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Abstract

We study the separability properties of solutions to elliptic equations with a piece-
wise constant diffusion coefficient in Rd, d ≥ 2. It is proved that the solution can be
approximated with a sum of O(Md−1) products of univariate functions, where M is
a number of cells with constant coefficient in each direction. For discrete solutions
in the 2D case the better estimate was obtained in series of numerical experiments:
the separation rank of the solution is only proportional to the separation rank of the
coefficient instead of the number of cells.
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1. Introduction

In this paper, we study the separability properties of solutions to elliptic equations with

piecewise constant coefficients. By a separable decomposition of a multivariate function, we

mean its representation or approximation by a sum of the products of univariate functions.

The separability properties of the Laplace operator inverse and hence of the solution to

Poisson equation were estimated in [1, 2, 3, 4]. In what following, a point to study is the

dependence on structure of the diffusion coefficient.
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To fix the idea, we first consider a model elliptic boundary value problem in two dimen-

sions,
−∇(a∇u) = f in Ω = [0, 1]2,

u|∂Ω = 0,
(1.1)

with an assumption that f is represented by a piecewise smooth tensor decomposition

f(x, y) =

rf∑
k=1

f
(1)
k (x) f

(2)
k (y), (1.2)

and the diffusion coefficient a(x, y) is a piecewise constant function on cells of a tensor grid

in Ω. In the case of an M ×M tensor tiling, the reciprocals 1/a on these cells comprise a

matrix of the form

B =

 1/a11 · · · 1/a1M

...
. . .

...

1/aM1 · · · 1/aMM

 (1.3)

with the notation

r1/a = rankB.

Clearly, the function 1/a has the same separable form,

1/a(x, y) =

r1/a∑
l=1

b
(1)
l (x) · b(2)

l (y) =

r1/a∑
l=1

1

a
(1)
l (x)

· 1

a
(2)
l (y)

, (1.4)

which can be shown by a constant spline interpolation. Given ε > 0, we approximate u by

a separable decomposition

uru =
ru∑

k=1

u
(1)
k (x)u

(2)
k (y), (1.5)

so that ‖u− uru‖L∞ ≤ ε.

In this paper we investigate how ru depends on ε, r1/a, M and rf . Straightforward

analysis in the continuous case gives the following rank estimation,

ru = O(M2rv),

where rv is the maximal ε-rank of the solution in each domain generated by the M ×M

tiling. Notice that rv depends weakly on a, since in each domain the solution satisfies just

the Poisson equation: −a∆u = f .

In the 3D or higher dimensional case we formulate the problem in a similar way. Consider

−∇(a∇u) = f in Ω = [0, 1]d,

u|∂Ω = 0,
(1.6)

and assume a separability property for the right-hand side,

f(x) =

rf∑
k=1

f
(1)
k (x1) · · · f (d)

k (xd), (1.7)
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and the reciprocal diffusion coefficient,

1/a(x) =

r1/a∑
l=1

b
(1)
l (x1) · · · b(d)

l (xd) =

r1/a∑
l=1

1

a
(1)
l (x1)

· · · 1

a
(d)
l (xd)

. (1.8)

Now for given ε > 0, we approximate u by a separable decomposition

uru =
ru∑

k=1

u
(1)
k (x1) · · ·u(d)

k (xd), (1.9)

so that ‖u − uru‖L∞ ≤ ε. Such a decomposition is crucial for the numerical solution of

the problem. Suppose we discretize the problem on the grid with n points in each spatial

direction. Then the solution might be represented as a d-dimensional tensor with nd entries,

and the so-called “curse of dimensionality” arises [5, 6]. The approximation (1.9) is then a

reduction of degrees of freedom using the canonical approximation of a tensor [7, 8, 9, 10].

This problem is ill-posed in general [11, 12, 6, 13], so the rank estimates provide us with

important practical information.

The main result is the rank bound

O(Md−1rv)

for a separable approximation of the solution. However, the numerical experiments point to

a better estimate like O(r1/arv).

The rest of the paper is organized as follows. In the section 2 we prove a theorem on the

rank estimate for continuous functions. In the section 3 we present numerical experiments

in the 2D case showing that the rank of the solution depends on the rank of the reciprocal

coefficient rather than of the number of subdomains.

2. Continuous case analysis

We can split the initial problem (1.1) into the following two ones:

• Poisson equation in the whole domain with the scaled right-hand side:

−∆uI =
1

a
f in Ω,

uI |∂Ω = 0;
(2.1)

• Laplace equation in each domain Ωi,j of a constant values of a with nonhomogeneous

Dirichlet boundary conditions:

−∆uII = 0 in Ωi,j,

uII |∂Ωi,j
= u|∂Ωi,j

− uI |∂Ωi,j
= g(∂Ωi,j).

(2.2)

Then, uI + uII = u.
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Theorem 2.1. Suppose that a 2D problem (1.1) has a separable right-hand side (1.2) and

the diffusion coefficient in the form (1.3), (1.4). Let Ωh denote a subdomain of all points

with the distance at least h from the interface specifying the jumps of the coefficient. Then

the solution u can be approximated in Ωh by a separable function uru with the rank bound

ru ≤ (4(M + 1) + r1/arf ) · C| log(ε)|| log(h)| (2.3)

and the accuracy

‖u− uru‖L∞ ≤ ε.

Proof. For each of the solutions uI , uII we can use Green’s formula [14] in the corre-

sponding domain:

u(x, y) =
1

σd

∫
∂Ω

(
K(x, y, ξ, η)

∂u(ξ, η)

∂n
− u(ξ, η)

∂K(x, y, ξ, η)

∂n

)
dξdη +

∫
Ω

f(ξ, η)

a
K(x, y, ξ, η)dξdη

 ,

where σd = 2π and K = ln
1

||x− x0||
for the 2D case; x = (x, y) and x0 = (ξ, η). From [2, 15]

we have the following approximation for the logarithmic potential (kernel) at some distance

away from the singularity:

K(x, y, ξ, η) = ln
1

||x− x0||
≈

rlog∑
k=1

K
(1)
k (x− ξ) ·K(2)

k (y − η) (2.4)

with the accuracy ∥∥∥∥∥K(x, y, ξ, η)−
rlog∑
k=1

K
(1)
k (x− ξ) ·K(2)

k (y − η)

∥∥∥∥∥
L∞

≤ ε

and the rank

rlog = O(| log ε|).

Since the coefficient a is discontinuous, the right-hand side f/a and the solution of Poisson

equation have singularities in the points of discontinuity in the coefficient. Hence we can

not consider these functions in that points, but only outside some neighborhood of the

singularities. If the size of neighborhood is bounded by h then rlog is multiplied by | log h|
[15, 16].

So, consider the first part of solution uI . From the separability properties of f , 1/a and

K we have:

uI(x, y) =
1

σd

∫
∂Ω

K
∂uI(ξ, η)

∂n
dξdη +

rlog∑
k=1

r1/a∑
l=1

rf∑
p=1

1∫
0

f
(1)
p (ξ)

a
(1)
l (ξ)

K
(1)
k (x− ξ)dξ ·

1∫
0

f
(2)
p (η)

a
(2)
l (η)

K
(2)
k (y − η)dη


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The first term consists of 4 boundary integrals, each of them requires integration only by

one variable. Applying the separability of K, we obtain rank 4rlog. The second term has

maximal rank rfr1/arlog. So, the rank of uI is estimated by

ruI
≤ (4 + rfr1/a) · C| log(ε)|| log(h)|.

As for the second term uII , we use the following approach. Consider one column of

cells (see Figure 2.1). Consider a solution, obtained from the boundary integral by the left

Figure 2.1. Working column in the boundary integral

boundary of this column. On each cell, i.e. (x, y) ∈ Ωi,j, i, j = 1, ...,M , we can write the

following:

uII,ij(x, y) =
1

σd

rlog∑
k=1

K
(1)
k (x− x∗i ) ·

yj∫
yj−1

(
∂g(x∗i , η)

∂y
K

(2)
k (y − η)− ∂K

(2)
k (y − η)

∂y
g(x∗i , η)

)
dη,

where x∗i is (fixed) x coordinate of this boundary. The solution on the whole column can be

represented as follows:

uII,i(x, y) =
M∑

j=1

θi(x)θj(y)uII,ij(x, y), i = 1, ...,M,

where θi(x) is a characteristic function of interval [xi−1, xi]. Then

uII,i =
1

σd

rlog∑
k=1

θi(x)K
(1)
k (x−x∗i )·

M∑
j=1

θj(y)

yj∫
yj−1

(
∂g(x∗i , η)

∂y
K

(2)
k (y − η)− ∂K

(2)
k (y − η)

∂y
g(x∗i , η)

)
dη

So, we obtain a function of rank rlog. After the summation by i in the direction x, and by 3

other boundaries we obtain 4M rlog. And for the full solution

ru ≤ (4M + 4 + r1/arf ) · C| log(ε)|| log(h)|.

Theorem 2.1 is proved.
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In the higher dimensional case we formulate the problem in a similar way, as it is shown

in the introduction, see (1.6)-(1.9).

In this case we can prove the following separability properties of u:

Theorem 2.2. Suppose that a d-dimensional problem (1.6) has a separable right-hand side

(1.7) and the diffusion coefficient in the form (1.8). Let Ωh denote a subdomain of all points

with the distance at least h from the interface specifying the jumps of the coefficient. Then

the solution u can be approximated in Ωh by a separable function uru (1.9) with the rank

bound

ru ≤ (2d(Md−1 + 1) + r1/arf ) · C| log(ε)|| log(h)|, (2.5)

and the accuracy

‖u− uru‖L∞ ≤ ε.

Proof. Green’s formula in this case holds as well:

u(x) =
1

(d− 2)σd

∫
∂Ω

(
K(x, ξ)

∂u(ξ)

∂n
− u(ξ)

∂K(x, ξ)

∂n

)
dξ +

∫
Ω

f(ξ)

a
K(x, ξ)dξ

 ,

where σd is a surface of unitary sphere (σd = 4π in 3D), K(x, ξ) =
1

||x− ξ||d−2
, and the kernel

also has a low-rank approximation:

K(x, ξ) =
1

||x− ξ||d−2
≈

rlog∑
k=1

K
(1)
k (x1 − ξ1) · · ·K(d)

k (xd − ξd),

The main idea of the proof is the same, as in 2D case. The differences are:

1. Now there are 2d boundaries of d-dimensional cube,

2. Each boundary has dimension d− 1, hence, Md−1 tiling.

Then, uI is approximated with the rank (2d+rfr1/a)rlog, and uII with the rank 2d Md−1 rlog.

Hence the total rank is estimated as (2.5).

3. Numerical separability properties in 2D

In the previous section we estimated the separation rank for the continuous solution to

the elliptic equation. Obviously, for the discretized problem, the same estimate (2.5) holds

for the canonical rank of discrete solution tensor. However, as we will see, the best approxi-

mation of two-dimensional discrete solution might have significantly lower rank. Namely, it

is proportional to the rank of the reciprocal coefficient r1/a, but not to the number of the

cells with constant coefficient.
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We solve the equation (1.1) using the Galerkin method [17]: choose appropriate basis

functions ϕ1(x), . . . , ϕn(x) and find the solution as a linear combination

uh(x, y) =
n∑

i1,i2=1

u(i1, i2)ϕi1(x)ϕi2(y),

with the unknown coefficients u(i1, i2) to be obtained from a linear system

n∑
i1,i2=1

u(i1, i2) (a∇ϕi1(x)ϕi2(y),∇ϕj1(x)ϕj2(y))L2(Ω) = (f, ϕj1(x)ϕj2(y))L2(Ω) ,

j1, j2 = 1, . . . , n.
(3.1)

Remark 3.1. Although we denote the basis functions by ϕ both for x and y directions (for

the ease of presentation), in fact, the number of grid points and the grid cell size can be

different for different directions, hence, in such case there will be different sets of basis

functions ϕi1(x) and ψi2(y).

We can write (3.1) in the following form:

AU = F,

where

A =
[
(a∇ϕi1(x)ϕi2(y),∇ϕj1(x)ϕj2(y))L2(Ω)

]
,

F =
[
(f, ϕj1(x)ϕj2(y))L2(Ω)

]
=

rf∑
k=1

[(
f

(1)
k , ϕj1(x)

)
L2(0,1)

]
⊗
[(
f

(2)
k , ϕj2(y)

)
L2(0,1)

]
Let us gather coefficients u(i1, i2) into a matrix U = [u(i1, i2)] ∈ Rnxn and decompose it

using the SVD:

u(i1, i2) =
n∑

k=1

σkU
(1)
i1,kU

(2)
i2,k,

where σ1 ≥ σ2 ≥ . . . ≥ σn are the singular values, and U
(1)
i1,k, U

(2)
i2,k are the kth singular

vectors. In order to obtain a reduced representation for the solution, we can truncate this sum

keeping only the summands with a certain number of senior singular values and neglecting

the summands with smaller singular values. In this way we arrive at an approximation to U

of a lower rank Uru = [uru(i1, i2)]:

uru(i1, i2) =
ru∑

k=1

σk U
(1)
i1,k U

(2)
i2,k.

Given an accuracy parameter ε, we can choose ru so that the estimate ||U − Uru|| ≤ ε is

guaranteed to hold with a minimal possible ru. Then, it is easy to derive that

ûru(x, y) =
n∑

i1,i2=1

uru(i1, i2)ϕi1(x)ϕi2(y) =
ru∑

k=1

σk

(
n∑

i1=1

U
(1)
i1,kϕi1(x)

)(
n∑

i2=1

U
(2)
i2,kϕi2(y)

)
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approximates uh(x, y) with accuracy O(ε).

In the numerical examples below, we are interested to find relations between ru and ε,

r1/a, rf , and their dependence on n. In the following we assume that a has constant values on

M ×M cells. We take piecewise linear hat elements as basis functions ϕi(x) on the uniform

grid.

1. Dependence on ε and n (table 3.1). We can deduce that practical dependence

Table 3.1: ru versus ε and n; r1/a = 1; M = 8.

log10(1/ε)

n 4 5 6 7 8 9 10

16 2 4 5 5 6 7 7

32 3 5 5 7 7 9 9

64 2 4 4 6 6 9 9

128 2 4 5 6 8 10 11

256 2 4 5 6 8 10 12

512 3 4 5 7 8 11 13

1024 3 4 6 8 9 12 14

is of the form

ru(ε) = C · log(1/ε). (3.2)

If we make a linear fit of ru(| log(ε)|) for n = 1024, using the least squares method, the

dependence is ru = 1.86 · log(1/ε)− 5. Also we can see that if the approximation tolerance ε

is greater than the discretization error O(1/n2), then ru does not depend on n (e.g., see the

column with ε = 10−5).

2. Dependence on r1/a (table 3.2). Now the least squares linear fitting gives a

Table 3.2: ru versus ε and r1/a; M = 8; n = 256.

log10(1/ε)

r1/a 4 5 6 7 8 9 10

1 3 4 6 8 9 12 14

2 5 8 14 21 28 34 41

3 5 8 14 20 30 37 47

4 7 13 22 35 45 56 67

5 8 17 31 46 60 73 85

6 8 17 30 46 65 80 93

7 11 19 34 54 72 91 107

8 11 23 41 60 81 96 112
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dependence ru = 13.95 · r1/a + 7.96 (for ε = 10−10). Thus,

ru(r1/a) = C · r1/a. (3.3)

3. Dependence on M (table 3.3). In this example we use randomly generated values

Table 3.3: ru versus ε and M ; r1/a = 1; n = 256.

log10(1/ε)

M 4 5 8 11

2 2 3 7 12

3 2 4 9 16

4 3 4 11 17

8 3 5 12 18

12 4 5 12 19

16 3 5 11 18

32 3 5 11 18

in the closed interval [1, 7] for rank-1 a. We see that for sufficiently large M (M > 4), the

rank ru does not depend on M . As a matter of fact, if the rank r1/a is fixed, then ru becomes

a constant, no matter whatever big jumps and high oscillations in a might occur (see Fig.

3.1). In this examples we take a separable function f with rf = 1, but the same results

Figure 3.1. Randomly filled coefficient a with rank 1 and 16x16 domain splitting

are observed as well with rf > 1. Consequently, from equations (3.2)-(3.3) we observe an

estimate of the form

ru ≤ C · r1/a · log(1/ε). (3.4)

Thus the experimental rank of the solution on the uniform grid depends on r1/a.
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4. Conclusion

We presented an estimate of the separation (canonical) rank of the solution to diffusion

equation with variable coefficient. This result is based on the known estimates of the sepa-

ration rank for the Poisson equation with the constant coefficient in Rd. As the structuring

property of the coefficient, the number of cells with different values of a is included in the

theoretical rank bound. This result can be applied for the discrete solution as well, with

a discretization scheme on tensor grids which possess the approximation property. But the

best approximation to discrete solution usually has essentially lower rank. To obtain this

result theoretically, a special approach is required. The estimate (3.4) is going to be proved

(under additional constraint to the separation of 1/a) in the forthcoming paper.

Another part of work is the usage of more robust tensor formats, for example, the Tensor

Train (TT) format [18, 19] and Quantics-TT [20, 21]. The stable linear operations and

rank truncation in the formats allow to keep all the data in TT representation during the

whole iterative solution process. As the TT ranks are less or equal to the canonical rank,

the estimate (2.5) can be applied here straightforwardly. However, usually the bound (2.5)

provides significantly overestimated ranks. So the application of TT/QTT formats to elliptic

equations is to be considered in a separate paper.
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