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OLLIVIER’S RICCI CURVATURE, LOCAL CLUSTERING AND

CURVATURE DIMENSION INEQUALITIES ON GRAPHS

JÜRGEN JOST AND SHIPING LIU

Abstract. In Riemannian geometry, Ricci curvature controls how fast geodesics
emanating from a common source are diverging on average, or equivalently, how
fast the volume of distance balls grows as a function of the radius. Recently, such
ideas have been extended to Markov processes and metric spaces. Employing a
definition of generalized Ricci curvature proposed by Ollivier and applied in graph
theory by Lin-Yau, we derive lower Ricci curvature bounds on graphs in terms of
local clustering coefficients, that is, the relative proportion of connected neighbors
among all the neighbors of a vertex. This translates the above Riemannian ideas
into a combinatorial setting. We also study curvature dimension inequalities on
graphs, building upon previous work of several authors.

1. Introduction

Ricci curvature is a fundamental concept in Riemannian geometry. It is a quantity
computed from second derivatives of the metric tensor. It controls how fast geodesics
starting at the same point diverge on average. Equivalently, it controls how fast the
volume of distance balls grows as a function of the radius. It also controls the amount
of overlap of two distance balls in terms of their radii and the distance between their
centers. In fact, such upper bounds follow from a lower bound on the Ricci curvature.
It was then natural to look for generalizations of such phenomena on metric spaces
more general than Riemannian manifolds. That is, the question to find substitute
for the lower bounds on the above mentioned second derivative combinations of the
metric tensor that yield the same geometric control on a general metric space. By
now, there exist several beautiful works on defining a synthetic Ricci curvature on
general metric measure spaces, see Sturm [20, 21], Lott-Villani [15], Ohta [16] etc.

In this paper, we want to explore the implications of such ideas in graph the-
ory. There is already important work of Lin-Yau [14, 12] in this direction, utilizing
a definition of Ricci curvature developed by Ollivier [17] and obtaining analogues of
Bochner type inequalities and eigenvalue estimates as known from Riemannian geom-
etry. Here, we want to explore the geometric idea that a lower Ricci curvature bound
prevents geodesics from diverging too fast and balls from growing too fast in volume.
On a graph, the analogue of geodesics starting in different directions, but eventually
approaching each other again, would be a triangle. Therefore, it is natural that the
Ricci curvature on a graph should be related to the relative abundance of triangles.
The latter is captured by the local clustering coefficient introduced by Watts-Strogatz
[24]. Thus, in the present paper, we refine the Lin-Yau inequality in terms of the local
clustering coefficient. We believe that this really captures the intuition of Ricci curva-
ture on a graph. Compared with other definitions of generalized Ricci curvature, the
one of Ollivier works particularly on discrete spaces like graphs. It is formulated in
terms of the transportation distance between local measures. When two balls strongly
overlap, as is the case in Riemannian geometry when the Ricci curvature has a large
lower bound, then it is easier to transport the mass of one to the other. This is the
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idea of Ollivier’s definition as we see it and explore in this paper. We shall obtain
both upper and lower bounds for Ollivier’s Ricci curvature on graphs in Section 3,
which are optimal on many graphs.

In Riemannian geometry, the Bochner formula encodes deep analytic properties of
Ricci curvature. It is a key ingredient in proving many results, e.g. the spectral gap
of the Laplace-Beltrami operator. A lower bound of the Ricci curvature implies a
curvature dimension inequality involving the Laplace-Beltrami operator through the
Bochner formula. In an important work, Bakry and Émery [2] generalize this in-
equality to generators of Markov semigroups, which works on measure spaces. Their
inequality contains plentiful information and implies a lot of functional inequalities
including spectral gap inequalities, Sobolev inequalities, and logarithmic Sobolev in-
equalities and many celebrated geometric theorems (see [1] and the references therein).
In their recent paper, Lin-Yau [14] study such inequalities on locally finite graphs.

In the present paper, we also want to find relations on locally finite graphs between
Ollivier’s Ricci curvature and Bakry-Émery’s curvature dimension inequalities, which
represent the geometric and analytic aspects of graphs respectively. Again, this is
inspired by Riemannian geometry where one may attach a Brownian motion with
a drift to a Riemannian metric [17]. We also mention that the definitions given by

Sturm and Lott-Villani are also consistent with that of Bakry-Émery [20, 21, 15].
So exploring the relations on nonsmooth spaces may provide a good point of view
to connect Ollivier’s definition to Sturm and Lott-Villani’s. In Section 4, we use
the local clustering coefficient again to establish more precise curvature dimension
inequalities than those of Lin-Yau [14]. And with this in hand, we prove curvature
dimension inequalities under the condition that Ollivier’s Ricci curvature of the graph
is positive.

Further analytical results following from curvature dimension inequalities on finite
graphs have been described in [12], and Lin-Lu-Yau [13] study a modified definition
of Ollivier’s Ricci curvature on graphs in an upcoming paper. For other works of
synthetic Ricci curvatures on discrete spaces, see Dodziuk-Karp [8], Chung-Yau [7],
Bonciocat-Sturm [5], and on cell complexes see Forman [11], Stone [19] etc.

In this paper, G = (V,E) will denote an undirected connected simple graph without
loops, where V is the set of vertices and E is the set of edges. V could be an infinite
set. But we require that G is locally finite, i.e., for every x ∈ V , the number of edges
connected to x is finite. If x, y ∈ V are connected by an edge, then we say x and
y are neighbors and denote this by x ∼ y. For simplicity and in order to see more
geometry, we mainly work on unweighted graphs. But we will also derive similar
results on weighted graphs. In that case, we denote by wxy the weight associated to
x, y ∈ V , where x ∼ y (we may simply put wxy = 0 if x and y are not neighbors, to
simplify the notation). The unweighted case corresponds to wxy = 1 whenever x ∼ y.
The degree of x ∈ V is dx =

∑

y,y∼xwxy.

2. Ollivier’s Ricci curvature and Bakry-Émery’s calculus

In this section, we present some basic facts about Ollivier’s Ricci curvature and
Bakry-Emery’s Γ2 calculus, in particular on graphs.

2.1. Ollivier’s Ricci curvature. Ollivier’s Ricci curvature works on a general met-
ric space (X, d), on which we attach to each point x ∈ X a probability measure mx(·).
We denote this structure by (X, d,m).
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For a locally finite unweighted graph G = (V,E), we define the metric d as follows.
For neighbors x, y, d(x, y) = 1. For general distinct vertices x, y, d(x, y) is the length
of the shortest path connecting x and y, i.e. the number of edges of the path. We
attach to each vertices x ∈ V a probability measure

mx(y) =

{

1
dx
, if y ∼ x;

0, otherwise.
(2.1)

An intuitive illustration of this is a random walker that sits at x and then chooses
amongst the neighbors of x with equal probability 1

dx
.

Definition 1 (Ollivier). On (X, d,m), for any two distinct points x, y ∈ X, the
(Ollivier-) Ricci curvature of (X, d,m) along (xy) is defined as

κ(x, y) := 1−
W1(mx, my)

d(x, y)
. (2.2)

Here, W1(mx, my) is the optimal transportation distance between the two proba-
bility measures mx and my, defined as follows (cf. Villani [22, 23], Evans [10]).

Definition 2. For two probability measures µ1, µ2 on a metric space (X, d), the
transportation distance between them is defined as

W1(µ1, µ2) := inf
ξ∈
∏

(µ1,µ2)

∫

X×X
d(x, y)dξ(x, y), (2.3)

where
∏

(µ1, µ2) is the set of probability measures on X ×X projecting to µ1 and µ2.

In other words, ξ satisfies

ξ(A×X) = µ1(A), ξ(X × B) = µ2(B), ∀A,B ⊂ X.

Remark 1. Intuitively, this distance measures the optimal cost to move one pile of
sand to another one with the same mass. For case of a graph G = (G, d,m), the
supports of mx and my are finite discrete sets, and thus, ξ is just a matrix with terms
ξ(x′, y′) representing the mass moving from x′ ∈ support of mx to y′ ∈ support of my.
That is, in this case,

W1(mx, my) = inf
ξ

∑

x′,x′∼x

∑

y′,y′∼y

d(x′, y′)ξ(x′, y′),

where the infimum is taken over all matrices ξ which satisfy
∑

x′,x′∼x

ξ(x′, y′) =
wyy′

dy
,

∑

y′,y′∼y

ξ(x′, y′) =
wxx′

dx
.

We also call ξ a transfer plan. If we can find a particular transfer plan, we then get
an upper bound for W1 and therefore a lower bound for κ.

A very important property of transportation distance is the Kantorovich duality
(see, e.g. Theorem 1.14 in Villani [22]). We state it here in our particular graph
setting

Proposition 1 (Kantorovich duality).

W1(mx, my) = sup
f,1−Lip

[

∑

z,z∼x

f(z)mx(z)−
∑

z,z∼y

f(z)dmy(z)

]

,

where the supremum is taken over all functions on G that satisfy

|f(x)− f(y)| ≤ d(x, y),

for any x, y ∈ V , x 6= y.
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From this property, a good choice of a 1-Lipschitz function f will yield a lower
bound for W1 and therefore an upper bound for κ.

Remark 2. We list some basic first observations about this curvature concept:

• κ(x, y) ≤ 1.
• Rewriting (2.2) gives W1(mx, my) = d(x, y)(1 − κ(x, y)), which is analogous
to the expansion in the Riemannian case.

• A lower bound κ(x, y) ≥ k for any x, y ∈ X implies

W1(mx, my) ≤ (1− k)d(x, y), (2.4)

which can be seen as some kind of Lipschitz continuity of measures.

2.2. Bakry-Émery’s curvature-dimension inequality.

2.2.1. Laplace operator. We will study the following operator which is an analogue of
the Laplace-Beltrami operator in Riemannian geometry.

Definition 3. The Laplace operator on (X, d,m) is defined as follows

∆f(x) =
∫

X
f(y)dmx(y)− f(x), for functions f : X −→ R. (2.5)

For our choice of {mx(·)}, this is the graph Laplacian studied by many authors,
see e.g. [6], [3], [4], [8], [14].

2.2.2. Bochner formula and curvature-dimension inequality. In the Riemannian case,
many analytical consequences of a lower bound of the Ricci curvature are obtained
through the well-known Bochner formula,

1

2
∆(|∇f |2) = |Hess f |2 + 〈∇(∆f),∇f〉+Ric(∇f,∇f).

Analytically, |Hess f |2 is difficult to be defined on a nonsmooth space. But using
Schwarz’s inequality, we have

|Hess f |2 ≥
(∆f)2

m
,

where m is the dimension constant. So we can use

1

2
∆(|∇f |2) ≥

(∆f)2

m
+ 〈∇(∆f),∇f〉+K|∇f |2 (2.6)

to characterize Ric ≥ K.
Bakry-Émery [1, 2] take this inequality as the starting point and directly use the

operators to define curvature bounds. Starting from an operator ∆, they define
iteratively,

Γ0(f, g) = fg,

Γ(f, g) =
1

2
{∆Γ0(f, g)− Γ0(f,∆g)− Γ0(∆f, g)},

Γ2(f, g) =
1

2
{∆Γ(f, g)− Γ(f,∆g)− Γ(∆f, g)}.

In fact, Γ(f, f) is an analogue of |∇f |2, and Γ2(f, f) is an analogue of 1
2
∆|∇f |2 −

〈∇(∆f),∇f〉 in (2.6).
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Definition 4. We say an operator ∆ satisfies a curvature-dimension inequality CD(m,K)
if for all functions f in the domain of the operator

Γ2(f, f)(x) ≥
1

m
(∆f(x))2 +K(x)Γ(f, f)(x), ∀x ∈ X, (2.7)

where m ∈ [1,+∞] is the dimension parameter, K(x) is the curvature function.

Applying this construction to the operator (2.5) we have

Γ(f, f)(x) =
1

2

∫

X
(f(y)− f(x))2dmx(y), (2.8)

In fact generally

Γ(f, g)(x) =
1

2

∫

X
(f(y)− f(x))(g(y)− g(x))dmx(y).

For the sake of convenience, we will denote

Hf(x) :=
1

4

∫

X

∫

X
(f(x)− 2f(y) + f(z))2dmy(z)dmx(y).

A similar calculation as in Lin-Yau [14] gives

∆Γ(f, f)(x) = 2Hf(x)−
∫

X

∫

X
(f(x)− 2f(y) + f(z))(f(x)− f(y))dmy(z)dmx(y),

2Γ(f,∆f)(x) = −(∆f(x))2 −
∫

X

∫

X
(f(z)− f(y))(f(x)− f(y))dmy(z)dmx(y).

Then by definition,

Γ2(f, f) = Hf(x)− Γ(f, f)(x) +
1

2
(∆f(x))2. (2.9)

3. Ollivier’s Ricci curvature and triangles

In this section, we mainly prove lower bounds for Ollivier’s Ricci curvauture on
locally finite graphs. In particular we shall explore the implication between lower
bounds of the curvature and the number of triangles including neighboring vertices;
the latter is encoded in the local clustering coefficient. We remark that we only need
to bound κ(x, y) from below for neighboring x, y, since by the triangle inequality of
W1, this will also be a lower bound for κ(x, y) of any pair of x, y. (See Proposition
19 in Ollivier [17].)

3.1. Unweighted graphs. In this subsection, we only consider unweighted graphs.
In Lin-Yau [14], they prove a lower bound of Ollivier’s Ricci curvature on locally

finite graphs G. Here, for later purposes, we include the case where G may have
vertices of degree 1 and get the following modified result.

Theorem 1. On a locally finite graph G = (V,E), we have for any pair of neighboring
vertices x, y,

κ(x, y) ≥ −2

(

1−
1

dx
−

1

dy

)

+

=

{

−2 + 2
dx

+ 2
dy
, if dx > 1 and dy > 1;

0, otherwise.

Remark 3. Notice that if dx = 1, then we can calculate κ(x, y) = 0 exactly. So, even
though in this case −2 + 2

dx
= 0, κ(x, y) ≥ 2

dy
doesn’t hold.
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For completeness, we state the proof of Theorem 1 here. It is essentially the one
in Lin-Yau [14] with a small modification.
Proof of Theorem 1: Since d(x, y) = 1 for x ∼ y, we have

κ(x, y) = 1−W1(mx, my). (3.1)

Using Kantorovich duality, we get

W1(mx, my) = sup
f,1−Lip





1

dx

∑

z,z∼x

f(z)−
1

dy

∑

z′,z′∼y

f(z′)





= sup
f,1−Lip





1

dx

∑

z,z∼x,z 6=y

(f(z)− f(x))−
1

dy

∑

z′,z′∼y,z′ 6=x

(f(z′)− f(y))

+
1

dx
(f(y)− f(x))−

1

dy
(f(x)− f(y)) + (f(x)− f(y))





≤
dx − 1

dx
+

dy − 1

dy
+

∣

∣

∣

∣

∣

1−
1

dx
−

1

dy

∣

∣

∣

∣

∣

=2−
1

dx
−

1

dy
+

∣

∣

∣

∣

∣

1−
1

dx
−

1

dy

∣

∣

∣

∣

∣

.

=1 + 2

(

1−
1

dx
−

1

dy

)

+

. (3.2)

Inserting the above estimate into (3.1) gives

κ(x, y) ≥ −2

(

1−
1

dx
−

1

dy

)

+

.

2

Note that trees attain this lower bound. This coincides with the geometric intuition
of curvature. Since trees have the fastest volume growth rate, it is plausible that they
have the smallest negative curvature.

Proposition 2. We consider a tree T = (V,E). Then for any neighboring x, y, we
have

κ(x, y) = −2

(

1−
1

dx
−

1

dy

)

+

. (3.3)

Proof: In fact with Theorem 1 in hand, we only need to prove that 1+2
(

1− 1
dx

− 1
dy

)

+

is also a lower bound of W1. If one of x, y is a vertex of degree 1, say dx = 1, it is
obvious that W1(mx, my) = 1. So we only need to deal with the case 1− 1

dx
− 1

dy
≥ 0.

We can find a 1-Lipschitz function f on a tree as follows.

f(z) =



















0, if z ∼ y, z 6= x;
1, if z = y;
2, if z = x;
3, if z ∼ x, z 6= x.

(3.4)

Since on a tree, the path joining two vertices are unique, there is no further path
between neighbors of x and y. So this can be easily extended to a 1-Lipschitz function
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on the whole graph. Then by Kantorovich duality, we have

W1(mx, my) ≥
1

dx
(3(dx − 1) + 1)−

1

dy
· 2

= 3−
2

dx
−

2

dy
. (3.5)

This completes the proof. 2

In order to make clear the geometric meaning of the term
(

1− 1
dx

− 1
dy

)

+
, and also

to prepare the idea used in the next theorem, we give another method to get the
upper bound of W1. That works through a particular transfer plan. If

1−
1

dx
−

1

dy
≥ 0, or 1−

1

dy
≥

1

dx
,

then for my, the mass at all z such that z ∼ y, z 6= x is larger than that of mx at y.
So we can move the mass 1

dx
at y to z, z ∼ y, z 6= x for distance 1. Symmetrically, we

can move a mass of 1
dy

at the vertices z which satisfy z ∼ x, z 6= y to x for distance

1. The remaining mass of
(

1− 1
dx

− 1
dy

)

needs to be moved for distance 3. This gives

W1(mx, my) ≤

(

1

dx
+

1

dy

)

× 1 +

(

1−
1

dx
−

1

dy

)

× 3

= 3−
2

dx
−

2

dy
. (3.6)

If

1−
1

dx
−

1

dy
≤ 0,

we only need to move the mass of mx for distance 1 to the support of my. So we have
in this case W1(mx, my) = 1. This gives the same upper bound as in (3.2).

From the view of transfer plans, the existence of triangles including neighboring
vertices would save a lot of transport costs and therefore affect the curvature heavily.
We denote for x ∼ y,

♯(x, y) := number of triangles which include x, y as vertices =
∑

x1,x1∼x,x1∼y

1.

Remark 4. This quantity ♯(x, y) is related to the local clustering coefficient introduced
by Watts-Strogatz [24],

c(x) :=
number of edges between neighbors of x

number of possible existing edges between neighbors of x
,

which measures the extent to which neighbors of x are directly connected. In fact, we
have the relation

c(x) =
1

dx(dx − 1)

∑

y,y∼x

♯(x, y). (3.7)

We will explore the relation between the curvature κ(x, y) and the number of tri-
angles ♯(x, y). A critical observation is that κ(x, y) is symmetric w.r.t. x and y. So
we try to express the curvature through symmetric quantities

dx ∧ dy := min{dx, dy}, dx ∨ dy := max{dx, dy}.
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Theorem 2. On a locally finite graph G = (V,E), we have for any pair of neighboring
vertices x, y,

κ(x, y) ≥ −

(

1−
1

dx
−

1

dy
−

♯(x, y)

dx ∧ dy

)

+

−

(

1−
1

dx
−

1

dy
−

♯(x, y)

dx ∨ dy

)

+

+
♯(x, y)

dx ∨ dy
.

Moreover, this inequality is sharp.

Remark 5. If ♯(x, y) = 0, then this lower bound reduces to the one in Theorem 1.

Example 1. On a complete graph Kn (n ≥ 2) with n vertices, ♯(x, y) = n − 2 for
any x, y. So Theorem 2 implies

κ(x, y) ≥
n− 2

n− 1
.

In fact, we can easily check that the above inequality is an equality. Also notice that
on those graphs, the local clustering coefficient c(x) = 1 attains the largest value.

Before carrying out the proof of Theorem 2, we fix some notations. The vertices z
that are adjacent to x or y, where x ∼ y, are divided into three classes.

• common neighbors of x, y: z ∼ x and z ∼ y:
• x’s own neighbors: z ∼ x, z 6∼ y, z 6= y;
• y’s own neighbors: z ∼ y, z 6∼ x, z 6= x.

Proof of Theorem 2: We suppose w.l.o.g.,

dx = dx ∨ dy, dy = dx ∧ dy.

In principle, our transfer plan moving mx to my should be as follows.

(1) Move the mass of 1
dx

from y to y’s own neighbors;

(2) Move a mass of 1
dy

from x’s own neighbors to x;

(3) Fill gaps using the mass at x’s own neighbors. Filling the gaps at common
neighbors costs 2 and the one at y’s own neighbors costs 3.

A critical point will be whether (1) and (2) can be realized or not. It is easy to see
that we can realize step (1) if and only if

1−
1

dy
−

♯(x, y)

dy
≥

1

dx
, or A := 1−

1

dx
−

1

dy
−

♯(x, y)

dx ∧ dy
≥ 0. (3.8)

That is, after taking off the mass at x and common neighbors, my still has at least a
mass of 1

dx
. Step (2) can be realized if and only if

1−
1

dx
−

♯(x, y)

dx
≥

1

dy
, or B := 1−

1

dx
−

1

dy
−

♯(x, y)

dx ∨ dy
≥ 0. (3.9)

That is, after taking off the mass at y and common neighbors, mx still has enough
mass to fill 1

dy
. Obviously, A ≤ B.

We will divide the discussion into 3 cases according to whether the first two steps
can be realized or not.
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• 0 ≤ A ≤ B. This means we can adopt the above transfer plan. By definition
of W1(mx, my), we get

W1(mx, my) ≤
1

dx
× 1 +

1

dy
× 1 +

(

1

dy
−

1

dx

)

× ♯(x, y)× 2

+

[

1−
1

dx
−

1

dy
−

(

1

dy
−

1

dx

)

× ♯(x, y)−
1

dx
♯(x, y)

]

× 3

=3−
2

dx
−

2

dy
−

♯(x, y)

dy
−

2♯(x, y)

dx
.

Or in a symmetric way,

W1(mx, my) ≤ 3−
2

dx ∨ dy
−

2

dx ∧ dy
−

♯(x, y)

dx ∧ dy
−

2♯(x, y)

dx ∨ dy
. (3.10)

Moreover, in this case the following function f (as shown in Figure 1) can be
extended as a 1-Lipschitz function,

�
�
�
��

@
@

@
@@

@
@

@@

�
�

�

�
�

�
��

�
�
�

@
@
@

x y
2

3

3
3

1

1

0

0

Figure 1. Mass moved from vertices with larger value
to those with smaller ones.

f(z) =



















0, at y’s own neighbors;
1, at y or common neighbors;
2, at x;
3, at x’s own neighbor,

(that is, if there are no paths of length 1 between common neighbors and x’s
own neighbors, nor paths of length 1 or 2 between x’s own neighbors and y’s
own ones,) we have by Kantorovich duality,

W1(mx, my) ≥
1

dx
[f(y) + 3(dx − 1− ♯(x, y)) + ♯(x, y)]−

1

dy
(f(x) + ♯(x, y))

=3−
2

dx
−

2

dy
−

♯(x, y)

dy
−

2♯(x, y)

dx
.

That is, in this case, (3.6) should be an equality. In conclusion,

κ(x, y) ≥ −2 +
2

dx
+

2

dy
+

♯(x, y)

dx ∧ dy
+

2♯(x, y)

dx ∨ dy
,

and the ”=” can be attained.

Remark 6. A ≥ 0 is equivalent to

dx ∧ dy > 1, and ♯(x, y) ≤ dx ∧ dy − 1−
dx ∧ dy
dx ∨ dy

.

Since ♯(x, y) ∈ Z, we know that dx ∧ dy ≥ 2 and ♯(x, y) ≤ dx ∧ dy − 2. This
means both x and y have at least one own neighbor.
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If A < 0, we get

dx ∧ dy − 1−
dx ∧ dy
dx ∨ dy

< ♯(x, y) ≤ dx ∧ dy − 1.

I.e., ♯(x, y) = dx ∧ dy − 1. This means the vertex with smaller degree has no
own neighbors.

• A < 0 ≤ B. In this case we cannot realize step (1) but step (2) can be
realized. By the above remark, A < 0 implies that y has no own neighbors.
Our transfer plan should be step (2) at first. Since B ≥ 0 also implies

1−
1

dy
−

♯(x, y)

dx
≥

1

dx
, (3.11)

so we can move the mass of 1
dx

at y for distance 1 to common neighbors.
Finally, we fill the gap at common neighbors for distance 2. In a formula,

W1(mx, my) ≤
1

dx
× 1 +

1

dy
× 1 +

(

1−
1

dx
−

1

dy
−

♯(x, y)

dx

)

× 2

=2−
1

dx
−

1

dy
−

2♯(x, y)

dx
.

Or in a symmetric manner,

W1(mx, my) ≤ 2−
1

dx ∨ dy
−

1

dx ∧ dy
−

2♯(x, y)

dx ∨ dy
. (3.12)

Moreover, in case the following function f can be extended as a 1-Lipschitz
one,

f(z) =











0, at common neighbors;
1, at x and y;
2, at x’s own neighbor,

(that is, if there are no paths of length 1 between common neighbors and x’s
own neighbors,) we have by Kantorovich duality,

W1(mx, my) ≥
1

dx
[f(y) + 2(dx − 1− ♯(x, y))]−

1

dy
f(x)

=2−
1

dx
−

1

dy
−

2♯(x, y)

dx
.

In conclusion,

κ(x, y) ≥ −1 +
1

dx
+

1

dy
+

2♯(x, y)

dx ∨ dy
,

and the ”=” can be attained.

Remark 7. Noting that if ♯(x, y) = dx ∧ dy − 1 then B ≥ 0 is equivalent to

dx ∨ dy ≥
dx ∧ dy

dx ∧ dy − 1
dx ∧ dy. (3.13)

In this case, one of dx, dy has no own neighbors, and if the other one has
sufficiently many own neighbors, B ≥ 0 will be satisfied.
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• A ≤ B < 0. In this case, neither step (1) nor (2) is applicable. Also, y has no
own neighbor, and B < 0 implies that we can move all the mass at x’s own
neighbors to x at first. And then we move the mass of 1

dx
at y for distance 1

to fill the gaps at x and the common neighbors. In a formula,

W1(mx, my) ≤

(

1−
♯(x, y)

dx

)

× 1 = 1−
♯(x, y)

dx
.

Or in a symmetric way,

W1(mx, my) ≤ 1−
♯(x, y)

dx ∨ dy
. (3.14)

We can find a 1-Lipschitz function

f(z) =

{

0, at x and common neighbors;
1, at y and x’s own neighbors,

Then by Kantorovich duality,

W1(mx, my) ≥
1

dx
(f(y) + dx − 1− ♯(x, y))−

1

dy
× 0

=1−
♯(x, y)

dx
.

In this case f can be extended to a 1-Lipschitz function on the graph, so we
get finally,

κ(x, y) =
♯(x, y)

dx
.

Luckily, we can write those three cases in a uniform formula. 2

Remark 8. From extending f to a 1-Lipschitz function, we see that the paths of length
1 or 2 between neighbors of x and y have an important effect on the curvature. That
is, in addition to triangles, quadrangles and pentagons are also related to Ollivier’s
Ricci curvature. But polygons with more than 5 edges would not impact it.

Remark 9. If we see the graph G = (V,E) as a metric measure space (G, d,m), then
the term ♯(x, y)/dx ∨ dy is exactly mx ∧my(G) := mx(G)− (mx −my)+(G), i.e. the
intersection measure of mx and my. From a metric view, the vertices x1 that satisfy
x1 ∼ x, x1 ∼ y constitute the intersection of the unit metric spheres Sx(1) and Sy(1).

From Theorem 2, we can force the curvature κ(x, y) to be positive by increasing
the number ♯(x, y).

Theorem 3. On a locally finite graph G = (V,E), for any neighboring x, y, we have

κ(x, y) ≤
♯(x, y)

dx ∨ dy
. (3.15)

Proof: Since except for the mass at common neighbors which we need not move,
the others have to be moved for a distance at least 1, we have

W1(mx, my) ≥

(

1−
♯(x, y)

dx ∨ dy

)

× 1.

2

So if κ(x, y) > 0, then ♯(x, y) is at least 1. Moreover, if κ(x, y) ≥ k > 0, we have

♯(x, y) ≥ ⌈kdx ∨ dy⌉, (3.16)
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where ⌈a⌉ := min{A ∈ Z|A ≥ a}, for a ∈ R.
We will denote D(x) := maxy,y∼x dy. By the relation (3.7), we can get immediately

Corollary 1. The average value of the curvature around x, which may be seen as
a synthetic scalar curvature (see Problem Q in [18]), can be controlled by the local
clustering coefficient at x,

dx − 1

dx
c(x) ≥

1

dx

∑

y,y∼x

κ(x, y) ≥ −2 +
dx − 1

dx ∨D(x)
c(x).

Remark 10. In fact in some special cases, we can get more precise lower bounds

1

dx

∑

y,y∼x

κ(x, y) ≥















−2 + 2
dx

+ 2
D(x)

+
[

(dx−1)
dx

+ 2(dx−1)
dx∨D(x)

]

c(x), if A ≥ 0 for all y;

−1 + 1
dx

+ 1
D(x)

+ 2(dx−1)
dx∨D(x)

c(x), if A < 0 ≤ B for all y;
dx−1

dx∨D(x)
c(x), if B < 0 for all y.

3.2. Weighted graphs. The preceding considerations readily extend to weighted
graphs.

Theorem 4. On a weighted locally finite graph G = (V,E), we have

κ(x, y) ≥ −2

(

1−
wxy

dx
−

wxy

dy

)

+

. (3.17)

Moreover, weighted trees attain this lower bound.

Theorem 5. On a weighted locally finite graph G = (V,E), we have

κ(x, y) ≥−

(

1−
wxy

dx
−

wxy

dy
−

∑

x1,x1∼x,x1∼y

wx1x

dx
∨
wx1y

dy

)

+

−

(

1−
wxy

dx
−

wxy

dy
−

∑

x1,x1∼x,x1∼y

wx1x

dx
∧
wx1y

dy

)

+

+
∑

x1,x1∼x,x1∼y

wx1x

dx
∧
wx1y

dy
.

The inequality is sharp.

Remark 11. Notice that the term replacing the number of triangles here satisfies
∑

x1,x1∼x,x1∼y

wx1x

dx
∧
wx1y

dy
= mx ∧my(G).

Proof: Similar to the proof of Theorem 2, we need to understand the following
two terms,

Aw :=1−
wxy

dx
−

wxy

dy
−

∑

x1,x1∼x,x1∼y

wx1x

dx
∨
wx1y

dy
,

Bw :=1−
wxy

dx
−

wxy

dy
−

∑

x1,x1∼x,x1∼y

wx1x

dx
∧
wx1y

dy
.

Only the transfer plan in the case Aw < 0 ≤ Bw needs a more careful discussion. 2

Theorem 6. On a weighted locally finite graph G = (V,E), we have for any neigh-
boring x, y,

κ(x, y) ≤
∑

x1,x1∼x,x1∼y

wx1x

dx
∧
wx1y

dy
. (3.18)
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4. Curvature dimension inequalities

In this section, we establish curvature dimension inequalities on locally finite graphs.
A very interesting one is the inequality under the condition κ ≥ k > 0. Curvature
dimension inequalities on locally finite graphs are studied in Lin-Yau [14]. We first

state a detailed version of their results. Let’s denote Dw(x) := maxy,y∼x
dy
wyx

. Notice

that on an unweighted graph, this is the D(x) we used in Section 3.

Theorem 7. On a weighted locally finite graph G = (V,E), the Laplace operator ∆
satisfies

Γ2(f, f)(x) ≥
1

2
(∆f(x))2 +

(

2

Dw(x)
− 1

)

Γ(f, f)(x). (4.1)

Remark 12. Since in this case we attach the weighted version of measure (2.1), we
get

Hf(x) =
1

4

1

dx

∑

y,y∼x

wxy

dy

∑

z,z∼y

wyz(f(x)− 2f(y) + f(z))2.

We only need to choose special z = x in the second sum and then (2.8) and (2.9)
imply the theorem.

4.1. Unweighted graphs. We again restrict ourselves to unweighted graphs.
We observe the existence of triangles causes cancellations in calculating the term

Hf(x). This gives

Theorem 8. On a locally finite graph G = (V,E), the Laplace operator satisfies

Γ2(f, f)(x) ≥
1

2
(∆f(x))2 +

(

1

2
t(x)− 1

)

Γ(f, f)(x), (4.2)

where

t(x) := min
y,y∼x

(

4

dy
+

1

D(x)
♯(x, y)

)

.

Remark 13. Notice that if there is a vertex y, y ∼ x, such that ♯(x, y) = 0, this will
reduce to (4.1).

Proof: Starting from (2.9), the main work is to compare Hf(x) with

Γ(f, f)(x) =
1

2

1

dx

∑

y,y∼x

(f(y)− f(x))2.

First we try to write out Hf(x) as

Hf(x) =
1

4

1

dx

∑

y,y∼x





4

dy
(f(x)− f(y))2 +

1

dy

∑

z,z∼y,z 6=x

(f(x)− 2f(y) + f(z))2



 .
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If there is a vertex x1 which satisfies x1 ∼ x, x1 ∼ y, we have

1

dy
(f(x)− 2f(y) + f(x1))

2 +
1

dx1

(f(x)− 2f(x1) + f(y))2

≥
1

D(x)
[(f(x)− f(y))2 + (f(y)− f(x1))

2 + 2(f(x)− f(y))(f(x1)− f(y))

+ (f(x)− f(x1))
2 + (f(y)− f(x1))

2 + 2(f(y)− f(x1))(f(x)− f(x1))]

=
1

D(x)
[(f(x)− f(y))2 + 4(f(y)− f(x1))

2 + (f(x)− f(x1))
2].

≥
1

D(x)
(f(x)− f(y))2. (4.3)

So the existence of a triangle which includes x and y will give another term

1

D(x)
(f(y)− f(x))2

to the sum in Hf(x). Since this effect is symmetric to y and x1, we can get

Hf(x) ≥
1

4

1

dx

∑

y,y∼x

(

4

dy
+

1

D(x)
♯(x, y)

)

(f(y)− f(x))2

≥ t(x)
1

4

1

dx

∑

y,y∼x

(f(y)− f(x))2

= t(x) ·
1

2
Γ(f, f)(x).

Inserting this into (2.9) completes the proof. 2

Recalling Theorem 3 and the subsequent discussion, we get the following curvature
dimension inequalities on graphs with positive Ollivier-Ricci curvature.

Corollary 2. On a locally finite graph G = (V,E), if κ(x, y) > 0, then we have

Γ2(f, f)(x) ≥
1

2
(∆f(x))2 +

(

5

2D(x)
− 1

)

Γ(f, f)(x). (4.4)

Corollary 3. On a locally finite graph G = (V,E), if κ(x, y) ≥ k > 0, then we have

Γ2(f, f)(x) ≥
1

2
(∆f(x))2 +

(

1

2
min
y,y∼x

{

4

dy
+

⌈kdx ∨ dy⌉

D(x)

}

− 1

)

Γ(f, f)(x).
(4.5)

Remark 14. Observe that a rough inequality in this case is

Γ2(f, f)(x) ≥
1

2
(∆f(x))2 +

(

2

D(x)
+

kdx
2D(x)

− 1

)

Γ(f, f)(x).

Comparing this one with (4.1), we see that positive κ increases the curvature function
here.

Remark 15. We point out that the condition κ(x, y) ≥ k > 0 implies that the
diameter of the graph is bounded by 2

k
(see Proposition 23 in Ollivier [17]). So in this

case the graph is a finite one.

Let us revisit the example of a complete graph Kn (n ≥ 2) with n vertices. Recall
in Example 1, we know

κ(x, y) =
n− 2

n− 1
, ∀ x, y.
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For the curvature dimension inequality on Kn, Theorem 8 or Corollary 3 using the
above κ implies

Γ2(f, f) ≥
1

2
(∆f)2 +

(

2

n− 1
− 1 +

1

2

n− 2

n− 1

)

Γ(f, f)

=
1

2
(∆f)2 +

4− n

2(n− 1)
Γ(f, f). (4.6)

Moreover, the curvature term in the above inequality cannot be larger. To see this,
we calculate, using the same trick as in (4.3),

Hf(x) =
1

4(n− 1)2
∑

y,y∼x

∑

z,z∼x

(f(x)− 2f(y) + f(z))2

=
n+ 2

2(n− 1)
Γ(f, f)(x) +

1

(n− 1)2
∑

(x1, x2)

(f(x1)− f(x2))
2,

where
∑

(x1, x2) means the sum over all unordered pairs of neighbors of x. Recalling
(2.9), we get

Γ2(f, f)(x) =
1

2
(∆f)2(x) +

4− n

2(n− 1)
Γ(f, f)(x) +

1

(n− 1)2
∑

(x1, x2)

(f(x1)− f(x2))
2.
(4.7)

For any vertex x, we can find a particular function f ,

f(z) =

{

2, when z = x;
1, when z ∼ x,

(4.8)

such that the last term in (4.7) vanishes, and Γ(f, f) 6= 0. This means the curvature
term in (4.6) is optimal for dimension parameter 2.

But the curvature term 4−n
2(n−1)

behaves very differently from κ. In fact as n → +∞,

4− n

2(n− 1)
ց −

1

2
whereas κ ր 1.

To get a curvature dimension inequality with a curvature term which behaves like
κ, it seems that we should adjust the dimension parameter. In fact, we have

Proposition 3. On a complete graph Kn (n ≥ 2) with n vertices, the Laplace operator
∆ satisfies for m ∈ [1,+∞],

Γ2(f, f)(x) ≥
1

m
(∆f(x))2 +

(

4− n

2(n− 1)
+

m− 2

m

)

Γ(f, f)(x). (4.9)

Moreover, for every fixed dimension parameter m, the curvature term is optimal.

Proof: We have from (4.7)

Γ2(f, f)(x) =
1

m
(∆f)2(x) +

4− n

2(n− 1)
Γ(f, f)(x)

+
1

(n− 1)2
∑

(x1, x2)

(f(x1)− f(x2))
2 +

(

1

2
−

1

m

)

(∆f)2.
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Let us denote the sum of the last two terms by I. Then we have

I =
1

(n− 1)2

{(

1

2
−

1

m

)

∑

y,y∼x

(f(y)− f(x))2 +
∑

(x1, x2)

[

(f(x1)− f(x))2 + (f(x2)− f(x))2

+
(

2
(

1

2
−

1

m

)

− 2
)

(f(x1)− f(x))(f(x2)− f(x))
]}

=
1

(n− 1)2

[ (

1

2
−

1

m

)

∑

y,y∼x

(f(y)− f(x))2 +
(

1−
m+ 2

2m

)

(n− 2)
∑

y,y∼x

(f(y)− f(x))2

+
∑

(x1, x2)

m+ 2

2m
(f(x1)− f(x2))

2
]

=
m− 2

m
Γ(f, f)(x) +

m+ 2

2m(n− 1)2
∑

(x1, x2)

(f(x1)− f(x2))
2.

This finishes the proof. 2

An interesting point appears when we choose the dimension parameter m of Kn as
n− 1. Then we have

Γ2(f, f) ≥
1

n− 1
(∆f)2 +

1

2

n− 2

n− 1
Γ(f, f),

where the curvature term is exactly 1
2
κ. From the fact that Kn could be considered

as the boundary of a (n − 1) dimensional simplex, the m we choose here seems also
natural.

Remark 16. We point out another similar fact here. On a locally finite graph with
maximal degree D and minimal degree larger than 1, Theorem 1 and Theorem 7 imply
that

κ(x, y) ≥ 2
(

2

D
− 1

)

, ∀ x, y, (4.10)

and

Γ2(f, f) ≥
1

2
(∆f)2 +

(

2

D
− 1

)

Γ(f, f), (4.11)

respectively. It is not difficult to see that for regular trees with degree larger than 1,
the curvature term in (4.11) is optimal. (Just consider the extension of the function
(4.8), taking values 0 on vertices which are not x and neighbors of x there.) So on
regular trees, the curvature term is also exactly 1

2
κ.

Remark 17. In Erdös-Harary-Tutte [9], they define the dimension of a graph G as
the minimum number n such that G can be embedded into a n dimensional Euclidean
space with every edge of G having length 1. It is interesting that by their definition,
the dimension of Kn is also n− 1 and the dimension of any tree is at most 2.

From the above observations, it seems natural to expect stronger relations between
the lower bound of κ and the curvature term in the curvature dimension inequality
if one chooses proper dimension parameters.

4.2. Weighted graphs. We have similar results on weighted graphs here, with sim-
ilar proofs.
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Theorem 9. On a weighted locally finite graph G = (V,E), the Laplace operator
satisfies

Γ2(f, f)(x) ≥
1

2
(∆f(x))2 +

(

1

2
tw(x)− 1

)

Γ(f, f)(x), (4.12)

where

tw(x) := min
y,y∼x

{

4wxy

dy
+

∑

x1,x1∼x,x1∼y

(

wxy

dy
∧
wxx1

dx1

)

wx1y

wxy

}

.
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