Max-Planck-Institut
fiir Mathematik
in den Naturwissenschaften
Leipzig

Ollivier-Ricci curvature and the spectrum of the
normalized graph Laplace operator

by
Frank Bauer, Jiirgen Jost, and Shiping Liu

Preprint no.: 25 2011







OLLIVIER-RICCI CURVATURE AND THE SPECTRUM OF THE
NORMALIZED GRAPH LAPLACE OPERATOR

FRANK BAUER, JURGEN JOST, AND SHIPING LIU

ABSTRACT. We prove the following estimate for the spectrum of the normalized
Laplace operator A on a finite graph G,
1—(1—K[f)* <M\ <+ < Ay_q <1+ (1—k[t])7, V integers ¢ > 1.

Here k[t] is a lower bound for the Ollivier-Ricci curvature on the neighborhood graph
GJt] (here we use the convention G[1] = G), which was introduced by Bauer-Jost.
In particular, when ¢t = 1 this is Ollivier’s estimate £ < Ay and a new sharp upper
bound Ay_; < 2 —k for the largest eigenvalue. Furthermore, we prove that for any
G when t is sufficiently large, 1 > (1 — k[t])* which shows that our estimates for A
and A\y_; are always nontrivial and the lower estimate for A; improves Ollivier’s
estimate k < Ay for all graphs with £ < 0. By definition neighborhood graphs
possess many loops. To understand the Ollivier-Ricci curvature on neighborhood
graphs, we generalize a sharp estimate of the curvature given by Jost-Liu to graphs
which may have loops and relate it to the relative local frequency of triangles and
loops.

1. INTRODUCTION

In this paper, we utilize techniques inspired by Riemannian geometry and the the-
ory of stochastic processes in order to control eigenvalues of graphs. In particular,
we shall quantify the deviation of a (connected, undirected, weighted, finite) graph
G from being bipartite (a bipartite graph is one without cycles of odd lengths; equiv-
alently, its vertex set can be split into two classes such that edges can be present
only between vertices from different classes) in terms of a spectral gap. The operator
whose spectrum we shall consider here is the normalized graph Laplacian A (it is
unitarily equivalent to the one studied in Chung [8]). This is the operator underlying
random walks on graphs, and so, this leads to a natural connection with the the-
ory of stochastic processes. We observe that on a bipartite graph, a random walker,
starting at a vertex x at time 0 and at each step hopping to one of the neighbors of
the vertex where it currently sits, can revisit x only at even times. This connection
then will be explored via the eigenvalues of A. More precisely, the largest eigenvalue
An_1 of A is 2 iff G is bipartite and is < 2 else. Therefore, 2 — Ay_; quantifies the
deviation of GG from being bipartite, and we want to understand this aspect in more
detail. In more general terms, we are asking for a quantitative connection between
the geometry (of the graph G) and the analysis (of the operator A, or the random
walk encoded by it). Now, such connections have been explored systematically in
Riemannian geometry, and many eigenvalue estimates are known there that connect
the corresponding Laplace operator with the geometry of the underlying space M,
see e.g. Li-Yau [14], Chavel [4]. The crucial role here is played by the Ricci curvature
of M. In recent years, a kind of axiomatic approach to curvature has been developed.
This approach encodes the abstract formal properties of curvature and thereby makes
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2 FRANK BAUER, JURGEN JOST, AND SHIPING LIU

the notion extendible to spaces more general than Riemannian manifolds. By now,
there exist many notions of generalized curvature, and several of them have found
important applications, see Sturm [20, 21|, Lott-Villani [16], Ollivier [18], Ohta [17],
Bonciocat-Sturm [2], Joulin-Ollivier [12] and the references therein. The curvature
notion that turns out to be most useful for our purposes is the one introduced by
Ollivier [18]. One of our main results says that

(1.1) Aoy <2—k

where £ is a lower bound for Ollivier’s Ricci curvature. This matches quite well with
Ollivier’s result that the smallest nonzero eigenvalue \; satisfies

(1.2) A >k

In fact, one of the main points of the present paper is to relate such upper and lower
bounds via random walks. In fact, as in Bauer-Jost [1], we translate this relationship
into the geometric concept of a neighborhood graph. The idea here is that in the
t-th neighborhood graph G[t] of G, vertices z and y are connected by an edge with a
weight given by the probability that a random walker starting at x reaches y after ¢
steps times the degree of x. We note that even though the original graph may have
been unweighted, the neighborhood graphs G|t are necessarily weighted. In addition,
they will in general possess self-loops, because the random walker starting at  may
return to = after ¢ steps. Therefore, we need to develop our theory on weighted
graphs with self-loops even though the original G might have been unweighted and
without such loops. Since Ollivier’s curvature is defined in terms of transportation
distances (Wasserstein metrics), we can then use our neighborhood graphs in order to
geometrically control the transportation costs and thereby to estimate the curvature
of the neighborhood graphs in terms of the curvature of the original graph. As it turns
out that lower bounds for the smallest eigenvalue of GG[2] are related to upper bounds
for the largest eigenvalue of G, we can then use methods for controlling the smallest
eigenvalue to also obtain (1.1). For controlling the smallest eigenvalue, besides Ollivier
[18], we also refer to Lin-Yau [15] and Jost-Liu [11]. In particular, in the last paper, we
could relate A; to the local clustering coefficient introduced in Watts-Strogatz [24].
The local clustering coefficients measures the relative local frequency of triangles,
that is, cycles of length 3. Since bipartite graphs cannot possess any triangles, this
then is obviously related to our question about quantifying the deviation of the given
graph G from being bipartite. In fact, in Jost-Liu [11], this local clustering has been
controlled in terms of Ollivier’s Ricci curvature. Thus, in the present paper we are
closing the loop between the geometric properties of a graph G, the spectrum of its
graph Laplacian, random walks on G, and the generalized curvature of G, drawing
upon deep ideas and concepts originally developed in Riemannian geometry and the
theory of stochastic processes.

2. THE NORMALIZED LAPLACE OPERATOR, NEIGHBORHOOD GRAPHS, AND
OLLIVIER-RICCI CURVATURE

In this paper, G = (V, E) will denote an undirected, weighted, connected, finite
graph of N vertices. We do not exclude loops, i.e., we permit the existence of an
edge between a vertex and itself. V' denotes the set of vertices and E denotes the
set of edges. If two vertices x,y € V are connected by an edge, we say x and y are
neighbors, in symbols x ~ y. The associated weight function w: V x V' — R satisfies
Wyy = Wy, (because the graph is undirected) and we assume w,, > 0 whenever z ~ y
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and w,, = 0 iff © % y; thus, we do not permit negative weights. For a vertex z € V,
its degree d, is defined as d, := Zer Wgy. If wyy = 1 whenever x ~ y, we shall call

the graph an unweighted one. We will also speak of a locally finite graph G = (f/, E),
which is an undirected, weighted, connected graph and satisfies the property that for
every x € V', the number of edges connected to x is finite.

2.1. The normalized graph Laplace operator and its eigenvalues. In this
subsection, we recall the definition of the normalized graph Laplace operator and
state some of its basic properties. In particular, we will emphasize the relations
between eigenvalues of the Laplace operator and random walks on graphs.

Let C(V') denote the space of all real-valued functions on the set V. We attach
to each vertex x € V' a probability measure m,(-) and then can define the Laplace
operator.

Definition 1. The Laplace operator A is defined as
(2.1) Af(x) =) fly)maly) — f(x), VfeCV).

yeVv

The measure m,(-) can also be considered as the distribution of a 1-step random
walk starting from z. We will choose

Wxy

(2.2) ma(y) = { e

in the following. Note that x ~ x is possible when x has a loop. With this family
of probability measures {m,(:)}, A is just the normalized graph Laplace operator
studied in Grigoryan [10] and Bauer-Jost [1] and is unitarily equivalent to the Laplace
operator studied in Chung [8].

if y~ux,
otherwise,

Remark 1. On a graph G without loops, we can also consider a lazy random walk.
A lazy random walk is a random walk that does not move with a certain probability,
i.e. for some x we might have m,(x) # 0. In this case, the lazy random walk on G
is equivalent to the usual random walk on the graph G'* that is obtained from G by
adding for every vertex x a loop with a weight d,m,(x).

We also have a natural measure p on the whole set V|
u(z) = dy,

which gives an inner product structure on C'(V).

Definition 2. The inner product of two functions f,g € C(V) is defined as

(2.3) (f.9)u=>_ f@)g(x)u().

zeV

Then C(V) becomes a Hilbert space, and we can write C(V) = [>(V, ). By the
definition of the degree and the symmetry of the weight function, we can check that

e 4 is invariant w.r.t. {m, ()}, ie. X0 o ma(y)p(z) = p(y), Yy € V;

o 1 is reversible w.r.t. {m.(-)}, i.e. ma(y)p(z) = my(x)p(y), Vo, y € V.
These two facts imply immediately that the operator A is nonpositive and self-adjoint
on the space [?(V, ). We call X an eigenvalue of A if there exists some f # 0 such
that

(2.4) Af = —)f.
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Using this convention it follows from the observation that A is self-adjoint and non-
positive that all its eigenvalues are real and nonnegative. In fact, it’s well known that
(see e.g. Chung [8])

(2.5) O=X<AM<-- <Ay <2

Since our graph is connected we actually have 0 < A;. In Chung [8] it is shown, by
proving a discrete version of the Cheeger inequality, that A; is a measure for how
easy/difficult it is to cut the graph into two large pieces. Furthermore, Ay_; = 2 if
and only if G is bipartite. In Bauer-Jost [1] it is shown, by establishing a dual version
of the Cheeger inequality for the largest eigenvalue, that A\y_; is a measure of the size
of a locally bipartite subgraph that is connected by only a few edges to the rest in
the graph. In the following, we will call \; the first eigenvalue and Ay_; the largest
eigenvalue of the operator A.

2.2. Neighborhood graphs. In this subsection, we recall the neighborhood graph
method developed by Bauer-Jost [1].

As discussed above, the Laplace operator underlies random walks on graphs. In
this section, we discuss the deep relationship between eigenvalues estimates for the
Laplace operator A and random walks on the graph G by using neighborhood graphs.

We first introduce the following notation. For a probability measure p, we denote

pP() = 3 pla)ma()

Let d, be the Dirac measure at x, then we can write 5, P(-) := 6, P(-) = my(-).
Therefore the distribution of a t-step random walk starting from x with a transition
probability m, is

(2.6) 0, P'(-) = Z Mg (T1) My (T2) -+ Mg, ()

for t > 1. In particular, using the measure (2.2), the probability that the random
walk starting at x moves to y in ¢ steps is given by

Wgxy Wryzy Wxy 1y : .
e ift>1
6Q:Pt(y) = { ZII’“WJEt?I e dzl dzt71 ’ ’

Wy 3 —
= ift =1.

The idea is now to define a family of graphs G[t], ¢ > 1 that encodes the transition
probabilities of the ¢t-step random walks on the graph G.

Definition 3. The neighborhood graph G[t| = (V, E[t]) of the graph G = (V, E) of
order t > 1 has the same vertex set as G and the weights of the edges of G[t] are
defined by the transitions probabilities of the t-step random walk,

(2.7) Wyy[t] = 0, P (y)d,.

In particular, G = G[1] and z ~ y in G[t] if and only if there exists a path of length
t between = and y in G.

Remark 2. We note here that the neighborhood graph method is related to the discrete
heat kernel p,(x,y) on graphs. For more details about the discrete heat kernel see for
instance Grigoryan [10]. We have
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Example 1. We consider the following two examples.

G G[2]
1 1
° ® ) 1m3\\\\éz’////(Mm
112

Note that the neighborhood graph G[2] is disconnected. In fact the next lemma shows
that this is the case because G is bipartite. Note furthermore that E(G) € E(G[2]).
H H[2]

1

1 172 1

For this example we have E(H) C E(H]2]).
These examples shows that the neighborhood graph G[t] is in general a weighted
graph with loops, even if the original graph G is an unweighted, simple graph.

Lemma 1. The neighborhood graph G|t] has the following properties (see Bauer-Jost
[11):
(i) If t is even, then Glt] is connected if and only if G is not bipartite. Further-
more, if t is even, G[t] cannot be bipartite.
(i) Ift is odd, then G[t] is always connected and G|t] is bipartite iff G is bipartite.
(iil) dp[t] = d, for allxz € V.
Note that (74i) implies that (*(V,u) = [>(V,u[t]) for all t. In particular, we have
the same inner product for all neighborhood graphs G|[t]. The crucial observation is
the next theorem.

Theorem 1 (Bauer-Jost). The Laplace operator A on G and the Laplace operator
Alt] on GIt] are related to each other by the following identity:

id — (id — A)" = At].
The nonlinear relation between A and A[t] leads directly to the following eigenvalue

estimates.

Theorem 2 (Bauer-Jost). Let A[t] be a lower bound for the eigenvalue A\ [t] of Alt],
i.e., \[t] > A[t]. Then

(2.8) 1— (1= A <M\ < <Ay <1+ (1— At
if t is even and

(2.9) 1— (1= A7 <\

if t is odd.

Theorem 3 (Bauer-Jost). Let B[t] be an upper bound for the largest eigenvalue
An_1[t] of Alt], i.e. An_i[t] < B[t]. (Since An_1[t] < 1 for t even, we can as-
sume in this case w.l.o.g. that B[t] <1 in this case.) Then all eigenvalues of A are
contained in the union of the intervals

0,1—(1— B[t])ﬂ U [1 +(1- B[H])

1
t

,2
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if t is even and

o=

Av—1 <1—(1-Blt])
if t is odd.

These theorems show how random walks on graphs (or equivalently neighborhood
graphs) can be used to estimate eigenvalues of the Laplace operator. In the rest of
this paper we will use these insights to derive lower bounds for A; and upper bounds
for Ay_1 in terms of the Ollivier-Ricci curvature of a graph.

2.3. Ollivier-Ricci curvature from a probabilistic view. We define a metric d
on the set of vertices V' as follows. For two distinct points x,y € V, d(x,y) is the
number of edges in the shortest path connecting  and y. Then, including the family
of probability measures m := {m,(-)}, we have a structure (V,d, m), on which the
definition of Ricci curvature proposed by Ollivier [18] can be stated.

Definition 4 (Ollivier). For any two distinct points x,y € V', the (Ollivier-) Ricci
curvature of (V,d,m) along (zy) is defined as

Wi(mg, my)
d(z,y)

Here, Wi(m,, m,) is the transportation distance between the two probability mea-
sures m, and m,, in a formula,

(2.11) Wi(mg,my) = inf )Z > d y)e @y,

»yell(me,m
grvelllma my '€V y'eV

(2.10) k(z,y):=1-—

where [[(m,,m,) is the set of probability measures £*¥ that satisfy

(212) S ) = mal), 3 €)= myy).
y'eV z'eV
The conditions (2.12) simply ensure that we start with the measure m, and end up
with m,,. Intuitively, W;(m,, m,) is the minimal cost to transport the mass of m, to
that of m, with the distance as the cost function. We also call such a {%¥ a transfer
plan between m, and m,, or a coupling of two random walks governed by m, and m,
respectively. Those £%Y (£%Y might not be unique) which attain the infimum value
in (2.11), are called optimal couplings. The optimal coupling exists in a very general
setting. For locally finite graphs the existence follows from a simple and interesting
argument in Remark 14.2 in [13].
There is a Kantorovich duality formula for transportation distances,

(2.13) Wi(mg,my) = sup | Y fl@)ma(2') = > f")my(y)],

f:Lip(f)<1 eV y'EV
where Lip(f) := sup,,, %. For more details about this concept, we refer to

Villani [22, 23], and Evans [9].

Remark 3. Applying this definition of curvature to a Riemannian manifold with a
family of probability measures obtained by restricting the volume measure to the closed
r-balls, k will reduce to the Ricci curvature as v — 0 up to a scaling 2, see Ollivier
(18], for which we also refer for a general treatment of Ricci curvature. In Riemannian
geometry, Ricci curvature controls how fast the geodesics emanating from the same
point diverge on average, or equivalently how fast the volume of distance balls grows
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as a function of the radius. Jost-Liu [11] translate those ideas into a combinatorial
setting and show that Ollivier-Ricci curvature on a locally finite graph reflects the
relative abundance of triangles, which is captured by the local clustering coefficient
introduced by Walts-Strogatz [24].

For the rest of this paper, let k be a lower bound for the Ollivier-Ricci curvature,
i.e.
(2.14) k(z,y) >k, Vo ~y.
Remark 4. By Proposition 19 in Ollivier [18], it follows that if k is a lower curvature

bound for all neighbors x,y then it is a lower curvature bound for all pairs of vertices.
This also follows from Theorem 4 below.

Remark 5. By definition, the lower bound k for the curvature k is no larger than
one. In fact, such a lower bound k always exists. Since the largest possible distance
between points from the supports of two measures m, and m, at a pair of neighbors
x,y is 3, we can easily estimate k(z,y) > —2. We will derive a more precise lower
bound for k on a locally finite graph with loops in Theorem 6, see also Lin-Yau [15]
and Jost-Liu [11] for related results.

We could also write (2.14) as
(2.15) Wi(mg,my) < (1 —k)d(z,y) =1—k, Yo ~y,

which is essentially equivalent to the well known path coupling criterion on the state
space of Markov chains used to study the mixing time of them (see Bubley-Dyer [3] or
[13], [19]). We will utilize this idea to interpret the lower bound of the Ollivier-Ricci
curvature as a control on the expectation value of the distance between two coupled
random walks.

We reformulate Bubley-Dyer’s theorem (see [3] or [13], [19]) in our language.

Theorem 4 (Bubley-Dyer). On (V,d, m), if for each pair of neighbors x,y € V, we
have the contraction
Wi(mg,my) < (1 —k)d(z,y) =1—k,
then for any two probability measures 1 and v on V', we have
Wi(pP,vP) < (1 —k)Wi(u,v).
With this at hand, it is easy to see that if for any pair of neighbors z,y, k(z,y) > k,

then for any time ¢ and any two z, i, which are not necessarily neighbors, the following
is true,

(2.16) Wi (6:P", 6;PY) < (1 — k)'d(z, ).

We consider two coupled discrete time random walks (X;, Y;), whose distributions are
6z P", 6; P respectively. They are coupled in a way that the probability

p(X =2V, =y) =7, 7),
where &Y(-,-) is the optimal coupling of d; P* and &, P*. In this language, we can in-

terpret the term Wy (9z P*, 8;P") as the expectation value of the distance E™Yd(X,,Y})
between the coupled random walks X; and Y;.

Corollary 1. On (V,d,m), if k(x,y) > k, Y ~ y, then we have for any two T,y € V,
(2.17) E*7d(X,, Vi) = Wi (8, P, 6,P') < (1 — k)'d(z, 7).
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2.4. Ollivier-Ricci curvature and the lower bound of the first eigenvalue.
In his paper [18], Ollivier proved a spectral gap estimate which works on a general
metric space with random walks. In particular, on finite graphs, it could be stated as
follows.

Theorem 5 (Ollivier). On (V,d,m), if k(z,y) > k, Yx ~ y, then the first eigenvalue
A1 of the normalized graph Laplace operator A satisfies

A > k.

This is a discrete analogue of the estimate for the smallest nonzero eigenvalue
of the Laplace-Beltrami operator on a Riemannian manifold by Lichnerowicz. As
pointed out in Ollivier [18], this result is also related to the coupling method for
estimates of the first eigenvalue in the Riemannian setting developed by Chen-Wang
[7] (which leads to a refinement of the eigenvalue estimate of Li-Yau [14]), see also
the surveys Chen [5, 6]. The corresponding result of Corollary 1 in the smooth case,
i.e., controlling the expectation distance of two coupled Markov chains in terms of
the lower bound of Ricci curvature on a Riemannian manifold, is a key step in Chen-
Wang’s method.

A direct proof of Theorem 5 can be found in [18]. Here we want to present an
analogue of Chen-Wang’s method in the discrete setting. Our proof of Theorem 5
motivated us to combine the Ollivier-Ricci curvature and the neighborhood graph
method via random walks. It reflects the deep connection between eigenvalue esti-
mates and random walks or heat equations.

Proof: We consider the transition probability operator P : I*(V,u) — I*(V, p)
defined by Pf(z) == >, f(y)m.(y) = >_, f(y)6.P(y). Then we have P'f(z) =
>t (y)d.P'(y). We construct a discrete time heat equation,

f(QZ,O) = fl(‘r)a
f(]?, 1) - f(.T,O) - Af<x70)7
(218) f(x,2)—f(x,1):Af(x,1),

where fi(x) satisfies Afi(x) = =\ fi(x) = Pfi(x) — fi(z). Iteratively, one can find
the solution of the above system of equations as
(2.19) fla,t) = P fi(x) = (1 = M) fi(w).

We remark here that the solution of the heat equation on a Riemannian manifold with
the first eigenfunction as the initial value is f(x,t) = fi(x)e~™* which also involves
information about both the eigenvalue A\; and the eigenfunction fi(x).

If Ay > 1 there is nothing to prove since x < 1 by definition. Therefore we can
suppose A; < 1 in the following. Then we have for any z,y € V

(1= M)'"1AE) = A@] = (1) = f(7,1)]
= |P'fi(z) — P' f1(y)]
< Z f(@) — FIE (@)

< Lip(f1)E™d(X;, V1)
< Lip(fi)(1 - k)'d(z,7).
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Here, Lip(f) is always finite since the underlying space V' is a finite set. In the last
inequality we used Corollary 1. From an analytic point of view, the above calculation
can be seen as a gradient estimate for the solution of the heat equation.

Since the eigenfunction f; for the eigenvalue \; is orthonogal to the constant func-
tion, i.e. (f1,1), = 0, we can always find zo,yo € V such that | fi(x¢) — fi(yo)| > 0.
It follows that

1—k\'_ .
0< Lip(f1)d(xo, yo)-
11—\
To prevent a contradiction when ¢t — 0o, we need

1— kK > 1,
11—

which completes the proof. O

(2.20)

3. ESTIMATES FOR OLLIVIER-RICCI CURVATURE ON LOCALLY FINITE GRAPHS
WITH LOOPS

Jost-Liu [11] give a sharp estimate for Ollivier-Ricci curvature on locally finite
graphs without loops. As shown in Example 1, neighborhood graphs are in general
weighted graphs with loops. Therefore, for our purposes, we need to understand the
curvature of graphs with loops. In this section, we generalize the estimates in Jost-
Liu [11] for locally finite graphs G = (V, E) that may have loops. This is done by
considering a novel optimal transportation plan.

We first fix some notations. For any two real numbers a, b,

ay =max{a,0}, a Ab:=min{a,b}, and a V b := max{a, b}.
We denote N, := {z € V|z ~ z} as the neighborhood of z and N, := N, U {z}.

Then N, = N, if z has a loop. For every pair of neighbors z, y, we divide N, N, into
disjoint parts as follows.

(3.1) N, = {2} U{y} UN; UN,,, N, ={y}U{a} UN, UN,,,

where
Nzy = Na>y U Nx<y

and
Ny = {zlz ~ a2 Ay, 2 # yh,
Wy Wy
Nysy ={z|lz ~z, 2~y 242,24y, — > 1
w w
Nowy ={zlz~z, 2~y 240,24y, — < —2}.
d, dy
In the next figure we illustrate this partition of the vertex set.
Nny
N
1 y
Nx @ ®
X y

N X<y
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Theorem 6. On G = (17, E), we have for any pair of neighbors x,y € V,

wa:y w:cy wx1w wxly
H(I,y)Zk(ZL’,y):— l-——-—— —V —
d, dy = d, o d,
X1 Ty
+
o 1 — wmy _ wmy _ wxlx A wxly
d, d, d, = d,
xlENzy +
+ z : wxlx wxly + Wy + wyy
d d,
Z1E€Nzy dy z Y

Moreover, this inequality is sharp.

Remark 6. On an unweighted graph, the form k(x,y) for x ~y becomes

k(. y) = — LS {25 ) I Y U S SN C) R W ) B O
’ d, d, d,Nd,), d, d, d,vd,), d.vd, d,

where §(z,y) = leeNzy 1 is the number of triangles containing x,y, c(x) =0 or 1
1s the number of loops at x.

Proof: Since the total mass of m, is equal to one, we obtain from (3.1) the following
identity for neighboring vertices x and y:
wxy wzlx Wey wﬂ?lfﬂ

3.2 1 oy Warw _
(3:2) d. i 4 d.

xleNzy zlEN;‘;

A similar identity holds for y.

We denote
A 1 Wy Wy Wy x V Wy y
= T, T 2 g Y
Y CUIGNQ:y Y
= T T L T M
z Yy xleNzy x Y

Obviously, A, , < B;,. We firstly try to understand these two quantities.
If A,, >0, we have

w w w w w
33 1 — Ty 1y Yy Ty 1y
53 Poy e 3 (et)

xleNzy xleNz>y

i.e., using (3.2) we observe that the mass of m, at y and Ny1 is no smaller than that
of m, at y and the excess mass at N,>,. Rewriting (3.3) in the form

ey e %—Z(%L%#

CC161\7 xleNzZy
. w.
and subtracting the term -\ =7t A =212 on both sides we obtain
T
wxy wz1y wxxl wxy Wy,
(3.4) + E ( - <1- T —
T1€Nz<y y z r T1€Nzy v

i.e., the mass of m, at z and N is larger than that of m, at x and the excess mass
at Nycy.
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If B,, > 0, we have

w w w w w
35 1 — Ty Faxy zz1  Waiy > Ty
@ G c 2 ()

T1€Ngy T1ENL>y

i.e., the mass of m, at  and N} and the excess mass at N,>, is no smaller than that
of m, at .

In Jost-Liu [11] it is explicitly described how much mass has to be moved from a
vertex in NN, to which point in N, i.e. the exact value of £&*¥(2',y'), for any 2’ € N,,
y' € N,. But in the case with loops it would be too complicated if we try to do
the same thing. Instead, we adopt here a dynamic strategy. That is, we think of a
discrete time flow of mass. After one unit time, the mass flows forward for distance
1 or stays there. We only need to determine the direction of the flow according to
different cases.

As in Jost-Liu [11], we divide the discussion into 3 cases.

e 0 < A,, < B,, In this case we use the following transport plan: Suppose
the initial time is t = 0.
t = 1: Move all the mass at N} to z and the excess mass at N,>, to y. We
denote the distribution of the mass after the first time step by m!. We
have

w w w w w
me7m1< 1 = _ % N S| TRy ) v ]
i ) < d, d, Z d, + Z ( d,
xleNzy I16N1>y

t = 2: Move one part of the excess mass at  now to fill the gap at N,,
and the other part to y. By (3.4) the mass at = after ¢ = 1 is enough to
do so. The distribution of the mass is now denoted by m?. We have

w.’L‘ wx:v
Wim',m?) < > (d;y_ d,j)“

+ 1_12%_ Z wjm _ Z (wjly_w;m)_uzl&?y x 1
r xlENzy x 116N1<y Y z Y

t = 3: Move the excess mass at y now to N;. We denote the mass after the
third time step by m* = m,. We have

w w w w w w
Wi (m? <||1-=2— Zrao | iy Waz | Way zy
xIENzy 11€N1<y Y Y
+ Z (wml _ wjly) -~ ZZlyy] x 1
z1€Nz>y Y Y

By triangle inequality and (2.11), we get
Wi (mg, my,) <Wi(mg,m') + Wi(m', m?) + Wy(m? m,)

-3 — 2w:py _ wacy —9 Z Wy w:ply . Wy, V. wxly Wy
d, d, d d,
xleNzy y xleNzy Y
Moreover, if the following function can be extended as a function on the graph
such that Lip(f) < 1, (i.e., if there are no paths of length 1 between N! and
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Ny<y, nor paths of length 1 between Ny1 and N,>,, nor paths of length 1 or 2
between N, and N,,)

if z € Nyl;

if z € {y} U Nycy;

if z € {x} U Ny>y;

, if 2 € N},

f(z) =

W~ O

then by Kantorovich duality (2.13), we can show that the inequality above is
actually an equality. Recalling the definition of k(z,y), we have proved the
theorem in this case.

Ay <0< B, ,. We use the following transfer plan:

t = 1: We divide the excess mass of m, at N,>, into two parts. One part
together with the mass of m, at y is enough to fill gaps at y and Nyl.
Since (3.3) doesn’t hold in this case, this is possible. We move this part
of mass to y and the other part to . We also move all the mass of m,
at NI to x.

t = 2: We move the excess mass at x now to N, and the excess mass at
y to N,,.

Applying this transfer plan, we can prove (we omit the calculation here)

Wz

w. w w
Wi (mg,my) <2 — —2v - Lav g A Lo ) Wer Ty
me,my) £ 2= 35— 2 (dw dy> d, d,

Moreover, if the following function can be extended as a function on the graph
such that Lip(f) < 1, (i.e., if there are no paths of length 1 between N} UN,>,
and N; U N,,,)

iszNleN:Ky;
if z=uxor z=y;

0,
flz)=4 1,
2, if 2. € N} U N>y,
(2.1

then by Kantorovich duality 3), we can check that the inequality above is
actually an equality.
Ay < By, < 0. We use the following transport plan:
t = 1: Move the mass of m, at N} and N,>, to z. Since now (3.5) doesn’t
hold, we need to move one part of the mass m,(y) to  and the other
part to N, and N,,.

Applying this transfer plan, we can calculate

Wl(mx,my) <1- Z <wxz1 A wmy) . Wey . ’wyy.

d d
flENzy r v

Since the following function can be extended as a function on the graph such
that Lip(f) <1,

= {0 if 2 € {2} U N,y UNY;
L L iz e{ytUNsy, UN,,

we can check the inequality above is in fact an equality by Kantorovich duality.
That is, in this case for any = ~ v,

Klr,y) = > (dm A dy)+ TR

IleNzy
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O
We also have a generalization of the upper bound in Jost-Liu [11] on G.
Theorem 7. On G = (‘7, E), we have for every pair of neighbors x,y,
w w
< 1T A xly‘
r(2,y) < > o N d,
z1€{z}U{y}UN,
Proof: I :=)  ciu{y}uns, wg—j A w;—y“’ is exactly the mass of m, which we need
not move. The other mass need to be moved for at least distance 1. So we have
Wi(mg, my) > 1 — I, which implies x(z,y) < I, for x ~ y. O

Remark 7. If for every x € V, wy, = 0, then Theorem 6 and Theorem 7 reduce to
the estimates in Jost-Liu [11].

Remark 8. Theorem 7 tells us that if k(x,y) > 0 for any x ~ vy, then either f(x,y) #
0 orc(z) #0 orc(y) #0.

Example 2. We consider a lazy random walk on an unweighted complete graph Ky
with N wvertices governed by my(y) = 1/N,Vz,y. Or equivalently , we consider the
graph Kﬁzy. Using Theorem 6 and Theorem 7, we get for any x,y
N-2 1 1 1
l=—-—+—4+—=Z <—-N=1.
N —|—N+N_Ii($,y)_N
That 1is, in this case, both the lower and the upper bound are sharp.

4. ESTIMATES OF THE SPECTRUM IN TERMS OF OLLIVIER-RICCI CURVATURE

In this section, we use the neighborhood graph method to derive estimates for the
spectrum of the normalized graph Laplace operator in terms of the Ollivier-Ricci
curvature. In particular, we get a sharp upper bound for the largest eigenvalue using
the curvature on the original graph. Furthermore, we give nontrivial estimates using
the curvature on neighborhood graphs even if the curvature of the original graph is
nonpositive. In this case, our results improve Theorem 5.

Lemma 2. Let k[t] be a lower bound of Ollivier-Ricci curvature of the neighborhood
graph G[t]. Then for allt > 1 the eigenvalues of A on G satisfy

(4.1) 1= (1—k[t])t <A < <Ay < 1+ (1—k[])t
if t is even and
(4.2) 1—(1—k[t])r <N\

if t is odd. Moreover, if G is not bipartite, then there exists a t' > 1 such that for all
t >t the eigenvalues of A on G satisfy

0<1—(1—k[t])F <M< <Ay <1+ (1—K[t])

if t is even and

1
t

<2

0<1—(1—Fk[)r <N
if t is odd.

Proof: By combining Theorem 2 and Theorem 5 we directly obtain equation (4.1)
and equation (4.2).

The second part of this Lemma is proved in two steps. In the first step, we will show
that if GG is not bipartite then there exists a t’ such that for all ¢ > ¢’ the neighborhood
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graph G[t] of G satisfies wy,[t] # 0 for all z,y € V, i.e. G[t] is a complete graph and
each vertex has a loop. In the second step, we show that any graph that satisfies
Wgy 7 0 for all x,y € V has a positive lower curvature bound, i.e. k£ > 0. This then
completes the proof.

Step 1: By the definition of the neighborhood graph it is sufficient to show that
for all ¢ > t' there exists a path of length ¢ between any pair of vertices. Since G
is not bipartite it follows that there exists a path of even and a path of odd length
between any pair of vertices in the graph (This is the definition of a bipartite graph!).
Given a path of length L between x and y then we can find a path of length L + 2
between x and y as follows: We go in L steps from x to y and then from y to one of
its neighbors and then back to y. This is a path of length L + 2 between z and y.
Since G is finite, it follows that there exists a t’ such that there are paths of length ¢
for all ¢ > t' for any pair of vertices.

Step 2: Given a graph that satisfies w,, # 0 for all z,y € V.

Since each vertex in the graph is a neighbor of all other vertices, it is clear that we
can move the excess mass of m, for distance 1 to anywhere. Therefore

w w
Wl(mx,my) Sl— %/\%,
1€V z Yy
which implies

Wrzy , Wy

k(x,y) > — N —.
(2,y) > Y i
x1€V

By Theorem 7, it follows that the above inequality is in fact an equality. Hence for
all x,y € V, we have

W, ming , Wy S Ming y Wy

w
k(x,y) = AN — > N > > 0,
= d, dy max, dy mMaxy y Way
since the weight is positive for every pair of vertices.
This completes the proof. [l

Remark 9. From Remark 8 after Theorem 7 we know that positive lower curvature
bound is a strong restriction on a graph. Hence, Olliver’s estimate Ay > k only yields
nontrivial estimates for A1 in those restricted cases. Lemma 2 shows that, unless G
15 bipartite, the neighborhood graph method can be used to always obtain a nontrivial
lower bound for Ay in terms of the Ollivier-Ricci curvature.

Now, we will show that it is also possible to control the largest eigenvalue of A on
the graph G in terms of the Olliver-Ricci curvature of G itself.

Theorem 8. On (V,d,m), if k(z,y) > k, Yz ~ y, then the largest eigenvalue Ay_y
of the normalized graph Laplace operator A satisfies

Avo1 <2 —k.

Remark 10. As discussed above, the largest eigenvalue A\n_1 is small if the graph
does not contain a locally bipartite subgraph that has only a few connections to the
rest of the graph. It is well known that a graph is bipartite if and only if it does
not contain any cycle of odd length, in particular a bipartite graph does not contain
triangles and loops. Since positive Ollivier-Ricci curvature implies that locally there
always exists a triangle or a loop, i.e. the graph cannot be locally bipartite, it is not
surprising that the largest eigenvalue can actually be controlled from above in terms
of the Ollwier-Ricci curvature.
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By combining Theorem 8 and Theorem 6, we have the following corollary. From
Remark 6, we know that k(x,y) reflects the number of triangles and loops in the
graph.

Corollary 2. On G = (V, E), the largest eigenvalue satisfies

Av_1 <2 —mink(z,y),

z~y
where k(x,y) is defined in Theorem 6.

The main point in the proof of Theorem 8 is to explore the relation of the Ollivier-
Ricci curvature x on the original graph G and the Ollivier-Ricci curvature x[t] on its
neighborhood graph G|[t]. Before we prove Theorem 8 we consider some lemmata.

If we interpret the graph G = (V. E) as a structure (V,d,m = {J,P}), then
by (2.7) its neighborhood graph G[t] = (V, E[t]) can be considered as a structure
(V,d[t], {0.P"}). So the first step should be to estimate the variance of the metrics
on neighborhood graphs.

Lemma 3. For any x,y € V, we have
1

Proof: For any z,y € V, we set d[t](z,y) = oo if we cannot find a path connecting
them in G[t]. Otherwise, we just choose a shortest path zo = z,x,...,2; = vy,
between x and y in G[t], i.e. | =d[t](z,y). For z;,z;41,7=0,...,0 — 1, by definition
of neighborhood graph, we have d(z;, z;11) <t in G. Equivalently,

Summing over all 7, we get

-1

£ e i) < dif ),

i=0
Then the triangle inequality of d on G gives (4.3). O

Remark 11. In fact, when t is larger than the diameter D of the graph G, we have
a better estimate

(4.4 Ld(r,y) < () < 1< dt)(z,v).
Lemma 4. If E C EJt], then d[t](z,y) < d(z,vy).

The proof is obvious. The interesting point is that when the Ollivier-Ricci curvature
of the graph G is positive, F C E|t] is satisfied for all £ and hence Lemma 4 is
applicable. This can be seen as follows. First we observe that for (z,y) € E, if
t(x,y) # 0 or ¢(z) # 0 or ¢(y) # 0, then (z,y) € E[t]. Then we get the conclusion
immediately from Remark 8 after Theorem 7.

Lemma 5. Let k be a lower bound of k on G. If E C Elt], then the curvature kl[t]
of the neighborhood graph G|t] satisfies

(4.5) k[t](z,y) > 1—t(1 — k), Vo,ye V.
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Proof: By Lemma 4, Corollary 1 and Lemma 3, we get
w6, Pt,8,Pt) < Wi(8,P',8,P")
< (1-k)d(z,y)
< t(1 = k)'d[t](z,y).
We use Wld [t], W here to indicate the different cost functions used in these two
quantities. In the first inequality above we used that the transportation distance
(2.11) is linear in the graph distance d(-, -). Recalling the definition of the curvature,
we have proved (4.5). O

Now we arrive at the point to prove the upper bound of the largest eigenvalue.
Proof of Theorem 8: Using Lemma 5 and Theorem 5, we know on G[t],

M[t] > 1—t(1— k)"
Then by Lemma 2, we get for any even number ¢,
Avo1 <1+ t%(l — k).

Letting t — 400, we get Ay_1 <2 — k. 0
By combining Theorem 5 and Theorem 8, we get

k<M< <Ava1 <2-k,
That is, (4.1) is also true for ¢ = 1.

Example 3. On an unweighted complete graph Ky with N wvertices, we have

N -2 N
k;:n(x,y)zm,w,y and )\1:...:)\N_1:N_1.
Therefore,
k<M=-=Ava1=2—-k.

That is, our upper bound estimate for Ay_1 s sharp for unweighted complete graphs.

Example 4. Let’s revisit the graph ICf[Zy in Example 2. We have
k=k(z,y)=1,Ve,y and A\=---=Ay_1 = 1.
Therefore,
k=MAN=---=Ay1=2—-k=1.
That 1is, both estimates are sharp in this case.

In fact, we can show that (4.1) is true for any ¢ > 1.

Theorem 9. Let k[t] be a lower bound of Ollivier-Ricci curvature of the neighborhood
graph G[t]. Then for all t > 1 the eigenvalues of A on G satisfy

(4.6) 1— (1= k[])t <A <+ < Ayog <1+ (1—K[t])7.
Moreover, if G is not bipartite, then there exists a t' > 1 such that for all t > t' the
eigenvalues of A on G satisfy

0<1—(1—k[t])t <M<+ <Ayog <1+ (1—EK[t])

1
<2
Proof : By Lemma 2, we only need to prove the upper estimate Ay_; < 14+(1+k[t])
if ¢ is odd. This follows immediately from Theorem 8 and Theorem 3. U
In particular, unless G is bipartite, we can obtain nontrivial lower bounds for \;
and nontrivial upper bounds for Ay_; even if k = k[1] is nonpositive.
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5. ESTIMATES FOR THE LARGEST EIGENVALUE IN TERMS OF THE NUMBER OF
JOINT NEIGHBORS

In Bauer-Jost [1] it is shown that the next lemma is a simple consequence of The-
orem 1.

Lemma 6. Let u be an eigenfunction of A for the eigenvalue \. Then,
(0, AR, Ty wnf2)(u(z) — u(y))
(u7 Au)u Zx,y Wzy (U(.CIZ‘) o U(y))2

Lemma 6 can be used to derive further estimates for the largest eigenvalue A\y_;
form above and below. We introduce the following notations:

(5.1) 2 A=

Definition 5. Let N, be the neighborhood of vertex x as in Section 3. The mini-
mal and the mazimal number of joint neighbors of any two neighboring vertices is
defined as f; := min,, (8(z,y) + c(z) + c(y)) and fs = max,,(1(z,y) + c(z) + c(y)),
respectively. Furthermore, we define W := max, , Wy, and w := Mily y.pmy Way-

Theorem 10. We have the following estimates for Ay_1:
(1) If E(G) C E(G[2]) then

w? |
1 <2—-— .
A1 S W max, d,
(17) If E(G[2]) C E(G) then
. =
2— W .ﬁQ < An-1
w ming d,

Proof. On the one hand, we observe that if F(G) C E(G[2]) then for every pair of
neighboring vertices x ~ y in GG

) N
(5.2) wxym:z'z@wmwzy > w' b

Wy Wy ~ Wmax,d,

On the other hand if E(G[2]) C E(G) then for every pair of neighboring vertices
x ~yin G(2) we have

1 2 3
(5'3) wwy[Q] _ Zz d; WazWzy < K Jj2

Way Way T w min,d,

Substituting the inequalities (5.2) and (5.3) in equation (5.1) completes the proof. O

Interestingly, Theorem 10 (i) yields an alternative proof of Theorem 8 in the case
of unweighted regular graphs. Since Theorem 8 trivially holds if £ < 0 we only have
to consider the case when £ > 0 is a lower curvature bound. The discussion after
Lemma 4 shows that k£ > 0 implies that F(G) C F(G[2]) and hence we can apply
Theorem 10 (i) in this case. From Theorem 7 it follows that for an unweighted graph
Bz, y) | clx) | cy)
<
e RYE A R}
for all pairs or neighboring vertices z,y. In the case of an d-regular graph G this
implies that a lower bound £ for the Ollivier-Ricci curvature must satisty,

b
E<=.
—d
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Hence for an unweighted d-regular graph Theorem 10 implies

/\N—ISQ—ﬂ—ISQ—]{?.
d
We consider the following example.

Example 5. Let’s revisit the complete unweighted graph Ky . For the complete graph
we have E(Ky) C E(Kn[2]). We have §; = N — 2 and max,d, = N — 1. Thus,
Theorem 10 (i) yields

N
An-1 < N1
1. e. the estimate from above is sharp for complete graphs. Now we consider the
unweighted complete graph on N vertices with N loops K. We have E(KE?[2]) =
E(K%%). Furthermore, we have §, = N and min, d, = N. Thus, Theorem 10 (ii)
yields

1 S AN—17

i. e. the estimate from below is sharp for complete graphs with loops.

6. AN EXAMPLE

In this section, we explore a particular example, the circle C5 with 5 vertices. We
show that our estimates using the neighborhood graph method can yield nontrivial
estimates although the curvature of the original graph has a nonpositive lower curva-
ture bound. We also discuss the growth rate of the lower bound & for curvature x[t]
as t — oo on Cs.

We consider the unweighted graph Cs displayed in the next figure.

We know that the first and largest eigenvalue of A on Cs are given by
2 4
A =1 cos g = 0.6910, Ay = 1 — cos g = 1.8090.

It is easy to check that the optimal lower bound k for the curvature is 0. So in this
case Ollivier’s result Theorem 5 and Theorem 8 only yield trivial estimates.

Now we consider the neighborhood graph Cs[2] depicted in the next figure (we
change the order of vertices).
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-

'
\-’l \5—1

The weight of every dashed loop is 1 and the weight of every solid edge is 1/2. We can
check that the optimal k[2] is 1/4. Then Theorem 9 yields the nontrivial estimate,

3 3
N> 1— % = 01340, A <1+ ‘/7_ = 1.8660.

Moreover, the neighborhood graph Cs[4] = (C[2])[2] is depicted in the next figure.

' [y ]
\hfl \h—l

The weight of every dashed loop is 3/4 and the weight of every solid edge is 1/2 and
every dash-dotted edge is 1/8. We can check that the optimal lower curvature bound
is k[4] = 1/2. So Theorem 9 tells us that

A >1 ! =0.1591, \y <1+ ! = 1.8409
1= B ; Ag < oA :

We can also consider the neighborhood graph of odd order Cs[3], which is depicted
in the next figure.
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The weight of every solid edge is 3/4 and the weight of every dashed edge is 1/4.
Then the optimal lower curvature bound is given by k[3] = 3/8. Theorem 9 implies

A >1— (g) =0.1450, Ay <1+ (g) = 1.8550.

From the above calculations, we see that the Ollivier-Ricci curvature x[t] on the
neighborhood graphs give better and better estimates in this example.
We also further compare the estimates in Theorem 10 and Theorem 8 on the
weighted graph Cs[3]. By Theorem 10 we get
(1/4)> 3 15

M3 <2 — 2=
3] < 3/4 2 8

This is worse than the one given by Theorem 8, A\y[3] <2 — 3 = 22,

Another interesting problem is concerned with the limit of the neighborhood graphs.
As shown in Bauer-Jost [1], since Cs is a regular non-bipartite graph, Cs[t] will converge
to Cs[o0] := C5 as t — oo. In this case C5 is a complete graph and every vertex has
a loop and the weight of every edge in Cs is 2/5. We can then check that x[oc] = 1.
By Theorem 9, for large enough ¢, we have

2
(6.1) 0<1—ﬂ—kMﬁ§A1:1—m&§<1.

Therefore 0 < (1 — k[t])7 < 1. Intuitively, k[t] should become larger and larger as
t — oo since the graph Cs[t] converges to a complete graph and its weights become
more and more the same. We suppose limy_,o (1 — k[t])7 exists (this is true at least
for a subsequence). Then to avoid contradictions in (6.1), we know there exists a
positive number a such that

Jim (1= k[t]) T = e™ > 0.
That is,
log(1 — k[t
}Hlog(t ) —

which means k[t] behaves like 1 — P(t)e™* as t — oo where P(t) is a polynomial in ¢.
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