requires |〈BN〉| ≤ 1.

The MABK inequality is recovered by taking S(s1, s2, · · · , sN) =
√

2 cos[(s1 + s2 + · · ·+
sN −N + 1)/π

4
] in (5).

Employing an inductive method from the (N−1)-partite WWZB Bell inequality to theN -

partite inequality, a family of Bell inequalities was presented in [13]. The new Bell operator

is defined by

BN = BN−1 ⊗
1

2
(AN + A

′

N) + IN−1 ⊗
1

2
(AN − A

′

N), (6)

where BN−1 represents the normal WWZB Bell operators defined in (5). Such new Bell

operators yield violation of the Bell inequality for the generalized GHZ states, |ψ〉 =

cosα|00 · · ·0〉 + sinα|11 · · ·1〉, in the whole parameter region of α and for any number of

qubits, thus overcoming the drawback of the WWZB inequality. In the three-qubit case,

one can construct three different Bell operators from B2 by taking the approach of (6).

The corresponding three Bell inequalities can distinguish full separability, detailed partial

separability and true entanglement [29].
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C. Bell inequalities for high-dimensional systems

For bipartite high-dimensional quantum systems, we introduce the CGLMP inequality

given in [15]. We consider the standard Bell-type experiment: two spatially separated

observers, Alice and Bob, share a copy of a pure two-qudit state |ψ〉 ∈ Cd ⊗ Cd in the

composite system. Suppose that Alice and Bob both have the choice of performing one of

two different projective measurements, each of which has d possible outcomes. Let A1 and

A2 denote observables measured by Alice and B1 and B2 the observables measured by Bob.

Each measurement has d possible outcomes: 0, 1, · · · , d− 1. Any local variable theory must

then obey the well-known CGLMP inequality [15]:

Id ≡
[ d
2
]−1

∑

k=0

(1 − 2k

d− 1
){[P (A1 = B1 + k) + P (B1 = A2 + k + 1) + P (A2 = B2 + k)

+P (B2 = A1 + k)] − [P (A1 = B1 − k − 1) + P (B1 = A2 − k)

+P (A2 = B2 − k − 1) + P (B2 = A1 − k − 1)]} ≤ 2. (7)

Here [x] denotes the integer part of x. The joint probability P (Aa = Bb+m) =
∑d−1

j=0 P (Aa =

j, Bb = j −m), a, b = 1, 2, in which the measurements Aa and Bb have outcomes that differ

by m(mod d).

Chen et al. show that all bipartite entangled states violate the CGLMP inequality [30],

which gives a detailed proof of Gisin’s Theorem for two-qudit quantum systems.

Let X
[1]
j and X

[2]
j , where j = 1, 2, denotes the two observables for the jth party. Each

has d possible outcomes: x
[1]
j , x

[2]
j = 0, 1, ..., d−1. Fu introduced the correlation function Qij

[31],

Qij =
1

S

d−1
∑

m,n=0

f ij(m,n)P (X
[i]
1 = m,X

[j]
2 = n), (8)

where S = (d−1)/2 is the spin of the particle for the d-dimensional system, and P (X
[i]
1 = m

and X
[j]
2 = n) are the joint probabilities. f ij(m,n) = S−M [ε(i− j)(m+n), d]; ε(x) = 1 for

x ≥ 0 and −1 for x < 0; M(x, d) = x mod d, 0 ≤ M(x, d) ≤ d − 1. On the basis of these

correlation functions, a tight Bell inequality for two-qudit systems is obtained:

I
[2]
d ≡ Q11 +Q12 −Q21 +Q22 ≤ 2. (9)

Inequality (9) is equivalent to the CGLMP inequality.

Chen et al. further generalized this kind of correlation function to arbitrary N-qudit

systems [32]. Let X
[1]
j and X

[2]
j , where j = 1, 2, · · · , N , denote the two observables for

the jth party. Each has d possible outcomes: x
[1]
j , x

[2]
j = 0, 1, ..., d − 1. The generalized

5



correlation functions are then defined as

Qi1,··· ,iN =
1

S

d−1
∑

x
[i1]
1 =0

· · ·
d−1
∑

x
[iN ]

N
=0

f i1···iN (x
[i1]
1 , · · · , x[iN ]

N ) × P (X
[i1]
1 = x

[i1]
1 , · · · , X [iN ]

N = x
[iN ]
N ),

(10)

where S = d−1
2
, f i1···iN (x

[i1]
1 , · · · , x[iN ]

N ) = S −M [(−1)χ(
∑N

j=1 x
[ij ]
j ), d] and χ = ΠN

j=1ij . Ac-

cording to these correlation functions, the generalized multipartite Bell inequality can be

written as

I
[2N ]
d = Q1···1 +Q1212···12 +Q2121···21 −Q2···2 ≤ 2,

I
[2N+1]
d = Q1···1 +Q1212···21 +Q2121···12 −Q2···2 ≤ 2. (11)

D. Bell inequalities for many-setting systems

Gisin investigated the CHSH inequalities for two-qubit quantum systems with many

settings [33]. Let aj = ±1 and bj = ±1 for all indices j = 1, 2, · · · , n. The inequality

n
∑

j=1

(

n+1−j
∑

k=1

ajbk −
n

∑

k=n+2−j
ajbk) ≤ [

n2 + 1

2
] (12)

can be easily derived, where [x] denotes the largest integer smaller or equal to x. Inspired

by this, one can set the Bell operator to be

B =

n
∑

j=1

(

n+1−j
∑

k=1

AjBk −
n

∑

k=n+2−j
AjBk), (13)

where Aj = ~aj · ~σ,Bk = ~bk · ~σ,~a = (ax, ay, az) and ~b = (bx, by, bz) are real unit vectors, and

~σ = (σx, σy, σz). The Bell inequalities for two-qubit systems with many settings are then

〈B〉 ≤ [
n2 + 1

2
]. (14)

The ratio of the maximal violation of the inequality decreases with the increasing number

of settings. The usual two-setting CHSH inequality has a maximal violation ratio
√

2. For

large n-settings, the ratio tends to 4/π ∼ 1.273 [33].

The authors studied d⊗d-dimensional bipartite systems with d a prime integer [34]. Two

observers are allowed each to choose one of d variables. Consider a classical Bell function,

B(λ) =
1

d− 1

d−1
∑

n,i,j=1

ωnijAni (λ)Bn
j (λ), (15)
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where ω = e
i2π
d is the primitive d-th root of unity, Ai(λ) = ωai(λ) and Bj(λ) = ωbj(λ) with

ai(λ) and bj(λ) integer-valued functions of hidden variable λ.

The quantum Bell operator, corresponding to the classical Bell function, is given by

B =
1

d− 1

d−1
∑

n,i,j=1

ωnijAni B
n
j , (16)

where Ai and Bj are local unitary operators with eigenvalues 1, ω, ω2, · · · , ωd−1. It is shown

that the statistical average of the Bell operator satisfies

− d2

d− 1
≤ 〈B〉 ≤ d(2d− 3)

d− 1
. (17)

This Bell inequality is maximally violated quantum mechanically by mutually unbiased

measurements of a maximally entangled state, whereas other Bell inequalities for high-

dimensional systems such as the CGLMP inequality [15] and that of Son et al. [35] do not

have such a property.

III. GISIN’S THEOREM

In this section we introduce a set of Bell-like inequalities that can be shown to be both suf-

ficient and necessary for separability of general pure quantum states in arbitrary dimensions

[36].

A. Bell Inequalities for Bipartite Quantum Systems

We first consider general N × M bipartite quantum systems in vector space HAB =

HA ⊗HB with dimensions dimHA = M and dimHB = N . We aim to find Bell inequalities

like (3) such that any quantum entangled states violates a Bell inequality.

Let LAα and LBβ be the generators of special unitary groups SO(M) and SO(N) respec-

tively. The M(M−1)/2 generators LAα are given by {|j〉〈k|−|k〉〈j|}, 1 ≤ j < k ≤M , where

|i〉, i = 1, ...,M , is the usual orthonormal basis of HA, a column vector with the ith row 1

and the rest zeros. LBβ is similarly defined. The matrix operators Lα (resp. Lβ) have M − 2

(resp. N−2) rows and M−2 (resp. N−2) columns that are identically zero. We define the

operators Aαi (resp. Bβ
j ) from Lα (resp. Lβ) by replacing the four entries in the positions

of the two nonzero rows and two nonzero columns of Lα (resp. Lβ) with the corresponding

four entries of the matrix ~ai · ~σ (resp. ~bj · ~σ), and keeping the other entries of Aαi (resp. Bβ
j )

zero. We define the Bell operators as

Bαβ = Ãα1 ⊗ B̃β
1 + Ãα1 ⊗ B̃β

2 + Ãα2 ⊗ B̃β
1 − Ãα2 ⊗ B̃β

2 , (18)
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where Ãαi = LαA
α
i L

†
α, B̃

β
j = LβB

β
j L

†
β, and i, j = 1, 2.

Theorem 1: Any bipartite pure quantum state is entangled if and only if at least one

of the following Bell inequalities is violated [36],

|〈Bαβ〉| ≤ 2, (19)

where α = 1, 2, · · · , M(M−1)
2

, β = 1, 2, · · · , N(N−1)
2

.

Proof: Assume that the state |ψ〉 violates one of the Bell inequalities in (19): i.e. there

exist α0 and β0 such that |〈Bα0β0〉| > 2. Equivalently one has that the state |ψ〉α0β0 =
LAα0

⊗LB
β0

|ψ〉
||LAα0

⊗LB
β0

|ψ〉|| violates the CHSH inequality in (3). As the local operation LAα0
⊗LBβ0

does not

change the separability of a state, |ψ〉 must be entangled.

Now assume that |ψ〉 ∈ HAB is an entangled state. We prove that at least one of the Bell

inequalities in (19) is violated. Set ρ = |ψ〉〈ψ|. By projecting |ψ〉 onto 2 × 2 subsystems

[37], we get the following pure states

ραβ =
LAα ⊗ LBβ ρ(L

A
α )† ⊗ (LBβ )†

||LAα ⊗ LBβ ρ(L
A
α )† ⊗ (LBβ )†|| , (20)

where α = 1, 2, · · · , M(M−1)
2

, β = 1, 2, · · · , N(N−1)
2

, and ||X|| =
√

Tr(XX†). Here ραβ are

pure states with rank one. As the matrix LAα ⊗LBβ has MN − 4 rows and MN − 4 columns

that are identically zero, there are at most 4 × 4 = 16 nonzero elements in the matrix ραβ.

The states ραβ are called “two-qubit” states in this sense.

The concurrence of |ψ〉 is defined by C(|ψ〉) =
√

2(1 − Tr(ρ2
A)) with ρA = TrB(ρ) the

reduced density matrix of ρ by tracing over the subsystem B [39, 40]. A pure quantum state

|ψ〉 can be generally expressed as |ψ〉 =
M
∑

i=1

N
∑

j=1

aij |ij〉, aij ∈ C, in the computational basis

|i〉 and |j〉 of HA and HB respectively, where i = 1, ...,M and j = 1, ..., N . Therefore, the

concurrence can be expressed as

C(|ψ〉) =

√

√

√

√

M
∑

α=1

N
∑

β=1

|C(ραβ)|2, (21)

where ραβ are defined in (20). Since we have assumed that |ψ〉 is an entangled quantum

state, C(|ψ〉) must be nonzero: i.e. at least one of ραβ , say ρα0β0, has nonzero concurrence:

C(ρα0β0) > 0. As discussed above, ρα0β0 is actually a “two-qubit” quantum pure state. It

has been shown that an entangled two-qubit pure state must violate the Bell inequality

(3)[16, 17]. Therefore, the inequality |〈Bα0β0〉| ≤ 2 is violated.

As an example we consider a bipartite 3 × 3 quantum state |ψ〉 with Schmidt decompo-

sition |ψ〉 =
3

∑

i=1

λi|iA〉|iB〉, λi ≥ 0 and
∑

i λi
2 = 1. The concurrence of |ψ〉 is given by

C(|ψ〉) = 4(λ1λ2)
2 + 4(λ1λ3)

2 + 4(λ2λ3)
2. (22)
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If |ψ〉 is entangled, the concurrence must have at least one nonzero term in (22), say

λ1λ3 6= 0. The corresponding observables are LA2 = LB2 =











0 0 1

0 0 0

−1 0 0











and

ρ =













































λ2
3 0 0 0 0 0 0 0 λ1λ3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

λ1λ3 0 0 0 0 0 0 0 λ2
1













































.

We select the Bell operator in (18) to be

B22 = Ã2
1 ⊗ B̃2

1 + Ã2
1 ⊗ B̃2

2 + Ã2
2 ⊗ B̃2

1 − Ã2
2 ⊗ B̃2

2 , (23)

where Ã2
k = LA2 A

2
k(L

A
2 )†, B̃2

l = LB2 B
2
l (L

B
2 )†, and

A2
k =











−a3
k 0 a1

k + a2
ki

0 0 0

a1
k − a2

ki 0 a3
k











, B1
l =











−b3l 0 b1l + b2l i

0 0 0

b1l − b2l i 0 b3l











, k, l = 1, 2.

We then obtain the maximal violation of the inequality (19): 2
√

1 +
4λ2

1λ
2
3

(λ2
1+λ2

3)
2 > 2.

B. Inequalities for Multipartite Quantum Systems

We now consider multipartite quantum systems. For convenience we consider that all

subsystems have the same dimensions. However, as seen in the following, our discussions

also apply to multipartite quantum systems with different dimensions.

Let H denote a d-dimensional vector space with basis |i〉, where i = 1, 2, ..., d. An L-

partite pure state in H ⊗ · · · ⊗H is generally of the form

|Ψ〉 =
d

∑

i1,i2,···iL=1

ai1,i2,···iL |i1, i2, · · · iL〉, ai1,i2,···iL ∈ C. (24)

9



Let α and α
′

(resp. β and β
′

) be subsets of the subindices of a, associated with the same

sub-vector spaces but having different summing indices. α (or α
′

) and β (or β
′

) span the

whole space of the given sub-index of a. A possible combination of the indices of α and β

can be considered as a kind of bipartite decomposition of the L subsystems, say part A and

part B, containing m and n = L−m subsystems respectively.

For a given bipartite decomposition, we can employ analysis similar to the bipartite

case. Let LAα and LBβ be the generators of special unitary groups SO(dm) and SO(dn). By

projecting |Ψ〉 onto 2 × 2 subsystems, we have “two-qubit” pure states:

ρpαβ =
LAα ⊗ LBβ ρ(L

A
α )† ⊗ (LBβ )†

||LAα ⊗ LBβ ρ(L
A
α )† ⊗ (LBβ )†|| , (25)

where α = 1, 2, · · · , dm(dm−1)
2

, β = 1, 2, · · · , dn(dn−1)
2

, and p is the bipartite decomposition of

the L subsystems.

For each pure state ρpαβ we define the corresponding Bell operators

Bpαβ = Ãα1 ⊗ B̃β
1 + Ãα1 ⊗ B̃β

2 + Ãα2 ⊗ B̃β
1 − Ãα2 ⊗ B̃β

2 , (26)

where Ãαi = LAαA
α
i (L

A
α )† and B̃β

j = LBβB
β
j (LBβ )† are the Hermitian operators similarly defined

as in (18).

Theorem 2: Any multipartite pure quantum state is entangled if and only if at least

one of the following inequalities is violated [36]:

|〈Bpαβ〉| ≤ 2. (27)

Proof: Obviously, multipartite quantum states that violate any one of the Bell inequal-

ities in (27) must be entangled.

We now prove that, for any entangled multipartite pure quantum state, at least one of

the inequalities in (27) is violated. The concurrence of |Ψ〉 is given by [41]

CL
d (|Ψ〉) =

√

√

√

√K
∑

p

d
∑

{α,α′
,β,β

′}

|aαβaα′β′ − aαβ′aα′β|2, (28)

where K = d/2m(d− 1), m = 2L−1 − 1, and
∑

p

is the summation over all possible combi-

nations of the indices of α and β. (28) can be rewritten as

CL
d (|Ψ〉) =

√

K
∑

p

∑

αβ

(C(ρpαβ))
2, (29)

where ρpαβ are defined in (25). As |Ψ〉 is an entangled state, C(|Ψ〉) must be nonzero: i.e. at

least one of ρpαβ , say ρp0α0β0
, has nonzero concurrence. As discussed above, ρp0α0β0

is actually

10



a two-qubit quantum pure state. An entangled two-qubit quantum pure state must violate

the Bell inequality (3).

As an example, we consider three-qubit systems. Acin et al. verified that any general

pure three-qubit state |Ψ〉 can be uniquely written as [42]

|Ψ〉 = λ0|000〉 + λ1e
iψ|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉, (30)

where λi ≥ 0, 0 ≤ ψ ≤ π, and
∑

i λ
2
i = 1. From straightforward mathematics, we have

C2(|Ψ〉) = 2(λ0λ2)
2 + 2(λ0λ4)

2 + |2eiψλ1λ4 − 2λ2λ3|2 + 2(λ0λ3)
2 + 2(λ0λ4)

2

+|2eiψλ1λ4 − 2λ2λ3|2 + 2(λ0λ2)
2 + 2(λ0λ3)

2 + 2(λ0λ4)
2.

We now give a detailed analysis of how the entangled pure three-qubit state( i.e. at least one

of the terms on the right hand side of (31) is non-zero) must violate one of the inequalities

in (27).

Case 1: If λ0λ2 6= 0, the corresponding operator LA2 ⊗LB1 =















0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0















⊗





0 1

−1 0





and

ρ
12|3
21 =







































λ2
2 −e−iψλ1λ2 0 0 0 λ0λ2 0 0

−eiψλ1λ2 λ2
1 0 0 0 −eiψλ0λ1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

λ0λ2 −e−iψλ0λ1 0 0 0 λ2
0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0







































.

We choose the Bell operator in (26) to be that with respect to the bipartite decomposition

of the first two qubits and the last one:

B12|3
21 = Ã2

1 ⊗ B̃1
1 + Ã2

1 ⊗ B̃1
2 + Ã2

2 ⊗ B̃1
1 − Ã2

2 ⊗ B̃1
2 , (31)

where Ã2
k = LA2 A

2
k(L

A
2 )†, B̃1

l = LB1 B
1
l (L

B
1 )†, and A2

k =















−a3
k 0 a1

k + a2
ki 0

0 0 0 0

a1
k − a2

ki 0 a3
k 0

0 0 0 0















, B1
l =

11







−b3l b1l + b2l i

b1l − b2l i b3l



, with k, l = 1, 2. We thus have the maximal violation of the inequality

(27), 2
√

1 +
4λ2

0λ
2
2

(λ2
0+λ2

1+λ
2
2)2

> 2.

Case 2: If |eiψλ1λ4 − λ2λ3| 6= 0, the corresponding operator is LA6 ⊗ LB1 =














0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0















⊗





0 1

−1 0



. The matrix ρ
12|3
61 has only nonzero entries at the right down

corner with the form,















λ2
4 −λ3λ4 −λ2λ4 e−iψλ1λ4

−λ3λ4 λ2
3 λ2λ3 −e−iψλ1λ3

−λ2λ4 λ2λ3 λ2
2 −e−iψλ1λ2

eiψλ1λ4 −eiψλ1λ3 −eiψλ1λ2 λ2
1















.

The Bell operator in (26) has the form

B12|3
61 = Ã6

1 ⊗ B̃1
1 + Ã6

1 ⊗ B̃1
2 + Ã6

2 ⊗ B̃1
1 − Ã6

2 ⊗ B̃1
2 , (32)

where Ã6
k = LA6 A

6
k(L

A
6 )†, B̃1

l = LB1 B
1
l (L

B
1 )†, and A6

k =















0 0 0 0

0 0 0 0

0 0 −a3
k a1

k + a2
ki

0 0 a1
k − a2

ki a3
k















,

B1
l =





−b3l b1l + b2l i

b1l − b2l i b3l



, k, l = 1, 2. The corresponding maximal violation is given by

2
√

1 + 4|eiψλ1λ4−λ2λ3|2
(λ2

1+λ2
2+λ2

3+λ2
4)

2 , which is obviously strictly larger than 2. Other cases can be dis-

cussed similarly.

Nevertheless, (27) is not yet a Bell-type inequality in the usual sense, because we treated

the problem by considering all possible bipartite decompositions. Generally it only services

as a sufficient and necessary condition for separability of multipartite pure states. For

some particular cases, the operators (26) for multipartite systems become local ones as in

the standard Bell inequalities. For instance, the Bell operator (32) in the example can be

written in a very simple form:

B12|3
61 = Ã6

1 ⊗ B̃1
1 + Ã6

1 ⊗ B̃1
2 + Ã6

2 ⊗ B̃1
1 − Ã6

2 ⊗ B̃1
2

=
(

I−σz
2

)

⊗ (Ã′6
1 ⊗ B̃1

1 + Ã′6
1 ⊗ B̃1

2 + Ã′6
2 ⊗ B̃1

1 − Ã′6
2 ⊗ B̃1

2),
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where Ã′6
k =





a3
k −a1

k + ia2
k

−a1
k − ia2

k −a3
k



, with k = 1, 2. Therefore, our operators acting on

multipartite states can be expressed as real linear combinations of local operators in this

case.

C. Bell Inequalities and Distillation

A bipartite state ρ is called distillable, if and only if maximally entangled bipartite pure

states (e.g. |ψ+〉 = 1√
2
(|00〉+ |11〉)) can be created from a number of identical copies of the

state ρ by means of local operations and classical communication. We call a multipartite

state distillable if and only if there exists at least one bipartite decomposition of the sys-

tem such that pure entangled states can be distilled. It has been shown that all quantum

entangled pure states are distillable. However, it is a challenge to give an operational crite-

rion of distillability for general mixed states. A sufficient condition of distillability has been

presented [37]. Our inequalities (27) are both sufficient and necessary for the separability

of pure states, but generally not for the separability of mixed states. However, surprisingly

(27) can serve as a criterion for distillability.

Theorem 3: Any bipartite quantum state ρ that violates any one of the Bell inequalities

in (19) (i.e. Tr{Bαβρ} > 2) is always distillable. In addition, if a multipartite quantum state

ρ violates one of the Bell inequalities in (27) (i.e. ρ satisfies Tr{Bpαβρ} > 2), then bipartite

maximally entangled pure states can be distilled from the copies of ρ.

Proof: It has been shown that a density matrix ρ is distillable if and only if there

are projectors P , and Q that map high-dimensional spaces to two-dimensional spaces such

that the state P ⊗ Qρ⊗sP ⊗ Q is entangled for some s copies [43]. Thus if any one of

the Bell inequalities in (19) is violated, there exists a submatrix ραβ , like (20), that has

nonzero concurrence. For a generally given operator Lα = |i〉〈j| − |j〉〈i|, Lβ = |k〉〈l| −
|l〉〈k|, the operators P and Q are explicitly given by P = ALα and Q = BLβ, where

A = |0A〉〈i| + |1A〉〈j|, B = |0B〉〈k| + |1B〉〈l|, |0A/B〉 and |1A/B〉 are the orthonormal bases

of a two-dimensional vector space. P ⊗ Q maps state ρ to a two-qubit state that has the

same nonzero concurrence as ραβ. Since any entangled two-qubit state is distillable, ρ is

distillable. The multipartite case can be discussed similarly.

Remark It has been shown that positive partial transposition (PPT) entangled quantum

states are not distillable [44, 45]. Therefore PPT quantum states should never violate the Bell

inequalities in (19) or (27). This can be seen from the following. A density matrix ρ is said to

have a PPT property if the partial transposition of ρ with respect to any subsystem(s) is still

positive. Let ρTB denote the partial transposition with respect to the subsystem B. Assume

13



that there is a PPT state ρ violating one of the Bell inequalities in (27), say Tr{Bp0α0β0
ρ} > 2.

This can be equivalently understood as there exists two-qubit state ρp0α0β0
in the form of (25)

such that Tr{Bp0
α0β0

ρp0α0β0
} > 2, where Bp0

α0β0
= Aα0

1 ⊗Bβ0
1 +Aα0

1 ⊗Bβ0
2 +Aα0

2 ⊗Bβ0
1 −Aα0

2 ⊗Bβ0
2 .

On the other hand, using the PPT property of ρ, we have

ρTBα0β0
= LAα0

⊗ (LBβ0
)∗ρTB(LAα0

)† ⊗ (LBβ0
)T ≥ 0. (33)

As both LAα0
and LBβ0

are projectors to two-dimensional subspaces, ρp0α0β0
can be considered

as a 2 × 2 state. While a 2 × 2 PPT state ρα0β0 must be separable [46], it contradicts with

Tr{Bp0
α0β0

ρp0α0β0
} > 2.

IV. BELL INEQUALITIES DETECTING MORE (MIXED) ENTANGLED BIPAR-

TITE STATES

We now consider bipartite states for N × N systems. For even N , let Γx, Γy and Γz

be block-diagonal matrices in which each block is an ordinary Pauli matrix, σx, σy and σz

repectively, as described in [17] for Γx and Γz. When N is odd, we set the elements of the

kth row and the kth column in Γx, Γy and Γz to be zero. The other elements of Γx, Γy and

Γz are the block-diagonal matrices as for the even-N case. Let Π(k) be an N × N matrix

whose only nonvanishing entry is (Π(k))kk = 1, k ∈ 1, 2, · · · , N , for odd N and be a null

matrix for even N . We define observables

A = ~a · ~Γ + Π(k) = axΓx + ayΓy + azΓz + Π(k) (34)

and

B = ~b · ~Γ + Π(k) = bxΓx + byΓy + bzΓz + Π(k), (35)

where ~a = (ax, ay, az) and ~b = (bx, by, bz) are real unit vectors.

We define the Bell operator as [38]

B = A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗B2, (36)

where

Ai = ~ai · ~Γ + Π(k) = axi Γx + ayiΓy + aziΓz + Π(k),

Bi = ~bj · ~Γ + Π(k) = bxjΓx + byjΓy + bzjΓz + Π(k).

Theorem 4: If there exists a local hidden-variable model to describe the system, the

inequality

|〈B〉| ≤ 2 (37)
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must hold for any ~ai, ~bi, i = 1, 2, and all k ∈ 1, 2, · · · , N .

The proof of this theorem is straightforward. Note that for any three-dimensional unit

vectors ~a and ~b, the eigenvalues of A and B are either 1 or −1. Then as discussed for the

two-qubit case, if there exists a local hidden-variable model to describe the system, we have

|〈B〉| = |〈A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗B1 −A2 ⊗ B2〉|
= |〈A1 ⊗ (B1 +B2)〉 + 〈A2 ⊗ (B1 −B2)〉|
≤ |〈A1〉||〈(B1 +B2)〉| + |〈A2〉||〈(B1 − B2)〉| ≤ 2.

We now compute the maximal violation of the Bell inequality.

Proposition 1 : For any bipartite pure state |ψ〉 with even N , the maximal violation of

the Bell inequality (37) is given by [38]

max〈ψ|B|ψ〉 = 2
√
τ1 + τ2, (38)

where τ1 and τ2 are the two largest eigenvalues of the matrix RTR, R is the matrix with

entries Rαβ = 〈ψ|Γα ⊗ Γβ|ψ〉, with α, β = x, y, z.

[Proof] If N is even, we have the maximal violation of the Bell inequalities (37)

max〈ψ|B|ψ〉 = max
~a1,~a2,~b1,~b2

[〈ψ|
∑

α=x,y,z

aα1 Γα ⊗
∑

β=x,y,z

(bβ1 + bβ2 )Γβ|ψ〉

+〈ψ|
∑

α=x,y,z

aα2Γα ⊗
∑

β=x,y,z

(bβ1 − bβ2 )Γβ|ψ〉]

= max
~a1,~a2,~b1,~b2

[~a1 · R(~b1 +~b2) + ~a2 · R(~b1 −~b2)]

= max
~b1,~b2

[||R(~b1 +~b2)|| + ||R(~b1 −~b2)||]

= max
θ,~c⊥~c′

2[cos θ||R~c|| + sin θ||R~c′||]

= max
~c⊥~c′

2

√

||R~c||2 + ||R~c′||2 = 2
√
τ1 + τ2,

where ~ai = (axi , a
y
i , a

z
i ),
~bj = (bxj , b

y
j , b

z
j ), i, j = 1, 2.

Proposition 2 : For any bipartite pure state |Ψ〉 in the Schmidt bi-orthogonal form,

|Ψ〉 =
N

∑

i=1

ci|ii〉, ci ∈ IR,
∑

i

c2i = 1 (39)

with odd N , the maximal violation of the Bell inequality (37) is given by [38]

max〈Ψ|B|Ψ〉 = 2
√
τ1 + τ2 + 2〈Ψ|Π(k) ⊗ Π(k)|Ψ〉, (40)

where τ1 and τ2 are defined in Proposition 1.

15



[Proof] For odd N and any k ∈ {1, 2, · · · , N}, similarly we have

max〈Ψ|B|Ψ〉 = max
~a1,~a2,~b1,~b2

[〈Ψ|(
∑

α=x,y,z

aα1Γα + Π(k)) ⊗ (
∑

β=x,y,z

(bβ1 + bβ2 )Γβ + 2Π(k))|Ψ〉

+〈Ψ|(
∑

α=x,y,z

aα2 Γα + Π(k)) ⊗ (
∑

β=x,y,z

(bβ1 − bβ2 )Γβ)|Ψ〉]

= max
~a1,~a2,~b1,~b2

[~a1 ·R(~b1 +~b2) + ~a2 · R(~b1 −~b2)] + 2〈Ψ|Π(k) ⊗ Π(k)|Ψ〉

= max
~b1,~b2

[||R(~b1 +~b2)|| + ||R(~b1 −~b2)||] + 2〈Ψ|Π(k) ⊗ Π(k)|Ψ〉

= max
θ,~c⊥~c′

2[cos θ||R~c|| + sin θ||R~c′||] + 2〈Ψ|Π(k) ⊗ Π(k)|Ψ〉

= max
~c⊥~c′

2

√

||R~c||2 + ||R~c′||2 + 2〈Ψ|Π(k) ⊗ Π(k)|Ψ〉

= 2
√
τ1 + τ2 + 2〈Ψ|Π(k) ⊗ Π(k)|Ψ〉.

Remark: For even N , formula (38) is also valid for any bipartite mixed quantum state

ρ. One only needs to redefine Rαβ = Tr[ρΓα ⊗ Γβ] for α, β = x, y, z. Formula (40) does not

fit for general quantum states with odd N . However, for some quantum mixed states the

maximal violation of the Bell inequality (37) can still be computed using the formula (see

example 2 below).

Moreover, the Bell inequality in [17] is a special case of (37) in the sense that it can be

obtained by setting ay and by in (34) and (35) to be zero, and k = N in the Bell operator

(36). For k = N , the maximal violation of (37) for an arbitrary bipartite quantum state

(39) is the same as the violation values given in [17]. This means that the parameters ay

and by do not contribute to the maximal violation in this case. However, even in this case

the formulae (38) and (40) have their own advantages. On one hand, one can compute the

maximal violation without choosing proper Bell operator as is needed in [17]. On the other

hand, for odd N , more entangled quantum states can be detected by adjusting k. In the

following we give two examples to illustrate these properties.

Example 1: Consider a 3 × 3 pure state with Schmidt decomposition |ψ〉 = (|11〉 +

|33〉)/
√

2. Using the Bell operator given in [17] we obtain the maximal violation 2, which

fails to detect the entanglement. Now taking k = 2 we obtain the maximal violation of the

Bell inequality (37) 2
√

2, which means that |ψ〉 is entangled.

The Bell inequality (37) is valid also for all mixed states with even N and for some mixed

states with odd N . Therefore it can be used to detect experimentally the entanglement of

mixed states.
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Example 2: Consider the maximally entangled state |ψ+〉 =
N
∑

i=1

1√
N
|ii〉 mixed with noise:

ρ(x) =
x

N2
I + (1 − x)|ψ+〉〈ψ+|. (41)

For even N , the maximal violation of ρ(x) is 2
√

2(1 − x). Therefore, the Bell inequality

(37) detects entanglement of ρ(x) for 0 ≤ x < 0.292893. If N is odd, we note that for any

k ∈ {1, 2, · · · , N} and α ∈ {x, y, z}, (Γα)kk = 0. Thus we have

Tr[ρ(x)(Γα ⊗ Π(k))] = Tr[ρ(x)(Π(k) ⊗ Γα)] = 0. (42)

Taking into account (42) we have the maximal violation

max Tr[ρ(x)B] = max
~a1,~a2,~b1,~b2

{

Tr[ρ(x)(
∑

α=x,y,z

aα1 Γα + Π(k)) ⊗ (
∑

β=x,y,z

(bβ1 + bβ2 )Γβ + 2Π(k))]

+Tr[ρ(x)(
∑

α=x,y,z

aα2Γα + Π(k)) ⊗ (
∑

β=x,y,z

(bβ1 − bβ2 )Γβ)]

}

= max
~a1,~a2,~b1,~b2

[~a1 · R(~b1 +~b2) + ~a2 · R(~b1 −~b2)] + 2Tr[ρ(x)Π(k) ⊗ Π(k)]

= max
~c⊥~c′

2

√

||R~c||2 + ||R~c′||2 + 2Tr[ρ(x)Π(k) ⊗ Π(k)]

= 2
√
τ1 + τ2 + 2Tr[ρ(x)Π(k) ⊗ Π(k)],

where Rαβ = Tr[ρΓα⊗Γβ]. ForN = 3, the maximal violation of ρ(x) is 2
25

(5−4x)+ 8
√

2
5

(1−x).
Hence the Bell inequality (37) can detect the entanglement of ρ(x) for 0 ≤ x < 0.2566 in

this case.

V. CONCLUSIONS AND REMARKS

In this review, we have introduced several kinds of Bell inequalities such as the CHSH,

MABK, WWZB and CGLMP Bell inequalities that rule out the local hidden-variable theo-

ries and help detect quantum entanglement experimentally. We have also introduced a series

of Bell inequalities for bipartite quantum states by projecting the whole quantum systems

to “two-qubit” subsystems. It has been shown that quantum states violating any one of

these Bell inequalities are entangled. On the other hand, any entangled pure quantum state

must violate at least one of these Bell-like inequalities. It has also been shown that quantum

mixed states that violate the Bell inequalities must be distillable.

By constructing new Bell operators bipartite Bell inequalities that include Gisin’s Bell

inequalities in [17] as a special case have been also been introduced. The maximal violation

of these Bell inequalities for pure states in Schmidt forms has been obtained. The formulae of
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maximal violation are valid also for all pure and mixed quantum states in even-dimensional

bipartite systems and for some mixed states in odd-dimensional bipartite systems. The

new Bell inequality has been shown to be capable of detecting quantum entanglement more

effectively.

In regards to the quantum separability most Bell inequalities so far work only for pure

states. In [47] the authors used the fact that the PPT criterion [44, 45] is both sufficient

and necessary for the separability of two-qubit mixed states and presented a formula for the

detection of all entangled two-qubit mixed states experimentally in principle. Nevertheless,

generally for mixed states less has been known for Bell inequalities. Concerning the concep-

tual foundations of quantum mechanics, to avoid state dependence in ruling out the local

hidden-variable model in experiments, some “loophole-free” Bell inequalities have also been

investigated [48, 49].
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[20] Aćın A, Brunner N and Gisin N et al. Device-Independent Security of Quantum Cryptography

against Collective Attacks. Phys Rev Lett, 98:230501.

[21] Horodecki R, Horodecki M, and Horodecki P. Teleportation, Bell’s inequalities and insepara-

bility. Phys Lett A, 1996, 222:21.

[22] Lee S, Joo J, and Kim J. Teleportation capability, distillability, and nonlocality on three-qubit

states. Phys Rev A, 2007, 76:012311.

[23] Dür W. Multipartite Bound Entangled States that Violate Bells Inequality. Phys Rev Lett,

87:230402.
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