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Abstract

We present explicit classes of probability distributions that can be
learned by Restricted Boltzmann Machines (RBMs) depending on the
number of units that they contain, and which are representative for the
expressive power of the model. We use this to show that the maximal
Kullback-Leibler divergence to the RBM model with n visible and m
hidden units is bounded from above by (n−1)−log(m+1). In this way
we can specify the number of hidden units that guarantees a sufficiently
rich model containing different classes of distributions and respecting
a given error tolerance.

1 Introduction

A Restricted Boltzmann Machine (RBM) [23, 10] is a learning system con-
sisting of two layers of binary stochastic units, a hidden layer and a visible
layer, with a complete bipartite interaction graph. It is used as a generative
model for probability distributions on binary vectors. RBMs can be trained
in an unsupervised way and more efficiently than general Boltzmann Ma-
chines, which are not restricted to have a bipartite interaction graph [11, 6].
Furthermore, they can be used as building blocks to progressively train and
study deep learning systems [13, 4, 16, 21]. Hence, RBMs have received
increasing attention in the past years.

An RBM with n visible and m hidden units generates a stationary dis-
tribution on the states of the visible units which has the following form:

p
W,C,B

(v) =
1

Z
W,C,B

∑

h∈{0,1}m

exp
(

h⊤Wv + C⊤h + B⊤v
)

∀v ∈ {0, 1}n ,

where h ∈ {0, 1}m denotes a state vector of the hidden units, W ∈ Rm×n, C ∈
Rm and B ∈ Rn constitute the model parameters, and Z

W,C,B
is a corre-

sponding normalization constant. In the sequel we denote by RBMn,m the
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set of all probability distributions on {0, 1}n which can be approximated ar-
bitrarily well by a visible distribution generated by the RBM with m hidden
and n visible units for an appropriate choice of the parameter values.

In [15] it was shown that RBMn,m contains any probability distribution
if m ≥ 2n + 1. In [21] it was shown that already m ≥ 2n−1 − 1 suffices.
On the other hand, an RBM containing all distributions on {0, 1}n must
have at least 2n − 1 parameters, and thus at least ⌈2n/(n + 1)⌉ − 1 hidden
units [21]. In fact, in [8] it was shown that for most combinations of m and n
the dimension of RBMn,m equals either the number of parameters or 2n −1,
whatever is smaller. However, the geometry of RBMn,m is intricate, and
even an RBM of dimension 2n − 1 is not guaranteed to contain all visible
distributions, see [20] for counterexamples.

In summary, an RBM that can approximate any distribution arbitrarily
well must have a very large number of parameters and hidden units. In
praxis, training such a large system is not desirable or even possible. How-
ever, there are at least two reasons why in many cases this is not necessary:

• An appropriate approximation of distributions is sufficient for most
purposes.

• The interesting distributions the system shall simulate belong to a
small class of distributions. Therefore, the model does not need to
approximate all distributions.

For example, the set of optimal policies in reinforcement learning [24], the
set of dynamics kernels which maximize predictive information in robotics [25],
or the information flow in neural networks [3] are contained in very low di-
mensional manifolds. As was shown in [2], all of these are contained in
2-dimensional subsets. On the other hand, usually it is very hard to math-
ematically describe a set containing the optimal solutions to general prob-
lems, or a set of interesting probability distributions (for example the class
of distributions generating natural images). Furthermore, although RBMs
are parametric models and for any choice of the parameters we have a re-
sulting probability distribution, in general it is difficult to explicitly specify
this resulting probability distribution (or even to estimate it [18]). Due to
these difficulties the number of hidden units m is often chosen on the basis of
experience [12], or m is considered as a hyperparameter which is optimized
by extensive search, depending on the distributions to be simulated by the
RBM.

In this paper we give an explicit description of classes of distributions
that are contained in RBMn,m, and which are representative for the expres-
sive power of this model. Using this description, we estimate the maximal
Kullback-Leibler divergence between an arbitrary probability distribution
and the best approximation within RBMn,m.
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This paper is organized as follows: Section 2 discusses the different kinds
of errors that appear when an RBM learns. Section 3 introduces the statis-
tical models studied in this paper. Section 4 studies submodels of RBMn,m.
An upper bound of the approximation error for RBMs is found in Section 5.

2 Approximation Error

When training an RBM to represent a distribution p there are at least three
sources of errors:

1. Usually the underlying distribution p is unknown and only a set of
samples generated by p is observed. These samples can be represented
as an empirical distribution pData. The difference between p and pData

is the generalization error.

2. The set RBMn,m does not contain every probability distribution, un-
less the number of hidden units is very large, as we outlined in the
introduction. Therefore, we have an error given by the distance of
pData to the best approximation pData

RBM contained in the RBM model.

3. The learning process may yield a solution p̃Data
RBM in RBM which is not

the optimal approximation pData
RBM in terms of Kullback-Leibler diver-

gence. This can occur if the learning algorithm gets trapped in a local
optimum, or also if it optimizes an objective different from Maximum
Likelihood, e.g. contrastive divergence (CD), see [6].

In this paper we study the expressive power of the RBM model and the
Kullback-Leibler divergence from an arbitrary distribution to its best rep-
resentation within the RBM model, this accounts for the first and second
items in the above list. Estimating the approximation error is difficult be-
cause the explicit geometry of the RBM model is unknown. Our strategy is
to find subsets M ⊆ RBMn,m that are easy to describe. Then the maximal
error when approximating probability distributions with an RBM is upper
bounded by the maximal error when approximating with M.

Consider a finite set X . A real valued function on X can be seen as a real
vector with |X | entries. The set P = P(X ) of all probability distributions
on X is a (|X | − 1)-dimensional simplex in R|X |. There are several notions
of distance between probability distributions, and in turn for the error in
the representation (approximation) of a probability distribution. One pos-
sibility is to use the induced distance of the Euclidian space R|X |. From the
point of view of information theory, a more meaningful distance notion for
probability distributions is the Kullback-Leibler divergence:

D(q‖p) :=
∑

x

q(x) log
q(x)

p(x)
.
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p = q p = 1

|X |

0 128
255 1

Figure 1: This figure gives an intuition on what the size of an error means.
Every column shows four samples drawn from p, the best approximation
of the distribution q = 1

2(δ(1...1) + δ(0...0)) within a partition model with
2 randomly chosen cubical components, containing (0 . . . 0) and (1 . . . 1),

of cardinality from 1 (first column) to |X |
2 (last column). As a measure

of error ranging from 0 to 1 we take D(q‖p)/D
(

q‖ 1

|X |

)

. The last column
shows samples from the uniform distribution, which is, in particular, the
best approximation of q within RBMn,0. Note that an RBM with 1 hidden
unit can approximate q with arbitrary accuracy, see [21] and Theorem 4.1
in the present paper.

In this paper we use the basis 2 logarithm. The Kullback-Leibler (KL)
divergence is non-negative and vanishes if and only if q = p. If the support
of p does not contain the support of q it is defined as ∞. The summands
with q(x) = 0 are set to 0. The KL-divergence is not symmetric, but it has
nice information theoretic properties [14, 7].

If E ⊆ P is a statistical model and if p ∈ P, then any probability
distribution pE ∈ E satisfying

D(p‖pE) = D(p‖E) := min{D(p‖q) : q ∈ E}

is called a (generalized) reversed information projection, or rI-projection.
Here, E denotes the closure of E . If p is an empirical distribution, then one
can show that any rI-projection is a maximum likelihood estimate.

In order to assess an RBM or some other model M we use the maximal
approximation error with respect to the KL-divergence when approximating
arbitrary probability distributions using M:

DM := max {D(p‖M) : p ∈ P} .

For example, the maximal KL-divergence to the uniform distribution 1

|X | is
attained by the Dirac delta distributions δx, x ∈ X , and amounts to:

Dn

1

|X|

o = D(δx‖
1

|X |) = log |X | . (1)
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3 Model Classes

3.1 Exponential families and product measures

In this work we only need a restricted class of exponential families, namely
exponential families on a finite set with uniform reference measure. See [5]
for more on exponential families.

Let A ∈ Rd×|X | be a matrix. The columns Ax of A will be indexed by
x ∈ X . The rows of A can be interpreted as functions on R. The exponential
family EA with sufficient statistics A consists of all probability distributions
of the form pλ, λ ∈ Rd, where

pλ(x) =
exp(λ⊤Ax)

∑

x exp(λ⊤Ax)
, for all x ∈ X .

Note that any probability distribution in EA has full support. Furthermore,
EA is in general not a closed set. The closure EA (with respect to the usual
topology on RX ) will be important in the following.

There are many links between exponential families and the KL-divergence:
Let E be an exponential family. For any p ∈ P there exists a unique rI-
projection pE to E . The rI-projection pE is characterized as the unique
probability distribution in E ∩ (p + ker A).

The most important exponential families in this work are the indepen-
dence models. The independence model of n binary random variables con-
sists of all probability distributions on {0, 1}n that factorize:

En =
{

p ∈ P(X ) : p(x1, . . . , xn) =

n
∏

i=1

pi(xi) for some pi ∈ P({0, 1})
}

.

It is the closure of an n-dimensional exponential family En. This model
corresponds to the RBM model with no hidden units. An element of the
independence model is called a product distribution.

Lemma 3.1 (Corollary 4.1 of [1]) Let En be the independence model on
{0, 1}n. If n > 0, then DEn = (n − 1). The global maximizers are the
distribution of the form 1

2(δx + δy), where x, y ∈ {0, 1}n satisfy xi + yi = 1
for all i.

This result should be compared with (1). Although the independence
model is much larger than the set { 1

|X |}, the maximal divergence decreases
only by 1. In fact, if E is any exponential family of dimension k, then
DE ≥ log(|X |/(k + 1)), see [22]. Thus, this notion of distance is rather
strong.
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3.2 Partition models and mixtures of products with disjoint

supports

The mixture of m models M1, . . . ,Mm ⊆ P is the set of all convex combi-
nations

p =
∑

i

αipi , where pi ∈ Mi, αi ≥ 0,
∑

i

αi = 1 . (2)

In general, mixture models are complicated objects. Even if all models
M1 = · · · = Mm are equal, it is difficult to describe the mixture [17, 19].
The situation simplifies considerably if the models have disjoint supports.
Note that given any partition ξ = {X1, . . . ,Xm} of X , any p ∈ P can be
written as p(x) = pXi(x)p(Xi) for all x ∈ Xi and i ∈ {1, . . . ,m}, where pXi

is a probability measure in P(Xi) for all i.

Lemma 3.2 Let ξ = {X1, . . . ,Xm} be a partition of X and let M1, . . . ,Mm

be statistical models such that Mi ⊆ P(Xi). Consider any p ∈ P and
corresponding pXi such that p(x) = pXi(x)p(Xi) for x ∈ Xi. Let pi be an
rI-projection of pXi to Mi. Then the rI-projection pM of P to the mixture
M of M1, . . . ,Mm satisfies

pM(x) = p(Xi)pi(x), whenever x ∈ Xi .

Therefore, DM = maxi=1,...,m DMi
.

Proof Let p ∈ M be as in (2). Then D(q‖p) =
∑m

i=1 q(Xi)D(qXi‖pi) for all
q ∈ P. For fixed q this sum is minimal if and only if each term is minimal.
�

If each Mi is an exponential family, then the mixture is also an exponential
family (this is not true if the supports of the models Mi are not disjoint).
In the rest of this section we discuss two examples.

If each Mi equals the set containing just the uniform distribution on Xi,
then M is called the partition model of ξ, denoted with Pξ. The partition
model Pξ is given by all distributions with constant value on each block Xi,
i.e. those that satisfy p(x) = p(y) for all x, y ∈ Xi. This is the closure of the
exponential family with sufficient statistics

Ax = (χ1(x), χ2(x), . . . , χd(x))⊤ ,

where χi := χXi
is 1 on x ∈ Xi, and 0 everywhere else. See [22] for interesting

properties of partition models.
The partition models include for example the set of finite exchangeable

distributions, (see e.g. [9]), where the partition components are given by the
sets of binary vectors which have the same number of entries equal to one.
The probability of a vector v depends only on the number of ‘successes’ 1,
but not on their position.
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Figure 2: Left: The simplex of distributions on two binary variables. The
blue line represents the partition model Pξ with partition ξ = {(11), (01)}∪
{(00), (10)}. The dashed lines represent the set of KL-divergence maximizers
for Pξ. Right: The mixture of the product distributions E1 and E2 with
disjoint supports on {(11), (01)} and {(00), (10)} corresponding to the same
partition ξ equals the whole simplex P.

Corollary 3.1 Let ξ = {X1, . . . ,Xm} be a partition of X . Then

DPξ
= max

i=1,...,m
log |Xi| .

Now assume that X = {0, 1}n is the set of binary vectors of length
n. As a subset of Rn it consists of the vertices (extreme points) of the n-
dimensional hypercube. The vertices of a k-dimensional face of the n-cube
are given by fixing the values of x in n − k positions:

{x ∈ {0, 1}n : xi = x̃i,∀i ∈ I, for some I ⊆ {1, . . . , n}, |I| = n − k}

We call such a subset Y ⊆ X cubical or a face of the n-cube. A cubical subset
of cardinality 2k can be naturally identified with {0, 1}k . This identification
allows to define independence models and product measures on P(Y) ⊆
P(X ). Note that product measures on Y are also product measures on X ,
and the independence model on Y is a subset of the independence model on
X .

Corollary 3.2 Let ξ = {X1, . . . ,Xm} be a partition of X = {0, 1}n into
cubical sets. For any i let Ei be the independence model on Xi, and let M
be the mixture of E1, . . . , Em. Then

DM = max
i=1,...,m

log(|Xi|) − 1 .

See Figure 1 for an intuition on the approximation error of partition models,
and see Figure 2 for small examples of a partition model and of a mixture
of products with disjoint support.
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4 Classes of distributions that RBMs can learn

Consider a set ξ = {Xi}
m
i=1 of m disjoint cubical sets Xi in X . Such a ξ

is a partition of some subset ∪ξ = ∪iXi of X into m disjoint cubical sets.
We write Gm for the collection of all such partitions. We have the following
result:

Theorem 4.1 RBMn,m contains the following distributions:

• Any mixture of one arbitrary product distribution, m − k product dis-
tributions with support on arbitrary but disjoint faces of the n-cube,
and k arbitrary distributions with support on any edges of the n-cube,
for any 0 ≤ k ≤ m. In particular:

• Any mixture of m + 1 product distributions with disjoint cubical sup-
ports. In consequence also: Any distribution belonging to any partition
model in Gm+1.

Restricting the cubical sets of the second item to edges, i.e. pairs of
vectors differing in one entry, we see that the above theorem implies the
following previously known result, which was shown in [21] based on [15]:

Corollary 4.1 RBMn,m contains the following distributions:

• Any distribution with a support set that can be covered by m + 1 pairs
of vectors differing in one entry. In particular, this includes:

• Any distribution in P with a support of cardinality smaller than or
equal to m + 1.

Corollary 4.1 implies that an RBM with m ≥ 2n−1 − 1 hidden units is a
universal approximator of distributions on {0, 1}n, i.e. can approximate any
distribution to an arbitrarily good accuracy.

Assume m+1 = 2k and let ξ be a partition of X into m+1 disjoint cubical
sets of equal size. Let us denote by Pξ,1 the set of all distributions which
can be written as a mixture of m + 1 product distributions with support on
the elements of ξ. The dimension of Pξ,1 is given by

dimPξ,1 = (m+1) log

(

2n

m + 1

)

+m+1+n = (m+1)·n+(m+1)+n−(m+1) log(m+1) .

The dimension of the set of visible distribution represented by an RBM is
at most equal to the number of paramters, see [21], this is m · n + m + n.
This means that the class given above has roughly the same dimension of
the set of distributions that can be represented. In fact,

dimPξ,1 − dimRBMm−1 = n + 1 − (m + 1) log(m + 1) .
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This means that the class of distributions Pξ,1 which by Theorem 4.1 can be
represented by RBMn,m is not contained in RBMn,m−1 when (m + 1)m+1 ≤
2n+1.

Proof of Theorem 4.1 The proof draws on ideas from [15] and [21]. An
RBM with no hidden units can represent precisely the independence model,
i.e. all product distributions, and in particular any uniform distribution on
a face of the n-cube.

Consider an RBM with m − 1 hidden units. For any choice of the pa-
rameters W ∈ Rm−1×n, B ∈ Rn, C ∈ Rm−1 we can write the resulting
distribution on the visible units as:

p(v) =

∑

h z(v, h)
∑

v′,h′ z(v′, h′)
, (3)

where z(v, h) = exp(hWv + Bv + Ch). Appending one additional hidden
unit, with connection weights w to the visible units and bias c, produces a
new distribution which can be written as follows:

pw,c(v) =
(1 + exp(wv + c))

∑

h z(v, h)
∑

v′,h′(1 + exp(wv′ + c))z(v′, h′)
.

Consider now any set I ⊆ [n] := {1, . . . , n} and an arbitrary visible vector
u ∈ X . The values of u in the positions [n] \ I define a face F := {v ∈ X :
vi = ui ,∀i 6∈ I} of the n-cube of dimension |I|. Let 1 := (1, . . . , 1) ∈ Rn and
denote by uI,0 the vector with entries uI,0

i = ui,∀i 6∈ I and uI,0
i = 0,∀i ∈ I.

Let λI ∈ Rn with λI
i = 0 ,∀i 6∈ I and let λc, a ∈ R. Define the connection

weights w and c as follows:

w = a(uI,0 −
1

2
1

I,0) + λI ,

c = −a(uI,0 −
1

2
1

I,0)⊤u + λc .

For this choice and a → ∞ equation (4) yields:

pw,c(v) =







p(v)
1+

P

v′∈F exp (λI ·v′+λc)p(v′)
, ∀v 6∈ F

(1+exp(λI ·v+λc))p(v)
1+

P

v′∈F exp (λI ·v′+λc)p(v′)
, ∀v ∈ F

. (4)

If the initial p from equation (3) is such that its restriction to F is
a product distribution, then p(v) = K exp(ηI · v) ,∀v ∈ F , where K is a
constant and ηI is a vector with ηI

i = 0 ,∀i 6∈ I. We can choose λI = βI−ηI ,
and exp(λc) = α 1

K
P

v∈F exp(βI ·v)
. For this choice, equation (4) yields:

pw,c = (α − 1)p + αp̂ ,
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where p̂ is a product distribution with support in F and arbitrary natural
parameters βI , and α is an arbitrary mixture weight in [0, 1]. Finally, the
product distributions on edges of the cube are arbitrary, see [19] or [21]
for details, and hence the restriction of any p to any edge is a product
distribution. �

5 Maximal Approximation Errors of RBMs

By Theorem 4.1, RBMn,m contains the union of many exponential families.
The results from Section 3 give immediate bounds on DRBMn,m : Let m <
2n−1 − 1. All partition models for partitions of {0, 1}n into m + 1 cubical
sets are contained in RBMn,m. Applying Corollary 3.1 to such a partition
where the cardinality of all blocks is 2n−⌊log(m+1)⌋ or less yields the bound
DRBMn,m ≤ n−⌊log(m+1)⌋. Similarly, Theorem 4.1 and Corollary 3.2 imply
DRBMn,m

≤ n − 1 − ⌊log(m + 1)⌋. In this section we derive an improved
bound which strictly decreases, as m increases, until 0 is reached.

Theorem 5.1 Let m ≤ 2n−1 − 1. Then the maximal Kullback-Leibler di-
vergence from any distribution on {0, 1}n to RBMn,m is not larger than

max
p∈P

D(p‖RBMn,m) ≤ (n − 1) − log(m + 1) .

Conversely, given an error tolerance 0 ≤ ǫ ≤ 1, the choice m ≥ 2(n−1)(1−ǫ)−1
ensures a sufficiently rich RBM model that satisfies DRBMn,m ≤ ǫDRBMn,0 .

For m = 2n−1 − 1 the error vanishes, corresponding to the fact that an
RBM with that many hidden units is a universal approximator. In Figure 3
we use computer experiments to illustrate Theorem 5.1. The proof makes
use of the following lemma:

Lemma 5.1 Let n1, . . . , nm ≥ 0 such that 2n1 + · · · + 2nm = 2n. Let
M be the union of all mixtures of independent models corresponding to
all cubical partitions of X into blocks of cardinalities 2n1 , . . . , 2nm . Then
DM ≤

∑

i:ni>1
ni−1
2n−ni

.

Proof of Lemma 5.1 The proof is by induction on n. If n = 1, then m = 1
or m = 2, and in both cases it is easy to see that the inequality holds (both
sides vanish). If n > 1, then order the ni such that n1 ≥ n2 ≥ · · · ≥ nm ≥ 0.
Without loss of generality assume m > 1.

Let p ∈ P(X ), and let Y be a cubical subset of X of cardinality 2n−1

such that p(Y) ≤ 1
2 . Since the numbers 2n1 + · · · + 2ni for i = 1, . . . ,m

contain all multiples of 2n1 up to 2n and 2n/2n1 is even, there exists k such
that 2n1 + · · · + 2nk = 2n−1 = 2nk+1 + · · · + 2nm .

Let M′ be the union of all mixtures of independence models correspond-
ing to all cubical partitions Ξ of X into blocks of cardinalities n1, . . . , nm

10
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Figure 3: This figure demonstrates our results for n = 3 and n = 4 vis-
ible units. The red curves represent the bounds from Theorem 5.1. We
fixed pparity as target distribution, the uniform distribution on binary length
n vectors with an even number of ones. The distribution pparity is not
the KL-maximizer from RBMn,m, but it is in general difficult to repre-
sent. Qualitatively, samples from pparity look like uniformly distributed,
and representing pparity requires the maximal number of product mixture
components [20, 19]. For both values of n and each m = 0, . . . , 2n/2 we
initialized 500 resp. 1000 RBMs at parameter values chosen uniformly at
random in the range [−10, 10]. The inset of the left figure shows the result-
ing KL-divergence D(pparity‖prand

RBM) (for n = 4 the resulting KL-divergence
was larger). Randomly chosen distributions in RBMn,m are likely to be
very far from the target distribution. We trained these randomly initialized
RBMs using CD for 500 training epochs, learning rate 1 and a list of even
parity vectors as training data. The result after training is given by the
blue circles. After training the RBMs the result is often not better than the
uniform distribution, for which D(pparity‖ 1

|{0,1}n|) = 1. For each m, the best
set of parameters after training was used to initialize a further CD training
with a smaller learning rate (green squares, mostly covered) followed by a
short maximum likelihood gradient ascent (red filled squares).
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such that Ξ1 ∪ · · · ∪ Ξk = Y. In the following, the symbol
∑′

i shall denote
summation over all indices i such that ni > 1. By induction

D(p‖M) ≤ D(p‖M′) ≤ p(Y)

k
∑′

i=1

ni − 1

2n−1−ni
+ p(X \ Y)

m
∑′

j=k+1

nj − 1

2n−1−nj
. (5)

There exist j1 = k + 1 < j2 < · · · < jk ≤ jk+1 − 1 = m such that 2ni =
2nji + · · · + 2nji+1−1 for all i ≤ k. Note that

ji+1
∑′

j=ji

nj − 1

2n−1−nj
≤

ni − 1

2n−1
(2nji + · · · + 2nji+1−1) =

ni − 1

2n−1−ni
,

and therefore

(1
2 − p(Y))

ni − 1

2n−1−ni
+ (1

2 − p(X \ Y))

ji+1−1
∑′

j=ji

nj − 1

2n−1−nj
≥ 0 .

Adding these terms for i = 1, . . . , k to the right hand side of equation (5)
yields

D(p‖M) ≤
1

2

k
∑′

i=1

ni − 1

2n−1−ni
+

1

2

m
∑′

j=k+1

nj − 1

2n−1−nj
,

from which the assertions follow. �

Proof of Theorem 5.1 From Theorem 4.1 we know that RBMn,m con-
tains the union M of all mixtures of independent models corresponding to
all partitions with up to m + 1 cubical blocks. Hence, DRBMn,m

≤ DM. Let
k = n−⌊log(m+1)⌋ and l = 2m+2−2n−k+1 ≥ 0; then l2k−1+(m+1−l)2k =
2n. Lemma 5.1 with n1 = · · · = nl = k − 1 and nl+1 = · · · = nm+1 = k
implies

DM ≤
l(k − 2)

2n−k+1
+

(m + 1 − l)(k − 1)

2n−k
= k −

m + 1

2n−k
.

The assertion follows from log(m+1) ≤ (n−k)+ m+1
2n−k−1, where log(1+x) ≤ x

for all x > 0 was used. �
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6 Conclusion

In this paper we studied the expressive power of the Restricted Boltzmann
Machine model depending on the number of visible and hidden units that
it contains. We presented a hierarchy of explicit classes of probability dis-
tributions that an RBM can represent according to the number n of visible
units and the number m of hidden units. These classes include any mixture
of an arbitrary product distribution and m further product distributions
with disjoint supports. The geometry of these submodels is easier to study
than that of the RBM models, while these subsets still capture many of the
distributions contained in the RBM models. Using these results we derived
bounds for the approximation errors of RBMs. We showed that it is always
possible to reduce the error to (n − 1) − log(m + 1) or less. That is, given
any target distribution, there is a distribution within the RBM model for
which the Kullback-Leibler divergence between both is not larger than that
number. Our results give a theoretical basis for selecting the size of an RBM
which accounts for a desired error tolerance.

Computer experiments showed that the bound captures the order of
magnitude of the true approximation error, at least for small examples.
However, learning may not always find the best approximation, resulting in
an error that may well exceed our bound.
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