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Abstract. Tensors arise naturally in high-dimensional problems in chemistry, financial
mathematics and many others. The numerical treatment of such kind of problems is difficult
due to the curse of dimensionality: the number of unknowns and computational complexity
grows exponentially with the dimension of the problem. To break the curse of dimensionality,
low-parametric representations, or formats have to be used. In this paper we make use of
the TT-format which is one of the most effective stable representations of high-dimensional
tensors. Basic linear algebra operations in the TT-format are now well-developed. Our goal
is to provide a “black-box”-type solver for linear systems where both the matrix and the
right-hand side are in the TT-format. An efficient DMRG (Density Matrix Renormalization
Group) method is proposed, and several tricks are employed to make it work. The numerical
experiments confirm the effectiveness of our approach.

1. Introduction

Tensors arise naturally in high-dimensional problems, for example, in quantum chemistry [1,
2], financial mathematics [3, 4] and many others. The treatment of d-dimensional tensors is
notoriosly difficult due to the curse of dimensionality : the number of elements of a tensor
grows exponentially with the number of dimensions d, and so does the complexity to work
with fully populated tensors. As in the matrix case, one can rely on the sparsity of tensors [5].
However, this helps only for small d. For d of order tens or hundrends other approaches are
needed, and special low-parametric representations or formats, are requred. Several formats
have been proposed to represent a tensor in a data-sparse way. They include canonical and
Tucker formats, the two formats with well-established properties and application areas, see
the review [6] for more details. They have known drawbacks. To avoid these drawbacks, the
development of new tensor formats began. In 2009 independently Hackbusch and Kuhn and
later Grasedyck [7, 8] and Oseledets and Tyrtyshnikov [9] proposed two (slightly different)
hierarchical schemes for the tensor approximation, H-Tucker and Tree Tucker formats. These
formats depend on specially chosen dimension trees and require recursive procedures. To avoid
the recursion, it was proposed to use a simple matrix product form of the decomposition [10, 11],
that was called the Tensor Train format, or simply the TT-format.

$This work was supported in part by RFBR grants 09-01-12058, 10-01-00757, 11-01-00549, RFBR/DFG grant
09-01-91332, Russian Federation Gov. contracts No. Π1178, Π1112 and Π940, 14.740.11.0345 and Promotion-
stipendium of Max-Planck Gesellschaft. Part of this work was done during the stay of authors in Max-Plank
Institute for Mathematics in Sciences, Leipzig, Germany.
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A tensor A is said to be in the TT-format, if its elements are defined by formula

A(i1, . . . , id) = G1(i1) . . . Gd(id), (1.1)

where Gk(ik) is an rk−1 × rk matrix for each fixed ik, 1 6 ik 6 nk. To make the matrix-by-
matrix product in (1.1) a scalar, boundary conditions r0 = rd = 1 have to be imposed. The
numbers rk are called TT-ranks and Gk(ik) — cores of the TT-decomposition of a given tensor.
If rk 6 r, nk 6 n, then the storage of the TT-representation requires 6 dnr2 memory cells. If r
is small, then this is much smaller than the storage of the full array, nd.

The TT-format was introduced in [10, 11] as an alternative to two commonly used formats:
the canonical format and the Tucker format. These two formats can be considered as different
generalizations of the singular value decomposition (SVD) from matrices (i.e., d = 2) to higher
order tensors. The tensor is said to be in the canonical format, if

A(i1, . . . , id) =

r∑
α=1

U1(i1, α) . . . Ud(id, α).

This representation is often referred to as CANDECOMP/PAFAFAC, or simply the CP model.
If r, the canonical rank, is small, then the number of parameters depends on d linearly. The
Tucker model [12, 13] is the representation of form

A(i1, . . . , id) =
∑

α1,...,αd

G(α1, . . . , αd)U1(i1, α1) . . . Ud(id, αd),

where Uk are called Tucker factors, and the tensor G(α1, . . . , αd) — Tucker core. The canonical
format is a good candidate for low-parametric representation of tensors. It can be used to
approximate high-dimensional operators and their inverses (see, for example, [14, 15, 16, 17, 18])
using certain analytical expansions. However, the canonical format has a serious drawback:
there are no robust algorithms to compute the canonical approximation numerically. There are
efficient algorithms for computing a low-rank approximation of a given tensor [19, 20, 21], but
they are not robust. The best approximation problem in the canonical format can be ill-posed
[22] and the best approximation may not even exist.

In two dimensions the CP decomposition reduces to the skeleton (dyadic) decomposition
of a matrix, which can be computed via the SVD. The SVD is stable and efficient. These
properties are lost for tensors of order d > 3. The Tucker decomposition is stable and an optimal
approximation always exists, and a quasioptimal approximation can be computed via the Higher
Order SVD (HOSVD) [13, 23]. However, it has exponential in d number of parameters, thus it
can be applied only for small d (for the three-dimensional case d = 3 see Cross-3D method [24],
and about application of the Tucker model to the solution of Hartree-Fock equation see [25]).

The TT-format is in the middle between CP and Tucker formats: it does not have an
instinsic exponential dependence on d, but it is stable in the sense that the best approximation
with bounded TT-ranks always exists and a quasioptimal approximation can be computed by
a sequence of SVDs of auxiliary matrices [10, 11]. Thus it has a great potential for the stable
and robust approximation of high-dimensional tensors.

The TT-format comes with all basic linear algebra operations. Addition, matrix-by-vector
product, elementwise multiplication can be implemented in linear d and polynomial in r com-
plexity with the result also in the TT-format [10, 11]. The problem is that after such operations
TT-ranks are growing. For example, the TT-ranks of the sum of two tensors are equal (formally)
to the sum of the TT-ranks of the addends. In the case of the matrix-by-vector product the
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result is also in the TT-format with the TT-ranks of matrix and vector multiplied. After several
iterations, the TT-ranks will become too large, thus rounding is needed: a given tensor A is
approximated by another tensor B with minimal possible TT-ranks with a prescribed accuracy
ε:

||A − B||F 6 ε||A||F.

The rounding procedure in the TT-format can be implemented in O(dnr3) operations [10, 11].
Using fast linear algebra with rounding in the TT-format, iterative solvers can be implemented.
However, they can be rather slow due to the large number of iterations, thus a certain precon-
ditioner is needed.

Our main goal in this paper is to present a “black-box” solver for the linear system with both
the matrix and the right-hand side in the TT-format. Of course, the solution is almost always
possible only approximately, thus the required accuracy of the result should be provided to the
solver. In order to design such a solver, one has to step aside from the Krylov-type approaches
and look at the special structure of the matrix and the solution vector involved.

Instead of utilizing common solvers (CG, GMRES) based on the Krylov subspaces with
vectors and matrices stored in the structured form, the solution is sought in the TT-format
directly. In order to do this, equations for defining parameters (cores) have to be derived. This
can be achieved by reformulating the initial linear system

Ax = f,

as a minimization problem. The simplest functional is

||Ax− f|| → min (1.2)

for x ∈ S where S is a certain class of structured solutions. In our case, x is associated with
a tensor X(i1, . . . , id) with small TT-ranks. Then, (1.2) becomes a nonquadratic minimization
problem, which has to be solved by a certain minimization method. For the symmetric positive
definite case, instead of minimizing (1.2) one can solve

(Ax, x) − 2(f, x) → min, x ∈ S (1.3)

For the simplicity only the second case (1.3) will be considered, but it the obtained method is
applicable also to the case of general A.

How to solve the minimization problem? It is a non-linear minimization problem in un-
knowns Gk(ik). It can be solved by any suitable general-purpose minimization method (Newton
method, conjugate gradient). This approach may work, but it avoids the very specific structure
of the solution and thus, of the functional.

The simplest method which makes use of this structure is an alternating least squares
method. If all cores except one are fixed, the problem becomes a quadratic problem and can be
reduced to a linear system with nr2 unknowns. Then one can minimize over the next core and so
on, up to d. This approach guarantees that the value of the functional will not increase at each
iteration step. This method, however, requires the knowledge of all TT-ranks. There are d− 1

TT-ranks, and if they are underestimated, the solution will not be close to the true solution.
If they are overestimated, then the complexity may be too high. Usually, one can specify the
accuracy ε, to which the solution is sought, and ALS is non-adaptive in the sence that it requires
all TT-ranks to be known in advance. The second problem is that the convergence of the ALS
approach may be too slow. How to modify the ALS method to avoid these problems?
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The idea of modifying the ALS scheme was brought to the field of numerical analysis in the
paper [26] by S. Holtz, T. Rohwedder, R. Schneider, and it was also used to construct efficient
eigenvalue solvers for Hamiltonians in quantum molecular dynamics [27].

The idea of the modified ALS was first prosed in the solid state physics for the computation
of the minimal eigenvalue of quantum spin Hamiltonians. It is the so-called DMRG (Density
Matrix Renormalization Group) method by S. White [28]. A quantum spin system consists of K
spins, and such system is defined by a wavefunction with SK parameters, where typically S = 2

or S = 4. This wavefunction can be considered as a K-dimensional tensor. The computation of
the minimal eigenvalue can be reformulated as a problem of the minimization of the Rayleigh
quotient

(Hψ,ψ), ||ψ|| = 1,

(compare with (1.3), which is very similar), and the solution is sought as a matrix product
state [29], which is equivalent to the TT-format. The DMRG is an alternating least squares
method, but with one minor modification. Instead of minimizing over one core, the functional
is minimized over a pair of cores Gk(ik), Gk+1(ik+1). This problem still can not be reduced to
a linear eigenvalue problem, thus a supercore W is introduced by contracting over αk:

W(ik, ik+1) = Gk(ik)Gk+1(ik+1). (1.4)

The minimization problem in W is now quadratic, and can be reduced to a linear eigenvalue
problem with S2r2 unknowns. After W is computed, the TT-structure can be recovered by
computing the decomposition (1.4), which can be done by the SVD, and the rank rk is de-
termined adaptively. This step is called the decimation step. However, if A comes from the
discretization of a high-dimensional equation, the one-dimensional mode size n is usually not
small, and the size of the local problem is much larger. In this case, the QTT-format (quantized
TT-format 1) can be very helpful.

Idea behind the QTT-format is the following. Consider a vector of values of a univariate
function on a grid with 2d points, i.e. n = 2d. By the binary coding this vector can be considered
as a d-dimensional tensor with mode sizes 2. In combination with the TT-format, this yields
the QTT-format for representing vectors [30, 31]. This transformation of vectors into tensors,
“tensorization”, can be generalized to an arbitrary dimension. If a function of K variables is dis-
cretized on a tensor grid with 2d points in each direction, then the corresponding K-dimensional
tensor can be reshaped into a dk-dimensional tensor with small mode sizes. This leads to an
algebraically similar problem with small mode sizes as for the quantum spin Hamiltonian, and
the size of the local DMRG problem is only twice larger, then for the traditional ALS step.

In this paper we make one step further (especially compared to the work [26]) to the efficient
realistic black-box solver of linear systems in the TT-format. A direct implementation encoun-
ters serious difficulties, which have to be tackled. Several “tricks” will be proposed which can
be considered as technical, but only them make the method work.

Local problems have 4r2 unknowns, thus for r > 25 the size of the local matrix exceeds
10000, which is too large. For the solution of linear systems the TT-ranks can be much larger,
for example, 50 − 100. This can be called the curse of the rank : the dependence from the
TT-ranks is polynomial, and prohibits taking very large ranks. Thus, iterative methods should
be used to solve each local problem. These problems can be also ill-conditioned, and certain
preconditioning may be necessary.

1Originally the name was Quantics TT-format, but now it is clear that “Quantized” is a more appropriate
term
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The second crucial problem is in the decimation step. The truncation via the SVD guarantees
an approximation in the Frobenius norm. However, if a matrix A is ill-conditioned (for example,
it is a discretization of the differencial operator), then a small error in x may lead to a large
error in the residue ||Ax − f|| (which can be bounded only by cond(A)ε) and a much smaller
threshold ε should be used. Using a very small threshold leads to increased ranks and increased
complexity, which should be avoided. A simple truncation scheme will be proposed, which solves
this problem.

The third problem is that for certain problems the DMRG method converges to a local
minimum, i.e. all local systems are reported to be solved up to the required accuracy, but the
solution obtained is not an adequate solution of the initial linear system. This can be avoided
by using an additional “random restart” in between of the DMRG-sweeps.

Another important problem considered in this paper is the approximate matrix inversion.
It is interesting that the inversion can be performed using the same linear system solver applied
to an auxiliary system, and the complexity is only slightly larger than the complexity to solve
a single linear system. Moreover since the inversion with a very high accuracy is not always
neccessary, computations with low accuracy may provide an excellent preconditioner!

The reduction of the inversion problem to a linear system is simple: Instead of solving

AX = I, (1.5)

we solve
(A⊗ I)vec(X) = vec(I), (1.6)

where vec(X) is in fact a 4× 4× . . .× 4 d-dimensional tensor, and the right-hand side has rank
1, i.e. has a perfect structure. The matrix of the system (1.6), as it will be shown, has bounded
TT-ranks, if A has bounded TT-ranks. Thus, a linear solver can be applied.

2. Introduction to notation used

In this section several basic facts and definitions are recollected. When dealing with the TT-
representations it is convenient to work with parameter-dependent matrices, which are denoted
by, for example, Gk(ik). The size of these matrices should be clear from the context (i.e,
rk−1 × rk). The parameter-dependent matrices can be multiplied:

W(ik, ik+1) = Gk(ik)Gk+1(ik+1),

yielding a new matrix depending on a larger number of parameters. In this representation it is
important to look at the order of the elements of the product. The row and column indices of
a parameter-dependent matrix can be considered as parameters. For example, for an rk−1 × rk
parameter-dependent matrix Gk(ik) its elements (being scalars) are denoted by Gk(αk−1, ik, αk).
Again, the actual size of the parameter-dependent matrix is defined by the context. For example,
if Gk(ik) is an rk−1 × rk matrix, then Gk(αk−1, ik) defines a row-vector of length rk for each
fixed αk−1 and ik. In this form, the TT-format is represented as

A(i1, . . . , id) = G1(i1)G2(i2) . . . Gd(id). (2.1)

Vectors that are solutions to linear systems, considered in this paper, are in fact tensors. By a
vector in the TT-format we mean, that it has length N = n1 · . . . · nd and it can be considered
as an n1 × . . . × nd tensor which has low TT-ranks. Square matrices acting on such vectors
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have size N×N and their elements can be naturally indexed by a 2d-tuple (i1, . . . , id, j1, . . . , jd),
1 6 ik, jk 6 nk, i.e. M(i1, . . . , id, j1, . . . , jd). A matrix M is said to be in the TT-format, if

M(i1, . . . , id, j1, . . . , jd) = M1(i1, j1)M2(i2, j2) . . .Md(id, jd), (2.2)

where Mk(ik, jk) is an rk−1 × rk matrix, and r0 = rd = 1. If all TT-ranks are equal to 1, then
(2.2) reduces to

M = M1 ⊗ . . .⊗Md,

i.e. it has Kronecker rank 1. Thus, (2.2) is a generalization of a standard low-rank approximation
of high-dimensional operators [32, 14].

The TT-representation (2.1) is non-unique, since it is invariant under the transformation

G ′
k(ik) := Gk(ik)S, G ′k+1(ik+1) := S−1Gk+1(ik+1)

for any nonsingular matrix S. Using such transformations, certain cores of the TT-representation
can be made orthogonal. There are two types of orthogonality of cores: left-orthogonality and
right-orthogonality. A core Gk(ik) is said to be left-orthogonal, if∑

ik

Gk(ik)G
>
k (ik) = Irk−1

,

and right-orthogonal, if ∑
ik

G>k (ik)Gk(ik) = Irk .

Another interpretation of the left-orthogonality is that the tensor Gk(αk−1, ik, αk), considered
as a matrix of size (rk−1nk)× rk, has orthonormal columns. The right-orthogonality of the core
means that Gk, considered as a matrix of size rk−1 × (nkrk) has orthonormal rows. The cores
Gk(ik), . . . Gp(ip), can be made left-orthogonal by equivalent transformations. Indeed Gk(ik)
can be written as

Gk(ik) = Qk(ik)R,

where Qk(ik) is left-orthogonal by applying the QR-decomposition to a (rk−1nk) × rk matrix,
obtained from Gk(ik) by reshaping. The corresponding matrix R is constant and can be incor-
porated into the next core. Good news are that if the cores G1(i1) . . . Gk(ik) are left-orthogonal,
their product

Q(i1, . . . , ik) = G1(i1) . . . Gk(ik),

considered as an Nk × rk matrix has orthonormal columns (Nk =
∏k
s=1 ns). The proof can be

found in [11].

3. DMRG scheme for linear systems

3.1. Basic idea

First let us focus on the DMRG scheme applied to the minimization of the functional

(Ax, x) − 2(f, x) (3.1)

which is equivalent to the solution of a linear system

Ax = f,
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for the symmetric and positive definite matrix A. If x is in the TT-format, then the DMRG
algorithm is obtained by minimizing (3.1) over a supercore W(ik, ik+1) = Gk(ik)Gk+1(ik+1).
In fact, this step is equivalent to an ALS step applied to a (d − 1)-dimensional tensor of size
n1 × . . .×nk−1 × (nknk+1)× . . .×nd, i.e. with modes k, (k+ 1) treated as a one long mode of
size nknk+1. Thus, it is sufficient to derive a formula for one iteration step of the ALS method
(and use it for the modified tensor).

There are several ways to derive an expression for the local subproblem, for example in [27]
compact representations of matrix-by-vector and scalar products were used, or [26], where a
diagrammatic representation was utilized.

Here slightly different derivation will be given, which will show that the DMRG (or ALS)
is in fact a projection method on adaptively chosen subspaces. Moreover, an orthogonal basis
can be selected in these subspaces.

Suppose that the k-th core is varied (and all others are fixed). The linear system

Ax = f

can be treated as an overdetermined linear system of form

nk∑
j=1

A(ik, jk)x(jk) = f(ik), 1 6 ik, jk 6 nk,

where A(ik, jk) is a “big” matrix of size Nk×Nk, where Nk =
∏
s=1,s6=k ns for each fixed (ik, jk),

and x(jk), f(ik) are vectors of length Nk. The requirement that all cores except Gk are fixed
leads to the representation

x(jk) = Qw(jk), (3.2)

where Q is an Nk × rk−1rk matrix. By equivalent transformations of the TT-representation of
X the matrix Q can be made orthogonal. Indeed, it can be treated as a tensor with elements

Q(i1, . . . , ik−1, ik+1, . . . , id, αk−1, αk) = G1(i1) . . . Gk−1(ik, αk−1)Gk+1(αk+1, ik+1) . . . Gd(id).

If the cores Gs(is), s = 1, . . . , k − 1 are orthogonalized from the left, and the cores Gs(is), s =

k+1, . . . , d are orthogonalized from the right, then the matrix Q will have orthonormal columns.
For a symmetric positive definite case, the minimization of the functional

(Ax, x) − 2(f, x) =
∑
ik,jk

A(ik, jk)x(ik)x(jk) −
∑
jk

f(jk)x(jk),

under the restriction (3.2) leads to a smaller linear system of form∑
jk

(Q>A(ik, jk)Q)w(jk) = Q>f(ik). (3.3)

The matrices B(ik, jk) = Q>A(ik, jk)Q are of size (rk−1rk) × (rk−1rk) for each fixed pair ik, jk,
and the full matrix B of linear system (3.3) has size (rk−1rknk)× (nkrk−1rk).

An important observation is that even if A is indefinite or even is non-symmetric, the
equations (3.3) can be used, but now it is not a minimization method, but a projection method
on a subspace defined by the orthogonal matrix Q. In this setting it is unclear why this method
should converge, but our numerical experiments show that in several cases it is a good choice.The
matrices B(ik, jk) can be computed from the TT-representations of A and X. At each step of the
sweep one should solve a linear system with the matrix B. This matrix is small, compared to
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the full matrix, however its actual size can be quite large, thus special techniques are required
to form this matrix and to solve the linear system with it. It appears that it might be more
economical not to form the matrix B directly, but solve even the local linear system with the
help of some iterative solver.

3.2. Fast computation in local problems

The matrix B(ik, jk) of the system (3.3) can be treated as an array with elements B(βk−1, βk, ik, jk, γk−1, γk),
where βk−1, γk−1 vary from 1 to rk−1, and βk, γk — from 1 to rk, and these elements are defined
via a “grand summation”

B(βk−1, βk, ik, jk, γk−1, γk) =

=
∑
is,s6=k

∑
jl,l 6=kA(i1, . . . , id, j1, . . . , jd) Q(i1, . . . , ik−1, ik+1, . . . , id, βk−1, βk)×

×Q(j1, . . . , jk−1, jk+1, . . . , jd, γk−1γk).

Using the TT-representations of A and Q, the following formula for B is obtained:

B(βk−1, βk, ik, jk, γk−1, γk) = Ψk−1(βk−1, γk−1)Ak(ik, jk)Φk(βk, γk), (3.4)

where Ψk−1(βk−1, γk−1) is in fact a row vector of length Rk−1, and Φk−1(βk, γk) is a column
vector of length Rk, where Rk are the QTT-ranks of the matrix A. Ψs, s = 1, . . . , k − 1 can be
computed iteratively starting from Ψ0 = 1 by a recursion

Ψs(βs, γs) =
∑

is,js,βs−1,γs−1

Ψs−1(βs−1, γs−1)As(is, js)Xs(βs−1, is, βs)Xs(γs−1, js, γs), (3.5)

Analogous representation can be obtained for Φs, s = k, . . . , d. Let us estimate the cost of
computing Ψk using (3.5). If Ψs−1(βs−1, γs−1) is reshaped into a “long” vector ψs−1 of length
r2s−1Rs−1, and Ψs is reshaped into a “long” vector ψs of length r2sRs the expression for Ψs can be
rewritten in a compact form (see also [27]):

ψs = ψs−1
∑
ik,jk

As(is, js)⊗ Xs(is)⊗ Xs(js).

The computation of ψs when ψs−1 is known reduces to n2s products of a Kronecker rank-1
matrix by a full vector. For each fixed is, js the cost is

O(rsr
2
s−1Rs−1 + r2srs−1Rs−1 + r2sRs).

If rs ≈ r and Rs ≈ R, then the total cost for computing Φ and Ψ is

O(dn2r2R2 + dn2r3R).

Often r� R and in this case the complexity is linear in the matrix rank and cubic in the solution
rank.

The matrix B in (3.4) has size n2r2 × n2r2. Even for n = 2 its size becomes large for
r > 25. However, it is completely defined by Ψk−1(βk−1, γk−1), Ak(ik, jk) and Φk−1(βk, γk),
which require r2k−1Rk−1 + r2kRk + n2Rk−1Rk = O(n2R2 + r2R) parameters to store. Moreover,
using this additional structure, B can be multiplied by an arbitrary vector of length rk−1nkrk
fast. Indeed, it is a summation of form

W(βk−1, ik, βk) =
∑

γk−1,jk,γk

B(βk−1, βk, ik, jk, γk−1, γk)Y(γk−1, jk, γk).
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Substituting the expression for B, we get

W(βk−1, ik, βk) =
∑

γk−1,jk,γk

Ψk−1(βk−1, γk−1)Ak(ik, jk)Φk(βk, γk)Y(γk−1, jk, γk).

This sum is computed in three steps. First, the sum over γk yields:∑
γk

Φk(βk, γk)Y(γk−1, jk, γk) = Y ′(βk, γk−1, jk),

and it can be realized as a product of a matrix of size Rkrk×rk by a matrix of size rk×(nkrk−1).
The cost is O(nRr3) operations. The contraction over jk gives

Y ′′(βk, ik, γk−1) =
∑
jk

Ak(ik, jk)Y
′(βk, γk−1, jk),

which is in fact a product of a matrix of size (Rk−1nk) × (nkRk) by a matrix of size (nkRk) ×
(rk−1rk), and the cost is O(n2R2r2). Finally, the summation over γk−1 gives the result:

W(βk−1, ik, βk) =
∑
γk−1

Ψk−1(βk−1, γk−1)Y
′′(βk, ik, γk−1),

which can be implemented via a product of a matrix of size rk−1 × (rk−1Rk−1) by a matrix of
size (rk−1Rk−1)× (nkrk−1). The cost of computing such product is O(nRr3). The total cost of
computing W (i.e., the local matrix-by-vector product) is O(nRr3 +n2R2r2). If the matrix B is
stored as a full matrix, the cost of its matrix-by-vector product is O(n4r4).

4. Tricks that make it work

4.1. Trick 1: Solve large systems iteratively, small – exactly

Let us investigate, how influences the residual in a local problem on the “global” accuracy. First,
from the equation (3.2) we see that [Qw(jk)]

nk
jk=1 is nothing else but the full vector x reshaped

into an Nk × nk matrix. So, the equation (3.3) can be written as:

Q>Ax = Q>f,

and Q is an orthoprojector. Now, suppose the local residual ||Q>Ax−Q>f|| = ε. Then

ε 6 ||Q>|| ||Ax− f||,

and, as the norm of a orthoprojector is equal to 1, we have

||Ax− f|| > ε.

Thus, the global residual can not be less than the local one. So, local systems are to be
solved with the accuracy at least as expected for the global problem. Despite the fast MatVec
procedure described in the previous section, unpreconditioned iterative solvers may require a
lot of iterations to converge to a desired residual. If the TT-ranks of the solution are small, it is
better to assemble the full matrix B in (3.4) of size n2r2 × n2r2, and solve the local system via
the direct solver, thus providing the machine precision in the local residual. Thus, the following
solution strategy for the local systems is proposed:

9



• At first steps, when the TT-ranks are small, assemble the full local matrix and solve the
local system directly.

• When the TT-ranks become large (in practice a criteria of form

n2r2 % 1000 (4.1)

is used), run some iterative solver with the fast MatVec. Usually when this second step
starts, the residual is already small enough (e.g. 10−2) to provide sufficiently fast conver-
gence of the iterative solver.

This trick allows to maintain a good local residual and hence the rapid convergence of the whole
DMRG scheme without getting to the time-consuming cases (the last steps with large ranks for
the direct solution, the first steps with slow convergence for the iterative solver). Nevertheless,
preconditioning techniques have to be considered in a future work.

4.2. Trick 2: Truncation based on the residual

The ALS scheme is good, but it is unapplicable as a general-purpose solver, since it requires the
knowledge of the solution ranks and moreover, even if the TT-ranks are set correctly, the con-
vergence may be quite poor. The DMRG scheme is different. Since the supercore is optimized,
the k-th TT-rank can be determined adaptively from the SVD of the supercore. However, the
approximation is accurate only in the discrete analogue of the L2-norm. If A corresponds to
the discretization of a differential operator, it inevitabely has a large condition number, and if
x̂ approximates x in the Frobenius norm well:

||x− x̂|| 6 ε||x||,

the residue (which is the only available accuracy measure) ||Ax̂ − f|| can be large. Thus, the
approximation by the SVD in the decimation step of the DMRG,

W(ik, ik+1) ≈ Ŵ(ik, ik+1) = Gk(ik)Gk+1(ik+1),

can make the local residue too large. To avoid this, a simple heuristics is proposed. It is based
not on the Frobenius norm of the error ||W − Ŵ||, but on the approximation with rank-r which
provides the local residue Bŵ − f not worser than the true one up to a “magic factor”. An
optimal low-rank approximation for the solution is a difficult optimization problem, and it is
replaced by a very simple procedure: the truncation to rank r is performed by setting singular
values starting from r+ 1 to zero, but the value of the rank is chosen by a try-and-trial method
to take r such that the local residue is small. This requires several additional matrix-by-vector
products, but this additional cost is fully compensated by much improved convergence. Now
the accuracy parameter in the DMRG procedure influences only the accuracy of the local solves.

4.3. Trick 3: Random restart

There is no guarantee that the proposed algorithm will not converge to the local minimum of the
functional. Suppose, that the situation is as follows: all local residues are reported to be small,
but the obtained solution is not an adequate solution to the full system. This can be checked,
in principle, by computing the matrix-by-vector product Ax in the TT-format and computing
the residue directly. However, a cheaper way is the following randomized check. Take a random
vector z with fixed TT-ranks (say, 2) and compare the scalar products (Ax, z) and (f, z). If the
difference is large, then the convergence is not obtained. In the program implementation this
check can be incorporated into the “restart scheme”, which proceeds as follows:
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Algorithm 1: Fast MatVec procedure for the block k

Input: Left 3D array {Ψk−1(βk−1, γk−1)}
rk−1,rk−1

βk−1,γk−1=1 of sizes rk−1 × rk−1 × Rk−1,
right 3D array {Φk(βk, γk)}

rk,rk
βk,γk=1 of sizes rk × rk × Rk,

the core of matrix {Ak(ik, jk)}
nk,nk
ik,jk=1 of sizes nk × nk × Rk−1 × Rk,

the vector {Y(γk−1, jk, γk)}
rk−1,nk,rk
γk−1,jk,γk=1 of sizes rk−1nkrk × 1.

Output: W(βk−1, ik, βk) =
∑
γk−1,jk,γk

B(βk−1, βk, ik, jk, γk−1, γk)Y(γk−1, jk, γk) the result of
MatVec.

1: Reshape 3D array Φk as a Rkrk × rk matrix, and vector Y as a rk × nkrk−1 matrix.
2: Multiply Y ′(1 : Rkrk, 1 : nkrk−1) = Φk(1 : Rkrk, 1 : rk)Y(1 : rk, 1 : nkrk−1). Reshape and

permute Y ′ to a matrix of sizes nkRk × rk−1rk.
3: Reshape the matrix core Ak to a nkRk−1 × nkRk matrix.
4: Multiply Y ′′(1 : nkRk−1, 1 : rk−1rk) = Ak(1 : nkRk−1, 1 : nkRk)Y

′(1 : nkRk, 1 : rk−1rk).
Reshape and permute Y ′′ to a matrix of sizes Rk−1rk−1 × nkrk.

5: Reshape Ψk as a rk−1 × Rk−1rk−1 matrix.
6: Multiply W(1 : rk−1, 1 : nkrk) = Ψk(1 : rk−1, 1 : Rk−1rk−1)Y

′′(1 : Rk−1rk−1, 1 : nkrk).
7: Reshape W to a vector of sizes rk−1nkrk × 1.

1. Generate a random tensor Z with cores Zk and TT-ranks r0 (say, r0 = 2).

2. Add Zk to the basis, i.e. set

Xk :=

(
Xk 0

0 Zk

)
.

3. Orthogonalize Xk from right-to-left

4. Start left-to-right DMRG sweep

It is not difficult to see, that if Ax ≈ f then such modification will give the same local residues.
If it is not true and the solution have non-zero components in the direction of the randomly
generated tensor Z, then the local system will reflect this and the initial local residue will be
not small (and this will serve as an indicator for the restart of the method). Note, that the
theoretical estimates on this random restart approach should be obtained, and we plan it for
the future research. The previous considerations are summarized in the algorithms 1, 2, 3. In
the main algorithm 3 we present only the DMRG scheme, as it contains more details than the
ALS, and the latter can be understood by the similarity.

5. Inversion via DMRG

5.1. Reduction to a linear system

The proposed technique can be used not only to solve linear systems in the TT-format, but also
to compute approximate inverses. Usually, the inversion of a matrix is not performed, since it
is much more expensive than the solution of a linear system. For some classes of structured
matrices it might not be the case, and the computation of the approximate inverse is “cheap”
. Such approximate inverse can be used as a preconditioner. This of course requires that
the inverse matrix can indeed be approximated by a structured matrix. The computation of
approximate inverses via different approaches was performed for Toeplitz-like matrices [33], for
computing sparse approximate inverses [34], for the inversion of low Kronecker-rank matrices
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Algorithm 2: Solution of the local problem

Input: Left 3D array {Ψk−1(βk−1, γk−1)}
rk−1,rk−1

βk−1,γk−1=1 of sizes rk−1 × rk−1 × Rk−1,
right 3D array {Φk(βk, γk)}

rk,rk
βk,γk=1 of sizes rk × rk × Rk,

the core of matrix {Ak(ik, jk)}
nk,nk
ik,jk=1 of sizes nk × nk × Rk−1 × Rk,

the right-hand side vector {Y(γk−1, jk, γk)}
rk−1,nk,rk
γk−1,jk,γk=1 of sizes rk−1nkrk × 1,

the critical size of the local problem Nc, number of iterations It and residual tolerance ε for
the iterative solver.

Output: the approximate local solution X ≈ B−1Y so that X = {X(βk−1, ik, βk)}
rk−1,nk,rk
βk−1,ik,βk=1.

1: if nkrk−1rk < Nc then {Build and solve the local system directly}
2: Reshape Φk to a matrix of sizes Rk × rkrk.
3: Reshape Ak to a matrix of sizes Rk−1nknk × Rk.
4: Multiply B ′(1 : Rk−1nknk, 1 : rkrk) = Ak(1 : Rk−1nknk, 1 : Rk)Φk(1 : Rk, 1 : rkrk) and

reshape B ′ to a matrix B ′(1 : Rk−1, 1 : nknkrkrk).
5: Reshape Ψk to a matrix of sizes rk−1rk−1 × Rk−1.
6: Multiply B(1 : rk−1rk−1, 1 : nknkrkrk) = Ψk(1 : rk−1rk−1, 1 : Rk−1)B

′(1 : Rk−1, 1 :

nknkrkrk).
7: Reshape B to a matrix B(1 : rk−1nkrk, 1 : rk−1nkrk).
8: Solve the local problem X = B−1Y using the direct elimination.
9: else {Run iterative solver}

10: Run an appropriate iterative solver (e.g. GMRES) using the Algorithm 1 for Matrix-by-
Vector multiplications, right-hand side Y, with stopping criteria It and ε.

11: end if

[35, 36]. In all these cases, the Newton method for the matrix inversion was used. It has the
form

Xk+1 = 2Xk − XkAXk, k = 0, . . . ,

and if ||AX0 − I|| < 1, for some matrix norm, it converges to the inverse quadratically. The only
problem is that it requires two matrix-by-matrix products at each step. If such multiplication
can be implemented fast for a given class of structured matrices, then the Newton method can
often provide good approximate inverses. The disadvantage in the TT-case is that the TT-ranks
of the product XkAXk can be quite large, and the complexity is polynomial in the solution rank
but with a quite large exponent. In this paper we propose an alternative approach, which is
much simpler to implement, given an algorithm that solves linear systems. The inverse matrix
X to a given matrix A satisfies

AX = I. (5.1)

The equation (5.1) is in fact a linear system:

(A⊗ I)x = vec(I),

where x = vec(X) is a vectorized form of X. Now suppose, that A comes with the TT-structure,
i.e. it can be associated with a 2d-dimensional array with elements

A(i1, . . . , id, j1, . . . , jd) = A1(i1, j1) . . . Ad(id, jd).

For the simplicity assume that all indices involved vary from 1 to 2, i.e. the QTT case. In the
multiindex notation, the equation (5.1) is formulated as

A(j ′1, . . . , j
′
d, j1, . . . , jd)X(j1, . . . , jd, k1, . . . , kd) = I(j ′1, . . . , j

′
d, k1, . . . , kd).
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For the solution the same “matrix ordering” of dimensions is used:

x = X(j1, k1, . . . , jd, kd) ≈ X1(j1, k1) . . . Xd(jd, kd).

The matrix of this big linear system (corresponding to the matrix A⊗ I) then depends on the
4d indices, Â(j ′1, . . . , j

′
d, k

′
1, . . . , k

′
d, j1, . . . , jd, k1, . . . , kd). The modes of the solution are ordered

as (j1, k1), (j2, k2), . . . , (jd, kd), thus the indices for the matrix of the linear system are naturally
ordered as (j ′1, k

′
1, j1, k1), . . . , (j

′
d, k

′
d, jd, kd), i.e. correspond to a 16×16× . . .×16 d-dimensional

tensor. Its elements are defined as

Â(j ′1, k
′
1, j1, k1, . . . , j

′
d, k

′
d, jd, kd) = A(j ′1, . . . , j

′
d, j1, . . . , jd)I(k

′
1, . . . , k

′
d, k1, . . . , kd), (5.2)

where I(k ′1, . . . , k
′
d, k1, . . . , kd) = δ(k ′1, k1)δ(k

′
2, k2) . . . δ(k

′
d, kd), corresponds to the identity ma-

trix which has TT-ranks equal to 1. From (5.2) it is simple to find out that the cores of Â in
the required permutation are defined as

Âp(j
′
p, k

′
p, jp, kp) = Ap(jp, j

′
p)δ(kp, k

′
p),

i.e. the TT-ranks of the Â are not larger than the TT-ranks of A. The only difference is that the
mode size of Â is 4 times larger. Thus, the TT-Solve algorithm can be applied to the solution
of the linear system with the matrix Â directly. Moreover, the right-hand side here is of a
very simple structure. It has TT-ranks equal to 1. The complexity is quadratic in the mode
size, thus the constant is only 4 times larger. The dependence in the grid size is the same, the
crucial parameter that influences the complexity is the solution rank, which is always larger for
the inverse than for the particular solution. However, it is important that for computing an
approximate inverse high accuracy is not often needed: even an approximation with small ranks
may lead to an excellent preconditioner. Thus, the linear system approach for the inversion look
promising.

The approach described above requires a small modification to make it more robust. Suppose
that X is an approximate solution of AX ≈ I, i.e. ||AX − I|| is small. It does not mean that the
right residue is ||XA− I|| is small, even for the symmetric A, which means that the approximate
inverse for a symmetric matrix, computed by such method, can be non-symmetric. It is very
simple to avoid this. Instead of solving (5.1), let us solve

AX+ XA = 2I,

and the TT-ranks for the corresponding matrix are only twice larger, then for the initial one.
The solution obtained is now much better: the right and left residue are of the same order.

6. Numerical experiments

6.1. Data and benchmarks

All computations were performed using the TT-Toolbox (available at http://spring.inm.ras.
ru/osel). The TT-Toolbox contains an object-oriented implementation of the TT-format and
operations with tensors in such format. Our solver is included in the TT-Toolbox 2.1 (procedure
dmrg_solve). A minimal input is the matrix A in the TT-format (i.e., tt_matrix object), the
right-hand side which is also in the TT-format (i.e., tt_tensor object) and the required relative
accuracy ε. There are also several tuning parameters. All results of the computations in all
considered examples can be found at the webpage http://spring.inm.ras.ru/osel in the
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Section "Benchmarks and Data". They are provided as .mat files with the matrix A in the TT-
format and the right-hand size and the approximate solution in the TT-format. We hope that
these data may be used as benchmarks in future research. As an illustrative example, consider
the solution of the Laplace equation ∆du = 1. The creation of a matrix and the solution can be
done via the MATLAB code

1 %xlap.m --- simple code to run the solver
2 L=8; n=2^L; %One -dimensional grid size is 256
3 d=10; %10- dimensional problem
4 lap=tt_qlaplace_dd(L*ones(1,d));
5 lap=tt_matrix(lap); %The Laplace operator is created
6 rhs=tt_ones(d*L,2); %Right -hand side of all ones
7 rhs=tt_tensor(rhs);
8 %Solve , initial guess is the rhs
9 sol=dmrg_solve2(lap ,rhs ,rhs ,1e-8);

On a particular machine, this results in

>> tic; xlap; toc;
sweep=1/10 erank=1.0
sweep=5/10 erank=14.7
sweep=10/10 erank=33.1
Elapsed time is 119.772275 seconds.

and the accuracy of the solution is

>> norm(lap*sol-rhs)/norm(rhs)
ans = 2.5449e-05

More accurate solution can be also obtained from this one by using smaller ε:

>> tic; sol=dmrg_solve2(lap,rhs,sol,1e-8,[],[],4,[]); toc;
sweep=1/4 erank=33.2
sweep=4/4 erank=46.8
Elapsed time is 85.726980 seconds.
>> norm(lap*sol-rhs)/norm(rhs)
ans = 2.9708e-07

The Laplace equation can be of course solved very fast by sinc-type quadratures. This example
is given only to present the usage of the algorithm in the TT-Toolbox. However, the TT-Solve
method does not require constant coefficients. In the next subsection more numerical results
will be given.

6.2. Solution of linear systems, reaction-diffusion problems

For numerical experiments we consider several examples. First, consider the reaction-diffusion
equation −(∆+ q)u = f, q > 0 in two dimensions with a variable coefficient q = q(x, y). The
domain is a rectangle, and the Dirichlet boundary conditions are imposed. For the discretization
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a uniform 2d0 × 2d0 grid is used, and the central finite difference approximation to the Laplace
operator is employed. The right-hand side is taken as a vector of all ones.

Example 1 (Table 6.1, Figures 6.1, 6.2)
For the first example, we have taken q = 500 ·exp(−x2−y2). We are starting from a random

rank 2 tensor as the initial guess. The grid size is 1024× 1024 so d0 = 10 and the whole tensor
is d = 2d0-dimensional, the residual tolerance is 10−6 and a local system was solved via direct
solver if its size less than 2500 (see (4.1)).

Table 6.1

sweep relative residual maximal QTT rank time of the current sweep, sec.
1 3.109e+02 2 0.027573
2 1.621e+01 4 0.043498
3 4.986e+01 8 0.156974
4 8.352e+01 16 1.02399
5 5.393e-01 32 8.93552
6 5.480e-04 46 17.9173
7 3.314e-05 65 7.03498
8 5.498e-06 80 6.83953
9 3.203e-06 81 6.87847
10 2.927e-06 81 6.84604

Figure 6.1. Relative residual versus the sweep
number, example 1

Figure 6.2. Time of one sweep versus the sweep
number, example 1

We see, that the most time consuming are the middle sweeps, where the local system is
already large and ill-conditioned, but the accuracy is still bad, hence a lot of local iterations are
required. The singular values in the decimation steps were filtered so that the residual provided
by a splitted superblock is less than 2 times the residual achieved in the local solver. So, the
residual stabilizes below a value 2

√
d− 1ε (see [11] for the reason why the factor

√
d− 1 arise).

Example 2 (Tables 6.2, 6.3) In this example we take d0 = 10,

q = 400(x+ y),

and check how the convergence and timings depend on the residual tolerance and grid size. First,
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set the Q-dimension d0 = 10 and check the minimal achieved residual, the required number of
sweeps, the full time of the solver and maximal QTT-ranks of the solution with respect to the
residual tolerance ε. Now, check the performance with respect to the grid size. The residual

Table 6.2. Final residual, full time, conducted sweeps and maximal rank versus ε, example 2

ε relative residual maximal QTT rank sweeps full time, sec
10−4 2.555e-04 23 12 14.1901
10−6 2.362e-06 34 10 30.9652
10−7 2.965e-07 38 12 52.0496

tolerance is fixed to ε = 10−6. In the case d0 = 8, the grid seems to be too coarse to resolve the

Table 6.3. Final residual, full time, conducted sweeps and maximal rank versus d0, example 2

d0 relative residual maximal QTT rank sweeps full time, sec
8 1.260e-05 27 7 15.5158
9 2.165e-06 31 10 29.2388
10 2.362e-06 34 10 30.9652
11 3.823e-06 36 11 44.3646

solution with an accuracy 10−6. The dependence of the full time versus the grid size is linear
(the worst case) due to increasing ranks and number of sweeps. Nevertheless, in the cases where
the number of sweeps is stable, the logarithmic complexity is achievable, so that all advantages
of the QTT-format are exploited.

Example 2.1 (Table 6.4) We also compared the times of the TT-solve with the direct
solution in the full representation and one Matrix-by-Vector multiplication. For the direct
solver the MATLAB backslash operator (for the sparse matrix) was used. Here we consider the
reaction diffusion-equation with q = 100(x+ y+ z). The residual tolerance was fixed to a value
ε = 10−6. The residual was stabilized in 9 DMRG sweeps for all considered grid sizes. Here the

Table 6.4. Times of the TT-solve, the direct solution in the full representation and full MatVec

d0 TT solver, sec. Full direct solver, sec. Full MatVec, sec TT solver time
MatVec time

6 18.2063 155 0.00685 2658
7 43.0326 17134 0.0784 548
8 82.8516 *Out Of Memory* 0.6457 128

time of the TT-solve grows linearly with the grid size due to the increasing ranks, but remains
significantly smaller than the time of the full solver. We could not solve the problem on grids
finer than 1283 due to memory limitations.

6.3. Solution of linear systems, multidimensional elliptic problems

Example 3 (Table 6.5, Figures 6.3, 6.4)
Now the algorithm is tested on a model high-dimensional problem. Consider a 8-dimensional

reaction-diffusion equation

(−∆+ 100 exp(−r2))u = 1, r2 =

8∑
i=1

(xi − 0.5)
2
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with a positive definite operator. 256 grid nodes are taken in each direction, so the Q-dimension
is d0 = 8 and the full dimension is d = 64. The residual tolerance was set to ε = 10−6.

Table 6.5

sweep relative residual maximal QTT rank time of the current sweep, sec.
1 4.090e+00 4 0.173487
5 1.842e-02 42 32.8344
10 1.064e-05 63 28.3208
15 8.551e-06 62 27.0177

Figure 6.3. Relative residual versus the sweep
number, example 3

Figure 6.4. Time of one sweep versus the sweep
number, example 3

The residual for a positive-definite problem decreases monotonously, but the minimal achiev-
able value is greater then in the previous examples due to a larger

√
d− 1 factor.

Example 4 (Table 6.6) Consider an essentially high-dimensional problem: 64-dimensional
reaction-diffusion

(−∆+ 100 exp(−r2))u = 1, r2 =

64∑
i=1

(xi − 0.5)
2,

discretized on a grid with 256 points in each direction, thus providing a 512-dimensional tensor
as a solution. Here, 15 sweeps and 1845 seconds are required to achieve a O(10−5) accuracy.

Table 6.6

sweep relative residual maximal QTT rank time of the current sweep, sec.
1 1.399e+00 4 0.754949
5 1.410e-01 25 39.0297
10 3.973e-04 38 208.696
15 6.403e-05 39 166.427

Notice that the full representation of such tensor requires 2512 = 10154 data points.
Example 5 (Table 6.7, Figures 6.5, 6.6) In this example we solve a parameter-dependent
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2D Poisson equation with parametric boundary conditions:

−∆u(x, α) = f = 1 in Ω = [0, 1]2,

x = [x1, x2], α = [α1, α2, α3, α4],

α1 ∈ [0.5, 1], α2, ..., α4 ∈ [0, 1],

α1u+ (1− α1)∂u/∂n = 0 at x1 = 0,

α2u+ (1− α2)∂u/∂n = 0 at x2 = 0,

α3u+ (1− α3)∂u/∂n = 0 at x1 = 1,

α4u+ (1− α4)∂u/∂n = 0 at x2 = 1.

Hence we have a 6-dimensional problem. We discretize it using a uniform grid with 256 points
in both physical and parametric spaces, so the solution is a 48-dimensional tensor. The residual
tolerance is ε = 10−6. For the comparison, the QTT-ranks of a solution of a “single” 2D Poisson

Table 6.7

sweep relative residual maximal QTT rank time of the current sweep, sec.
1 1.006e+01 4 0.180521
5 2.181e+00 36 8.34796
9 1.082e-04 100 40.3669
10 2.236e-05 94 37.6331

Figure 6.5. Relative residual versus the sweep
number, example 5

Figure 6.6. Time of one sweep versus the sweep
number, example 5

equation with the Dirichlet boundary conditions are about 20. It is interesting that for such
parametrized boundary condition the ranks are only 4 times larger. Another interesting feature
of this example is that the approximate solution has maximal ranks in the middle sweeps, but
then they stabilize with the convergence of the method.

6.4. Matrix inversion

Example 6 (Table 6.8, Figures 6.7, 6.8) In the last example the application of the TT-
Solve to the approximate inversion is presented. One of the most promising applications for the
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approximate inversion is the solution of the parabolic problems via implicit schemes. For the
simplest implicit Euler scheme, applied to the heat equation, one has to invert a matrix of form
A = I − α∆, α = 10−3. The symmetrized equation AX + XA = 2I is solved. A 2-dimensional
problem is considered, discretized on a 1024×1024 grid so that the solution is a 20-dimensional
tensor with mode sizes 4. The residual tolerance is set to ε = 10−4. As an initial guess, the
identity matrix was used to ensure the symmetry of the inverse matrix. After the solution we

Table 6.8

sweep relative residual maximal QTT rank time of the current sweep, sec.
1 3.849e-01 4 0.027729
5 5.062e-01 5 0.25945
10 7.574e-02 41 4.86231
15 3.379e-04 49 9.63131

Figure 6.7. Relative residual versus the sweep
number, example 6

Figure 6.8. Time of one sweep versus the sweep
number, example 6

checked the matrix related properties. The error in symmetry is
||X− X>||

||X||
= 2.8872e-06, even

lower than ε. The right residual is
||AX− I||

||I||
= 2.7156e-04 and the left residual is

||XA− I||

||I||
=

2.7365e-04. Since we started from the identity matrix, the method required more “warming”
iterations in comparison with a random initial guess. Fortunately these additional iterations
are significantly cheaper than the “main” iterations, and we can admit them in order to obtain
a symmetric matrix with a high accuracy.

7. Conclusion and future work

In this paper it is described, how to solve linear systems in the TT-format directly, using the
DMRG approach. The idea with preliminary experiments was already described in the paper
[26], however an efficient practical implementation requires several “tricks”. The proposed solver,
as confirmed by numerical experiments, is able to solve problems in a black-box fashion (i.e.
only the matrix is the QTT format is provided) with 2d unknows where d is of order several

19



hundreds, and what is even more important, with TT-ranks up to hundred on even using a
prototype MATLAB implementation.

The main trick is to truncate the local solution on the basis of the local residue, not on the
relative Frobenius norm. Our method can handle non-constant coefficients, where approaches
based on sinc-type quadratures can not be used. In principle,the TT-Solve can be used for
solving any linear system, if the matrix is provided in the TT-format. It can be generalized
effortlessly to compute approximate inverses to serve as preconditioners. To compute such
preconditioners to higher accuracy, we propose to solve the Sylvester equation by the TT-Solve
directly. With small mode sizes (for QTT they are usually equal to 2) the inversion is as cheap as
the solution itself, making the TT-solve a very powerful approach for computing preconditioners
for matrices corresponding to the discretizations of operators on structured tensor grids and even
for computing the Green functions of certain operators.

There is no theory available yet for the convergence of the DMRG-type methods. In many
cases the numerical experiments confirm that it converges in a number of sweeps independent
of the grid size. This experimental fact deserves to be investigated and proved. From the
computational point of view, the most time consuming part is the solution of local linear systems,
which may require a lot of iterations (the single matrix-by-vector product is cheap). A certain
preconditioner for the local problem is required, and we will continue to test different approaches
which can be used for the preconditioning of the local systems.

We plan to apply this linear system solver for certain high-dimensional problems, for example
for implicit schemes for parabolic high-dimensional problems, in particular, to the Fokker-Planck
equation. This will be described in the future works.
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Algorithm 3: TT-solve
Input: Matrix A, right-hand side f and the initial guess x in the QTT format, the residual

tolerance ε, the critical size of local problems Nc, the maximal number of local (It) and
global Nswp iterations.

Output: The updated approximate solution x to a problem Ax = f in the QTT format.
1: for iswp = 1, ...,Nswp do
2: {Orthogonalization from right to the left and Φ generation}
3: Set Φd = 1, Φfd = 1.
4: for k = d, d− 1, ..., 2 do
5: Reshape the k-th core {Xk(ik)}

nk
ik=1 to a matrix of size nkrk × rk−1.

6: Compute QR decomposition [Q,R] = qr(Xk). Denote rnew = min(nkrk, rk−1).
7: Reshape the matrix Q to the parts of the new core Xk(ik) of sizes rnew × rk.
8: Reshape the next core {Xk−1(ik−1)}

nk−1

ik−1=1 to a matrix (rk−2nk−1 × rk−1.
9: Multiply ~Xk(1 : rk−2nk−1, 1 : rnew) = Xk(1 : rk−1nk−1, 1 : rk−1)R

>(1 : rk−1, 1 : rnew)

and reshape it to the parts of the new core Xk−1(ik−1).
{Now, update Φk−1 and Φfk−1}

10: Reshape Φk to a matrix of sizes rk × Rkrk.
11: Reshape Xk to a matrix of sizes rk−1nk × rk.
12: Multiply Φ ′(1 : rk−1nk, 1 : Rkrk) = Xk(1 : rk−1nk, 1 : rk)Φk(1 : rk, 1 : Rkrk).
13: Reshape Φ ′ as a rk−1rk × nkRk matrix, and the matrix core Ak as a nkRk × nkRk−1

matrix.
14: Multiply Φ ′′(1 : rk−1rk, 1 : nkRk−1) = Φ ′(1 : rk−1rk, 1 : nkRk)Ak(1 : nkRk, 1 : nkRk−1).
15: Reshape Φ ′′ as a rk−1Rk−1 × nkrk matrix, and Xk as a nkrk × rk−1 matrix.
16: Multiply Φk−1(1 : rk−1Rk−1, 1 : rk−1) = Φ ′′(1 : rk−1Rk−1, 1 : nkrk)Xk(1 : nkrk, 1 : rk−1).

17: Update Φfk−1: ~Φ = Φfk(1 : rk, 1 : rfk)Fk(1 : rfk, 1 : nkr
f
k−1).

18: Φfk−1 = Xk(1 : rk−1, 1 : nkrk) ~Φ(1 : nkrk, 1 : rfk−1).
19: end for

{Main DMRG iteration}
20: Ψ1 = 1, Ψf1 = 1.
21: for k = 1, 2, ..., d− 1 do
22: Build right-hand side

Y(γk−1, ikik+1, γk+1) = Ψfk(γk−1, 1 : rfk−1)Yk(ik)Yk+1(ik+1)Φ
f
k+1(1 : rfk+1, γk+1).

23: Solve the local system BX = Y using the Algorithm 2 (using the parameters Nc, It and
ε) and obtain X(βk−1, jkjk+1, βk+1).

24: Decimation step: compute [X1, S, X2] = svd(X(1 : rk−1nk, 1 : nk+1rk+1)), X2 = SX2.
25: Truncate singular values so that ||B(X1X2) − Y|| 6 2ε||Y||.
26: Update the solution blocks {Xk(jk)}

nk
jk=1 = X1, {Xk+1(jk+1)}

nk+1

jk+1=1 = X2

{Update Ψk+1 and Ψfk+1:}
27: Ψ ′(1 : rk−1Rk−1, 1 : nkrk) = Ψk(1 : rk−1Rk−1, 1 : rk−1)Xk(1 : rk−1, 1 : nkrk).
28: Ψ ′′(1 : nkRk, 1 : rk−1rk) = Ak(1 : nkRk, 1 : nkRk−1)Ψ

′(1 : nkRk−1, 1 : rk−1rk).
29: Ψk+1() = Xk(1 : rk, 1 : nkrk−1)Ψ

′′(1 : nkrk−1, 1 : Rkrk).
30: ~Ψ = Ψfk(rk−1, r

f
k−1)Fk(1 : rfk−1, 1 : nkr

f
k).

31: Ψfk+1 = Xk(1 : rk, 1 : nkrk−1)~Ψ(1 : nkrk−1, r
f
k).

32: end for
33: end for
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