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1. Introduction

This paper studies solution sets of linear inequalities

(1) ci ≤
m∑
j=1

αij · fj , 1 ≤ i ≤ n ,

where the numbers c1, . . . , cn and αij for 1 ≤ i ≤ n, 1 ≤ j ≤ m, satisfy the
following conditions:

(I) ci > 0 for 1 ≤ i ≤ n,
(II) αij ≥ 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ m,
(III) for all i with 1 ≤ i ≤ n there exists j with 1 ≤ j ≤ m and αij > 0,
(IV) for all j with 1 ≤ j ≤ m there exists i with 1 ≤ i ≤ n and αij > 0.

The examination of solution sets of arbitrary finite systems of linear inequali-
ties, which are always polyhedral sets, is well established, see for instance [Web],
Section 3.2, and [Zie], Chapter 1. However, for our special class of linear in-
equalities (1), given in terms of the conditions (I)–(IV), we can derive results
on the characterization of solution sets that do not hold in general for arbitrary
polyhedral sets. We particularly study minimal solutions with respect to the
product order as well as certain projections from the full solution set into the set
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of minimal solutions with a variety of instructive properties (see, for instance,
Theorem 2.1, Corollary 2.2, and Theorem 2.4).

The motivation of our special inequality systems comes from the study of
Bayesian networks as formalism for a causality theory that has been proposed
by Pearl [Pe]. In order to be more precise, in Section 1.1 we present two in-
equalities derived in the work of one of the authors [Ay], [SA]. Although these
examples serve as motivation of the present work, the direct applications of
this paper to causal inference are not explored here and are subject of future
research.

1.1. Information-Theoretic Inequalities. The two examples below refer to
distributions that are factorizable with respect to a directed acyclic graph G =
(V,E), E ⊆ V ×V , where V is a finite set. To simplify notation, in this section
we put V = {1, . . . , N}. The acyclicity property of G simply means that there
are no directed cycles in the graph, see as illustration Figure 1. With each node

Figure 1

v we associate a random variable Xv and assume that the joint distribution of
these variables satisfies

(2) p(x1, . . . , xN ) =
N∏
v=1

p(xv|xpa(v)) .

Here, pa(v) denotes the set of parents of node v. The graph, together with the
conditional distributions p(xv|xpa(v)) is called a Bayesian network . The required
technical definitions related to Bayesian networks are given in the appendix.

Given a Bayesian network B and a subsystem S ⊆ V , say S = {1, . . . , n}, we
denote the joint distribution of the variables Xv, v ∈ S, by pS(B) (marginal
distribution). In [Ay], [SA], general inequalities of the following type have been
derived, which hold for any Bayesian network B:

(3)
∑
j

αij · fj(B) ≥ ci
(
pS(B)

)
.

Here, the fj on the left hand side as well as the right hand side depend on
the underlying Bayesian network B. However, what makes the inequalities (3)
special is the fact that the dependence of the right hand side is only through
pS(B). This can be used for the inference of particular aspects of the underlying
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Bayesian network B: Assume that the marginal distribution pS(B) is available
to an observer who only observes the variablesXv, v ∈ S. Then for any Bayesian
network B that is consistent with this observation, the right hand side of (3) is
constant, and the values fj(B) have to satisfy the resulting linear inequalities
which are of the form (1). Those Bayesian networks B for which the values
fj(B) do not satisfy these constraints are not possible as underlying Bayesian
networks. This kind of exclusion is of particular interest if it allows to deduce
structural properties of the underlying network.

In the examples below, both the fj ’s and the ci’s are given in terms of infor-
mation theoretic quantities. In this context, particularly important building
blocks of these quantities are the entropy and the mutual information. Given
two random variables X and Y and corresponding distributions p(x), p(y), and
p(x, y), they are defined as follows:

H(X) = −
∑
x

p(x) ln p(x) (entropy) ,

I(X : Y ) =
∑
x,y

p(x, y) ln
(

p(x, y)
p(x) p(y)

)
(mutual information) .

1.1.1. Local information flows. We consider the information inequalities (see
[Ay], Theorem 3)

(4)
∑
v∈A

I(Xv : Xpa(v)) ≥
∑
v∈A

H(Xv)−H(XA), A ⊆ S .

Here, each mutual information term Iv := I(Xv : Xpa(v)) measures the local
information flow into the node v. Therefore, the sum on the left hand side
quantifies the total information flow into the observed subsystem S. Obviously,
these inequalities have the form (3). That is, the right hand side only depends
on the marginal pS , whereas each term of the left hand side also depends on
further information contained in B. We use the abbreviation cA for the right
hand side of (4):

(5)
∑
v∈A

Iv ≥ cA, A ⊆ S , cA > 0 .

We now want to address the following question: What is the maximal number
of vanishing Iv’s? To put this question in more formal terms, we define

M(B) := {A ⊆ S : Iv = 0 for all v ∈ A}
and have to determine

ν := sup
B

max
A∈M(B)

|A| .

To this end, consider the set

N := {A ⊆ S : cA = 0} .
Obviously, if a set A ⊆ S satisfies Iv = 0 for all v ∈ A, that is A ∈M(B), then
A ∈ N. This implies

ν ≤ max
A∈N

|A| .
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It is easy to see that even equality holds by finding a Bayesian network B for
which

(6) max
A∈M(B)

|A| ≥ max
A∈N

|A|

holds. We define the Bayesian network as follows: As node set we choose the
observed subset S = {1, . . . , n} and select a set A ∈ N with maximal cardinality
which we denote by m. Without loss of generality we assume A = {1, . . . ,m} ⊆
S and decompose the distribution on S:

p(x1, . . . , xn) =
n∏
i=1

p(xi |x1, . . . , xi−1)

= p(x1) p(x2) · · · p(xm)
n∏

i=m+1

p(xi |x1, . . . , xi−1).

This product structure suggests to choose the edge set

{(i, j) ∈ S × S : i < j, j ≥ m+ 1}
between the nodes of S. Finally, we choose kernels κv, v ∈ S, such that
they coincide with the conditional distributions whenever the latter are defined.
Clearly, for this Bayesian network we have the inequality (6).

From our considerations it immediately follows that the minimal number ν∗ of
positive information flows is given by |S| −maxA∈N |A|: With

M(B) := {A ⊆ S : Iv > 0 for all v ∈ A}
one has

ν∗ = inf
B

min
A∈M(B)

|A|

= inf
B

min
A∈M(B)

(|S| − |A|)

= |S| − sup
B

max
A∈M(B)

|A|

= |S| − max
A∈N

|A|

= |S| − ν .

These results can be compared with the general results on solution sets of linear
inequality systems given in Section 2 (see Example 2.18 (a)).

1.1.2. Entropy of common ancestors. Again, we consider a subset S of V , and
the corresponding atoms of the partition generated by the ancestral sets an(v),
v ∈ S:

πA :=

(⋂
v∈A

an(v)

)
∩

 ⋂
v∈V \A

an(v)

 , A ⊆ S .

Given A, πA consists of the nodes w ∈ V that satisfy w ; v for all v ∈ A
and w 6; v for all v ∈ S \ A. Note that this set can be empty. In that case,
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the configuration set XπA consists of the empty configuration ε, and therefore
H(XπA) = 0. This of course implies that πA 6= ∅, if H(XπA) > 0. We define

(7) π(g) := {v ∈ V : v ; a for at least g nodes a in S} =
⊎
A⊆S
|A|≥g

πA .

In [SA], the following inequality has been derived:
(8)

H(Xπ(g)) ≥ 1
|S| − g + 1

(∑
v∈S

H(Xv)− (g − 1) ·H(XS)

)
, 2 ≤ g ≤ |S| .

On the left hand side of this inequality we have the entropy of the common
ancestors of at least g observed nodes in S. The expression on the right hand
side only depends on the marginal distribution on S and can be positive or
negative. If it is positive, then this inequality already implies the existence of
common ancestors of at least g nodes in any Bayesian network that is consistent
with the observation. Thus, we have a structural implication on the underlying
Bayesian network based on the observed marginal distribution.

We abbreviate the right hand side of the inequality (8) by cg and use the decom-
position (7) of π(g) in order to obtain inequality constraints for the entropies of
the atoms πA:

(9)
∑
A⊆S
|A|≥g

H(XπA) ≥ cg, 2 ≤ g ≤ |S|, cg > 0 .

In contrast to the first example of local information flows, here only one positive
entropy term is already sufficient for satisfying these inequalities.

2. Solutions and Minimal Solutions

After having motivated the general problem, we now return to the inequalities
(1) and study the sets

L := {(f1, . . . , fm) ∈ Rm : f1, . . . , fm ≥ 0, and (1) is satisfied}
and

L0 := Lmin- with respect to the product order “≤” in Rm.

More precisely: f = (f1, . . . , fm) ∈ L0, g = (g1, . . . , gm) ∈ L, and gi ≤ fi for all
i always implies g = f .

The set L0 is interesting, because one knows all solutions in L as soon as one
knows all solutions in L0.

It follows directly from the assumptions that

(10) (T, . . . , T ) ∈ L, if T ∈ R+ is sufficiently large.

Theorem 2.1. There is a mapping p : L → L0 that satisfies the following
conditions:
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(a) p(f) ≤ f for all f = (f1, . . . , fm) ∈ L,

(b) p(f) = f if f ∈ L0,

(c) There exists an L ∈ R+ such that for all f, g ∈ L:

‖p(f)− p(g)‖sup ≤ L · ‖f − g‖sup.

Proof. For 1 ≤ j ≤ m define

Pj := {i : 1 ≤ i ≤ n, αij > 0}.
For given f ∈ L and 1 ≤ j ≤ m we then define pj(f) = (f ′1, . . . , f

′
m) ∈ L as

follows:

f ′k :=



fk for k 6= j

max

{0} ∪
 ci
αij
−

m∑
ν=1
ν 6=j

αiν
αij
· fν : i ∈ Pj


 for k = j

From these definitions it follows that

pj(f) ≤ f ; pj(f) = f if f ∈ L0; pj(f) ∈ L.

Furthermore, for f = (f1, . . . , fm) ∈ L, g = (g1, . . . , gm) ∈ L, and with

Lj := max
i∈Pj

 m∑
ν=1
ν 6=j

∣∣∣∣αiναij
∣∣∣∣


we obtain

f ′j ≤ max

{0} ∪
 ci
αij
−

m∑
ν=1
ν 6=j

αiν
αij
· gν : i ∈ Pj




+ max

{0} ∪


m∑
ν=1
ν 6=j

αiν
αij
· (gν − fν) : i ∈ Pj




≤ g′j + Lj · ‖g − f‖sup.

Analogously we have
g′j ≤ f ′j + Lj · ‖g − f‖sup.

This means the following:

‖pj(g)− pj(f)‖sup ≤ (Lj + 1) · ‖g − f‖sup.

Now we define p : L→ L0 as

p(f) := (pm ◦ · · · ◦ p1)(f).
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Then the three properties stated in the theorem follow with

L :=
m∏
j=1

(Lj + 1).

�

Corollary 2.2. The mapping p : L → L0 in the above theorem satisfies the
Lipschitz-condition and is therefore continuous. In particular, L0 = p(L) is, as
image of the convex set L, connected.

Remark 2.3. We have the following chain of implications:

x0 is an extreme point of L ⇒ x0 ∈ L0 ⇒ x0 is a boundary point of L.

F

We introduce the following conventions: Let p : L→ L0 be as in Theorem 2.1.
Furthermore, let S denote the set of extreme points of L, which is non-empty
and finite, and

A := conv(S).

For y1, . . . , yk ∈ Rm \ {0} put

cone({y1, . . . , yk}) :=


k∑
j=1

λj · yj : λ1, . . . , λk ≥ 0

 .

Finally, let e1, . . . , em ∈ Rm denote the canonical unit vectors, and put

C0 := cone({e1, . . . , em}).

Theorem 2.4. The following holds:

(a) L = L0 + C0.

(b) L = A+ C0.

(c) L0 ⊆ A.

(d) L0 = p(A) ⊆ A, and L0 is compact.

Proof.
(a) This clearly follows from the definition of L0 and the fact that x ≤ y and
x ∈ L always implies y ∈ L.

(b) The set L is non-empty and does not contain any line. Therefore, there are
points y1, . . . , yk ∈ Rm \ {0} satisfying

L = A+ cone({y1, . . . , yk}).
(See for example [Web], Theorem 4.1.3, or [Zie], Theorem 1.2.) From the fact
that L contains only points with non-negative entries it follows immediately that
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all vectors y1, . . . , yk have only non-negative entries. Therefore, with A ⊆ L we
also have

L = A+ cone({y1, . . . , yk}) ⊆ A+ C0 ⊆ L.
Therefore, we have A+ C0 = L.

(c) Let f ∈ L0. Then, according to (b) there exist x ∈ A and y ∈ C0 with
f = x+ y. Then, y ≥ 0, x ∈ A ⊆ L, and f ∈ L0 yield:

y = 0 and therefore f = x ∈ A.

(d) According to (c) we have L0 ⊆ A ⊆ L and therefore

L0 = p(L0) ⊆ p(A) ⊆ p(L) = L0.

This implies p(A) = L0 ⊆ A. With the compactness of A and the continuity of
p we obtain the compactness of L0 = p(A). �

Remark 2.5. Clearly, L is anm-dimensional subset of Rm. In many examples,
also the polytope A has dimension m; see for instance, Example 2.12. However,
the polytope A can also have a smaller dimension and can even coincide with
L0. F

Example 2.6. For m = 3 we consider the following system of n = 4 linear
inequalities for variables x1, x2, x3 ≥ 0:

x1 + x2 ≥ 1, x1 + x3 ≥ 1, x2 + x3 ≥ 1, x1 + x2 + x3 ≥ 2.

Here we have S = {v1, v2, v3} with

v1 = (0, 1, 1), v2 = (1, 0, 1), v3 = (1, 1, 0).

Therefore we have

A = conv(S) = {(x, y, z) ∈ R3 : 0 ≤ x, y, z ≤ 1, x+ y + z = 2}.
The equality A = L0 immediately follows from the fact that each two distinct
points in A are not comparable with respect to the product order.
Note that none of the four inequalities of the above system is redundant: Con-
sider the points

f1 = (0, 0, 2), f2 = (0, 2, 0), f3 = (2, 0, 0), f4 = (1
2 ,

1
2 ,

1
2).

Each point fi, 1 ≤ i ≤ 4, does not satisfy the i-th inequality but all the other
inequalities. F

In order to further study the structure of L0 we first show the following propo-
sition.

Proposition 2.7.
(a) Let x, y ∈ L with x 6= y, and let λ, ν > 0 with λ+ ν = 1 and
z := λ · x+ ν · y ∈ L0. Then we have: x, y ∈ L0.

(b) If K is a convex subset of L then K \ L0 is also convex.

(c) L \ L0 and A \ L0 are convex sets.
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Proof.
(a) We prove this statement by contradiction. Assume y /∈ L0. Then there
exists δ > 0 and i, 1 ≤ i ≤ m, such that for the unit vector ei we get:

y − δ · ei ∈ L.
This implies that also

z − ν · δ · ei = λ · x+ ν · (y − δ · ei) ∈ L.
This contradicts the assumption z ∈ L0 because ν · δ > 0.
Similarly we obtain x ∈ L0.

• ••

•

•

x

y

z

z − ν · δ · ei y − δ · ei

Figure 2

(b) If x, y ∈ K \L0 then (a) implies that the line segment xy does not intersect
L0. The convexity of K implies that xy ⊆ K \ L0.

(c) This follows from (b) by specialization. �

Corollary 2.8. For each line g ⊆ Rm that contains at least two points of L0

we have g ∩ L ⊆ L0.

In addition, the first part of Proposition 2.7 implies the following.

Theorem 2.9. L0 is the union of faces of A and also the union of faces of
L.

The following structural result implies an even stronger connection between the
faces of A, the faces of L and the set L0.

Theorem 2.10. Let B be a non-empty face of A with dimB < m. Then the
following statements are equivalent.

(i) B ⊆ L0.

(ii) B is a face of L.

(iii) B is contained in a supporting hyperplane H of L that has a normal
vector, pointing into L, with only positive coordinates.
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Proof.
(i) ⇒ (ii): Let x, y ∈ L with x 6= y and let λ, ν > 0 with λ + ν = 1 and
λ · x+ ν · y ∈ B. We have to show that x, y ∈ B.
From the first part of Proposition 2.7 and the assumption B ⊆ L0 we get
x, y ∈ L0 ⊆ A. The fact that B is a face of A then implies x, y ∈ B.

(ii) ⇒ (iii): Let H be a supporting hyperplane of L with L ∩ H = B. It is
sufficient to deduce a contradiction from the assumption that H has a normal
vector z = (z1, . . . , zm) with zi > 0 and zj ≤ 0 for some i, j.
The vector x := zi · ej + |zj | · ei is perpendicular to z, and x ≥ 0. Therefore,
given an arbitrary b ∈ B = L ∩H we have

b+ λ · x ∈ L ∩H = B for all λ > 0.

However, this is not possible because x 6= 0 and B is bounded as a face of the
polytope A.

(iii) ⇒ (i): Let b ∈ B. If b /∈ L0 then there is an i and some λ > 0 with
b− λ · ei ∈ L. On the other hand, b+ λ · ei ∈ L, and therefore

{b− λ · ei, b, b+ λ · ei} ⊆ H.

This would imply that H has a normal vector that is perpendicular to ei .
According to (iii) this is not possible. �

Remark 2.11. In [V], for the first time visibility problems have been studied;
see also [MS] and [MW]. Given a convex subset K of Rm, p ∈ Rm \ K, and
q ∈ ∂K, we say that q is visible by p, if

pq ∩K = {q} .
In the special case K = L the above theorems imply that each point q ∈ L0 is
visible by the origin 0 because we have 0q ∩ L = {q}. This observation might
be methodologically interesting and establishes connections between visibility
problems and linear inequality systems. As the following example shows, not
all points of L that are visible by 0 are in fact contained in L0 (see Figure 3):

x1 ≥ 1, x2 ≥ 1, x1 + x2 ≥ 3 .

In this example, all points of the unbounded set ∂L are visible by 0. On the
other hand, with the two points p = (2, 1) and q = (1, 2) we have L0 = pq. F

Finally, we study the following example.

Example 2.12. For m = 3, consider the following linear inequality system
with variables x1, x2, x3 ≥ 0:

x1 + 2x2 + x3 ≥ 3, x1 + x2 + 2x3 ≥ 3.

The corresponding set of extreme points is given by S = {v1, v2, v3, v4} where

v1 = (3, 0, 0), v2 = (0, 3, 0), v3 = (0, 0, 3), v4 = (0, 1, 1).

The set A = conv(S) is a 3-dimensional simplex. With

Bi := conv(S \ {vi}), 1 ≤ i ≤ 4,
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••••••

•

•

•

•

•

•

••

L

x1

x2

p

q

0

1

1

•

Figure 3

we have
L0 = B2 ∪B3.

B2 and B3 are those faces of A that are also faces of L.

The face B1 = conv({v2, v3, v4}) is contained in the unbounded face B1 +
cone({v2, v3, v4}) of L. However, the face B4 = conv({v1, v2, v3}) is not con-
tained in ∂L at all, but B4 ∩ ∂L coincides with the relative boundary of B4.

Finally, we consider the projection p = p3 ◦ p2 ◦ p1. The restriction of p to
∂A \ L0 is not injective:
For an element f of the relative interior of the face B1, there exists a point f̃
in the relative interior of the face B4 satisfying p1(f̃) = f : In order to see this,
consider λ1, λ2, λ3 > 0 with λ1 + λ2 + λ3 = 1 and

f = λ1 · (0, 3, 0) + λ2 · (0, 0, 3) + λ3 · (0, 1, 1) = (0, 3λ1 + λ3, 3λ2 + λ3).

Then the statement follows for

f̃ =
1
3
· λ3 · (3, 0, 0) + (λ1 + 1

3 · λ3) · (0, 3, 0) + (λ2 + 1
3 · λ3) · (0, 0, 3)

= (λ3, 3λ1 + λ3, 3λ2 + λ3).

Since λ3 > 0 we have f̃ 6= f . Furthermore,

p(f̃) = (p3 ◦ p2 ◦ p1)(f̃) = (p3 ◦ p2)(f) = (p3 ◦ p2 ◦ p1)(f) = p(f).

More precisely, (p3◦p2)(f) = p(f) is contained in the union of the line segments
v2v4 and v3v4. From λ1 > 0 and λ2 > 0 it follows that p(f) is distinct from f .

We point out that in this example the following holds:

L0 ( ∂L ∩A.
Each point f of the relative interior of B1 is not only contained in A but also
in ∂L. However, it is not contained in L0. F
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Question 2.13. Given j0, we are now interested in the number

fj0 := min
{
fj0 ∈ R : (f1, . . . , fj0 , . . . , fm) ∈ L

for some f1, . . . , fj0−1, fj0+1, . . . , fm
}
.

Here, we have to distinguish between the following two cases:

Case 1: There exists i such that in (1) there is an inequality of the form
ci ≤ αij0 · fj0 . Then one can assume that there is only one such inequality. In
that case, we have fj0 = ci

αij0
.

Case 2: If such an i does not exist then fj0 = 0. This follows from (10). F

Theorem 2.14. Assume 1 ≤ j1 < · · · < jk ≤ m. Then the following
statements are equivalent:

(i) There is (f1, . . . , fm) ∈ L with fjν = 0 for 1 ≤ ν ≤ k.

(ii) There is (f1, . . . , fm) ∈ L0 with fjν = 0 for 1 ≤ ν ≤ k.

(iii) For every i with 1 ≤ i ≤ n there exists j ∈ {1, . . . ,m} \ {j1 . . . , jk}
with αij > 0.

Proof.
(ii) ⇒ (i): This implication is trivial.

(i) ⇒ (ii): This follows immediately from the fact that the map p : L → L0

constructed in Theorem 2.1 satisfies p(f) ≤ f for all f ∈ L.

(i)⇒ (iii): Assume (iii) is wrong. Then the i’th inequality in (1) impies ci ≤ 0,
which is impossible.

(iii) ⇒ (i): After removing all products αijν · fjν in (1) we get a new system
of inequalities which is solvable according to (10). �

Specialization of this theorem implies:

Corollary 2.15. For 1 ≤ j ≤ m the following statements are equivalent:

(i) There is (f1, . . . , fm) ∈ L with fj = 0.

(ii) There is (f1, . . . , fm) ∈ L0 with fj = 0.

(iii) No inequality of the system (1) has the form ci ≤ αij · fj.

Definition 2.16. The system (1) is called reduced , if for all j with 1 ≤ j ≤ m
the equivalent conditions of the above corollary are satisfied. �

Remark 2.17. Every linear inequality system (1) can be transformed into a
reduced one:
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If (1) is not reduced then at least one of the inequalities has the form

ci0 ≤ αi0j0 · fj0 .
From now on, we assume that there is no further such inequality with the same
index j0.

With
(f ′1, . . . , f

′
m) := (f1, . . . , fj0−1, fj0 −

ci0
αi0j0

, fj0+1, . . . , fm) ,

the inequality system (1) is equivalent to the system

(11) ci − ci0 ·
αij0
αi0j0

≤
m∑
j=1

αij · f ′j for 1 ≤ i ≤ n.

Here, the inequalities with non-positive left-hand side, in particular for i = i0,
can be ignored. Repeating this procedure, after at most m steps we get a
reduced system. F

We now consider the following problem: What is the largest number k such
that there exist j1, . . . , jk with 1 ≤ j1 < · · · < jk ≤ m and also (f1, . . . , fm) ∈ L
with

fjν = 0 for 1 ≤ ν ≤ k?
This is the largest number k with the following property: k columns of the
matrix (αij)1≤i≤n, 1≤j≤m can be cancelled in such a way that the remaining
n× (m− k)-matrix does not have any row with only zeros.

We can reinterpret this problem in terms of the bipartite graph G = (Z ∪S,E)
where Z = {z1, . . . , zn} denotes the set of rows, S = {s1, . . . , sm} denotes the
set of columns, and

E := {{zi, sj} : αij > 0}.
Then k is the largest number with the following property: There exist m − k
rows sν1 , . . . , sνm−k with

N({sν1 , . . . , sνm−k}) = Z.

Here, for W ⊆ Z ∪ S, N(W ) denotes the set of neighbors of W .

Example 2.18. In this example, we revisit the Sections 1.1.1 and 1.1.2 of the
introduction and use the notation given there.

(a) The inequalities (5) can be written as∑
v∈S

αA,v · Iv ≥ cA, A ⊆ 2S \N ,

where αA,v = 1 if v ∈ A, and αA,v = 0 otherwise. The general results above
refer to solution vectors (Iv)v∈S that are not necessarily induced by a Bayesian
network. According to Theorem 2.14, the maximal number k of zeros the
solution vector (Iv)v∈S might have is the maximal number of columns, indexed
by v, which can be removed without having a vanishing row vector in the
remaining matrix. It is easy to see that this maximal number k coincides with
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maxA∈N |A|. This directly implies that the maximal number ν of vanishing
Iv’s that are induced by a Bayesian network has to be smaller than or equal
to maxA∈N |A|. According to the specific considerations of Section 1.1.1 we
even have equality, which is a stronger statement that does not follow from our
general results.

(b) We first rewrite the inequalities (9). Obviously there is a maximal g for
which cg is positive, which we denote by g∗. The number n of inequalities of
type (1) coincides with the number g∗ − 1. The number m of parameters is
given by 2|S| − |S| − 1. We obtain∑

A⊆S
|A|≥2

αg,A ·H(XπA) ≥ cg, 2 ≤ g ≤ g∗ ,

with αg,A = 1 if |A| ≥ g, and αg,A = 0 otherwise. According to the general
results above, the minimal number of positive entropy terms is one. F

3. Extreme Points of L0

In this section, we mainly study the following

Problem: Find recursively a point (f1, . . . , fm) ∈ L0 with the following prop-
erties:

(E.1) f1 is minimal
(E.j) for 2 ≤ j ≤ m : fj is minimal with respect to the conditions

(E.1), . . . , (E.j − 1).

We proceed as follows.

Algorithm:
Step 1:
If there exists one, and hence by our assumption (see Remark 2.17.), only one
inequality of the system (1) that has the form ci ≤ αi1 · f1 then we put

f1 = ci · α−1
i1 .

Otherwise, we put f1 = 0.

Step j, 2 ≤ j ≤ m:
Let f1, . . . , fj−1 be already determined. With these fixed values in (1) we obtain
a new system of inequalities:

(12) cij := ci −
j−1∑
ν=1

αiν · fν ≤
m∑
ν=j

αiν · fν , 1 ≤ i ≤ n.

Then those inequalities where the left hand side is non-positive are ignored.
If there exists at least one inequality in (12) of the form cij ≤ αij · fj , then
consider the most restrictive of these inequalities and put

fj = cij · α−1
ij .
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Otherwise put fj = 0. 2

Before we analyze this algorithm, we consider the following

Special Case:

For each two indices j1, j2 with 1 ≤ j1 < j2 ≤ m there exists an inequality in
(1) of the form

(13) ci ≤ αij1 · fj1 + αij2 · fj2 .
In this case there is no (f1, . . . , fm) ∈ L that has at least two zeros. If we assume
fj1 = fj2 = 0 then (13) would imply ci = 0, which is impossible according to
the assumption.

Otherwise, according to the above algorithm one can find a point (f1, . . . , fm) ∈
L0.

Here, each component is different from zero if and only if for all j with 1 ≤ j ≤ m
in (1) there is one inequality of the form

ci ≤ αij · fj
where i depends on j.

Example 3.1. We consider the following system with m = 3:

(14)

1 ≤ f1 + f2 ,
2 ≤ f1 + f3 ,
4 ≤ f2 + f3 ,
3 ≤ f1 + f2 + f3 .

Note that the last inequality follows from the first three inequalities by summa-
tion. With the above algorithm we obtain f1 = 0 and the remaining inequality
system

(15) 1 ≤ f2, 2 ≤ f3, 4 ≤ f2 + f3 .

This yields the following solution:

(f1, f2, f3) = (0, 1, 3) .

If we consider the modified order (f3, f2, f1) then we obtain f3 = 0 and

(16) 1 ≤ f1 + f2, 2 ≤ f1, 4 ≤ f2 .

This yields the solution

(f3, f2, f1) = (0, 4, 2) ; this means (f1, f2, f3) = (2, 4, 0) .

F

Theorem 3.2. The solution (f1, . . . , fm) ∈ L0 described by the above algo-
rithm is an extreme point of L.
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Proof. We prove the statement by contradiction and therefore assume that f =
(f1, . . . , fm) is not an extreme point of L. Then there exists v = (v1, . . . , vm) ∈
Rm \ {0} with f − v ∈ L and f + v ∈ L. Let j be minimal with 1 ≤ j ≤ m
and vj 6= 0. Without loss of generality we assume vj > 0. Then step j of
the algorithm, according to (E.j), yields f ′j with f ′j ≤ fj − vj < fj . This is a
contradiction, which completes the proof. �

Remark 3.3. In the above theorem, the converse implication is not true in
general. Depending on the order of the coordinates, the described algorithm
yields at most m! distinct extreme points. However, for a given m it is possible
to have an arbitrary number of extreme points. F

Example 3.4. For m = 2 and n ≥ 1, consider the following system of
inequalities:

ci := 2i−1 · (n+ 2− i)− 1 ≤ 2i−1 · f1 + f2 for 1 ≤ i ≤ n.
The extreme points here are

pi = (n− i, 2i − 1) for 0 ≤ i ≤ n ,
see Figure 4. F
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•

•
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1

•

•

•

•
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p1

p2

p3

L

Figure 4. Illustration of Example 3.4 in the case n = 3.

Remark 3.5. If for m = 2 the system (1) is reduced then there exist
positive real numbers a and b, which are unique, such that Q1 = (0, a) and
Q2 = (b, 0) are extreme points of L. Each point (x, y) with x ≥ 0, y ≥ 0 and
a ·x+ b ·y ≥ a · b lies above the line segment Q1Q2 and therefore also in L. This
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means the following: Each extreme point of L lies in the closed triangle given
by the points (0, 0), Q1, and Q2.
This leads to the question whether a similar situation is also given for m ≥ 3.
More precisely, is it true that each extreme point of L lies in the convex hull of
the origin and the lexicographically minimal solutions of L with respect to all
m! possible orderings of the coordinates? The next example proves that this is
actually not always the case. F

Example 3.6. For m = 4 we consider the following system of linear inequal-
ities in which all non-vanishing coefficients have the value 1:

1 ≤ fi + fj for 1 ≤ i < j ≤ 4 ,
3
2 ≤ f1 + f2 + f3 ,

2 ≤ fi + fj + f4 for 1 ≤ i < j ≤ 3 ,
3 ≤ f1 + f2 + f3 + f4 .

Note that the inequality given in the second line of this system is redundant.
It follows by addition of the three inequalities of the form

1 ≤ fi + fj for 1 ≤ i < j ≤ 3 .

We obtain the following lexicographically minimal solutions in L0 depending
on the orderings of the coordinates:

Q1 = (0, 1, 1, 1), Q2 = (1, 0, 1, 1), Q3 = (1, 1, 0, 1), Q4 = (1, 1, 1, 0) .

However,
Q = (1

2 ,
1
2 ,

1
2 ,

3
2)

is also an extreme point of L. This is the unique intersection point of the
following four affine hyperplanes:

H1 = {(x1, x2, x3, x4) ∈ R4 : 1 = x1 + x2} ,
H2 = {(x1, x2, x3, x4) ∈ R4 : 1 = x1 + x3} ,
H3 = {(x1, x2, x3, x4) ∈ R4 : 1 = x2 + x3} ,
H4 = {(x1, x2, x3, x4) ∈ R4 : 3 = x1 + x2 + x3 + x4} .

These hyperplanes are supporting hyperplanes of L. The point Q has a coor-
dinate with value 3

2 and is therefore not contained in

conv({0, Q1, Q2, Q3, Q4}) ⊆ [0, 1]4.

With the same argument it follows that there is noQ ∈ conv({0, Q1, Q2, Q3, Q4})
with p(Q) = Q: For Q ∈ L ∩ [0, 1]4 one also has p(Q) ∈ [0, 1]4. F
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Appendix

In this appendix we provide the technical definitions of directed acyclic graphs
and Bayesian networks informally used in the introduction.

3.1. Directed acyclic graphs. We consider a directed graph G := (V,E)
where V 6= ∅ is a finite set of nodes and E ⊆ V × V is a set of edges between
the nodes. An ordered sequence (v0, . . . , vk), k ≥ 0, of distinct nodes is called
a (directed) path from v0 to vk with length k if it satisfies (vi, vi+1) ∈ E for all
i = 0, . . . , k − 1. Given two subsets A and B of V , and a path γ = (v0, . . . , vk)
with v0 ∈ A and vk ∈ B, we write A

γ
; B. If there exists a path γ such that

A
γ
; B we write A ; B, and A 6; B if this is not the case. Note that v ; v

for all v ∈ V (path of length 0). A directed acyclic graph (DAG) is a graph
that does not contain two distinct nodes v0 and vk with v0 ; vk and vk ; v0.

Given a DAG, we define the parents of a node v as pa(v) := {u ∈ V : (u, v) ∈ E}
and its children as ch(v) := {w ∈ V : (v, w) ∈ E}. A set C ⊆ V is called
ancestral if for all v ∈ C the parents pa(v) are also contained in C. The
smallest ancestral set that contains a set A is denoted by an(A), and one has

(17) an(A) = {v ∈ V : v ; A} .

3.2. Bayesian networks. For every node v ∈ V we consider a finite and non-
empty set Xv of states. Given a subset A ⊆ V , we write XA instead of

∏
v∈A Xv

(configuration set on A), and we have the natural projection

XA : XV → XA, (xv)v∈V 7→ xA := (xv)v∈A.

Note that in case A = ∅, the configuration set consists of exactly one element,
namely the empty configuration which we denote by ε.
A distribution on XV is a vector p = (p(x))x ∈ RXV with p(x) ≥ 0 for all
x ∈ XV and

∑
x p(x) = 1. Given a distribution p on XV , the XA’s become

random variables, and we write

p(xA) :=
∑

xV \A∈XV \A

p(xA, xV \A)

and, if p(xA) > 0,

(18) p(xB|xA) :=
p(xA, xB)
p(xA)

.

In particular, we have p(xB|ε) = p(xB) if A = ∅.
Given a DAG, we consider a family of conditional distributions κv(xpa(v);xv),
v ∈ V , that is

κv(xpa(v);xv) ≥ 0 and
∑
xv

κv(xpa(v);xv) = 1.

If pa(v) = ∅ we write κv(xv) instead of κv(ε;xv). A triple B = (V,E, κ)
consisting of a directed acyclic graph G = (V,E) and such a family κ = (κv)v∈V
of kernels is called a Bayesian network .
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Given a Bayesian network B, the corresponding joint distribution on XV is
defined as follows:

(19) p(x) = p(B;x) :=
∏
v∈V

κv(xpa(v);xv).

If a given distribution p on XV can be decomposed in this way, we say that
it admits a recursive factorization with respect to G. In that case one has
κv(xpa(v);xv) = p(xv|xpa(v)) if p(xpa(v)) > 0.
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