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Abstract 
Neural mass models (NMM) explain dynamics of neuronal populations and were designed to 
strike a balance between mathematical simplicity and biological plausibility. They are 
currently widely used as generative models for non-invasive electrophysiological brain 
measurements; that is, magneto- and electroencephalography (M/EEG). Here, we 
systematically describe the oscillatory regimes which a NMM of a single cortical source with 
extrinsic input from other cortical and subcortical areas to each subpopulation can explain. 
For this purpose, we used bifurcation analysis to describe qualitative changes in system 
behavior in response to quantitative input changes. This approach allowed us to describe 
sequences of oscillatory regimes, given some specific input trajectory. We systematically 
classified these sequential phenomena and mapped them into parameter space. Our analysis 
suggests a principled scheme of how complex M/EEG phenomena can be modeled 
parsimoniously on two time-scales: While the system displays fast oscillations, it slowly 
traverses phase space to another qualitatively different oscillatory regime, depending on the 
input dynamics. The resulting scheme is useful for applications where one needs to model an 
ordered sequence of switching between qualitatively different oscillatory regimes, for 
example, in pharmacological interventions, epilepsy, sleep, or context-induced state changes. 
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1. Introduction 
Dynamic brain signals like magneto- and electroencephalography (M/EEG) contain a wealth 
of information on brain function. To access this information and describe the associated 
cognitive processes, these measurements are usually acquired under defined conditions (e.g., 
stimulation patterns and behavior, sleep stage, general vigilance, pathologies). For statistical 
analysis, one can use generative models that describe the mapping from the generating states 
to the observed data. It is particularly useful if these models are biologically plausible, in the 
sense that the state variables and parameters are anatomically and/or biophysically 
meaningful. This provides the opportunity to map the measurements to physically meaningful 
quantities by inverting (i.e., fitting) the model and to test mechanistic hypotheses concerning 
the underlying brain function. In order to ensure that the inversion is mathematically tractable 
and at the same time physically meaningful, the model must strike a balance between 
mathematical simplicity and biological realism.  
In contrast to single neuron models such as simple integrate-and-fire models (Abbott, 1999) 
and the more elaborate Hodgkin and Huxley type of models (FitzHugh, 1955; Hindmarsh and 
Rose, 1984; Hodgkin and Huxley, 1952; Nagumo et al., 1962), neural mass models (Freeman, 
1978; Jansen and Rit, 1995; Jansen et al., 1993; Lopes da Silva et al., 1974; Lopes da Silva et 
al., 1976; Nunez, 1974) describe brain function at a mesoscopic scale. These models quantify 
the mean firing rates and mean membrane potentials of large neuronal populations, so-called 
neural masses (NM), using differential equations. The approach provides a parsimonious yet 
biophysically meaningful description of M/EEG phenomena.  
In this work, we deal with a specific but widely used choice of neural mass model (NMM) 
first described by Jansen and Rit (Jansen and Rit, 1995; Jansen et al., 1993), which is based 
on previous modeling work by Lopes da Silva et al. (1974; 1976). The Jansen and Rit model 
of a cortical area (or column) consists of three interconnected NMs (pyramidal cells, 
excitatory and inhibitory interneurons). It has been used to explain both epilepsy-like brain 
activity (Wendling et al., 2002; Wendling et al., 2000) and various narrow band oscillations 
ranging from the delta to the gamma frequency bands (David and Friston, 2003). A natural 
extension of this approach is to model a network of cortical areas as a collection of coupled 
single-area Jansen and Rit models (David and Friston, 2003; David et al., 2005; David et al., 
2006; Jansen and Rit, 1995; Sotero et al., 2007; Wendling et al., 2000), thereby accounting for 
more complex transient and oscillatory behavior. The Bayesian inversion of these dynamic 
generative models given M/EEG data (referred to as ‘Dynamic Causal Modeling’ (DCM) 
(David et al., 2006; Kiebel et al., 2009a)) has been developed for the analysis of event-related 
(David et al., 2006; Kiebel et al., 2006; Kiebel et al., 2007) and steady-state responses (Moran 
et al., 2009). These techniques, using the Jansen and Rit model, have been used 
experimentally to test novel hypotheses about brain function at a systems level (Garrido et al., 
2007, 2009; Schofield et al., 2009) and are available in the widely distributed free academic 
software ‘Statistical Parametric Mapping’ (Friston et al., 2007).  
In this paper, we analyze the neural mass model used in DCM, which includes the original 
Jansen and Rit model as a special case: In the ‘extended Jansen and Rit model’, extrinsic 
input may target the two populations of interneurons (David et al., 2005). Here, we focus on 
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the single-area version of this extended Jansen and Rit model, and ask the question which 
dynamic regimes this single-area model can experience. To do this, we investigate the entire 
effective parameter space of the model, rather than just the specific parameter set proposed by 
Jansen and Rit (1995). As we will show, our analysis produces a catalogue of dynamic 
regimes, which can be directly used for modeling M/EEG data. We found that the dynamics 
of the single-area model are richer and probably more useful for modeling purposes than 
previously thought. This means that one can model a large class of phenomena with the 
single-area extended Jansen and Rit model. Comprehensive knowledge about single-area 
dynamics, as provided by our results, may therefore be valuable for the network analysis of 
M/EEG and electrophysiology data using Bayesian model inversion schemes like DCM.  
We systematically describe the dynamic properties of the extended Jansen and Rit model as a 
function of its key parameters. There are rich dynamics expressed by bifurcations (i.e., sudden 
transitions in dynamic behavior) and limit cycle (LC) branches which have not been described 
before (Grimbert and Faugeras, 2006). We use bifurcation diagrams, which are compact and 
intuitively accessible representations of the behavior of dynamic systems plotted against 
changing parameters. Knowledge of this dynamic behavior is an important tool, because it 
tells the modeler how the system will behave qualitatively when system parameters change 
slowly. We systematically classify LC-branches and discuss the associated dynamics in detail, 
including their conditions of changing as a function of key parameters, namely the extrinsic 
inputs from other cortical and subcortical areas to the three NMs, and the dendritic time 
constants. This bifurcation analysis yields a comprehensive catalogue of potential oscillatory 
regimes. A potential use of this catalogue is that the modeler can decide whether the single-
area extended Jansen and Rit NMM is sufficient to model any specific phenomenon (e.g., 
M/EEG) or whether a more complex model, such as a network of areas, should be chosen. 
Moreover, the modeler can use the catalogue to select a specific parameter set that best 
reproduces the observed signals.  
In addition, the bifurcation diagrams inform the modeler which slow-moving trajectories 
through parameter space will cross bifurcation points. This means that apparently complex 
M/EEG phenomena can be explicitly modeled as an ordered sequence of switches between 
different oscillatory regimes. In principle, this enables one to model phenomena like the 
progression of pathology, epileptic events (see, e.g., Marten et al., 2009; Rodrigues et al., 
2009; Suffczynski et al., 2005, for thalamocortical models), pharmacological intervention, 
sleep stages (Steyn-Ross et al., 2005), or general changes in the oscillatory regime due to 
contextual state changes. We illustrate this approach using some synthetic examples. Our 
analysis in this paper enables the selection of a highly constrained parameterization. Bayesian 
inversion (as used in DCM) should, in principle, be able to identify the free parameters of 
ordered sequence models, for example, the slowly changing function needed to induce the 
switching behavior.  
To our knowledge, our paper is the first to classify principal types of system topology of the 
single-area extended Jansen and Rit model. In particular, we will show that the 
parameterization chosen by Jansen and Rit (1995) gives rise to quite specific system behavior 
which is an expectation rather than the rule among the different dynamic regimes. More 



generally, we will show that the predominant asymptotic behaviors over the entire parameter 
space are harmonic oscillations of a LC-branch, arising from two Andronov-Hopf bifurcations 
with oscillation frequency between 0 and 80 Hz.  
The remainder of the paper is organized as follows. In the Materials and Methods section, we 
first describe the extended NMM for a single cortical area and the bifurcation analysis. The 
Results section describes and discusses the precise set-up and the outcomes of the analyses, 
both at a general level and by means of specific examples. Finally, the Discussion section 
provides a more general appraisal of the results, thereby pointing out the usefulness for both 
specific modeling scenarios and more general considerations.  
 
2. Materials and Methods 

In order to make the methodology and consequently our results and conclusions accessible to 
the broad readership of NeuroImage, we have chosen a ‘verbose’ style of presenting technical 
details. We will first introduce a NMM of a cortical area. Then, we will derive the parameter 
space for our analysis of the dynamic properties of that model. Finally, we will provide a brief 
introduction to system analysis using bifurcation diagrams and describe how we use this 
technique to characterize the dynamics of the extended Jansen and Rit neural mass model.  
 

2.1. The neural mass model of a cortical area 

The neural mass model (NMM) of Jansen and Rit (Jansen and Rit, 1995; Jansen et al., 1993) 
describes a small local network representing a cortical area. This basic circuit, consisting of 
pyramidal cells (PCs) with feedback loops mediated by excitatory and inhibitory interneurons 
(EINs and IINs), has been described in a number of studies (e.g., David and Friston, 2003; 
Jansen and Rit, 1995; Jansen et al., 1993; Lopes da Silva et al., 1976; Spruston, 2008; 
Wendling et al., 2002; Wendling et al., 2000). Here, after a brief review of the underlying 
firing rate approach, we will formulate a cortical area model which is an extension of the 
original Jansen and Rit NMM.  
 

Neural mass – firing rate model 
The state space of the dynamic firing rate model (e.g., Gerstner and Kistler, 2002; Wilson and 
Cowan, 1972) comprises the mean firing rate and the mean membrane potential of a local 
population of similar neurons (typically some tens of thousands), referred to as neural mass 
(NM). Two conversion operators are used: a linear rate-to-potential operator that captures the 
mean synaptic response function and an instantaneous nonlinear potential-to-rate operator, 
accounting for the mean firing pattern as a function of the mean membrane potential.  
The rate-to-potential operator computes the mean postsynaptic potential (PSP) at the soma 
for a target neuron b (relative to the resting potential) by convolution of a synaptic kernel hba 

(t) with the mean firing rate ma of neuron a:  
 ( ) (h )( )ba ba ba aυ t c m t= ⋅ ⊗ . (1) 
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The constant cba is proportional to the average number of synaptic contacts established 
between the two NMs a and b. The kernel first proposed by Rall (Jack et al., 1975; Rall, 1964, 
1967) can be interpreted as the PSP elicited by a single incoming spike. It has been found to 
adequately describe the synaptic spike response (Freeman, 1975; Jack et al., 1975; see also 
Jansen et al., 1993, and the references cited therein).  
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It is parameterized by the average synaptic gain Hba and the average dendritic time constant 
τba. Both are grouped representations for all cells belonging to the NM and characterize the 
synaptic-dendritic transmission processes. The synaptic gains represent the maximum 
magnitude of the PSPs. The dendritic time constants τba constitute a combined representation 
of passive dendritic cable delays and neurotransmitter kinetics, predominantly corresponding 
to fast synaptic activity (AMPA and GABAA) (Liley et al., 2002). This approach relies on 
some simplifying assumptions (Ermentrout, 1998). The first assumption is that the width of 
the spikes is negligible (e.g., it can be modeled as a Dirac’s delta function). The second 
assumption is that the effects of different spikes add up linearly (summators in Fig. 1), which 
ignores any reciprocal influences between synapses and active dendritic behavior.  
The kernel function (2) can be interpreted as Green’s function of a second-order ordinary 
differential equation, which can be expressed as two first-order linear inhomogeneous 
differential equations:  
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The potential-to-rate operator transfers the mean PSP (i.e., υb=∑a υba, the membrane 
potential at the axonal hillock) to the mean firing rate by means of a sigmoid function. The 
sigmoid can be interpreted as an approximation of the superposition of many Heaviside (step) 
functions with Gaussian-distributed threshold values (Marreiros et al., 2008; Wilson and 
Cowan, 1972). It is specified by firing threshold υb0, maximum mean firing rate 2·eb0 and 
slope at the firing threshold rb  
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The firing threshold υb0 can be interpreted as excitability of the NM. At this point, half of the 
maximum firing rate eb0 is reached with the maximal slope eb0⋅rb / 2. The slope rb reflects the 
variance of the firing thresholds within the NM. For a more detailed and rigorous treatment of 
the potential-to-rate operator of a NM (see Liley et al., 2002).  
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Model for a cortical area 
Although local neuronal circuits are complex (see, e.g., Thomson and Bannister, 2003), there 
is a strong tendency for local axonal collaterals of PCs in cortical layers III to VI to make 
synaptic contacts to GABAergic interneurons, which themselves have only short axonal 
processes and therefore contact local cells, such as PCs. This forms intralaminar (PCs in 
layers III to VI) as well as interlaminar (PCs in layers III and IV) inhibitory feedback loops. 
Feedback loops may also be excitatory (glutamatergic), mediated either by (smaller) PCs or 
by EINs, mostly so-called spiny stellate cells in layer IV (Markram et al., 2004; Thomson and 
Bannister, 2003). Therefore, the membrane potential of the PCs can be modeled as a weighted 
sum of the effects of extrinsic inputs to the cortical areas and feedback influences from 
interneurons.  
When reducing the local neuronal circuitry to a parsimonious model, the following points 
seem to be important: (1) there are PCs sending axons to other brain areas which, due to their 
long apical dendrites arranged in parallel, give rise to measurable EEG and MEG (Lopes da 
Silva and van Rotterdam, 1999a), (2) collaterals from these PCs contact excitatory and 
inhibitory cells with local axonal arbors (interneurons), and (3) these interneurons have a high 
probability to in turn, make synaptic contacts with the PCs, thus forming feedback loops. In 
line with this, Jansen and Rit (1995) described the cortical area1 as a basic element composed 
of three NMs: PCs, EINs and IINs, interacting through positive and negative feedback loops. 
In their model, extrinsic input (i.e., from other brain areas) only targets the PCs. However, 
since there is strong evidence that this input also targets interneurons, the model was extended 
accordingly (David et al., 2005). Its structure is illustrated in figure 1.  
Note that the feedback loops may be modeled dynamically (see, e.g., Breakspear and Jirsa, 
2007; Jirsa and Haken, 1996; Nunez, 1974; Robinson et al., 2002) (when also considering 
propagation delays, see, e.g., Marten et al., 2009; Rodrigues et al., 2009). However, in our 
model, the connections are assumed to be local (within a single area). That means we assume 
only small spatial extension and transmission times, and therefore describe the feedback 
connection by a gain constant.  
The mean membrane potential of the PCs is caused by three different inputs: excitatory input 
from local EINs, excitatory input from other areas (referred to as extrinsic inputs), and 
inhibitory input from local IINs, υ3(t) = υ31(t) + υ3T(t) + υ32(t). The output of the PCs is fed 
back into the EINs and IINs, thus closing the feedback loops. In contrast to the original paper 
by Jansen and Rit (1995), the present NMM takes into account extrinsic input from other 
cortical and/or subcortical areas not only to the PCs (m3T(t)), but also to both types of 

 
1 Jansen and Rit (Jansen, B.H., Rit, V.G., 1995. Electroencephalogram and visual evoked potential generation in 
a mathematical model of coupled columns. Biological Cybernetics 73, 357-366.) identified this network with a 
cortical column according to the findings of Mountcastle and colleagues Mountcastle, V.B., 1957. Modality and 
Topographic Properties of Single Neurons of Cats Somatic Sensory Cortex. Journal of Neurophysiology 20, 408-
434.. However, because the universality of the concept of columnar organization of the cortex is controversial 
(Horton, J.C., Adams, D.L., 2005. The cortical column: a structure without a function. Philosophical 
Transactions of the Royal Society B-Biological Sciences 360, 837-862.), we use the term cortical area instead. 
The key mechanisms of the model are unaffected by this re-interpretation. 



interneurons (m1T(t) and m2T(t)). This approach, first used by David, Harrison and Friston 
(2005), is based on findings that interneurons also receive input from other cortical areas. For 
example, the spiny stellate cells (EINs) as well as GABAergic basket cells (IINs) in layer IV 
of primary sensory cortices receive input from the thalamus (e.g., Ahmed et al., 1997; Staiger 
et al., 2004; Stratford et al., 1996). This is also in line with inter-area connection schemes as 
postulated, for example, by Felleman and Van Essen (1991)2. The neuronal currents 
underlying M/EEG generation are believed to be produced mainly by the membrane 
potentials of the PCs (Lopes da Silva and van Rotterdam, 1999b) as a result of the asymmetric 
shape of these cells (with apical dendrites) and their parallel alignment perpendicular to the 
cortical surface (Braitenberg and Schüz, 1991). The linear output function (leadfield), 
mapping the mean membrane potentials of the PCs to the measurements outside the brain, has 
to take into account a physical model of the head (Kiebel et al., 2006). In this work, it is not 
necessary to consider leadfield modeling because we model only a single area.  
The extended NMM of a cortical area, as sketched in figure 1, can be described by the 
following system of 14 nonlinear first-order differential equations.  
 
Pyramidal cells to excitatory interneurons (3 → 1)  
 13 13

13
13 13 3 31 32 3T 13 132

13 13 13

2 1S ( )

υ u
Hu c υ υ υ u υ
τ τ

=

= + + − −

&
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τ
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Pyramidal cells to inhibitory interneurons (3 → 2)  
 23 23

23
23 23 3 31 32 3T 23 232

23 23 23
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Excitatory interneurons to pyramidal cells (1 → 3)  
 31 31

31
31 31 1 13 1T 31 312

31 31 31

2 1S ( )

υ u
Hu c υ υ u υ
τ τ

=

= + − −

&

&
τ

                                                

 (7) 

Inhibitory interneurons to pyramidal cells (2 → 3)  

 
2 The extended model as analyzed here can be related to the original model of Jansen and Rit (Jansen, B.H., Rit, 
V.G., 1995. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled 
columns. Biological Cybernetics 73, 357-366.) without extrinsic inputs to the interneurons as follows. Variation 
in the extrinsic input levels in the extended model is equivalent to variation in the firing thresholds of the 
corresponding target NMs in the original model if, and only if, the extrinsic inputs are constant in time (or 
change slowly as compared to the time constants of the system). 
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Extrinsic input to excitatory interneurons (T → 1)  
 1T 1T

1T
1T 1T 1T 1T 1T2

1T 1T 1T

2 1( )

υ u
Hu c m t u υ
τ τ

=

= − −

&

&
τ

 (9) 

Extrinsic input to inhibitory interneurons (T → 2)  
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2T
2T 2T 2T 2T 2T2

2T 2T 2T

2 1( )

υ u
Hu c m t u υ
τ τ

=

= − −

&

&
τ

 (10) 

Extrinsic input to pyramidal cells (T → 3)  
 3T 3T
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 (11) 

The extrinsic inputs from other cortical and subcortical areas are modeled by noisy processes, 
here denoted by m1T(t), m2T(t) and m3T(t) for the extrinsic afferents T on NM 1 for EINs, NM 
2 for IINs and NM 3 for PCs.  
 
2.2. Parameter space 

Dimension reduction 
In this work, we explore the dynamics of the single-area model as a function of the five 
system parameters which are most relevant for the richness of the dynamics: the dendritic 
time constants (excitatory and inhibitory) and the extrinsic input (i.e., from other cortical and 
subcortical areas) to the three NMs. In the following, we will justify this choice.  
In the form described in equations (5) to (11), the system has 33 parameters3, which renders 
any exhaustive analysis prohibitive. Following the suggestions of Jansen and Rit (1995), the 
rate-to-potential operators were only distinguished between excitatory and inhibitory synaptic 
contacts, described by the kernels he(t) and hi(t). The afferent connections originating from the 
PCs and EINs are exclusively excitatory (i.e., h13(t) = h23(t) = h31(t) = he(t)). Afferents from 
IINs are inhibitory (i.e., h32(t) = hi(t)). Extrinsic afferents (i.e., from other cortical or 
subcortical areas) could be excitatory or inhibitory (i.e., hbT(t) = {he(t), hi(t)}, b = {1, 2, 3}). 

 
3 These are: the intrinsic dendritic time constants τba, synaptic gains Hba and contact numbers cba with ba = {13, 
23, 31, 32}; the parameters of the three sigmoid functions (3 parameters each) Sb; the extrinsic input levels to the 
three neural masses mbT; the extrinsic dendritic time constants τbT, synaptic gain HbT and contact numbers cbT 
with b = {1, 2, 3}. 
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Moreover, we assume that the products of average synaptic gains and dendritic time constants 
are constant, He,i · τe,i = εe,i, which is supported by computational modeling (Agmon-Snir and 
Segev, 1993; Williams and Stuart, 2003). The respective constant products for both cases εe = 
32.5 μVs and εi = 440 μVs are derived from the Jansen and Rit configuration, similar to the 
definition used by David and Friston (2003). As shown later, these constraints fix the 
equilibrium states of the system under the condition of constant extrinsic inputs to INs. The 
synaptic contact numbers for the extrinsic inputs just linearly scale the extrinsic inputs and 
can therefore be fixed to unity in our analysis (i.e., cbT = 1, b = {1, 2, 3}). Finally, following 
Jansen and Rit (1995), the parameters of the sigmoid function were assumed to be the same 
for all NMs.  
Of the remaining 18 free parameters, the dendritic time constants (τe and τi) and the extrinsic 
inputs levels (m1T(t), m2T(t), and m3T(t)) were selected for further analysis. The time constants 
were chosen because they were expected to exercise a major influence on the system’s ability 
to oscillate and the frequency of these oscillations. The constant (or slowly changing, relative 
to the time constants of the system) extrinsic input levels to the three NMs are of major 
importance if the system is part of a larger network of cortical areas. They depend upon 
extrinsic connections (between areas), which have been used to account for experimental 
observations in DCM (David et al., 2005).  
Here, we did not analyze the parameters of the sigmoid (Eq. (4)) and the intrinsic synaptic 
contact numbers. Variations in the extrinsic input levels, which we do analyze, are equivalent 
to variation in firing thresholds of the sigmoid functions and to variations in intrinsic synaptic 
contact numbers (c13, c23, c31, c32) if the system has a stable fixed point, and the extrinsic 
inputs change slowly relative to the time constants of the system. Therefore, these parameters 
were not varied, but chosen according to the suggestions of Jansen and Rit (1995).  
To summarize, we capture the dynamics of the system by varying five parameters: the 
extrinsic input levels to the three NMs, and the excitatory and inhibitory dendritic time 
constants. The reduction to five effective control parameters implies stable manifolds in the 
original 14-dimensional state space, thus allowing its reduction to 12 dimensions4.  
It should be pointed out that this type of analysis can be modified or extended in several ways, 
for example, by using other system parameters for the bifurcation analysis, by using higher 
co-domains, or by applying the analysis to other models, for example, networks of several 
single area NMMs.  

Effective range of parameters 
In order to ensure that the analysis is complete with respect to the five-dimensional parameter 
space chosen, we determined the effective ranges of the analyzed parameters (see Tables 1 
and 2). The nonlinear properties of the potential-to-rate operator greatly reduce the effective 
ranges of extrinsic inputs in a biophysically plausible fashion.  

 
4 Because afferents from PCs on EINs and IINs are excitatory (i.e., h23(t) = h13(t) = he(t)), equations (5) and (6) 
can be merged as follows: υ13(t) = c13v(t) and υ23 = c23v(t) with v(t) = (h23 ⊗ m3)(t) = (h13 ⊗ m3)(t). 



By definition, the PSP of any NM can reach arbitrary values due to the unconstrained 
extrinsic input firing rates. However, the saturation property of the potential-to-rate operator 
(sigmoid function) limits the impact of such PSP changes on the mean firing rate of the NM. 
Due to its sigmoidal shape, the potential-to-rate operator has a limited effective dynamic 
range [υ0 − υS, υ0 − υS]. We use the following definition for υS. According to equation (4), the 
maximum slope of the sigmoid function, and hence the maximum influence of the PSP-
changes on the output firing rate, occurs around the firing threshold υ0 with  

 
0

0
max S( )

2
b b

b b
b

υ υ

e rs υ
υ =

∂
= =
∂

. (12) 

The effective range (around the firing threshold υb0) is taken to be the PSP-value for which the 
slope of the function has dropped to α ⋅ smax. For example, α = 0.01 yields υS = rb

-1 · log(199 + 
60 · 111/2). For standard parameters (Jansen and Rit, 1995) of the sigmoid function, υS = 10.69 
mV. If the PSP temporarily falls or rises beyond these limits, there is no further significant 
change in the firing rate.  
The PSP of a NM can be decomposed into intrinsically and extrinsically caused components. 
While the latter is principally unlimited, the former is limited by the potential-to-rate operator 
of the presynaptic NM. Its range [υba,min, υba,max] is [0, 2eb0cbaHbaτba] for excitatory and 
[2eb0cbaHbaτba, 0] for inhibitory inputs according to equation (4). Hence, extrinsically caused 
PSPs range effectively between υb0 − υS − υba,max and υb0 + υS − υba,min. Extrinsic inputs beyond 
this range do not affect the system’s behavior. This means that effective ranges for all three 
extrinsic inputs can be identified and translated into ranges of extrinsic input firing rates (see 
Table 1)5.  
Simulations of single neurons have shown that the dendritic time constants of the somatic 
response due to synaptic input for single neurons seem to vary between 4 and about 30 ms, 
depending on the distance between soma and synapse (Agmon-Snir and Segev, 1993; 
Gulledge et al., 2005). In order to ensure an inclusive treatment, we used the range of 2 to 60 
ms; see also David and Friston (2003).  
 
2.3. System analysis using bifurcation diagrams 

Bifurcation diagrams show the asymptotically invariant behavior of a system by displaying 
the steady-state phase portrait, or a projection thereof, as a function of one or more system 
parameters. With smooth changes in these parameters, the dynamic behavior of the system 
may undergo sudden and drastic changes called bifurcations. Throughout this paper, we show 
codimension one bifurcation diagrams, which plot the asymptotic states of PSPs of the PCs 
(e.g., fixed points, limit cycles (LCs) or chaotic behavior evolving in time) against the 

                                                 
5 Note that only positive firing rates are biologically possible. In contrast, PSPs can be negative as well as 
positive, and induced by inhibitory as well as excitatory acting extrinsic afferents, respectively. Therefore, we 
use PSPs rather than firing rates in order to characterize extrinsic inputs.  
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extrinsic input on the PCs (see Fig. 2 and Fig. 10 to 13). To give an impression of the whole 
parameter space, we span planes of the dendritic time constants (Fig. 5, 7 and 9) and of the 
extrinsic inputs in INs (Fig. 6 and 8) using a classification of codimension one branches (see 
Fig. 4). An excellent treatment of the essentials of bifurcation diagrams with special emphasis 
on their use for neuronal dynamics can be found in (Breakspear and Jirsa, 2007).  
We create bifurcation diagrams to analyze the impact of extrinsic inputs and dendritic time 
constants on the system output, that is, the PSPs of the PCs, which are believed to be the main 
contributors to M/EEG. In the first step, we define the fixed point or equilibrium curve. The 
system can be expressed in vector form:  = f (Y, α), with the state vector Y = (υ, u)T, where 
υ is the seven-dimensional vector of the PSPs (see Eq. 

Y&

(5) to (11)), and u is the vector of the 
derivatives of υ and the parameter vector α = (m1T(t), m2T(t), m3T(t), τe, τi). The derivative state 
vector Y  is a smooth function f of the system state vector Y and the system parameter vector 
α.  

&

 

Fixed points 
We obtain the fixed points Y0 by setting the derivatives to zero:  = 0. The coordinates of the 
fixed points cannot be expressed explicitly as a function of the extrinsic inputs. There is, 
however, a way to express the relationship between the system output (PSP of PCs) and the 
extrinsic input on PCs. We map 0 = f0 (Y0, α0) to the PSP of the PCs υ3,0(t) = υ31(t) + υ32(t) + 
υ3T,0(t). From equations 

Y&

(5) to (11) it follows that the fixed points υ3,0 of the PSP of PCs can 
be defined in the (υ1T,0, υ2T,0, υ3T,0, υ3,0) space:  
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where υbT = εbTcbTmbT with b = {1, 2, 3} and εba = Hbaτba, τba = {τe, τi} with a = {1, 2, 3}. This 
equation can be solved for the extrinsic input υ3T on PCs as a fixed point curve function of the 
extrinsic inputs on INs and the PSP of the PCs, yielding a unique mapping that can be used 
for the analytical computations. Note that, as described above, the εe,i are constant. Hence, the 
shape of the fixed point curve only depends on the extrinsic inputs to the INs, but not on the 
dendritic time constants.  
Every fixed point is completely determined algebraically in the state space by the fixed point 
term υ3,0 of the PSPs of the PCs, Y0 = f0 (υ3,0, m1T,0, m2T,0, m3T,0) with:  
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where 07x1 is the seven-dimensional zero vector. In the second step, the behavior near the 
fixed points can be studied by linearizing the 14-dimensional system and evaluating its 
Jacobian at the fixed points (Eq. (14)). By analyzing the eigenvalues of the Jacobian, we are 
able to specify local stability properties like stable or unstable nodes, foci or saddles. Since 
there is no explicit form for the eigenvalues of the Jacobian as function of the extrinsic input 
on the PCs, the eigenvalues were computed for 104 equally spaced points. Note that the 
Jacobian depends on the extrinsic inputs as well as on the dendritic time constants. This 
means that, for any particular extrinsic input configuration, although the fixed point curve is 
constant in the 14-dimensional state space, the behavior in the vicinity of the fixed points 
varies with the dendritic time constants. System stability changes if at least one eigenvalue of 
the system crosses the imaginary axis. Points with zero real part(s) are called critical or 
nonhyperbolic fixed points, indicating possible local bifurcations.  
 

Bifurcations 
For identifying bifurcations, we first locate the critical points using the Nelder-Mead simplex 
method (Nelder and Mead, 1965). Second, the bifurcations are classified using the 
mathematical theory of codimension one bifurcations (Kuznetsov, 1998; Perko, 2001). We 
distinguish between the Andronov-Hopf (AH) and saddle bifurcation families. AH-
bifurcations occur if a change in the investigated system parameter (in our case the extrinsic 
input to the PCs) causes two complex conjugate eigenvalues to cross the imaginary axis (i.e., 
the real part changes from positive to negative or vice versa). In this case, LCs can arise. 
According to the first-order Lyapunov exponent, we differentiate between supercritical and 
subcritical AH-bifurcations; in the first case, the LCs are stable, otherwise they are unstable. 
The saddle bifurcation family occurs if at least one (but not all) eigenvalue crosses the 
imaginary axis so that the eigenvalues in at least one of the two states have both negative and 
positive real parts. According to the leading eigenvalue (which plays an important role, 
especially for Shil’nikov’s homoclinic bifurcations present in our dynamics), the counterpart 
state could be of three types, leading to the definition of three types of saddle bifurcations. For 
saddle-node bifurcations, all real parts of the hyperbolic eigenvalues have the same sign and 
the crossing eigenvalues (non-hyperbolic) are real-valued. If all real parts of the hyperbolic 
eigenvalues have the same sign and the crossing eigenvalues are complex conjugate, one 
speaks of a saddle-focus bifurcation. Finally, if the hyperbolic eigenvalues still have both 
negative and positive real parts, the bifurcation is of the saddle-saddle type, meaning that the 
topology of the saddle and not its stability changes. In general, a saddle-saddle bifurcation 
refers to the situation where two saddles of different types collide and vanish. All bifurcations 
are checked for their genericity6. For testing saddle bifurcations for homoclinic orbits, called 

 
6 Eigenvalues reveal critical fixed points at which bifurcations could exist. However, the generation of a 
bifurcation at such a critical fixed point depends on nondegeneracy and transversality conditions, the so-called 
genericity conditions (Kuznetsov, Y.A., 1998. Elements of Applied Bifurcation Theory, 2 ed. Springer, Berlin.). 
These conditions are inequalities involving partial derivatives of f with respect to Y, υ1T, υ2T and υ3T, evaluated at 
the nonhyperbolic fixed point. 
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Shil’nikov bifurcations (Glendinning and Sparrow, 1996; Kuznetsov, 1998; Shil'nikov, 1969), 
and for further global bifurcations, we used the continuation package Cl_MatCont for 
MatLab™ by Govaerts, Kuznetsov et al. (available at http://www.matcont.ugent.be/). The 
term global refers to the fact that the trajectory not only depends on the local properties in the 
vicinity of the fixed point.  
In the last step, the bifurcation analysis is completed by the identification of the branches of 
LCs arising from local and global bifurcations. Accordingly, we continued the bifurcating 
LCs away from the bifurcation points. The initial periodic solutions from which we were able 
to initialize the LC-continuations were taken from the bifurcation points. For this purpose, we 
also used the package Cl_MatCont (http://sourceforge.net/projects/matcont/).  
Finally, we create bifurcation diagrams comprising fixed points, stabilities, local as well as 
global bifurcations, branches of LCs and schematic phase portraits representing each state. As 
an example, figure 2 shows the bifurcation diagram of the standard parameter configuration 
proposed by Jansen and Rit (1995). The dynamic behavior for a specific parameter value can 
be illustrated by schematic phase portraits (see Fig. 3). These phase portraits show transient 
and steady-state trajectories in a two-dimensional subspace of the state space in a qualitative 
way. One can recognize oscillatory and non-oscillatory dynamics in the vicinity of fixed 
points and LCs, as well as heteroclinic orbits (see Fig. 3 for further details).  
 
A systematic classification of LC-branches 
In our analysis, various topological arrangements of branches of LCs for varying input 
occurred. We qualitatively classified them into several types, which are characterized by 
nested, alternately stable and unstable LCs, separated by stability-changing global 
bifurcations. A comprehensive chart of all (globally) stable branches in the projection plane 
(υ3T, υ3) is shown in figure 4. First, we classified branches as principal types according to the 
number of AH-bifurcations involved, indicated by Roman numerals. We only found branches 
involving either one or two AH-bifurcations (principal types I and II). We further classified a 
branch more precisely according to its number of LC-stability-changing global bifurcations. 
Starting from a particular AH-bifurcation, we counted the number of such global bifurcations, 
indicated by capital letters. For example, branches was classified as A, B or C with no, one or 
two stability-changing global bifurcations, respectively. For branches of type II, each global 
bifurcation was assigned to either of the two AH-bifurcations (e.g., label AC for a type II 
branch means that one AH-bifurcation is not associated with any LC-stability-changing global 
bifurcation, while the other AH-bifurcation is associated with two global bifurcations). The 
association of AH to global bifurcations was based on the shortest distance to the fixed point 
curve. We found branches with a maximum of two stability-changing global bifurcations 
(labeled C). Several LCs coexist for the same parameter set if (i) the corresponding branches 
are of type B or higher (see Fig. 4), (ii) branches are encapsulated in one another (see, e.g., 
Fig. 10 for a II-AA branch encapsulated into an II-AB branch), or (iii) branches are telescoped 
into each other (see, e.g., Fig. 11 for a II-AA branch telescoped into a II-AB branch). In the 
latter case, at least one global bifurcation (which changes the LC-stability) of one branch is in 
range of another branch.  

http://www.matcont.ugent.be/
http://sourceforge.net/projects/matcont/
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3. Results 

As a first step, we analyzed the standard configuration proposed by Jansen and Rit (1995) 
with no extrinsic input from other cortical and subcortical areas on the INs (υ1T = υ2T = 0, τe = 
10 ms, τi = 2τe). This is mostly a replication of the work of Grimbert and Faugeras (2006), but 
we found an additional bifurcation that has not been reported before. Then, we systematically 
scanned the five-dimensional parameter space spanned by the extrinsic input levels and the 
inhibitory/excitatory dendritic time constants (see Table 2 for values used), computing a 
bifurcation diagram of the fifth parameter and the extrinsic input level to the PCs for each 
point in that space. In terms of steady-state dynamic behavior, we observed two different 
basic oscillatory regimes, which would be reflected in M/EEG: low amplitude sinusoidal 
oscillations caused by AH-bifurcations (referred to as harmonic oscillations throughout this 
work), and high-amplitude anharmonic (spike-like) oscillations caused by global bifurcations 
such as of Shil’nikov type. We further characterized these phenomena, in particular by 
determining the frequencies and amplitudes of the oscillations generated as well as their 
stability with respect to varying system parameters, and by considering the transitions 
between different oscillatory regimes through bifurcations. We used the classification scheme 
of the stable LC-braches introduced above (see Materials and Methods) in order to map the 
incidence of these topologies as well as the associated oscillatory regimes to the parameter 
space. Finally, we present some representative configurations revealing new behavior which 
is potentially biologically interesting.  
 

Bifurcation diagram for the parameter configuration of Jansen and Rit 
We analyzed the standard configuration of the NMM according to Jansen and Rit (1995), 
reproducing and extending the results obtained by Grimbert and Faugeras (2006). See figure 2 
for the bifurcation diagram. Figure 3 shows the associated phase portraits, schematically 
illustrating the trajectories for the different regions of the bifurcation diagram. In accordance 
with Grimbert and Faugeras (2006), we found one subcritical and two supercritical AH-
bifurcations, a homoclinic saddle-node (Shil’nikov) and a global bifurcation. The two 
supercritical AH-bifurcations cause a branch of type II-AA (Fig. 4), producing sinusoidal 
oscillations around 10.8 Hz, which might serve as a theoretical basis for alpha rhythm 
generation, as suggested by Jansen and Rit (1995). The subcritical AH-bifurcation produces a 
branch of type I-B (Fig. 4) featuring unstable LCs, and the saddle-node bifurcation causes 
stable homoclinic LCs with a fundamental frequency ranging between 0.1 Hz and 4.6 Hz, 
which could be used for modeling epilepsy-like spiking activity (see, e.g., Marten et al., 2009; 
Suffczynski et al., 2005; Wendling et al., 2002; Wendling et al., 2000). Both stable 
homoclinic and unstable LCs collide and vanish through a global bifurcation (saddle-node 
bifurcation in Poincaré maps).  
In addition to these results, we found a local saddle-saddle bifurcation that was not reported in 
the work of Grimbert and Faugeras (2006). This type of bifurcation does not represent a 
change in stability (i.e., lying within an unstable section of the fixed point curve) but a 
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topological change of the saddle, in this case caused by complex conjugate eigenvalues. In 
particular, this bifurcation indicates that the system produces unstable oscillations for low 
amplitude inhibitory extrinsic input on PCs (i.e., lying on the section of the fixed-point curve 
between this local saddle-saddle bifurcation and the subcritical AH-bifurcation, see Fig. 2), 
due to the unstable focus in the corresponding phase portrait VIII in figure 3. Just like the 
saddle family of bifurcations in general, saddle-saddle bifurcations are, in principle, able to 
cause homoclinic LCs (Shil’nikov saddle-saddle bifurcation). However, in this case, no 
homoclinic LCs could be found using the Cl_MatCont package.  
 

Extrinsic inputs and dendritic time constants – mechanisms for oscillations 
Next, we analyzed the extended model of a cortical area by considering non-zero constant 
extrinsic input levels, υ1T(t), υ2T(t) and υ3T(t), on all three NMs, and by systematically varying 
these inputs as well as the dendritic time constants τe and τi. Therefore, we captured a five-
dimensional parameter space (see Table 2 for discretizations) by computing a bifurcation 
diagram of the PSPs of the PCs against the extrinsic input υ3T on the PCs for each 
combination of the remaining four parameters. The configuration of Jansen and Rit, as 
described above, represents only one particular case in this analysis.  
Generally, we found two basic mechanisms for generating oscillations: AH-bifurcations and 
Shil’nikov bifurcations. For AH-bifurcations, one can compute eigenfrequencies. Although, 
in a strict sense, these frequencies apply only to the bifurcation point, they nevertheless give a 
good approximation for the oscillation frequencies of LCs at some distance in adjacent 
branches. In contrast, Shil’nikov, or more generally speaking, global bifurcations, usually do 
not offer such indications of oscillation frequencies because of the global dependencies, 
which are not reflected by the local eigenvalues. Upon passing Shil’nikov bifurcations, the 
homoclinic LCs suddenly arise at high amplitudes. The oscillation frequency is zero at the 
bifurcation point and greatly increases with increasing distance. Thus, in response to 
variations of the extrinsic input level to the PCs, the fundamental oscillation frequency is 
relatively constant for AH-LCs (harmonic oscillations) and quite variable for Shil’nikov’s 
homoclinic cycles (anharmonic oscillations).  
Upon passing the AH-bifurcation, the harmonic oscillations emerge gradually. Variations in 
the extrinsic input to the PCs (e.g., noise) result in some variations in amplitude and only 
small variations in frequency. This gives rise to waxing and waning oscillations of relatively 
stable frequency, as, for example, observed in EEG alpha waves. In contrast, upon passing a 
Shil’nikov bifurcation, highly anharmonic (i.e., spike-like) oscillations appear suddenly with 
high amplitude and low frequency (initially zero). Temporal variations in the extrinsic input 
to the PCs lead to moderate amplitude and drastic frequency changes. As a result, quite 
irregular (when using noisy inputs) anharmonic oscillations that resemble M/EEG phenomena 
during epileptic seizures7 appear (see, e.g., Marten et al., 2009; Suffczynski et al., 2005; 

 
7 It should be pointed out that, in general, all types of limit cycles can degenerate due to the nonlinearity and 
surjection (global shape) of the fixed point curve. 
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Wendling et al., 2002; Wendling et al., 2000). Overall, we found fundamental frequencies 
ranging between 0.1 Hz and 79.6 Hz, which covers the bulk of relevant frequency bands in 
M/EEG.  
 

Conditions for harmonic and anharmonic oscillations 
In figures 5 and 6, the occurrence frequencies of the various branch types (see Fig. 4) are 
plotted against the system parameters. The dynamics of the AA-branches caused by two 
supercritical AH-bifurcations are by far the most common phenomena (comprising about 77 
% of all investigated loci in parameter space where stable LCs occur). In particular, this type 
of behavior occurs in configurations with approximately equal inhibitory and excitatory 
dendritic time constants in combination with extrinsic excitatory input on the IINs of less than 
8 mV (250 spikes/second8), and with extrinsic input on the EINs of either less than about -17 
mV (i.e., inhibitory; more than 39 spikes/second) or more than about 8 mV (i.e., excitatory; 
more than 250 spikes/second). Experimentally, spontaneous average spike rates mostly do not 
exceed 10 Hz (in rats; e.g., Attwell and Laughlin, 2001; Nawrot et al., 2007), but activity 
related rates can be as high as 80 Hz (see, e.g., Shenoy et al., 2003, for activity of pre-motor 
neurons in monkeys). This suggests that, in our model, the AA-branch behavior depends on a 
rather strong inhibition of the EINs. If the inhibitory dendritic time constant is larger than 1.3 
times the excitatory one and the extrinsic input to the EINs lies between about -17 and 8 mV 
(i.e., inhibitory input of less than 39 or excitatory input of less than 250 spikes/second), 
branches of type II-AB occur, allowing both harmonic and highly anharmonic (often spike-
like) oscillations. This scenario is more compatible with the typical moderate spike rates 
observed experimentally. If the inhibitory dendritic time constant is approximately three times 
larger than the excitatory one, BB- (only anharmonic oscillations) or B-branches appear with 
predominantly spiking activities. In our model, other branch types, in particular combinations 
of the basic types, cover only small portions of the parameter space. For example, the specific 
branch combination corresponding to the standard configuration of Jansen and Rit (AA-B) is 
restricted to input to IINs between 0 and 2 mV (i.e., excitatory input of less than 62 
spikes/second), input to EINs between -4 and 4 mV (i.e., inhibitory input of less than 9 or 
excitatory input of less than 125 spikes/second) and inhibitory dendritic time constants about 
twice that of the excitatory ones. Note that the translation from PSP to spike rate depends on 
the assumed products of dendritic time constant and synaptic gain, which we set to the values 
proposed by Jansen and Rit (1995). Moreover, the resulting spike rates represent the mean 
input rates of the respective NMs, which relate to the firing rates of the presynaptic neurons 
by the connectivity constants (mbT = cbT ⋅ mT, b = {1, 2, 3}). These were set to 1 in our 
analysis, with the assumption that, on average, each presynaptic neuron contacts one 
postsynaptic one. Other values for the connectivity constants would lead to an according 
scaling of the firing rates.  

 
8 The transformation from PSP to spike rate is done by division by the respective product of average synaptic 
gain and dendritic time constant He,i · τe,i = εe,i. See Materials and Methods section. 
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LC-branches of type II-AA provide harmonic oscillations with relatively stable fundamental 
frequencies because the orbit is only generated by AH-bifurcations. In contrast, due to the 
Shil’nikov bifurcation involved in all branches of type I, the oscillation frequencies vary 
across a broad range of values. The frequency ranges of all other branch types are dependent 
on the involved global bifurcations that change the stability of the LCs and generate 
anharmonic oscillations.  
Figures 7 and 8 provide an overview of the circumstances under which the system produces 
harmonic and anharmonic (spiky) oscillations. In general, either type of oscillations is only 
possible if the dendritic time constant of the inhibitory synapses between INs and PCs is not 
too short compared to one of the excitatory synapses: τi ≥ 0.2τe (see Fig. 7). Since the effective 
dendritic time constant increases with the average distance between synapses and soma (e.g., 
Gulledge et al., 2005), this means that, especially with excitatory input to very distal dendritic 
branches, there must be inhibitory synapses with rather large time constants in order to render 
the system capable of oscillating. The dendritic time constants also have a profound influence 
on the type and frequency of the oscillations that can be produced. If τi ≥ 1.3τe, the system 
may (depending on the extrinsic inputs and the initial conditions) produce high-amplitude 
anharmonic oscillations. Otherwise, only harmonic oscillations are generated, the frequency 
of which depends on the dendritic time constants in a systematic way; see figure 9 for 
examples. In general, we found that the period of stable LCs increases with the dendritic time 
constants. In extension of the simulation-based frequency analysis of David and Friston 
(2003), we identified the generating mechanisms for the oscillations.  
For the standard configuration of Jansen and Rit (1995), the parameter range where David and 
Friston (2003) identified harmonic oscillations can be divided into two regions. For relatively 
short inhibitory dendritic time constants (τi ≤ 0.2τe), we find stable foci instead of stable LCs, 
and therefore the system can only oscillate in the presence of constant perturbing extrinsic 
input, for example, noise. In contrast, if the inhibitory dendritic time constant is larger (τi ≥ 
0.2τe), stable LCs occur and the system oscillates autonomously, even with constant input. In 
particular, the anharmonic oscillations referred to as hypersignals by David and Friston are 
revealed to be caused by LCs due to global bifurcations. Generally, bifurcation analysis offers 
a way to distinguish between intrinsic oscillations (stable LCs) and extrinsically driven 
oscillations (e.g., noise-driven stable foci).  
With respect the extrinsic inputs on INs, figure 8 gives an overview of the conditions of 
occurrence for oscillations. Clearly, the system only oscillates if the IINs are not inhibited and 
are not excited above about 8 mV (with few exceptions). Moreover, anharmonic oscillations 
are limited to extrinsic inputs on the EINs between approximately -17 mV (i.e., inhibition of 
the INs) and 8 mV (i.e., excitation of the INs).  
 

Example configurations illustrating potential applications 
In this section, we will describe four example configurations using their bifurcation diagrams. 
They have been selected to illustrate interesting transitional behavior between oscillatory 
regimes, which may be potentially relevant for modeling the brain processes underlying real 
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M/EEG phenomena, such as ordered sequences of dynamic regimes (for modeling sequences 
in epilepsy by using thalamocortical models see, e.g., Marten et al., 2009; Rodrigues et al., 
2009; Suffczynski et al., 2005).  
The first example is presented in figure 10. It shows the system behavior for extrinsically 
inhibited EINs and excited IINs (υ1T = -4 mV and υ2T = -υ1T) and high dendritic time constants 
(τe = 26 ms and τi = 34 ms), which correspond approximately to the upper limit of the 
physiologically plausible range (see Materials and Methods section for ranges of the system 
parameters). This example demonstrates the simultaneous existence of more than one LC-
branch for the same parameter range; that means, an unstable branch of type II-AA, which is 
encapsulated in a branch of the same type but of opposite stability. Such stable II-AA-AB 
branches make up about 2 % of all observed multi-branch configurations (see Fig. 5 and 6). 
The unstable AH-LCs act as separatrix9, which separates two system modes of behavior (here 
unstable from stable LCs). If the system is initialized inside the unstable AH-LCs, it will 
produce constant output, or, in the presence of low amplitude perturbations, damped 
oscillations (idle mode). If the system is then perturbed beyond the separatrix, it suddenly 
enters an excitation mode and produces anharmonic oscillations. This mechanism also works 
in the opposite way, from excitation to idle mode. However, the interesting feature is that this 
transition behavior is generally irreversible; that is, the system will not revert to its original 
mode even after the perturbing stimulus is gone. Such switching behavior in response to a 
brief stimulus is characteristic of many normal and pathological processes in the brain, such 
as, redirection of attention by a relevant sound or touch, waking up by salient stimulation, or 
epileptic seizures elicited by sudden, unexpected stimuli (startle epilepsy).  
The second example in figure 11 shows a case with still stronger inhibition of the EINs and 
short dendritic time constants for the excitatory synapses (υ1T = -17 mV, υ2T = 4 mV, τe = 4 
ms, τi = 5.5τe). The bifurcation diagram reveals overlapping but separate branches, which 
provide three LCs for the same parameter setting: a branch of type II-AA which is shifted into 
a branch of type II-AB (with about 2 % occurrence, where 20 % of these are telescoped). This 
configuration features both sudden and continuous entering into LCs as well as sudden 
changes between them. The system traverses states (branches) in qualitatively different ways 
for increasing and decreasing extrinsic input on PCs. For instance, the system suddenly 
switches from idle mode (stable focus in phase portrait IV with initialization indicated by the 
blue arrow and an input level of about 56 mV) to excitation mode (high amplitude 
anharmonic oscillations) for increasing input (exceeding about 64 mV) by passing the 
subcritical AH-bifurcation (switching the phase portrait from type IV to III). It remains in the 
excitation mode even after cessation of the input perturbation (potential back to 56 mV), thus 
seeming to provide a mechanism for irreversible change caused by a transient input 
perturbation (see previous example). Additionally, the system may change suddenly from one 
excitation mode (anharmonic oscillations) to another (harmonic oscillations) for decreasing 
inputs (below about 54 mV) by passing a global bifurcation (changing the phase portrait from 
type V to III). If the input to the PCs then returns to the original level, the system returns to its 

 
9 A separatrix marks a boundary between trajectories with different properties. 
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original idle mode by passing a supercritical AH-bifurcation (to phase portrait IV). Hence, in 
contrast to the configuration shown in figure 10, the effects of strong input perturbations are 
reversible by traversing several different states (represented by their respective phase 
portraits, see Fig. 3).  
The third example in figure 12 (υ1T = -4 mV, υ2T = -υ1T, τe = 14 ms, τi = 18 ms) shows that 
several branches might coexist separately along the fixed point curve, lined up like beads on a 
string. This configuration (type II-AA-AA-AA, which makes up about 0.6 % of all multi-
branch configurations) does not result in any sudden changes, but, depending on varying 
extrinsic input on PCs, the system will alternate between idle or excitation mode, producing 
harmonic oscillations of different frequencies. If the input to the PCs is noise of sufficiently 
high amplitude, the output will be a mixture of unfiltered noise and various frequencies 
generated by the different LCs. This may be the basis for a model of M/EEG spectra featuring 
several distinct frequency peaks, for example, in the theta and alpha ranges as in this case.  
Finally, as a fourth example, the standard configuration of Jansen and Rit itself (Fig. 2) 
demonstrates the coexistence of two branches of LCs of type I-B and II-AA, giving rise to 
spike-like and sinusoidal activity, respectively. This configuration allows, by virtue of 
changing the input to the PCs, an abrupt transition from the I-B-cycle (anharmonic 
oscillations) to the II-AA-cycle (harmonic oscillations), but not vice versa. In figure 13, we 
show how the gradual addition of extrinsic inputs to the IIN changes the bifurcation diagram 
and causes the system to go through different distinct oscillatory regimes. We assume that the 
system is exposed to Gaussian input to the PCs (expectation value E[υ3T] = 6.5 mV and 
standard deviation D[υ3T] = 1.3 mV) and there is no extrinsic input to the EINs in this 
example. With no input to the IINs, this configuration is identical to that of Jansen and Rit 
and produces waxing and waning harmonic oscillations in the alpha range. If the input to the 
IIN is increased, the system’s behavior, and thus the bifurcation diagram, changes and the 
system starts to produce large amplitude spike-like anharmonic oscillations of varying 
frequency. A further increase in the IIN’s input moves the system into a state where it 
generates constant output with overlaid noise (Fig. 13). This demonstrates that the system 
behavior changes not only along with bifurcations due to the extrinsic inputs on PCs but also 
along with the bifurcations due to the other codimensions (i.e., extrinsic inputs on both INs). 
Although we did not analyze codimension five bifurcations, the diagrams in figures 5 to 8 
give an insight into the system’s behavior for the whole parameter space (based on our 
classification scheme).  
 
4. Discussion 

In this study, we presented a detailed analysis of the dynamic properties of an NMM for a 
single cortical area. The model is based on the well-known proposal of Jansen and Rit (1995) 
and was extended by incorporating extrinsic inputs (from other cortical and subcortical areas) 
on the interneuron populations. We systematically investigated the system’s behavior by 
means of bifurcation diagrams, as a function of its key parameters, which are the extrinsic 
input levels to all three NMs and the dendritic time constants for excitatory as well as 
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inhibitory synaptic contacts. We determined finite effective ranges for these parameters 
(Table 1). We argue that variations of the extrinsic input levels are equivalent to variations of 
the firing thresholds of the NMs and, under certain conditions (see section Dimension 
reduction), to variations of the intrinsic connection strengths between the NMs, and that 
therefore our analysis also accounts for the influences of these parameters. Consequently, our 
analysis can be considered complete.  
One aim of the paper was to describe the rich dynamics observed in a systematic way. At the 
lowest level, we were able to distinguish three principal types of steady state behavior with 
respect to the PC’s postsynaptic potentials. First, stable foci and nodes produce constant 
output, which, under small perturbation (e.g., noisy input to the PCs), changes into filtered 
noise with (for foci) or without oscillatory components. Second, supercritical AH-bifurcations 
give rise to stable LCs. They appear gradually upon passage of the bifurcation. Their 
frequency is relatively insensitive with respect to the level of extrinsic input, and ranges 
between 0 and 80 Hz, depending on the dendritic time constants (see Fig. 9). For noisy input, 
this results in waxing and waning harmonic oscillations of relatively stable frequency. This 
pattern is compatible with typical brain rhythms, such as the alpha rhythm or sleep spindles. 
Third, global bifurcations, for example of Shil’nikov type, give rise to homoclinic LCs 
appearing suddenly at high amplitude and low frequency. They are generally not harmonic, 
but have a spike-like appearance (anharmonic oscillation). Their frequency depends a great 
deal on the input levels. Hence, if the PCs receive fluctuating input, the intervals between the 
wave peaks (or spikes) are variable. These phenomena are compatible with the hallmark of 
epileptic seizures (i.e., suddenly occurring, irregular spiking patterns (see, e.g., Marten et al., 
2009; Rodrigues et al., 2009; Suffczynski et al., 2005; Wendling et al., 2002; Wendling et al., 
2000)). Note that Shil’nikov’s bifurcations were also related to “spike-wave” behavior in 
more theoretical models on M/EEG (e.g., van Veen and Liley, 2006). This relationship was 
also identified when analyzing M/EEG by using embedding methods (e.g., Friedrich and Uhl, 
1996).  
The occurrence of and the transitions between these states, as a function of extrinsic inputs, 
are encoded by the topology of the bifurcation diagrams. This means one can read these 
transitions directly from the bifurcation diagrams. In general, we found a number of 
potentially neurobiologically interesting branches of LCs, which allow for sudden entering 
into orbits or smooth transitions between different LC-regimes by small variations of extrinsic 
inputs (Fig. 2 and Fig. 10 to 13). These effects were either reversible or irreversible, 
depending on the parameters and initial state of the system. When moving through the 
effective parameter space, we observed both quantitative changes in the precise location of 
the bifurcations and LCs and qualitative changes of the entire topology of the bifurcation 
diagram (e.g., bifurcations appearing or disappearing).  
Consequently, at another level of description, we introduced a classification of the observed 
principal types of system topology made up of globally stable LC-branches (Fig. 1). By using 
this classification scheme, we were able to reduce the complexity of the dynamic behavior to 
a few basic phenomena which exist in isolation or in combination. This enabled us to map 
these topologies to the parameter space and draw a number of global conclusions about the 
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frequency of occurrence and existence conditions of these topologies (Fig. 5 and 6) and the 
associated oscillatory regimes (Fig. 7 and 8).  
Our systematic analysis revealed that the dynamic behavior (I-B and II-AA topology) of the 
specific parameter configuration proposed by Jansen and Rit (1995), as reported by the 
analysis of Grimbert and Faugeras (2006), is an exception rather than the rule with respect to 
the effective parameter space of the extended model (see Fig. 5 and 6). Hence, the general 
validity of any analysis based on that configuration depends on the assumption that the 
parameter set put forward by Jansen and Rit (1995) is adequate within quite narrow bounds 
(see Fig. 5 and 6, branch type AA-B). Furthermore, we found a bifurcation which was not 
reported by Grimbert and Faugeras (2006).  
There were several general findings concerning the dynamics of the system. First, we showed 
that harmonic oscillations arising from two AH-bifurcations (II-AA type) are by far the most 
common oscillatory behavior over the entire parameter space (Fig. 5, 6 and 9). This finding is 
compatible with the widespread presence of relatively frequency-stable rhythms in brain 
signals (delta, alpha, beta, and gamma frequency band). Anharmonic oscillatory regimes (e.g., 
in branch type I-B and II-BB, see Fig. 3 for classification or the examples in Fig. 2 and Fig. 
10 to 12) are thus special and exceptional, but nonetheless very interesting cases for modeling 
pathological states (e.g., epilepsy, Fig. 5 to 8).  
Second, the analysis revealed that the ratio between the inhibitory and excitatory dendritic 
time constants (not their absolute values) determines whether no oscillations, only one type of 
oscillations (harmonic or anharmonic) or both types are possible (Fig. 5) (this confirms the 
findings of David and Friston, 2003). Regarding the system equations (5) to (11), it is obvious 
that the dendritic time constants are related to each other by their scaling ratio τi / τe (e.g., by 
substituting the dimensionless variable t / τe for time variable t). Hence, the system behavior 
qualitatively depends only on the scaling ratio and on the extrinsic inputs on both INs. More 
specifically, our analysis revealed that for maintaining an oscillatory regime, it is essential to 
keep the ratio τi / τe > 0.2 (Fig. 7).  
Third, our analysis showed that the system is more sensitive to extrinsic inputs to IINs than to 
extrinsic inputs to EINs. Since oscillations in local neuronal circuits depend fundamentally on 
effective inhibitory feedback loops, extrinsically inhibited IINs prevent the system from 
oscillating, while moderate extrinsic excitation of IINs causes local neuronal circuits to 
oscillate. Extrinsic inputs to EINs predominantly influence the spiking behavior of the system 
(Fig. 8).  
Another aim of this study was to demonstrate that it is possible to describe ordered sequences 
of qualitatively different oscillatory regimes by NMMs, using bifurcation diagrams. 
Generally, such sequences arise when traversing the parameter space slowly, as compared to 
the time constants of the oscillations involved. Such slow parameter changes could be 
associated with numerous neurobiological phenomena, such as changes in attention and 
vigilance, progression of disease, effects of medication or changes in sleep stage.  
For example, the rapid transition between non-REM and REM sleep accompanied by both 
drastic changes in rhythmic EEG patterns and numerous functional phenomena has been 
modeled as phase transition of a NMM very similar to ours, caused by slow parametric 
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changes due to biochemical processes (i.e., changing acetylcholine and adenosine levels) 
(Steyn-Ross et al., 2005). Another prominent example, where modelers have exploited slow 
transitions across a bifurcation, is an epileptic seizure, which is characterized by the transition 
from normal EEG dominated by harmonic alpha or beta oscillations to high amplitude 
irregular spike or spike-wave oscillations (Marten et al., 2009; Rodrigues et al., 2009; 
Suffczynski et al., 2005; Wendling et al., 2002). A further example is the EEG observed over 
the motor cortex during brisk finger movements, where the brain dynamics change from 
dominant alpha to increased gamma oscillations during the preparation phase and then to 
increased beta oscillations shortly after the movement itself. Finally, after a few seconds, the 
system relapses into its normal state (Pfurtscheller and Lopes da Silva, 1999).  
The topologies of LC-branches in bifurcation diagrams may be used to describe the formation 
of such sequences. For instance, figure 13 (see Results for a detailed description) shows how a 
gradual increase in extrinsic inhibition by means of excitatory input to the IINs can suddenly 
move the system from normal M/EEG featuring alpha waves to high amplitude irregular 
spiking.  
We also found a number of topologies where the system is constrained to undergo a specific 
ordered sequence of dynamic states for recovering its initial state after having been perturbed 
by a transient change of a system parameter. For instance, in figure 11, the system first jumps 
to a state where it produces anharmonic oscillations after a transient increase in the extrinsic 
input to the PCs. Interestingly, the system will remain in this state even after the input has 
returned to its original level. The system will only return to its initial state when a transient 
decrease of sufficient amplitude occurs in the extrinsic input to the PCs. This could be a 
model, for example, for the elicitation of epileptic seizures by sudden, unexpected stimuli 
(startle epilepsy). In other configurations, a return to the initial state is impossible (irreversible 
processes). For instance, figure 10 shows the topology of encapsulated II-AA branches of 
opposite stability. When the normal state (inside the unstable AH-LCs) is perturbed slightly 
(i.e., below threshold), the system produces damped oscillations, but after passing the 
threshold (i.e., the unstable AH-LCs) the system is unable to return to its initial state.  
These examples (see Results for further details) demonstrate that a multitude of biologically 
interesting dynamic phenomena in brain signals can be modeled by a rather simple NMM of a 
single cortical area in conjunction with appropriate input trajectories. Thus, our systematic 
analysis details the parameter configurations and input trajectories that can be used to model 
specific changes between different dynamic states.  
As we have argued, bifurcations can be a useful tool for modeling M/EEG data. However, 
they can also be a nuisance when one aims to model a single dynamic regime. For example, if 
one wants to model stable oscillations, the parameterization should be placed distant from a 
bifurcation to avoid a transition under slightly varied parameters. The identification of safe 
placements in parameter space is another use of our bifurcation analysis. As we have shown, 
some dynamic regimes exist, which seem to be quite narrow islands in parameter space (see, 
e.g., Fig. 5 for branch type combinations: e.g., AA-AB which is restricted to narrow bands of 
dendritic time constant ratios of either about 1.29 to 1.31 (corresponding to the example in 
Fig. 10) or about 5.45 to 6.17 (corresponding to the example in Fig. 11)). Such configurations 
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in the parameter space may be exploited for transitions between dynamic regimes but should, 
in contrast, be avoided for modeling dynamics which are meant to be robust to slight 
variations in their parameters.  
In our analysis we solely dealt with a local model for a single cortical area. The question 
arises, whether and under what conditions our results can be generalized to the case of several 
interacting local neuronal circuits. Our results directly predict the behavior of networks 
consisting of local units under the assumption of weak and/or slowly varying extrinsic inputs 
(relative to the dendritic time constants of the local neuronal circuit). If this is not the case, for 
example, if several cortical areas have relatively strong bidirectional coupling, more complex 
state spaces would have to be explored. However, given the effective ranges of the extrinsic 
inputs to a single cortical area, one can also determine the ranges for the connection strengths 
between areas. This means that the local neuronal circuits greatly limit the behavior of the 
entire network. In order to keep a large network in an operating state, connections between 
interacting brain areas must not exceed these effective ranges. This implies the presence of 
regulatory mechanisms, for example, neurotransmitter receptor adaption (Moran et al., 2007; 
Wright et al., 2003), synaptic plasticity (David and Friston, 2003; Moran et al., 2007; Wright 
et al., 2003) or back-propagating action potentials into the dendritic tree (Wright et al., 2003).  
Our results enable the efficient definition of prior distributions of parameters in Bayesian 
model inversion, as used in DCM (David et al., 2006; Kiebel et al., 2009b). To model specific 
phenomena using DCM, the researcher would first select specific regimes of parameters, 
informed by the present bifurcation analysis. By using appropriate prior distribution centered 
on the selected parameter configuration, the researcher can then constrain the effective ranges 
for the extrinsic input levels and inter-area connection strengths. Additionally, the initial value 
problem of the gradient-ascent estimation scheme used by DCM can be addressed by 
informing the inversion scheme about qualitatively different dynamic regimes. In principle, 
this would enable DCM users to more effectively identify global maxima of the objective 
function by starting the inversion process repeatedly in qualitatively different dynamic 
regimes.  
NMM dynamics account for coherent activity of large numbers of neurons, which is exactly 
the kind of phenomena that give rise to EEG and MEG. These signals are known to reflect 
important aspects of brain function. In particular, it has been shown that oscillatory activity 
observed using M/EEG bears a strong relationship with brain function in both health and 
disease. Widespread brain oscillations reflect the cortical arousal state, as they seem to be 
associated with the α-rhythm (8-12 Hz) in the visual cortex (see, e.g., Klimesch, 1999), the μ-
rhythm (~10 Hz and ~20 Hz) in the somatomotor cortex (Pfurtscheller, 1989; Salmelin et al., 
1995; Salmelin and Hari, 1994), and the τ-rhythm (8-12 Hz) in the auditory cortex (Hari and 
Salmelin, 1997). Such rhythms are selectively suppressed by primary sensory or motor 
activity (Pfurtscheller and Lopes da Silva, 1999). Other brain rhythms are directly related to 
active processes. For example, frontal β-rhythms (~20 Hz) are associated with motor activity 
(Hari and Salmelin, 1997; Pfurtscheller and Lopes da Silva, 1999; Spiegler et al., 2004), 
hippocampal θ-rhythms (4-8 Hz) as well as γ-rhythms (30-80 Hz) in various brain parts play 
an important role for memory function (Burgess and Ali, 2002; Burgess and Gruzelier, 1997; 
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Herrmann et al., 2004; Kahana et al., 1999; Klimesch, 1996; Klimesch, 1999; Klimesch et al., 
1996; Klimesch et al., 1997; Lisman and Idiart, 1995; Llinás and Ribary, 1993), and γ-
rhythms appear to reflect processes of perceptual binding in the visual (Gray and Singer, 
1989; Herrmann and Mecklinger, 2000; Tallon-Baudry et al., 1997; Tallon-Baudry et al., 
1996) and auditory domains (Knief et al., 2000; Pantev et al., 1993; Pantev et al., 1991). 
Pathological brain function is strongly correlated with typical brain oscillations, for example 
in epilepsy during seizures (Destexhe and Sejnowski, 2001) and in Parkinson’s disease (Gross 
et al., 2001; Schnitzler and Gross, 2005; Tass et al., 1998). This relevance of oscillatory 
M/EEG phenomena for brain function corroborates the view that modeling neural mass action 
is important for the understanding of brain function and the organization of behavior (Deco et 
al., 2008; Freeman, 1975; Freeman, 2002) It is worth mentioning that with realistic choices of 
the system parameters, the neural mass model (Eqs 5 to 11) generates a range of frequencies 
covering most of the reported functionally relevant M/EEG rhythms. 
Moreover, as discussed above, many functional processes in the brain can be described as a 
succession of distinct functional states, mirrored by specific oscillatory regimes observed in 
experimental M/EEG data. Often, this succession of states seems to be caused by a gradual 
evolution of certain system parameters. For example, during sleep, slowly decreasing levels 
of adenosine and other somnogens cause a steady downward shift in resting potential 
(equivalent to shift in extrinsic input level, see section Parameter space), while acetylcholine 
levels, raising the excitability of excitatory neurons and decreasing the gain of excitatory 
synapses, perform slow (~ 90 minutes) cycles. These slow biochemical trajectories are 
believed to be responsible for the repetitive transition between slow wave and REM sleep 
phases (Hasselmo, 1995; Steyn-Ross et al., 2005). We have shown that bifurcation analysis 
provides a generative model for exactly this type of phenomenon: a gradually changing 
system parameters lead to a sequence of distinct dynamic regimes with relatively rapid 
transitions between them.  
In conclusion, we present the first complete account of the dynamic behavior of an NMM of a 
cortical area, of which, so far, only one special parameter configuration had been investigated 
(Grimbert and Faugeras, 2006). We systematically describe the dynamic richness of the 
system using a relatively small set of prototypical system topologies. This enabled us to draw 
general conclusions about the interesting phenomena and their conditions of existence. 
Moreover, we identified biologically relevant configurations and showed how reversible and 
irreversible transitions between different oscillatory regimes, which can be observed in 
M/EEG, can be explained by smooth changes in the extrinsic inputs. In this way, we obtain 
generative models for ordered sequences of dynamic phenomena, which may be used as 
models of sudden transitions between qualitatively brain states, caused by slow changes in 
system parameters.  
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6. Figure Legends 

 

 

Fig. 1. Extended structure of the model for a cortical area. The model consists of three 
neural masses, representing pyramidal cells receiving positive and negative feedback via EINs 
or IINs. Operators (boxes) are S – the potential-to-rate operator transforming the mean 
membrane potential to the average firing rate at the axon hillock, ⊗hba(t) – the rate-to-
potential operator computing the mean postsynaptic potential at the soma for a neural mass b 
by convolution of the synaptic kernel hba(t) (including the dendritic time constants) with the 
incoming mean firing rate ma of neuron a weighted according to the mean number of synaptic 
contacts cba, and ⊕ – the summation operator gathering the postsynaptic potentials rising in 
the dendritic tree at the soma. Parameters (circles) are cba – the average number of synaptic 
contacts established between neural mass a to b and mbT(t) – the extrinsic input firing rate of 
the neural mass b, with a, b assuming 1 (EINs), 2 (IINs), 3 (PCs) and T (extrinsic input). The 
system variables (describing the flows) are mb(t) – the mean firing rate of the neural mass b, 
and υba(t) – the membrane potential of neural mass b due to input a. Mean postsynaptic 
potentials of pyramidal cells υ3(t) mainly contribute to M/EEG. Extensions to the classical 
structure of Jansen and Rit (1995) are drawn in red. 

31 

 



 

 

Fig. 2. Bifurcation diagram and exemplary solutions of Jansen’s configuration (υ1T = υ2T 
= 0, τe = 10 ms, τi = 2τe). The diagram shows two telescoped branches of type I-B and II-AA 
(see Fig. 4). In the bifurcation diagram, solid lines represent stable and dashed lines unstable 
states. Branches of limit cycles correspond to gray regions bounded by solid lines for stable 
and dashed black lines for unstable limit cycles. Bifurcations are indicated by diamonds for 
saddle-saddle, triangles for saddle-node, black circles for subcritical Andronov-Hopf 
bifurcations, and white circles for supercritical Andronov-Hopf bifurcations. For all 
Andronov-Hopf bifurcations, the eigenfrequencies of the limit cycles that arise are indicated. 
The bifurcation diagram is stratified into equivalent states (green and blue bars) along the 
system parameter, that is, extrinsic input on pyramidal cells. The phase portraits according to 
each state are presented in figure 3. The purple lines indicate global bifurcations, here a 
saddle-node bifurcation in a Poincaré map occurring at the transition of state V-III and a 
Shil’nikov bifurcation (saddle-node) at the transition VI-V. Different extrinsic input levels on 
pyramidal cells (black and green vertical lines) result in different behavior depending on the 
past of a system’s trajectory (blue and red arrows). For inputs of portrait V, the system 
produces sinusoidal oscillations (blue time series) starting from the blue and spiking activity 
(red series) starting from the red arrow. For inputs outside portrait V, the system is 
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independent of the past, and produces sinusoidal oscillations (green series) within portrait III, 
for example. 



 

 

Fig. 3. Schematic phase portraits representing the qualitative system states in 
bifurcation diagrams. Note that these phase portraits display the principal features in a plane 
according to the leading eigenvalues, while the actual phase portraits live in 14 dimensional 
space. The displayed cases are referenced in the bifurcation diagrams in figures 2 to 5. Phase 
portraits I and II show stable fixed points, portraits III-V are due to Andronov-Hopf 
bifurcations and portraits VI-VIII are possible combinations of these, and lead to heteroclinic 
cycles. Portrait I is a stable node and II is a stable focus. Phase portrait III consists of one 
stable limit cycle. Phase portraits IV and V are similar to III, but with more than one limit 
cycle: one stable and one unstable limit cycle in IV and two stable and one unstable limit 
cycle in V. Phase portraits VI-VIII comprise heteroclinic cycles due to the coexistence of a 
saddle and a node. The limit cycles in VI and VII as well as the unstable focus in VIII force 
the system to connect unstable and stable manifolds of the saddle and node stabilities, that is, 
to produce heteroclinic cycles. The fixed points in the phase portraits are characterized with 
respect to the leading eigenvalues, which play an important role, especially for the Shil’nikov 
bifurcations that we have. The eigenvalues with positive (resp. negative) real parts that are 
closest to the imaginary axis are called the unstable ℓ+ (stable ℓ−) leading eigenvalues. 

34 

 



 

Fig. 4. Classification of the globally stable branches of limit cycles. Principal type I or II 
was classified according to the number of involved Andronov-Hopf bifurcations (one or two). 
The number of global bifurcations (red circles) that change the stability of the limit cycles is 
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indicated by capital letters (A to C). Each global bifurcation is assigned to a local Andronov-
Hopf bifurcation by the shortest distance on the fixed point curve. Fundamental frequencies of 
limit cycles of branch type II-AA are relatively stable because the orbit is generated by 
Andronov-Hopf bifurcations only. On the other hand, the oscillation frequencies vary across a 
broad range for all branches of type I due to the involved Shil’nikov bifurcation. Sinusoidal or 
harmonic oscillations are exclusively produced in the limit cycle branch type II-AA and 
anharmonic (spiky) oscillations are exclusively produced by branch type I-B and II-BB. All 
other branch types produce both oscillations. 



 

Fig. 5. Occurrence of branch types projected in the plane of the dendritic time constants. 
The most frequent branch type is II-AA, with 76.7 %, followed by type II-AB (7.7 %), II-BB 
(6.8 %), I-B (4.2 %), I-A (1.9 %), II-BC (1.1 %), I-C (1 %), II-AC (0.6 %) and II-CC (0.1 %). 
Branches of type II-AA exist for parameter configurations with dendritic time constant ratios 
τi / τe > 0.2, most frequently around ratios of one. For increasing ratios, other branch types 
appear in the order: II-AB (> 1.3, most frequently ≈ 2.4), II-AC (1.4-5.0 scattered), I-A (1.44-
4.0), I-B as well as II-BB (> 1.6, most frequently > 3), I-C (1.7-5 scattered, most frequently ≈ 
2.4), II-CC (≈ 2) and II-BC (2.6-6.0). Combinations of branch types (1.7 % of all of all 
configurations where stable limit cycles occur) and branch type II-CC occur rarely (singular 
phenomena). The standard configuration according to Jansen and Rit (υ1T = υ2T = 0, τe = 10 
ms, τi = 2τe) is such a special case since it consists of branches of type I-B and II-AA. For the 
classification of branch types see figure 4. 
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Fig. 6. Occurrence of branch types projected to the plane of the extrinsic input on 
interneurons. Limit cycle branches of type II-AA are most frequent for configurations with 
extrinsic excitatory input on the inhibitory interneurons of less than 8 mV and with extrinsic 
input on the excitatory interneurons of either less than about -17 mV (i.e., inhibitory) or more 
than about 8 mV (i.e., excitatory). Between -17 and 8 mV, most branches of type II-AA pass 
over to branches of type II-AB, II-BB and/or I-B. Most limit cycle branches occur for 
excitatory input on inhibitory interneurons. Branches of type II-AA arise independently of the 
extrinsic input on excitatory interneurons, but all other types and combinations of branches 
arise focally for a certain range. This means that extrinsic input on excitatory interneurons 
causes most II-AA branches to turn into more complex branches and combinations. The 
projection also reveals that combinations of branch types and branches of type II-CC are quite 
rare and local. The dominant combination of branches is II-AA, with 83.2 %, followed by 
AA-B (12.5 %), AA-AB (2.1 %), AA-AA-BB (0.9 %), AA-AA-AA (0.6 %), AB-A (0.4 %) 
and AB-AB (0.2 %). See figure 4, for the classification of branch types. 
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Fig. 7. Existence of limit cycles mechanisms depending on dendritic time constants. Blue: 
sinusoidal or harmonic oscillations due to Andronov-Hopf bifurcations, red: sinusoidal and 
anharmonic (spiky) oscillations caused by global bifurcations like of Shil’nikov’s type. The 
diagram is a projection of the entire parameter space onto the plane of the dendritic time 
constants. No limit cycles occur for dendritic time constant ratio τi / τe ≤ 0.2. Limit cycles 
occur for 24 % of all configurations in the parameter space. For ratios > 0.2, parameter 
configurations with Andronov-Hopf cycles exist, and further, for ratios > 1.3, configurations 
containing both harmonic and anharmonic oscillations exist. 
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Fig. 8. Existence of limit cycle mechanisms depending on extrinsic inputs. Blue: 
sinusoidal or harmonic oscillations due to Andronov-Hopf bifurcations, green: anharmonic to 
spiky oscillations caused by global bifurcations like of Shil’nikov’s type, red: both types of 
oscillations. The diagram is a projection of the entire parameter space onto the plane of the 
extrinsic inputs. Extrinsically inhibited inhibitory interneurons induce no limit cycles (with 
some exceptions). Limit cycle branches, especially with harmonic oscillations, mainly occur 
for extrinsically excited inhibitory interneurons (up to roughly 8 mV) for all extrinsic inputs 
on excitatory interneurons. In contrast, extrinsic input on excitatory interneurons is relevant 
for the occurrence of anharmonic oscillations (approximately between -17 to 8 mV). 
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Fig. 9. Frequency charts of limit cycle branches. For two configurations of extrinsic inputs 
on interneurons (rows) depending on the excitatory and inhibitory dendritic time constants (τe 
and τi), we see the carts of branch type II-AA, I-B and I-C (columns). The standard 
configuration according to Jansen and Rit can be found in the first row (υ1T = υ2T = 0, τe = 10 
ms, τi = 2τe). The oscillation frequency values of limit cycles in branches of type II-AA 
represent mean values over Hopf-cycle range and single values for type I branches (constant 
distance in relation to Shil’nikov bifurcations). For the classification of branch types see 
figure 4. 
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Fig. 10. Encapsulated limit cycle within another limit cycle of opposite stability (for 
parameter configuration υ1T = -4 mV, υ2T = - υ1T, τe = 26 ms, τi = 34 ms). Here, we see an 
unstable II-AA branch, which exists within a stable branch of type II-AB, and a II-AA branch. 
For the explanation of the bifurcation diagram, see the legend of figure 2. If the system were 
initialized outside the branches of unstable limit cycles (blue arrow), the system would tend to 
produce transient anharmonic oscillations (blue time course) in the parameter range of stable 
limit cycles (indicated by the black line within state IV). Otherwise, the system would 
generate constant output (red arrow and red time course), but may suddenly switch to 
sinusoidal activities if moved over the separatrix by any perturbation.  
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Fig. 11. Overlapping branches of limit cycles provide two stable limit cycles for the same 
parameter configuration (υ1T = -17 mV, υ2T = 4 mV, τe = 4 ms, τi = 5.5τe). Here, we see a 
branch of type II-AA which is telescoped into a II-AB branch. The initialization of the system 
(blue and red arrows) determines its behavior (low amplitude vs. high amplitude limit cycles). 
See also the legend of figure 2. For example, the system stating at the blue arrow will jump 
into a state where it produces high-amplitude oscillations after a transient increase in the mean 
input to the PCs (e.g., by 8 mV), and will remain in this state even after the input has returned 
to its original state by undergoing the subcritical Andronov-Hopf bifurcation. To return, the 
system must pass the global (saddle-node) bifurcations by transient decreasing extrinsic input 
(e.g., by -3 mV). 
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Fig. 12. Sequential existence of several stable limit cycles for different ranges of extrinsic 
input on pyramidal cells (parameter configuration: υ1T = -4 mV, υ2T = -υ1T, τe = 14 ms, τi 
= 18 ms). The blue, green and red curves indicate the time series for different levels of input 
to the pyramidal cells. See also the legend of figure 2. 
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Fig. 13. Extrinsic inputs on inhibitory interneurons change the system behavior. By 
exciting inhibitory interneurons the system switches from producing waxing and waning 
alpha activity in the first state to epileptic spiking-like activity in the second state, and to 
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noise-driven activity in the last state of excitation. The first extrinsic input state on inhibitory 
interneurons, highlighted in blue, corresponds to Jansen’s parameter configuration (i.e., only 
extrinsic input on pyramidal cells). For the second input state, highlighted in red, the input on 
inhibitory interneurons is constantly 1 mV and doubles for the third input state. The extrinsic 
input on the pyramidal cells is Gaussian (with an expectation value of E[υ3T] = 6.5 mV and a 
standard deviation of D[υ3T] = 1.3 mV) and zero for the excitatory interneurons during all 
states. For each state, the bifurcation diagram (of the postsynaptic potential against the 
extrinsic input on pyramidal cells) is shown in the top row. The input on inhibitory 
interneurons and the postsynaptic potentials of the pyramidal cells is shown in the middle and 
bottom row. Regarding the bifurcation diagrams, circles are sub-(black) and supercritical 
(white) Andronov-Hopf bifurcations, diamonds are saddle-saddle and triangles are saddle-
node bifurcations. The red lines represent global bifurcations (saddle-node like bifurcations in 
Poincaré maps). The black framed gray areas are the branches of limit cycles. Using the 
classification of limit cycle branches (see Fig. 4), we identify the first input state as a 
combination of type I-B and II-AA, the second and third input state of type I-A. The blue 
lines indicate the expectation value of the Gaussian input on the pyramidal cells. Thus, the 
alpha activity is caused by harmonic cycles due to Andronov-Hopf bifurcations in the first 
state and the epileptic spiking-like activity of the second state is caused by homoclinic cycles 
due to a saddle-node Sil'nikov bifurcation. In the last state, the system is out of reach of any 
limit cycle and attracted to the equilibrium disturbed by the extrinsic Gaussian input on 
pyramidal cells. 
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7. Tables 

Postsynaptic potentials in mV Maximum firing rate in s-1 Extrinsic 
input on min max excitatory input inhibitory input

Excitatory 
interneurons -26.63 16.69 513.54 60.52 

Inhibitory 
interneurons -10.18 16.69 513.54 23.12 

Pyramidal 
cells -22.24 90.94 2798.16 50.55 

Table 1. Effective ranges of the extrinsic input of the extended model for a cortical area. 
Positive and negative postsynaptic potentials are due to excitatory and inhibitory inputs.  
 

Parameter Range Step size Unit 
τe,i [2,60] 2 ms 
υ1T {-27, -22, -17, -12, -8, -4, -2, 0, 2, 4, 8, 12, 17} discrete mV 
υ2T {-11, -8, -4, -2, 0, 2, 4, 8, 12, 17} discrete mV 
υ3T [-22.24, 90.94] continuous mV 

Table 2. Range of the varied system parameters: dendritic time constants for inhibitory and 
excitatory synaptic terminals τe,i and postsynaptic potentials due to extrinsic afferent 
projections on excitatory υ1T inhibitory interneurons υ2T and pyramidal cells υ3T. 
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