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Abstract
We will give a pure combinatorial proof of the Eisenbud-Goto conjecture for arbitrary

monomial curves. In addition to this, we show that the conjecture holds for certain
simplicial affine semigroup rings.

1 Introduction

Let S be a homogeneous simplicial affine semigroup, i. e., (up to isomorphism) S is the
submonoid of (Nd,+) generated by a set A := {e1, . . . , ed, a1, . . . , ac} ⊂ Nd, where

e1 := (α, 0, . . . , 0), e2 := (0, α, 0, . . . , 0), . . . , ed := (0, . . . , 0, α),

ai = (ai[1], . . . , ai[d]), with ai[1] + . . .+ ai[d] = α, i = 1, . . . , c.

Further we assume that the integers ai[j], i = 1, . . . , c, j = 1, . . . , d are relatively prime and
we assume that d ≥ 2, c ≥ 1 and α ≥ 2. Let K be an arbitrary field; by K[S] we denote the
affine semigroup ring of S and we identify the ring K[S] with the subring of the polynomial
ring K[t1, . . . , td] generated by monomials ta := t

a[1]
1 · · · ta[d]

d , for a = (a[1], . . . , a[d]) ∈ S. In
the following we study the Z-grading on K[S] which is induced by deg ta = (

∑d
i=1 a[i])/α.

We note that dimK[S] = d. By R := K[x1, . . . , xd+c] we denote the standard-graded
polynomial ring over K, i. e., deg xi = 1 for all i = 1, . . . , d+ c. Thus, we have a Z-graded
surjective K-algebra homomorphism:

π : K[x1, . . . , xd+c]→ K[S],

given by xi 7→ tαi , i = 1, . . . , d and xd+j 7→ taj , j = 1, . . . , c. Hence K[S] ∼= R/kerπ, where
kerπ is a homogeneous prime ideal of R. Let mR denote the maximal homogeneous ideal
of R. For a graded R-module M , we set a(M) := max {n |Mn 6= 0} with a(M) := −∞ if
M = 0. As usual the Castelnuovo-Mumford regularity regK[S] of K[S] is defined by

regK[S] := max
{
i+ a(Hi

mR
(K[S])) | 0 ≤ i ≤ dimK[S]

}
.

Since the Eisenbud-Goto conjecture [2] is widely open in general, it would be nice to
answer the following:
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Question (Eisenbud-Goto). Does regK[S] ≤ degK[S]− codimK[S] hold?

Where codimK[S] := dimKK[S]1 − dimK[S] = c and degK[S] denotes the multiplicity
of K[S]. By a result of Treger [18] the question has a positive answer if K[S] is Cohen-
Macaulay; the Buchsbaum case was proven by Stückrad and Vogel in [17]. For projective
monomial curves, i. e., d = 2, the Eisenbud-Goto conjecture holds by a result of Gruson
Lazarsfeld and Peskine [5]. The case c = 2 was proven by Peeva and Sturmfels in [16].
Moreover, in [7], Herzog and Hibi showed that the Eisenbud-Goto conjecture holds for
(homogeneous) simplicial affine semigroup rings with isolated singularity. In addition to
this the question has a positive answer if the ring K[S] is seminormal, see [14]. We also
refer to the paper of Lazarsfeld [10] for a proof of the Eisenbud-Goto conjecture for smooth
surfaces in characteristic zero. In [8, Theorem 3.2] Hoa and Stückrad presented a very
good bound for the regularity of K[S]; in addition to this they provided some positive
answers for the Eisenbud-Goto conjecture. However, the Eisenbud-Goto conjecture is still
widely open even for simplicial affine semigroup rings.

In case that dimK[S] = 2 there are much better bounds than α − c, in [9] L’vovsky
showed that the regularity of K[S] is bounded by #L+ #L′ + 1, where L and L′ are the
longest and the second longest gap of S. If we further assume that (1, α−1), (α−1, 1) ∈ S
we even get a better bound, namely regK[S] ≤ #L+1 where L is the longest gap of S, by
a result of Hellus, Hoa, and Stückrad [6]. For further details we refer to [6, Introduction].
However, the combinatorial bound in [6] needs the assumption that the corresponding
monomial curve is smooth; it should be mentioned that even this bound is far from sharp
for c ≥ 4 (see [6, 13]). Moreover, in [10], Giaimo showed that the Eisenbud-Goto conjec-
ture still holds for connected reduced curves.

In [8], Hoa and Stückrad introduced a decomposition of the ring K[S] into a direct
sum of certain monomial ideals. By using this they were able to show that the regularity
of K[S] is bounded by d(degK[S] − c − 2) + 2, provided that degK[S] ≥ c + 2, see [8,
Theorem 3.5]. Recently in [14] the author used this decomposition to prove the conjecture
in the seminormal case. We will again use this idea to give a combinatorial proof of
the Eisenbud-Goto conjecture for monomial curves in Theorem 4.14; unfortunately our
proof does not yield the L’vovsky bound (see Remark 4.15). In Section 3 we will prove
the conjecture in case that all monomial ideals in the decomposition are generated by at
most two elements for arbitrary d. In Section 2 we will again recall the construction of
the decomposition of the ring K[S], moreover, we will develop the main tools which are
needed to prove the assertions in Section 3 and in Section 4. For unspecified notation we
refer to [1, 12].
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2 Basics

Let G := G(S) be the group generated by S in Zd. By x[i] we denote the i-th component of
x and deg x := (

∑d
j=1 x[j])/α, for x ∈ G. We set BS := {x ∈ S |x−ej /∈ S, ∀j = 1, . . . , d}.

We note that if x /∈ BS , then x+ y /∈ BS for all x, y ∈ S. We define x ∼ y if x− y ∈ αZd,
hence ∼ is an equivalence relation on G. It is obvious that every element in G is equivalent
to an element in G ∩ D, where D := {(x[1], . . . , x[d]) ∈ Qd | 0 ≤ x[i] < α, ∀i} and for all
x, y ∈ G ∩ D with x 6= y we have x 6∼ y. Hence the number of equivalence classes
f := #(G ∩ D) in G is finite. One can show that there are exactly f equivalence classes
in G, G ∩ D, S, and in BS . By Γ1, . . . ,Γf we denote the equivalence classes on BS . For
t = 1, . . . , f we define

ht := (min
{
m[1] |m ∈ Γt

}
,min

{
m[2] |m ∈ Γt

}
, . . . ,min

{
m[d] |m ∈ Γt

}
).

Let T := K[y1, . . . , yd] be the polynomial ring graded by deg yi = 1 for all i = 1, . . . , d. We
set Γ̃t := {y(x−ht)/α |x ∈ Γt}, where y(a[1],...,a[d]) := y

a[1]
1 · · · ya[d]

d , for (a[1], . . . , a[d]) ∈ Nd.
By construction It := Γ̃t T are monomial ideals in T , since ht ∼ x for all x ∈ Γt. We note
that heightIt ≥ 2, since gcdΓ̃t = 1, for all t = 1, . . . , f . We define mT as the homogeneous
maximal ideal of T and mS as the homogenous maximal ideal of K[S] (see [8, Section 2]).

Proposition 2.1 ([8, Proposition 2.2]). There are isomorphisms of Z-graded T -modules:

1.) K[S] ∼=
⊕f

t=1 It(−deg ht).

2.) Hi
mS

(K[S]) ∼=
⊕f

t=1H
i
mT

(It)(−deg ht) for all i ≥ 0.

Applying the fact Hi
mR

(K[S]) ∼= Hi
mS

(K[S]) we have:

regK[S] = max {regIt + deg ht | t = 1, . . . , f} , (1)

where regIt is the regularity of It considered as a Z-graded T -module.

Remark 2.2. After a talk of the author given in Berkeley, David Eisenbud and Janko
Böhm have written the Macaulay2 package MonomialAlgebras.m2. In this package they
consider the case of arbitrary affine semigroups Q′ ⊆ Q ⊆ Nd such that K[Q] is finite over
K[Q′]; the package is able to decompose the ring K[Q] as a direct sum of monomial ideals
in K[Q′] (see [8, Proposition 2.2] and [15, Proposition 4.1] for results in the simplicial
case). We refer to the Macaulay2 homepage [4], where the package should appear soon.

Definition 2.3. Let x, y ∈ S. We define x ≥ y if x[k] ≥ y[k] for all k = 1, . . . , d. Moreover,
we say that x > y if x ≥ y and there is at least one k ∈ {1, . . . , d} such that x[k] > y[k].

Remark 2.4. By Proposition 2.1 it follows that degK[S] = f . Since Γt ⊂ BS , we have
Γt ⊂ 〈a1, . . . , ac〉 for all t = 1, . . . , f . Moreover, it is clear that {0, a1, . . . , ac} ⊆ BS .
Consider an element x ∈ {0, a1, . . . , ac} and an element y ∈ BS with x 6= y. Suppose
that x ∼ y. Since 0 ≤ x[i] < α for all i = 1, . . . , d we have y ≥ x and therefore
y 6∈ BS . This shows that x 6∼ y. Without loss of generality we therefore may assume that
Γ1 = {0},Γ2 = {a1}, . . . ,Γc+1 = {ac}.

Definition 2.5. For an element x ∈ S we say that a sequence λ = (b1, . . . , bn) has
∗-property if b1, . . . , bn ∈ {a1, . . . , ac} and x−b1 ∈ S, x−b1−b2 ∈ S, . . . , x−(

∑n
j=1 bj) ∈ S;

we say that the length of λ is n. Let λ = (b1, . . . , bn) be a sequence with ∗-property; we
define x(λ, i) := x− (

∑i
j=1 bj) for i = 1, . . . , n and x(λ, 0) := x. By Λx we denote the set

of all sequences with ∗-property of x with length deg x.
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Remark 2.6. Assume that x ∈ S has a sequence λ = (b1, . . . , bn) with ∗-property. Then
we get deg x(λ, i) = deg x− i for i = 0, . . . , n and therefore x(λ, deg x) = 0 for n = deg x.
Hence the length of a sequence with ∗-property of x is bounded by deg x. Moreover, for
0 ≤ i ≤ j ≤ n, we have x(λ, i) ≥ x(λ, j). There are elements in S with no sequence with
∗-property, e. g., Λej = ∅. We note that the set Λx is always finite.

Proposition 2.7 ([14, Proposition 2.5]). Let x ∈ BS \ {0}.

1) Λx 6= ∅.
2) Let (b1, . . . , bn) be a sequence with ∗-property of x. Then there exists a sequence with
∗-property (b1, . . . , bn, bn+1, . . . , bdeg x) ∈ Λx.

Definition 2.8. Let λ = (b1, b2, . . . , bn) be a sequence with ∗-property of x. We define
λ∗ := (bn, bn−1, . . . , b1) as the trivial permutation of λ.

Proposition 2.9 ([14, Proposition 2.6]). Let x ∈ S and λ = (b1, . . . , bn) be a sequence
with ∗-property of x. Let σ : {1, . . . , n} → {1, . . . , n} be a bijection.

1) (bσ(1), . . . , bσ(n)) is a sequence with ∗-property of x, in particular λ∗ has ∗-property.
2) (b1, . . . , bm) is a sequence with ∗-property of x for all 1 ≤ m ≤ n.

Lemma 2.10. Let x ∈ BS \ {0} and λ = (b1, . . . , bdeg x) ∈ Λx. Then

1) x(λ, i) ∈ BS for all i = 0, . . . ,deg x.

2) We have x(λ, i) 6∼ x(λ, j) for all 0 ≤ i < j ≤ deg x.

3) x− x(λ, i) = x(λ∗,deg x− i) for all i = 0, . . . ,deg x.

Proof. 1) and 2) can be found in [14, Lemma 2.7]. We have

x− x(λ, i) = x− (x−
i∑

j=1

bj) =
i∑

j=1

bj = x−
deg x−i∑
j=1

bdeg x+1−j = x(λ∗,deg x− i).

Theorem 2.11 ([8, Theorem 1.1]). We have deg x ≤ degK[S]−codimK[S] for all x ∈ BS.

We also refer to [14, Corollary 2.8] for a proof of Theorem 2.11 in our notation.

Definition 2.12. Let x, y ∈ BS \ {0} with x ∼ y, λ ∈ Λx, and ν ∈ Λy. We define

1. ∆(λ, ν) := {(i, j) ∈ N2 |x(λ, i) ∼ y(ν, j), 0 ≤ i ≤ deg x, 0 ≤ j ≤ deg y} and

2. δ(λ, ν) := #∆(λ, ν)− 2.

Definition 2.13. Let x, y ∈ BS \ {0} with x ∼ y, we define the number δ(x, y) by:

δ(x, y) := min
λ∈Λx,ν∈Λy

δ(λ, ν).

Definition 2.14. Let x, y ∈ S with x ∼ y. We define h(x, y) ∈ G by:

h(x, y) := (min{x[1], y[1]},min{x[2], y[2]}, . . . ,min{x[d], y[d]}).
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Remark 2.15. Let x, y ∈ BS \ {0} with x ∼ y, λ ∈ Λx, and ν ∈ Λy. We always have
(0, 0), (deg x, deg y) ∈ ∆(λ, ν), since x(λ, 0) ∼ y(ν, 0) and x(λ,deg x) ∼ y(ν, deg y). Hence
δ(λ, ν) ≥ 0 and δ(x, y) ≥ 0. Moreover, if (i, j) ∈ ∆(λ, ν), then (i, k) /∈ ∆(λ, ν) for all
k ∈ {0, . . . ,deg y} \ {j} by Lemma 2.10, since otherwise y(ν, k) ∼ y(ν, j) for k 6= j. This
argument shows that #∆(λ, ν) ≤ min {deg x, deg y}+ 1.

Conjecture 2.16. Let x, y ∈ BS \ {0} with x ∼ y. Then δ(x, y) ≤ deg h(x, y)− 1.

Example 2.17. Consider the semigroup S = 〈(30, 0), (0, 30), (3, 27), (23, 7)〉. We have
x = (27, 243), y = (207, 63) ∈ BS and x − y = (−180, 180) ∈ 30Z2, hence x ∼ y. Clearly
Λx = {((3, 27), . . . , (3, 27))} = {λ} and Λy = {((23, 7), . . . , (23, 7))} = {ν}. Moreover,
we have δ(x, y) = 2, since ∆(λ, ν) = {(0, 0), (3, 3), (6, 6), (9, 9)} and #Λx = #Λy = 1.
Moreover, h(x, y) = (27, 63), hence deg h(x, y) = 3. In this case δ(x, y) = 2 = 3 − 1 =
deg h(x, y)− 1, i. e., Conjecture 2.16 holds and is sharp.

Remark 2.18. Let x ∈ BS\{0}. It is often useful to illustrate a sequence with ∗-property
λ ∈ Λx as a graph, where the set of vertices is a subset of {x(λ, i) | i ∈ {0, . . . ,deg x}}.
Let x(λ, i) and x(λ, j) be two vertices; there is an edge between x(λ, i) and x(λ, j) if j > i
and there is no vertex x(λ, k) with j > k > i. Moreover, x and 0 will always be vertices.
So Example 2.17 can be illustrated by the graph

x x(λ, 3) x(λ, 6) x(λ, 9) = 0,

and by the graph

y y(ν, 3) y(ν, 6) y(ν, 9) = 0.

To get a better understanding and to avoid extensive writing we will illustrate these
situations by:

x

�O
�O
�O
�O

x(λ, 3)

�O
�O
�O

x(λ, 6)

�O
�O
�O

x(λ, 9) = 0

�O
�O
�O

y y(ν, 3) y(ν, 6) y(ν, 9) = 0,

where the sidled lines denote equivalent elements. Sidled lines always denote equiv-
alent elements, though equivalent elements may not be illustrated in such a
picture.

Definition 2.19. Let x, y ∈ BS \ {0} with x ∼ y, λ ∈ Λx, and ν ∈ Λy.

1. Let (i, j), (i′, j′) ∈ ∆(λ, ν). We define a partial order ≤ on ∆(λ, ν) by (i, j) ≤ (i′, j′)
if i ≤ i′ and j ≤ j′.

2. We say that λ and ν are crossless if (∆(λ, ν),≤) is a totally ordered set, meaning
for all (i, j), (i′, j′) ∈ ∆(λ, ν) we have (i, j) ≤ (i′, j′) or (i, j) ≥ (i′, j′).

3. We say that x and y are crossless if there exist sequences with ∗-property λ′ ∈ Λx
and ν′ ∈ Λy which are crossless.

Remark 2.20. We note that x and x are crossless, since we may choose the same λ ∈ Λx,
in particular ∆(λ, λ) = {(0, 0), (1, 1), . . . , (deg x, deg x)}, i. e., #∆(λ, λ) = deg x+ 1.
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Example 2.21. Note that x and y in Example 2.17 are crossless. Unfortunately this prop-
erty does not hold in general. Consider the semigroup S = 〈(79, 0), (0, 79), (77, 2), (34, 45))〉.
For x = (1232, 32), y = (442, 585) ∈ BS with x ∼ y, Λx = {((77, 2), . . . , (77, 2))} = {λ},
and Λy = {((34, 45), . . . , (34, 45))} = {ν}. We have ∆(λ, ν) = {(0, 0), (5, 9), (11, 4), (16, 13)}.
This situation can be illustrated by:

x

�O
�O
�O
�O

x(λ, 5)

(h(h(h(h(h(h(h(h
x(λ, 11) 0

�O
�O
�O

y y(ν, 4)

6v6v6v6v6v6v6v6v

y(ν, 9) 0,

i. e., λ and ν are not crossless and therefore x and y are not crossless, since #Λx = #Λy =
1. Moreover, we have δ(λ, ν) = δ(x, y) = 2 and deg h(x, y) = deg (442, 32) = 6, i. e.,
Conjecture 2.16 holds.

Remark 2.22. Let x ∈ BS \ {0}, λ = (b1, . . . , bdeg x) ∈ Λx, and i ∈ {1, . . . ,deg x − 1},
i. e.,

x x(λ, i) 0.

Then (b1, . . . , bi) ∈ Λx(λ∗,deg x−i), since x(λ∗,deg x − i) =
∑i
j=1 bj ; moreover, we have

(bi+1, . . . , bdeg x) ∈ Λx(λ,i), since x(λ, i) =
∑deg x−i
j=1 bi+j . Let B,C ⊆ Nd. We define the

set B + C := {b+ c | b ∈ B, c ∈ C} ⊆ Nd with the usual addition of tuples.

Lemma 2.23. Let x, y ∈ BS \ {0} with x ∼ y, λ = (b1, . . . , bdeg x) ∈ Λx, and
ν = (g1, . . . , gdeg y) ∈ Λy with δ(λ, ν) > 0, i. e.,

x

�O
�O
�O
�O

x(λ, i)

�O
�O
�O

0

�O
�O
�O

y y(ν, k) 0,

for some i ∈ {1, . . . ,deg x− 1} and some k ∈ {1, . . . ,deg y− 1}. Let x′ = x(λ∗,deg x− i),
x′′ = x(λ, i), y′ = y(ν∗,deg y−k), and y′′ = y(ν, k). Moreover, let λ′ = (b1, . . . , bi) ∈ Λx′ ,
λ′′ = (bi+1, . . . , bdeg x) ∈ Λx′′ , ν′ = (g1, . . . , gk) ∈ Λy′ , and ν′′ = (gk+1, . . . , gdeg y) ∈ Λy′′ .
We have:

1) x(λ∗,deg x− i) ∼ y(ν∗,deg y − k).

2) ∆(λ′, ν′) = {(m,n) ∈ ∆(λ, ν) | (m,n) ≤ (i, k)}.
3) {(i, k)}+ ∆(λ′′, ν′′) = {(m,n) ∈ ∆(λ, ν) | (m,n) ≥ (i, k)}.
4) If λ and ν are crossless, then λ′ and ν′ are crossless.

5) If λ and ν are crossless, then λ′′ and ν′′ are crossless.

6) δ(λ′, ν′) + δ(λ′′, ν′′) ≤ δ(λ, ν)− 1. Equality holds, if λ and ν are crossless.

Proof. 1) This follows from x− y, x(λ, i)− y(ν, k) ∈ αZd.

2) Let m,n ∈ N with m ≤ i and n ≤ k. We have x(λ,m) − x′(λ′,m) = x(λ, i) and
y(ν, n)− y′(ν′, n) = y(ν, k). Hence

x(λ,m)− y(ν, n) + y′(ν′, n)− x′(λ′,m) ∈ αZd,

which proves 2).
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3) Let m,n ∈ N with m ≤ deg x− i and n ≤ deg y − k. The assertion follows from

x′′(λ′′,m) = x(λ,m+ i) and y′′(ν′′, n) = y(ν, n+ k).

4), 5) This follows from 2) and 3).

6) Since (i, k) ∈ ∆(λ′, ν′), (0, 0) ∈ ∆(λ′′, ν′′) and ∆(λ′, ν′) ⊆ {0, . . . , i} × {0, . . . , k}, we
have

# (∆(λ′, ν′) ∩ ({(i, k)}+ ∆(λ′′, ν′′))) = 1.

Hence

#∆(λ′, ν′) + #∆(λ′′, ν′′)− 1 = # (∆(λ′, ν′) ∪ ({(i, k)}+ ∆(λ′′, ν′′)))
2),3)

≤ #∆(λ, ν). (2)

By this we get

δ(λ′, ν′)+δ(λ′′, ν′′) = #∆(λ′, ν′)+#∆(λ′′, ν′′)−1−3
(2)

≤ #∆(λ, ν)−2−1 = δ(λ, ν)−1. (3)

If λ and ν are crossless we have equality in (2), by 2) and 3). Hence we have equality in
(3).

Lemma 2.24. Let x, y ∈ BS \ {0} with x ∼ y, λ = (b1, . . . , bdeg x) ∈ Λx, and
ν = (g1, . . . , gdeg y) ∈ Λy. If λ and ν are not crossless, i. e.,

x

�O
�O
�O
�O

x(λ, i)

(h(h(h(h(h(h(h(h
x(λ, j) 0

�O
�O
�O

y y(ν, l)

6v6v6v6v6v6v6v6v

y(ν, k) 0,

for some i, j, l, k ∈ N with i < j ≤ deg x and l < k ≤ deg y, then

1) λ∗ and ν∗ are not crossless, in particular:

x

�O
�O
�O
�O

x(λ∗,deg x− j)

*j*j*j*j*j*j*j*j*j*j
x(λ∗,deg x− i) 0

�O
�O
�O

y y(ν∗,deg y − k)

4t4t4t4t4t4t4t4t4t4t

y(ν∗,deg y − l) 0.

2) i, l ≥ 2 and j ≤ deg x− 2, k ≤ deg y − 2.

3) x(λ, i) 6= y(ν, k) and x(λ, j) 6= y(ν, l).

4) y(ν, k)[n] > x(λ, i)[n] and x(λ, j)[m] > y(ν, l)[m] for some n,m ∈ {1, . . . , d} with
n 6= m.

5) y(ν, k)[n′] < x(λ, i)[n′] and x(λ, j)[m′] < y(ν, l)[m′] for some n′,m′ ∈ {1, . . . , d}.

Proof. 1) By Lemma 2.23 1) we get x(λ∗,deg x−i) ∼ y(ν∗,deg y−k) and x(λ∗,deg x−j) ∼
y(ν∗,deg y− l) with deg x− i > deg x− j and deg y− k < deg y− l. Hence λ∗ and ν∗ are
not crossless.

2) By Lemma 2.10 we have i, l 6= 0, j 6= deg x, k 6= deg y. Suppose j = deg x − 1,
i. e., deg x(λ, j) = 1; which contradicts deg y(ν, l) ≥ 2, since l < k < deg y (see also Re-
mark 2.4). The claim follows by symmetry and 1).

3) By symmetry we only need to show that x(λ, i) 6= y(ν, k). Suppose to the contrary
that x(λ, i) = y(ν, k). Then ν′ = (g1, . . . , gk, bi+1, . . . , bdeg x) ∈ Λy. By this we get
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y(ν′, k + j − i) = x(λ, j) ∼ y(ν, l) = y(ν′, l). Which contradicts Lemma 2.10, since
k + j − i > l.

4), 5) Since x(λ, i) 6= y(ν, k) and x(λ, i), y(ν, k) ∈ BS \ {0} with x(λ, i) ∼ y(ν, k) we have
y(ν, k)[n] > x(λ, i)[n] and y(ν, k)[n′] < x(λ, i)[n′] for some n, n′ ∈ {1, . . . , d}. Analogous
x(λ, j)[m] > y(ν, l)[m] and x(λ, j)[m′] < y(ν, l)[m′] for some m,m′ ∈ {1, . . . , d}. Suppose
that m = n, then x(λ, j)[m] > y(ν, l)[m] ≥ y(ν, k)[m] > x(λ, i)[m] ≥ x(λ, j)[m], a contradic-
tion.

Lemma 2.25. Consider the same situation as in Lemma 2.24. Let n,m ∈ {1, . . . , d}
such that y(ν, k)[n] > x(λ, i)[n] and x(λ, j)[m] > y(ν, l)[m]. Then

1) y(ν, l)[n] > x(λ, j)[n].

2) x(λ, i)[m] > y(ν, k)[m].

Proof. 1) We have y(ν, l)[n] ≥ y(ν, k)[n] > x(λ, i)[n] ≥ x(λ, j)[n].

2) We have x(λ, i)[m] ≥ x(λ, j)[m] > y(ν, l)[m] ≥ y(ν, k)[m].

Proposition 2.26. Let x, y ∈ Γt ⊆ BS \{0} for some t ∈ {1, . . . , f}, λ ∈ Λx, and ν ∈ Λy.
If λ and ν are not crossless, then there is some z ∈ Γt with z 6= x, y.

Proof. We have

x

�O
�O
�O
�O

x(λ, i)

(h(h(h(h(h(h(h(h
x(λ, j) 0

�O
�O
�O

y y(ν, l)

6v6v6v6v6v6v6v6v

y(ν, k) 0,

for some i, j, l, k ∈ N with 0 < i < j < deg x and 0 < l < k < deg y. We set

z′ := x(λ, j) + y − y(ν, l) = x(λ, j) + y(ν∗,deg y − l).

By Lemma 2.24 5) we have:
x(λ, j)[h] < y(ν, l)[h]

for some h ∈ {1, . . . , d}. By this we get z′[h] < y[h]. By Lemma 2.24 1) and 5) we get

y(ν∗,deg y − l)[g] < x(λ∗,deg x− j)[g]

for some g ∈ {1, . . . , d}. By this we get z′[g] < x[g]. By construction z′ ∈ S. Consider an

element z := z′ −
∑d
u=1 nueu ∈ S such that

∑d
u=1 nu is maximal. This means z ∈ BS , in

particular z ≤ z′. By this we have z 6= x, y. Moreover, z ∼ z′ and by Lemma 2.23 1):

z′ − x = x(λ, j) + y(ν∗,deg y − l)− x = y(ν∗,deg y − l)− x(λ∗,deg x− j) ∈ αZd,

hence z′ ∼ x, i. e., z ∈ Γt.

Corollary 2.27. Let #Γt = 2 for some t ∈ {1, . . . , f}, say Γt = {x, y}, λ ∈ Λx, and
ν ∈ Λy. Then λ and ν are crossless, in particular x and y are crossless.

Proof. Suppose that λ and ν are not crossless. Then by Proposition 2.26 we get z ∈ Γt
with z 6= x, y, which contradicts #Γt = 2. Hence x and y are crossless as well.
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Lemma 2.28. Let x′, x′′, y′, y′′ ∈ S such that x′ ∼ y′, x′′ ∼ y′′. Moreover, let x = x′+x′′

and y = y′ + y′′. Then
h(x′, y′) + h(x′′, y′′) ≤ h(x, y).

Proof. Let i ∈ {1, . . . , d}, we have x ∼ y and

2 min
{
x[i], y[i]

}
= x[i] + y[i] − |x[i] − y[i]| = x′[i] + y′[i] + x′′[i] + y′′[i] − |x

′
[i] − y

′
[i] + x′′[i] − y

′′
[i]|

≥ x′[i] + y′[i] − |x
′
[i] − y

′
[i]|+ x′′[i] + y′′[i] − |x

′′
[i] − y

′′
[i]| = 2 min

{
x′[i], y

′
[i]

}
+ 2 min

{
x′′[i], y

′′
[i]

}
.

Hence h(x′, y′) + h(x′′, y′′) ≤ h(x, y).

Proposition 2.29. Let x, y ∈ BS \ {0} with x ∼ y, λ ∈ Λx, and ν ∈ Λy. If λ and ν are
crossless, then δ(λ, ν) ≤ deg h(x, y)− 1.

Proof. We show this by induction on δ(λ, ν) ∈ N. Let δ(λ, ν) = 0, i. e., we need to show
that deg h(x, y) ≥ 1. Suppose to the contrary that deg h(x, y) = 0, hence h(x, y) = 0.
Thus x, y ∼ 0, which contradicts x, y 6= 0.

Let δ(λ, ν) = n + 1 > 0. Fix an i ∈ {1, . . . ,deg x − 1} such that x(λ, i) ∼ y(ν, k) for
some k ∈ {1, . . .deg y−1}. With the notation of Lemma 2.23 x′, x′′, y′, y′′ ∈ BS \{0} (see
Lemma 2.10) with x′ ∼ y′ and x′′ ∼ y′′. Since λ and ν are crossless we get by Lemma 2.23
that λ′ ∈ Λx′ and ν′ ∈ Λy′ are crossless and also that λ′′ ∈ Λx′′ and ν′′ ∈ Λy′′ are crossless.
Hence by induction

δ(λ, ν) 2.23= δ(λ′, ν′) + δ(λ′′, ν′′) + 1 ≤ deg h(x′, y′) + deg h(x′′, y′′)− 1
2.28
≤ deg h(x, y)− 1.

Corollary 2.30. Let x, y ∈ BS \ {0} with x ∼ y. If x and y are crossless, then
δ(x, y) ≤ deg h(x, y)− 1.

Proof. Since x and y are crossless, there are some sequences with ∗-property λ ∈ Λx and
ν ∈ Λy which are crossless. Hence by Proposition 2.29

δ(x, y) ≤ δ(λ, ν) ≤ deg h(x, y)− 1.

Definition 2.31. Let x, y ∈ BS \ {0} with x ∼ y.

1. By a cross we mean a tuple (λ, ν, i, j, l, k) ∈ Λx × Λy × N4 with i < j ≤ deg x and
l < k ≤ deg y such that x(λ, i) ∼ y(ν, k) and x(λ, j) ∼ y(ν, l). We say that λ and ν
have a cross.

2. Let λ ∈ Λx and ν ∈ Λy. We say that two crosses (λ, ν, i, j, l, k) and (λ, ν, i′, j′, l′, k′)
are disjoint if j < i′ and k < l′ or if j′ < i and k′ < l.

3. The height of a cross (λ, ν, i, j, l, k) is defined to be (j − i, k − l) ∈ N2.
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Lemma 2.32. Let x, y ∈ BS \ {0} with x ∼ y, λ ∈ Λx, and ν ∈ Λy. If we have two
disjoint crosses (λ, ν, i, j, l, k) and (λ, ν, i′, j′, l′, k′) of height (j − i, k − l) and of height
(j′ − i′, k′ − l′), i. e.,

x

�O
�O
�O
�O

x(λ, i)

$d
$d

$d
$d

$d

x(λ, j) x(λ, i′)

$d
$d

$d
$d

$d

x(λ, j′) 0

�O
�O
�O

y y(ν, l)

:z
:z

:z
:z

:z

y(ν, k) y(ν, l′)

:z
:z

:z
:z

:z

y(ν, k′) 0,

with 0 < i < j < i′ < j′ < deg x and 0 < l < k < l′ < k′ < deg y, then there are elements
λ′ ∈ Λx and ν′ ∈ Λy with a cross of height (j − i+ j′ − i′, k − l + k′ − l′).

Proof. Let λ = (b1, . . . , bdeg x) and ν = (g1, . . . , gdeg y). Set

λ′ = (bj+1, . . . , bj′ , bi+1, . . . , bj , b1, . . . , bi, bj′+1, . . . , bdeg x)

and
ν′ = (gk+1, . . . , gk′ , gl+1, . . . , gk, g1, . . . , gl, gk′+1, . . . , gdeg y).

By construction and Proposition 2.9, λ′ ∈ Λx and ν′ ∈ Λy. We claim that x(λ′, i′ − j) ∼
y(ν′, k′ − l) and x(λ′, j′ − i) ∼ y(ν′, l′ − k). Note that i′ − j < j′ − i and k′ − l > l′ − k;
therefore (λ′, ν′, i′− j, j′− i, l′−k, k′− l) is a cross of height (j− i+ j′− i′, k− l+k′− l′).
To verify the claim, note that

x(λ′, i′ − j) = x−
i′−j∑
t=1

bj+t = x− (x(λ, j)− x(λ, i′)) ∼ y − (y(ν, l)− y(ν, k′))

= y −
k′−l∑
t=1

gl+t = y −
k′−k∑
t=1

gk+t −
k−l∑
u=1

gl+u = y(ν′, k′ − l),

and

y(ν′, l′ − k) = y −
l′−k∑
t=1

gk+t = y − (y(ν, k)− y(ν, l′)) ∼ x− (x(λ, i)− x(λ, j′))

= x−
j′−i∑
t=1

bi+t = x−
j′−j∑
t=1

bj+t −
j−i∑
u=1

bi+u = x(λ′, j′ − i).

3 The case of at most two elements

Definition 3.1. For a monomial m = yb11 · · · y
bd

d ∈ T we define degm =
∑d
j=1 bj .

Definition 3.2. We define the set Γ(S) ⊆ {Γ1, . . . ,Γf} by: Γt ∈ Γ(S) for t ∈ {1, . . . , f}
if regK[S] = regIt + deg ht.

Theorem 3.3. Let Γt ∈ Γ(S) for some t ∈ {1, . . . , f}. If #Γt ≤ 2, then

regK[S] ≤ degK[S]− codimK[S].
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Proof. If #Γt = 1, then the assertion follows from Theorem 2.11. So we only have to
consider the case #Γt = 2. Let x, x′ ∈ Γt with x 6= x′, m = y(x−ht)/α and n = y(x′−ht)/α.
By construction m,n are a regular sequence on T . Using the Koszul Complex (e. g., see
[1, Section 17.1]) we get

regK[S] = regIt + deg ht = deg x+ deg x′ − deg ht − 1. (4)

Let λ ∈ Λx and ν ∈ Λx′ . By Corollary 2.27, λ and ν are crossless. Consider the set L in
BS :

L = {x(λ, 0), . . . , x(λ, deg x−2), x(λ,deg x)} ∪ {x′(ν, 0), . . . , x′(ν, deg x′−2), x′(ν, deg x′)}.

By construction, every element in L is not equivalent to an element in {a1, . . . , ac}, since
for all z ∈ L we have deg z 6= 1 (see Remark 2.4). By Γ′1, . . . ,Γ

′
g we denote the equivalence

classes on L. Hence

g = deg x+ deg x′ −# (∆(λ, ν) \ {(deg x− 1,deg x′ − 1)}) ≥ deg x+ deg x′ −#∆(λ, ν)

= deg x+ deg x′ − δ(λ, ν)− 2
2.29
≥ deg x+ deg x′ − deg ht − 1, (5)

since h(x, x′) = ht. Hence

degK[S] ≥ g + c
(5)

≥ deg x+ deg x′ − deg ht − 1 + c
(4)
= regK[S] + c.

Corollary 3.4. If #Γt ≤ 2 for all t = 1, . . . , f , then

regK[S] ≤ degK[S]− codimK[S].

Proof. Follows from Theorem 3.3.

Example 3.5. Consider the following semigroup in N4 with α = 6:

S = 〈e1, . . . , e4, (0, 2, 0, 4), (3, 0, 2, 1), (0, 2, 2, 2)〉.

We define the reduction number r(K[S]) := max {deg x |x ∈ BS} (see [8]), by Theo-
rem 2.11 the Eisenbud-Goto conjecture holds for the reduction number. Using Macaulay2
[4] we get regK[S] = 6 > r(K[S]) = 5. Moreover, we have

Γt = {(3, 6, 4, 11), (15, 0, 10, 5)} ∈ Γ(S),

for some t ∈ {1, . . . , f}, since regIt + deg ht = reg〈y2y4, y
2
1y3〉 + 2 = 6 and there-

fore Eisenbud-Goto holds by Theorem 3.3. We note that S is not seminormal by [11,
Theorem 4.1.1] and not Buchsbaum, since (3, 6, 10, 5) + 2e1, (3, 6, 10, 5) + e4 ∈ S, but
(3, 6, 10, 5) + e1 = (9, 6, 10, 5) /∈ S (see [19, Lemma 3]).

Example 3.6. Let Γt ∈ Γ(S) for some t ∈ {1, . . . , f} with #Γt > 2. Unfortunately this
case is much more complicated. Consider the following situation, let α = 20 and

Γt = {x = (44, 104, 12), y = (104, 44, 12), z = (24, 24, 72)}.
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We get h(x, y) = (44, 44, 12), h(x, z) = (24, 24, 12) and h(y, z) = (24, 24, 12). Assume that
Conjecture 2.16 holds, so x and y could have 4 non-trivial pairwise equivalent elements,
x and z could have 2, as well as y and z. Let us consider a worst case scenario:

x

�O
�O
�O
�O

x(λ, 1) x(λ, 2)

�O
�O
�O

x(λ, 3) x(λ, 4)

�O
�O
�O

x(λ, 5)

�O
�O
�O

x(λ, 6)

�O
�O
�O

0

�O
�O
�O

y

�O
�O
�O
�O

y(ν, 1)

�O
�O
�O

y(ν, 2) y(ν, 3)

�O
�O
�O

y(ν, 4) y(ν, 5) y(ν, 6) 0

�O
�O
�O

z z(µ, 1) z(µ, 2)
[�

[�
[�

[�
[�

[�
[�

[�
[�

[�
[�

[�
[�

z(µ, 3) z(µ, 4)
[�

[�
[�

[�
[�

[�
[�

[�
[�

[�
[�

[�
[�

0

for some λ ∈ Λx, ν ∈ Λy, and µ ∈ Λz. Note that no element in the picture has degree 1. If
we follow the proof of Theorem 3.3 we would get g = 10. So we want the ideal plus the shift
to be smaller or equal to 10. But this is not the case since deg ht = (24 + 24 + 12)/20 = 3
and regIt = reg〈y1y

4
2 , y

4
1y2, y

3
3〉 = 9.

4 Monomial curves

In this section we will assume that dimK[S] = 2, i. e., d = 2. Thus, we consider the case
of monomial curves, i. e.,

S = {e1, e2, a1, . . . , ac} ⊆ N2.

We have f = α, i. e., degK[S] = α. Moreover, T = K[y1, y2] and every monomial ideal I
in T can be uniquely written as:

I =< m1, . . . ,mr >,with mi = ybi
1 y

ci
2 , i = 1, . . . , r,

where b1 > . . . > br ≥ 0 and 0 ≤ c1 < . . . < cr (see [12, Section 3.1]). The case r = 1 is
not relevant in our context. Let us assume that r ≥ 2; it is a well known fact that the
regularity of I can be computed by:

Proposition 4.1.
regI = max

i=1,...,r−1
{bi + ci+1} − 1

Proof. By [12, Proposition 3.1] the kernel of g : T r → I, êi 7→ mi is minimally generated
by yci+1−ci

2 êi− ybi−bi+1
1 êi+1, i = 1, . . . , r− 1. Hence the minimal free graded resolution of

I has the following form

0 −→
r−1⊕
l=1

T (−(bl + cl+1))−→
r⊕
j=1

T (−(bj + cj))−→I −→ 0,

since yci+1−ci

2 ∈ T (−(bi + ci))bi+ci+1 and ybi−bi+1
1 ∈ T (−(bi+1 + ci+1))bi+ci+1 . By assump-

tion ci+1 > ci and bi > bi+1, thus bi + ci+1 > max {bi + ci, bi+1 + ci+1} and therefore

regI = max {b1 + c1, . . . , br + cr, b1 + c2 − 1, . . . , br−1 + cr − 1}= max
i=1,...,r−1

{bi + ci+1}−1.
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Remark 4.2. Let #Γt ≥ 2 for some t ∈ {1, . . . , α}. Consider two elements x, y ∈ Γt
with x 6= y. Suppose x[i] = y[i] for some i ∈ {1, 2}, then x > y or x < y, a contradiction.
Without loss of generality we may assume that x[i] < y[i] for some i ∈ {1, 2}, then
x[j] > y[j] for j ∈ {1, 2} \ {i}, since otherwise x < y. This shows that Γ̃t is a minimal
generating set of It. We note that this holds for arbitrary d. By construction and the
above argument

It =< m1, . . . ,m#Γt >,with mi ∈ Γ̃t,mi = ybi
1 y

ci
2 , i = 1, . . . ,#Γt,

where b1 > . . . > b#Γt
= 0 and 0 = c1 < . . . < c#Γt

.

Definition 4.3. Let x, y ∈ Γt for some t ∈ {1, . . . , α} with x 6= y, i. e., x[i] > y[i] and
x[j] < y[j] for i, j ∈ {1, 2} with i 6= j. We say that x and y are close if there is no element
z ∈ Γt with x[i] > z[i] > y[i] and x[j] < z[j] < y[j].

Example 4.4. Consider the following smooth monomial curve in P5 given by

S = 〈(12, 0), (0, 12), (11, 1), (9, 3), (4, 8), (1, 11)〉.

Then by [13, Corollary 3.9] we get regK[S] = 4. Moreover, we have:

K[S] ∼= T ⊕ T (−1)4 ⊕ 〈y1, y2〉(−1)2 ⊕ 〈y1, y
2
2〉(−1)2 ⊕ 〈y2

1 , y2〉(−1)2 ⊕ 〈y2
1 , y1y2, y

3
2〉︸ ︷︷ ︸

=I12

(−1).

By Proposition 4.1 we have Γ(S) = {Γ12}, where Γ12 = {(31, 5), (19, 17), (7, 41)}. We
note that (31, 5) and (19, 17) are close, as well as (19, 17) and (7, 41).

Remark 4.5. Let us consider the case of smooth monomial curves, i. e., we assume that
a1 = (α− 1, 1) and ac = (1, α− 1). In this case there is still a much better combinatorial
bound than the one given by L’vovsky in [9]; namely regK[S] ≤ #L + 1, where #L is
the maximal number of consecutive integer points on the line [(α, 0), (0, α)] not belonging
to S (see [6]). Anyway, even this bound is not sharp, see [13, Introduction]. We will
now give a short proof of the Eisenbud-Goto conjecture for smooth monomial curves. Let
Γt ∈ Γ(S) for some t ∈ {1, . . . , α}. By Theorem 2.11 we may assume that #Γt ≥ 2. Since
(α − 1, 1), (1, α − 1) ∈ S we have (kα − l, l), (α − l, k′α + l) ∈ Γt for some l, k, k′ ∈ N
with 0 < l < α. Set x = (kα − l, l) and x′ = (α − l, k′α + l); since 0 < l < α we have
It = 〈ydeg x−1

1 , . . . , ydeg x′−1
2 〉 and ht = (α− l, l) and by construction

regK[S] = regIt + deg ht = reg〈ydeg x−1
1 , . . . , ydeg x′−1

2 〉+ 1 ≤ deg x+ deg x′ − 2.

Let Γ1 = {0}. By a similar argument, one can show that deg ht′ = 1 for all t′ = 2, . . . , α.
Let λ ∈ Λx and ν ∈ Λx′ . Suppose that x(λ,m) ∼ x′(ν, n) for some m ∈ {1, . . . ,deg x− 1}
and some n ∈ {1, . . . ,deg x′−1}, then by Lemma 2.23 1) and 2.28 we have deg h(x, x′) ≥ 2;
since deg h(z, z′) ≥ 1 for all z, z′ ∈ BS \ {0} with z ∼ z′. Hence #∆(λ, ν) = 2. By a
similar argument as in Theorem 3.3 we get:

degK[S] ≥ deg x+ deg x′ − 2 + c ≥ regK[S] + c.

Let us consider the Macaulay curves, i. e., S = 〈(α, 0), (0, α), (α − 1, 1), (1, α − 1)〉. We
have (α− 1, 1) + (1, α− 1) /∈ BS , hence BS = {i(1, α− 1), j(α− 1, 1)} | 0 ≤ i, j ≤ α− 2},
i. e.,

BS = {0, (1, α−1), (2, 2α−2), . . . , (α−2, (α− 3)α+ 2)︸ ︷︷ ︸
=(α−2)α−α+2

, ((α−3)α+2, α−2), . . . , (α−1, 1)}.
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We have:

Γ1 = {0},Γ2 = {(1, α− 1)},Γ3 = {(α− 1, 1)},Γ4 = {(2, 2α− 2), ((α− 3)α+ 2, α− 2)},

Γ5 = {(3, 3α− 3), ((α− 4)α+ 3, α− 3)}, . . . ,Γα = {(α− 2, (α− 3)α+ 2), (2α− 2, 2)}.

Hence

K[S] ∼= T ⊕ T (−1)2 ⊕ 〈yα−3
1 , y2〉(−1)⊕ 〈yα−4

1 , y2
2〉(−1)⊕ . . .⊕ 〈y1, y

α−3
2 〉(−1),

meaning each T -module of the form 〈yβ1 , y
γ
2 〉(−1), 1 ≤ β, γ ≤ α − 3 with β + γ = α − 2

appears exactly once in the decomposition. We have regK[S] = α − 2 = degK[S] −
codimK[S], i. e., the Eisenbud-Goto conjecture is sharp in this case.

Definition 4.6. Let #Γt ≥ 2 for some t ∈ {1, . . . , α}. With the notation of Proposi-
tion 4.1 and Remark 4.2 we get regIt = bk + ck+1 − 1 for some k ∈ {1, . . . ,#Γt − 1}; fix
such an integer k. Let x, x′ ∈ Γt such that mk = y(x−ht)/α and mk+1 = y(x′−ht)/α. We
define the set Γ̄t := {x, x′} ⊆ Γt.

Remark 4.7. Consider Example 4.4, then Γ̄12 = {(19, 17), (7, 41)}. Whenever #Γt = 2
for some t ∈ {1, . . . , α}, then Γt = Γ̄t.

Proposition 4.8. Let Γt ∈ Γ(S) for some t ∈ {1, . . . , α} with #Γt ≥ 2 and Γ̄t = {x, x′}.
If Conjecture 2.16 holds for x and x′, then

regK[S] ≤ degK[S]− codimK[S].

In particular this holds, if x and x′ are crossless.

Proof. Assume that x[1] > x′[1] and x[2] < x′[2]. Let mk = y(x−ht)/α = ybk
1 yck

2 and

mk+1 = y(x′−ht)/α = y
bk+1
1 y

ck+1
2 . By construction,

regK[S] = regIt + deg ht
Def.= bk + ck+1 − 1 + deg ht

= ((x− ht)/α)[1] + ((x′ − ht)/α)[2] − 1 + deg ht = deg (x[1], x
′
[2])− 1. (6)

Fix λ ∈ Λx and ν ∈ Λx′ such that δ(x, x′) = δ(λ, ν) and consider the set L in BS :

L = {x(λ, 0), . . . , x(λ,deg x−2), x(λ,deg x)} ∪ {x′(ν, 0), . . . , x′(ν, deg x′−2), x′(ν, deg x′)}.

By construction, every element in L is not equivalent to an element in {a1, . . . , ac}, since
for all z ∈ L we have deg z 6= 1 (see Remark 2.4). By Γ′1, . . . ,Γ

′
g we denote the equivalence

classes on L. Hence

g = deg x+ deg x′ −# (∆(λ, ν) \ {(deg x− 1,deg x′ − 1)}) ≥ deg x+ deg x′ −#∆(λ, ν)

= deg (x[1], x
′
[2]) + deg (x′[1], x[2])− δ(x, x′)− 2

2.16
≥ deg (x[1], x

′
[2])− 1, (7)

since h(x, x′) = (x′[1], x[2]) and therefore

degK[S] ≥ g + c
(7)

≥ deg (x[1], x
′
[2])− 1 + c

(6)
= regK[S] + c.

If x and x′ are crossless, then Conjecture 2.16 holds by Corollary 2.30.
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Remark 4.9. Let #Γt ≥ 2 for some t ∈ {1, . . . , α}. If Γ̄t = {x, x′}, then x and x′ are
close. Thus, by proving Conjecture 2.16 for close elements in BS we would immediately
get a combinatorial proof of the Eisenbud-Goto conjecture for monomial curves.

Remark 4.10. Let x, y ∈ Γt for some t ∈ {1, . . . , α} with x 6= y. Moreover, we assume
that x[1] > y[1] and x[2] < y[2]. Let λ ∈ Λx and ν ∈ Λy be not crossless, i. e.,

x

�O
�O
�O
�O

x(λ, i)

(h(h(h(h(h(h(h(h
x(λ, j) 0

�O
�O
�O

y y(ν, l)

6v6v6v6v6v6v6v6v

y(ν, k) 0,

for some i, j, l, k ∈ N with 0 < i < j < deg x and 0 < l < k < deg y. Fix i, k (we could
also fix l, j), then we have one of the following two cases:

1. x(λ, i)[1] > y(ν, k)[1] and x(λ, i)[2] < y(ν, k)[2],

2. x(λ, i)[1] < y(ν, k)[1] and x(λ, i)[2] > y(ν, k)[2],

by Lemma 2.24. The first case is what you normally would expect, since the first co-
ordinate of x is bigger than the first coordinate of y. The second case looks a little
strange, but still possible. Keep in mind that x(λ∗,deg x − i) ∼ y(ν∗,deg y − k) by
Lemma 2.23, x(λ∗,deg x− i), y(ν∗,deg y−k) ∈ BS by Lemma 2.10, and x(λ∗,deg x− i) 6=
y(ν∗,deg y− k) by Lemma 2.24. Moreover, by construction, x(λ∗,deg x− i) + x(λ, i) = x
and y(ν∗,deg y − k) + y(ν, k) = y; see Lemma 2.10.

Lemma 4.11. Consider the same situation as in Remark 4.10. Moreover, let x and y be
close. If x(λ, i)[1] > y(ν, k)[1] and x(λ, i)[2] < y(ν, k)[2], then

x(λ∗,deg x− i)[1] < y(ν∗,deg y − k)[1] and x(λ∗,deg x− i)[2] > y(ν∗,deg y − k)[2].

Proof. Suppose to the contrary that x(λ∗,deg x − i)[1] > y(ν∗,deg y − k)[1] and
x(λ∗,deg x−i)[2] < y(ν∗,deg y−k)[2]; see Lemma 2.24. Define z := y(ν, k)+x(λ∗,deg x−i),
by construction z ∼ x, y. Moreover, we have x[1] > z[1], x[2] < z[2] and z[1] > y[1], z[2] <
y[2], i. e.,

x[1] > z[1] > y[1], x[2] < z[2] < y[2].

Consider an element z′ := z − n1e1 − n2e2 ∈ S such that n1 + n2 is maximal. We have
z′ ∈ BS , z′ 6= x, y, z′ ≤ z, and z′ ∼ z ∼ x, y. Suppose z′[1] ≤ y[1], then z′ < y, a
contradiction. Suppose z′[2] ≤ x[2], then z′ < x, a contradiction. Hence

x[1] > z′[1] > y[1], x[2] < z′[2] < y[2],

and therefore x and y are not close, which is a contradiction.

Remark 4.12. With the notation of Remark 4.10 and the assumption that x and y are
close we get by Remark 4.10 and Lemma 4.11 one of the following two cases:

1. x(λ∗,deg x− i)[1] < y(ν∗,deg y − k)[1] and x(λ∗,deg x− i)[2] > y(ν∗,deg y − k)[2].

2. x(λ, i)[1] < y(ν, k)[1] and x(λ, i)[2] > y(ν, k)[2].
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Proposition 4.13. Let x, y ∈ Γt for some t ∈ {1, . . . , α} with x 6= y. If x and y are
close, then

δ(x, y) ≤ deg h(x, y)− 1,

i. e., Conjecture 2.16 holds for x and y.

Proof. By Corollary 2.30 we may assume that x and y are not crossless. Moreover, we
may assume that x[1] > y[1] and x[2] < y[2]. Let us fix a maximal cross in the following
sense, let (λ, ν, i, j, l, k) ∈ Λx × Λy × N4 be a cross such that j − i is maximal among all
crosses; say λ = (b1, . . . , bdeg x) and ν = (g1, . . . , gdeg y). This can be illustrated by the
picture:

x

�O
�O
�O
�O

x(λ, i)

(h(h(h(h(h(h(h(h
x(λ, j) 0

�O
�O
�O

y y(ν, l)

6v6v6v6v6v6v6v6v

y(ν, k) 0.

Without loss of generality, we may assume that for all j′, k′ ∈ N with j < j′ < deg x
and k < k′ < deg y we have x(λ, j′) 6∼ y(ν, k′), since otherwise we consider the following
sequences with ∗-property:

λ′ = (bj′+1, . . . , bdeg x, b1, . . . , bj′) ∈ Λx and ν′ = (gk′+1, . . . , gdeg y, g1, . . . , gk′) ∈ Λy,

by this we would get a cross (λ′, ν′,deg x−j′+i,deg x−j′+j,deg y−k′+l,deg y−k′+k). Let
i′ ∈ N be maximal with 0 ≤ i′ < i and x(λ, i′) ∼ y(ν, l′) for some l′ ∈ {0, . . . ,deg y}. Let
x′ = x(λ∗,deg x− i′), y′ = y(ν∗,deg y− l′), x′′ = x(λ, i′), y′′ = y(ν, l′), λ′ = (b1, . . . , bi′) ∈
Λx′ , and ν′ = (g1, . . . , gl′) ∈ Λy′ (see Remark 2.22). So x = x′ + x′′ and y = y′ + y′′. We
claim that:

#∆(λ, ν) ≤ #∆(λ′, ν′) + deg (x(λ, i)− x(λ, j)) + 2. (8)

In case that i′ = 0 we set #∆(λ′, ν′) = 1. Consider an element j′ ∈ N with j < j′ < deg x
and suppose to the contrary that x(λ, j′) ∼ y(ν, k′) for some k′ ∈ {0, . . . ,deg y}. By
construction we have k′ < k. Hence we get a cross (λ, ν, i, j′, k′, k) with height (j′−i, k−k′)
which is a contradiction, since j−i is assumed to be maximal. By this we have (see Remark
2.15)

#∆(λ, ν) ≤ # (∆(λ, ν) ∩ ({0, . . . , i′} × N)) + deg (x(λ, i)− x(λ, j)) + 2,

i. e., we need to show that (∆(λ, ν) ∩ ({0, . . . , i′} × N)) ⊆ ∆(λ′, ν′). In case that i′ = 0
we have # (∆(λ, ν) ∩ ({0, . . . , i′} × N)) = 1. Suppose to the contrary that l′ > l, by this
we get a cross (λ, ν, i′, j, l, l′) of height (j − i′, l′ − l), which contradicts the maximality of
j − i. That means l′ < l, since l′ 6= l, i. e., (assume for the picture i′ > 0)

x

�O
�O
�O
�O

x(λ, i′)

�O
�O
�O

x(λ, i)

(h(h(h(h(h(h(h(h
x(λ, j) 0

�O
�O
�O

y y(ν, l′) y(ν, l)

6v6v6v6v6v6v6v6v

y(ν, k) 0.

Let (m,n) ∈ (∆(λ, ν) ∩ ({0, . . . , i′} × N)) and assume that m 6∈ {0, i′}. Suppose to the
contrary that x(λ,m) ∼ y(ν, n) with n ≥ l′. By a similar argument as above, we get
n < l and clearly n 6= l′, i. e., we suppose that l′ < n < l. Hence (λ, ν,m, i′, l′, n)
and (λ, ν, i, j, l, k) are two disjoint crosses, which contradicts Lemma 2.32, since j − i is
maximal. That means n < l′ and therefore (m,n) ∈ ∆(λ′, ν′) by Lemma 2.23 2), which
proves (8).

Since x and y are close, we get by Remark 4.12 one of the following two cases:
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1. x(λ∗,deg x− i)[1] < y(ν∗,deg y − k)[1] and x(λ∗,deg x− i)[2] > y(ν∗,deg y − k)[2].
2. x(λ, i)[1] < y(ν, k)[1] and x(λ, i)[2] > y(ν, k)[2].

Case 1:

Applying Lemma 2.25 to Lemma 2.24 1) we get x(λ∗,deg x − j)[2] > y(ν∗,deg y − l)[2]

and therefore x(λ∗,deg x− j)[1] < y(ν∗,deg y − l)[1]. Keep in mind that by construction
h(x, y) = (y[1], x[2]). Hence

h(x, y)[1] = y[1] ≥ y(ν∗,deg y − l)[1] > x(λ∗,deg x− j)[1]

and
h(x, y)[2] = x[2] ≥ x(λ∗,deg x− j)[2].

Thus
deg x(λ∗,deg x− j) + 1 ≤ deg h(x, y). (9)

Moreover, we have ∆(λ′, ν′) ⊆ ({0, . . . , i′} × {0, . . . , l′}), i. e., #∆(λ′, ν′) ≤ i′ + 1 (see
Remark 2.15) and i′ + 1 ≤ i. By this we get

#∆(λ′, ν′) + deg (x(λ, i)− x(λ, j)) ≤ i′ + 1 + deg x− i− (deg x− j)

= j + i′ + 1− i ≤ j = deg x(λ∗,deg x− j), (10)

and therefore

δ(x, y) ≤ δ(λ, ν) = #∆(λ, ν)−2
(8)

≤ #∆(λ′, ν′)+deg (x(λ, i)−x(λ, j))
(9),(10)

≤ deg h(x, y)−1.

Case 2:

By Lemma 2.23 2) and 2.32 λ′ and ν′ are crossless, since (j− i) is assumed to be maximal.
Hence by Proposition 2.29 we get:

#∆(λ′, ν′)− 2 ≤ deg h(x′, y′)− 1. (11)

In case that i′ = 0 we have #∆(λ′, ν′) = 1 and deg h(x′, y′) = 0, i. e., equation (11) holds.
We get x′′[2] ≥ x(λ, i)[2], and y′′[1] ≥ y(ν, k)[1] > x(λ, i)[1] and therefore deg (y′′[1], x

′′
[2]) ≥

deg x(λ, i) + 1. Hence

deg h(x, y)− 1 = deg (y[1], x[2])− 1 = deg (y′[1], x
′
[2]) + deg (y′′[1], x

′′
[2])− 1

≥ deg h(x′, y′)− 1 + deg (y′′[1], x
′′
[2])

(11)

≥ #∆(λ′, ν′)− 2 + deg x(λ, i) + 1

≥ #∆(λ′, ν′)− 2 + deg (x(λ, i)− x(λ, j)) + 1 + 1
(8)

≥ #∆(λ, ν)− 2 = δ(λ, ν) ≥ δ(x, y).

Theorem 4.14. We have:

regK[S] ≤ degK[S]− codimK[S].

Proof. Let Γt ∈ Γ(S) for some t ∈ {1, . . . , α}. If #Γt = 1, then the assertion follows from
Theorem 3.3. If #Γt ≥ 2, then the assertion follows from Proposition 4.8 and 4.13.

Remark 4.15. This proof is a new combinatorial proof of the Eisenbud-Goto conjecture
for monomial curves; unfortunately this proof does not yield the L’vovsky bound (see [9]).
So it would be nice to prove Conjecture 2.16 to get better combinatorial bounds for the
regularity of K[S].
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