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Abstract

Background: Visual perception is strongly determined by accumulated experience with the world, which has

been shown for shape, color, and position perception, in the field of visuomotor learning, and in neural

computation. In addition, visual perception is tuned to statistics of natural scenes. Such prior experience is

modulated by neuronal top–down control the temporal properties of which had been subject to recent studies.

Here, we deal with these temporal properties and address the question how early in time accumulated past

experience can modulate visual perception.

Results: We performed stimulus discrimination experiments and compared a group of Chinese participants with

a German control group. The perception of our briefly presented visual objects (targets) was disturbed by

masking stimuli which appeared in close spatiotemporal proximity. These masking stimuli were either intact or

scrambled Chinese characters and did not overlap with the targets. In contrast to German controls, Chinese

participants show substantial performance differences for real versus scrambled Chinese characters if these

masking stimuli were presented as early as less than 100 milliseconds after the onset of the target. For Chinese

observers, it even occured that meaningful masking stimuli enhanced target identification if they were shown at

least 100 milliseconds after target onset while the same stimuli impaired recognition if presented in close

temporal proximity to the target. The latter finding challenges interpretations of our data that solely rely on

stimulus contours or geometric properties and emphasizes the impact of prior experience on the very early
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temporal dynamics of the visual system.

Conclusions: Our findings demonstrate that prior experience which had been accummulated long before the

experiments can modulate the time course of perception intriguingly early, namely already immediately after the

perceptual onset of a visual event. This modulation cannot solely operate as a feedback in response to the

visual event but is rather a permanent effect.

Background

The optimal application of accumulated past experience about the visual world is considered a key property

of perception. Already in the 19th century, von Helmholtz [1] introduced the concept of “unconscious

inference” which explains visual perception as an interaction of experience–guided unconscious hypotheses

about the sensory input and the sensory input itself. In recent years, this inference concept has become

increasingly popular in vision science. Popular recent theoretical frameworks with focus on such perceptual

prior experience are, for instance, Bayesian decision theory [2, 3] and empirical ranking theory [4, 5]. The

perceptual inference concept has been suggested in many different areas, such as classification [6], object

perception [7], the analysis of natural environments [8], and neuronal computation [9–11].

Here, we regard inference as an interplay between lower and higher cortical areas that works as follows:

Primary sensory cortical areas receive bottom up input from the sensors and simultaneously top down

input from higher areas which transmit neuronal predictions of perceptual hypotheses. In an iterative

process, these hypotheses evolve over time and modulate the neuronal representations at the lower areas

until a final decision about the input is reached. This adjustment process of top down predictions and

bottom up evidence is subject to prior expectations originating from the observer’s experience over lifetime.

There are numerous examples that perception is strongly determined by accumulated experience with the

world. For instance, prior knowledge that light usually comes from above has been shown to influence shape

perception [12], knowledge about the natural color of fruits modulates the color appearance of objects [13],

position perceptions of moving objects are determined by accumulated experience with image speeds [14],

or visual perception is tuned to statistics of natural scenes, e.g. spectral statistics of natural scences

predicts perceptual color qualities [15] or experience with object positions in natural scenes constitutes
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perceptual priors which modulate the locations of observers’ first saccades [16]. In addition, inference can

be examined in behavioral studies. It could be shown, for instance, that observers combine visual featural

information with externally assigned values to stimuli in a way that is consistent with optimal Bayesian

inference [17], or influences of experience have been demonstrated to change size–weight priors [18].

Furthermore, experimental findings from brain imaging that predictable visual input is processed with less

neural activation in the primary visual cortex [19] give additional evidence for the concept of perceptual

priors, and the cortical facilitation for emotionally arousing and therefore highly meaningful stimuli has

been shown to be rapid [20].

While it is commonly accepted that such perceptual priors play an important role in higher level visual

processing, many phenomena in low level vision are explained in terms of purely feedforward information

flow which is not influenced by the observers’ prior experience. Top down influences in visual experiments

are often restricted to the immediate spatial context, or perceptual priors are built up immediately before

the observers’ decisions (visual priming experiments) but are not acquired over the observers’ lifetime.

Here, we investigate the influences of accumulated perceptual prior experience on the very early temporal

course of visual perception by the psychophysical experimental paradigm Object Substitution Masking [21]

(OSM). In OSM, a target stimulus is flashed for a duration of around 10 milliseconds. A second stimulus,

the mask, is presented in close spatiotemporal proximity to the target. Although both stimuli are

non–overlapping, the mask impairs target identification performance. Usually, the mask impact is

controlled by either the mask duration or, as in the current study, the temporal interval between target

and mask called interstimulus interval (ISI).

In OSM, the impairment of target visibility is explained as the disturbance of the inference between higher

cortical hypotheses and lower area visual input [22,23]. In contrast to low level feedforward explanations

for many other perceptual impairment phenomena, the OSM theory assumes that target and mask do not

compete at the level of stimulus configurations or contours but rather on an object level. For certain ISIs,

the temporal dynamics of the perceptual inference cause the inhibition of the “target hypothesis” by the

“mask hypothesis”. Masking is thus caused by the substitution of the target object with the mask object.

The iterative inference process in the OSM concept does not take perceptual priors into account. If the

target identification impairment is an indicator for very early visual inference, as suggested by the OSM

model, we expect to see an influence of perceptual priors. Although the target impairment effect occurs as

early as within the first 100 ms after the perceptual onset of the target, groups of observers with different

priors should reveal differences in their OSM time course even if exposed to identical target and mask
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stimuli.

In order to test this hypothesis, we performed OSM experiments using Chinese characters as stimuli and

compared the results of a group of native Chinese observers to a German control group. Fig. 1 outlines our

rationale: For German observers, these characters are supposed to be arbitrary geometrical symbols. If a

Chinese target character is followed by a Chinese character mask, this means nothing more than the

transformation of one meaningless geometrical symbol to another. For Chinese participants, Chinese

characters are meaningful objects to which they were frequently exposed over their lifetime. If a Chinese

character target is followed by another Chinese character, two hypotheses that are strongly preactivated

due to character priors, the hypothesis of the target character and that of the mask character, will compete

in the inference process. Object substitution takes place between two stimuli of an equal degree of

“objectness”, and we expect a higher masking magnitude compared to a mask which is not a Chinese

character. Therefore, the strong familiarity with the mask will impede the correct identification of the

target. For German participants, we expect no differences between Chinese character masks and other

masks.

As shown already a decade ago [23], the target impairment effect of OSM can be obtained by such simple

masking stimuli as four dots surrounding the target, and the strength of the effect is modulated by

attentional factors auch as set size. DiLollo and colleagues [23] systematically varied set sizes and

demonstrated strong effects for sizes of eight stimuli or more. Jiang and Chun [24] received OSM effects

even when target and mask stimuli were spatially clearly separated. In their experiments, they presented

eight stimuli in a circular manner. We used the same spatial configuration in our experiments, as detailed

below.

Our experiments consisted of 16 subsessions in each of which observers had to report which character of a

given pair of characters had been presented. The 16 pairs are shown in Fig. 2. The respective pair for each

subsession was chosen in random order.

We presented our target stimuli together with distrators in the following way: In each experimental trial of

each subsession, eight characters of the respective pair were flashed in a circular arrangement. Fig. 3A

shows an example for pair 1. The randomly chosen target position was indicated in half of the trials by a

surrounding character, chosen such that the combination of the two characters made up another Chinese

character (the north–east position in Fig. 3A shows the resulting combination). In the other half of the

trials the indicator stimulus consisted of four surrounding dots.

After a blank ISI of variable length (see Methods), a mask stimulus appeared at a position immediately
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right to the target for 500 ms. Fig. 3B shows the different masks used in the two experiments. In

Experiment 1, the mask was identical to the indicator stimulus (a), whereas in Experiment 2, the mask was

a different stimulus which appeared next to the target position (b). In half of the cases, the mask of

Experiment 2 was an intact Chinese character, in the other half a scrambled version of this character. The

observers were instructed to ignore the mask. After the mask offset, the participant had to report in a two

alternative forced choice task which of the two characters of the pair had been shown as target character

by pressing either the left or the right mouse button.

Results and Discussion

We represent participants’ correctness for each condition by expectation values E. Details about the

calculations of E and the further data analyses can be found in the Methods section. The results for all 16

pairs were averaged for each observer.

ISIs for which the mask follows shortly after the target are subject to relatively strong mask influences.

From a certain ISI on, target and mask are temporally so distant that the influence of the mask will vanish.

Further increases of ISI durations will keep the correct identification responses constant, so that condition

differences for such ISIs cannot be attributed to the mask but need to be target effects. A visual inspection

of the results (Fig. 4 and 5) indicates such a saturation of performance for ISIs from around 200 ms

onwards. Therefore, we analyzed the correct responses for ISIs ≤ 200 ms and ISIs > 200 ms separately.

In order to test for group and mask type effects, we fitted models to the data. Details about the models

can be found in the Methods section. The solid lines in Fig. 4 and Fig. 5 show the optimal model fits for

each condition and illustrate which of the two respective conditions yields better performance.

We performed two independent statistical tests to analyze evidence for the Null hypothesis H0 of equality

and the alternative hypothesis H1 of non–equality: First, we calculated a likelihood ratio χ2 test (in the

following “χ2 test”). Second, we approximated the Bayes Factor (BF; see, for instance, [25–27]) of the

models by the Bayesian information criterion (BIC) [28]. See Methods for further details.

Following statistical conventions, we call a difference “significant” if its χ2 test p value is less than 0.05.

Furthermore, we infer a positive evidence for the difference (H1) for a Bayes factor (BF) greater than 3 and

a positive evidence for equality (H0) for BF < 1
3 . A BF inside the interval [ 13 , 3] reflects statistical

uncertainty about which of the hypotheses is correct. Note that the χ2 p value is the probability for the

data assuming H0 is true. It can be used to reject H0 but in contrast to the BF it is uninformative about

evidence in favor of H0.
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Results of Experiment 1

Fig. 4A and B show summarizing statistics of the mask type effect for each group and the group effect for

each mask type, respectively. In addition, the results of the single observers are shown in Fig. S1 in

“Supplementary Figures” (see Additional file 1).

Initial training.

Chinese observers needed on average 12.5 trials (standard deviation: 7.6) to pass the training. German

observers needed 19.4 trials (std: 13.9). A two sample Wilcoxon test [29] did not yield significant group

differences.

Group effects.

The solid lines in Fig. 4A indicate a trend that Chinese observers perform better than German observers for

both mask types. However, this trend is not significant and the Bayes factors give positive evidence for H0.

Mask type effects.

For long ISIs, Chinese participants perform significantly better for character masks (both tests favor H1).

For German observers, the χ2 test yields a significantly better performance for long ISIs and character

masks as well, but the Bayes factor (1.77) shows at most a trend but is still in the uncertainty interval

[ 13 , 3].

For short ISIs, Chinese observers perform significantly better for four dot masks, in accordance with the

Bayes factor, whereas for German observers, H0 is favored.

Results of Experiment 2

Fig. 5A and B show summarizing statistics of the mask type effect for each group and the group effect for

each mask type, respectively. In addition, the results of the single observers are shown in Fig. S2 in

“Supplementary Figures” (see Additional file 1).

Initial training.

Chinese observers needed on average 11.0 trials (standard deviation: 2.6) to pass the training. German

observers needed 18.4 trials (std: 11.14). A two sample Wilcoxon test [29] did not yield significant group

differences.
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Group effects.

There is no significant group effect for any of the mask types, and the Bayes factors favor H0 (see Fig. 5A).

Mask type effects.

For long ISIs, there is no significant mask type effect for any of the groups (see Fig. 5B). For short ISIs,

Chinese participants perform significantly better for scrambled masks, and the Bayes factor gives very

strong evidence for H1 accordingly. For German observers, there is no significant difference, and the Bayes

factor gives evidence for H0.

Indicator effects.

As Experiment 2 separates indicator and mask, we analyzed the indicator effects (character vs. four dots)

over the whole range of ISIs (see Methods for details). Whereas for German observers none of the tests

favored an indicator difference (χ2 = 0.50, df = 1, p = 0.48; BIC(null) = 1582.86, BIC(alt) = 1589.18,

BFBIC = 0.0425), the χ2 test for Chinese participants is significant and masking seems to be stronger for

four dot indicators, as shown in Fig. 6. However, the corresponding Bayes factor (0.42) is inside the

interval of uncertainty ([ 13 , 3]).

Target effects

Chinese characters are meaningful and frequently encountered objects for native Chinese, therefore one

might expect that the ability to discriminate between two Chinese characters is generally higher for

Chinese observers compared to German controls, independent of masking. In our experiments, this

expectation could not be confirmed: At most, the line plots in Fig. 4A for both mask types and in Fig. 5A

for scrambled masks indicate a trend of better performance of Chinese participants, but our statistics give

evidence for H0 in all these cases. That is, Chinese observers do not benefit from the object properties of

the targets. Pure target category effects (meaningful vs. meaningless) do not play a role in our experiments.

Not that although a visual inspection of group differences in performance (Fig. 4A) leads to the impression

of significance, group differences in mean are masked by large variability across observers within each

group. In contrast to tests for group differences, this inter–observer variability only has a minor influence

on tests of within–observer differences, e.g. mask type effects (see below).
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Mask and indicator effects

Mask effects can be inferred from the short ISI analyses in Fig. 4B and Fig. 5B. In accordance with our

assumption that prior experience can modulate the early time course of visual perception, for German

observers it did not influence performance whether the mask was a Chinese character or a meaningless

symbol, whereas the mask type impact for Chinese participants was substantial in both experiments.

Chinese observers are significantly more impaired by real Chinese character masks, even if the latter

appear at a spatially different location (as in Exp. 2). This provides evidence for our speculation illustrated

in Fig. 1 that for Chinese participants an object substitution between target and mask occured.

Indicator effects can be analyzed by focussing on long ISIs in Fig. 4B: If the ISI is long enough, the mask

impact on target discrimination will be weak, so performance differences can be attributed to the efficiency

of the indicators in the first presentation frame (see Fig. 3). As masks and indicators were identical in

Exp. 1, long ISI differences are likely to represent pure indicator effects in Fig. 4B.

For Chinese participants, there is a substantial advantage for character indicators. This result is not

surprising as character indicators together with the targets shape new real Chinese characters whereas four

dot indicators slightly weaken the perception of “objectness” of the targets. For German observers, there

seems to be the same trend, but only one of our two statistical tests favors a character indicator advantage

whereas the other test yields uncertainty about the decision whether to prefer H0 or H1. This trend might

originate from the higher energy of the character indicator compared to the four dots so that the former

has a higher impact on guiding attention to the target among the distractors.

Exp. 2 separates masks from indicators. If there had been an indicator effect independent of masking for

Chinese observers in Exp. 1, we would expect such an effect for all ISIs in Exp. 2 as well. Fig. 6 indicates

at least an according trend: While one of our two tests supports an advantage for character indicators, the

second test reports uncertainty. For German observers, we did not find an indicator effect in Exp. 2.

Taken together, the substantial character indicator advantage in Exp. 1 and the according trend in Exp. 2

for Chinese participants give evidence that two pure Chinese characters are easier to discriminate for

Chinese observers than two Chinese characters that are degraded by meaningless surrounding symbols

(four dots).

Evidence for perceptual inference

Our results suggest an influence of perceptual inference on very early temporal processing: First, as in [24],

we find that target and mask stimuli can be spatially clearly separated (Fig. 3B (b)) so that contour
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similarity effects as a cause of masking are unlikely. Instead, target and mask are likely to be processed as

objects, and the concept of OSM provides an explanation for the masking effect within each group,

although it alone cannot explain the group differences between Chinese and Germans.

Second, as we presented the same stimuli to both groups, spatial arrangement or contour theories cannot

account for the substantial differences for Chinese in contrast to German participants.

Third, the interaction effect for Chinese observers in Fig. 4B is of special interest: For long ISIs, i.e. when

mask impact is weak, it is easier to discriminate pure Chinese characters than Chinese characters

surrounded by four dots. This is compatible with previous findings that target stimuli with greater

meaning are less vulnerable to masking, which has been shown for targets like words or faces before [30].

However, if parts of the targets become masks, this effect is reversed, as can be seen for short ISIs. The

greater meaning of the mask interacts with the greater meaning of the target and reverses the target

meaning advantage. These findings support an inference explanation, that is the disruption of a reasoning

process in which competing hypotheses are checked which are either from equally strong or from differently

strong object categories.

Not only this interaction provides evidence for an inference process but also the nature of the difference in

masking found for Chinese participants: Masking is stronger for character masks compared to

non–character masks. For scrambled or four dot masks, a Chinese character, that is a sensible and

frequently encountered object, is followed by an unintelligible symbol, whereas for character masks, the

target is followed by another stimulus with the same “object qualities” which leads to object substitution

within the same category (see Fig. 1). As hypothesized above, the high degree of familiarity the mask

impedes the target discrimination for Chinese participants.

Object categorization speed and time course

Our study deals with rapid forced choice decisions between two object alternatives. Our results might be of

interest for a different but related field: In recent years, a number of studies investigated the remarkable

speed of visual object categorization [31] which was characterized by electrophysiological differences or

saccade direction differences that could be recorded already 150 ms and earlier after the stimulus

onset [32,33]. In such a two alternative forced choice task, the perceptual system can tune its prior

projections based on experience. Such focused top–down projections might be the reason for early

differences in electrophysiological and behavioral measurements as well as for the very early masking curve

differences found in our study.
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Brain imaging studies about the temporal sequence of inference processes are rare due to poor temporal

resolution of common functional brain imaging techniques. Two recent studies focussed on the time course

of attentional control by combining of electrophysiology and neuroimaging [34,35] and discussed

contributions of frontal and parietal brain areas. Visuospatial attention as a mechanism of top down

modulation of object perception might be closely related to the effects described in the current study. Our

results and our experimental paradigm are hoped to inspire similar multi–methodological approaches to

neuroanatomy which focus on prior experience on object recognition and reveal the temporal sequences of

inference in the brain.

Conclusions

Previous experiments gave rise to the explanation that hypotheses about percepts are iteratively checked

against the visual input [22] and are therefore compatible with the idea of perceptual inference. Our results

add an important further evidence for the inference concept as it shows that the very early perceptual

phenomenon OSM can be modulated by perceptual priors.

Our study demonstrates therefore an intriguingly early influence of accumulated prior experience that was

built up independently of and long before our experiments. This influence of prior experience occurs as

early as between 0 and 100–200 milliseconds after the perceptual onset of a visual event.

Methods

The study is in compliance with the Helsinki Declaration

(http://www.wma.net/en/30publications/10policies/b3/index.html) and has been approved by the local

ethics committee of the Max Planck Institute for Mathematics in the Sciences (reference key: ElzeT1).

Participants

The participants were recruited via a notice posted on campus of Leipzig University and were either master

or PhD students or visiting guests. They were paid 7.5 Euro per hour for participation. All participants

gave written informed consent to participated in the study.

Chinese observers were Chinese native speakers who had lived for no longer than six years in Germany.

German observers reported no knowledge of Chinese language. All participants were naive w.r.t. the

experiment and had normal or corrected to normal sight.
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Participants in Experiment 1 were nine Chinese observers (3 female, 6 male, age range: 23 to 30, median

age: 26) and nine German observers (5 female, 4 male, age range: 23 to 39, median age: 29).

Experiment 2 has been conducted 2 months after Experiment 1 and was intended to confirm the effect

found in Experiment 1 and to investigate further details of the findings. We contacted the observers who

had participated in Experiment 1. Six of the German observers could participate in Experiment 2 (3

female, 3 male, age range: 26 to 39, median age: 29.5). Only 3 of the Chinese participants were still

available for Experiment 2. In order to match the size of the groups, we found 3 additional Chinese

observers via another notice on campus. The age range of the Chinese participants was 22 to 28 (1 female,

5 male, median age: 26). As the effect found in Experiment 1 had been substantial, we found it justified to

perform Experiment 2 with six participants per group in contrast to the nine observers who had

participated in Experiment 1.

Apparatus

Stimuli were shown on an IIYAMA VisionMasterPro 514 monitor at a resolution of 800× 600 and a refresh

rate of 200 Hz (frame duration: 5 ms). The experiments were controlled by the program FlashDot which

was especially developed for this purpose and which we provide as an open source implementation for free

(http://www.flashdot.info). Presentation timing specifications in text and figures were calculated by

(number of frames)×(frame duration). Note that this method of timing specification, although frequently

used, neglects the effect of CRT phosphor decay [36].

Stimuli and Procedure

The experiments consisted of 16 subsessions in each of which observers had to perform a two alternative

forced choice task by reporting which character of a given pair of characters had been presented. The 16

pairs are shown in Fig. 2. The respective pair for each subsession was chosen in random order. The

participant was instructed to report which of the two characters had been shown in each of the

forthcoming trials by pressing either the left or the right mouse button.

All stimuli were presented on a black background. The Chinese character stimuli were centered on invisible

squares with a width of 2.29 visual degree. On any given trial, the circular display (radius: 3.57 degree) of

the eight Chinese characters was flashed for 2 frames. One of the eight characters was indicated to be the

target, in half of the cases by a surrounding character, in the other half by four dots. Observers fixated

centrally.
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After the disappearance of the circular display and a blank ISI lasting q ∈ {0, 2, 4, . . . 48, 52, 56, 60, . . . 100}

frames, the mask was shown on the right hand side of the indicated target for 100 frames. In Experiment

1, the mask was identical to the indicator. In Experiment 2, in 50% of the cases, the mask was a Chinese

character different from the target pair, in all other cases a scrambled version, where scrambling was

realized by shuffling the pixel matrix of the character. Moreover, in half of the cases the indicator was a

character as above, in the other half four dots. There were 16 subsets of trials determined by the 16 target

pairs.

After the disappearance of the trailing mask, a blank screen indicated the participant to give the response.

Observers were instructed to report as correctly as possible. Each ISI q occured four times in each trial

subset in random order, so that each observer gave 16 (pairs) × 38 (ISIs) × 4 (repetitions) = 2432

responses. Between the trials, a central fixation cross was shown that disappeard one frame before the

start of the next trial.

Prior to each experiment, each participant underwent a training in order to get familiar with the

experimental tasks. In the training, the circular display for pair 1 was flashed together with the four dot

indicator, but no mask was shown (pure target discrimination task). The training was finished when the

participant answered correctly in more than 80% of the preceding 10 trials. A participant could pass the

training with a minimum number of nine trials (in the case that the participant responded to all of them

correctly).

Data Analysis
Models

We represent observers’ correctness for each condition by expectation values E calculated according to the

Laplace Rule of Succession (E = s+1
n+2 , s: number of successes, n: number of all trials in the condition). For

further analyses, we applied a Generalized Linear Model approach and linearized the E values to y values

by the logit transform: y = logit(E) = log
(

E
1−E

)
.

In order to analyze the effects of the respective conditions (mask type/group/indicator), we fitted models

to the logits y. We analyzed the data separately for long (> 200 ms) and short (≥ 200 ms) ISIs.

As for long ISIs, we fitted linear models to the data. The null model consists of a single line, the respective

alternative model contains two lines each of which represents one of the two respective conditions. For

instance, the group effect was analyzed by the following two models:

alt : yijk = β0 + βIqi + βGδ(j,Chinese) + sk + εijk (1)
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null : yik = β0 + βIqi + sk + εik (2)

where qi: ISIs, δ(x, y) := 1 if x = y, 0 else, sk: random effects for interindividual differences in performance,

and parameters β to be fitted, where β0 denotes the general slope and the other indices indicate the effect

they represent (I for ISI, G for group). Unobserved stochastical components are denoted by ε.

Mask type effects were analyzed by analogous models:

alt : yijk = β0 + βIqi + βMδ(j, scrambled) + sk + εijk

null : yik = β0 + βIqi + sk + εik.

As for short ISIs, the plots of the means of the expectation values indicate slight “U shapes” with a

minimum for ISIs greater than zero, so that a linear model might not be a good choice. Therefore, we

included a quadratic term (here for the group comparison):

alt : yijk = β0 + βIqi + βÎq
2
i + βGδ(j,Chinese) + sk + εijk (3)

null : yik = β0 + βIqi + βÎq
2
i + sk + εik (4)

In comparison with linear models (1) and (2), the inclusion of quadratic terms, (3) and (4), yielded

substantially better fits.

For the additional indicator models for Experiment 2 we did not separate long and short ISIs as we were

interested in an overall effect. We fitted models with an additional quadratic term like in (3) and (4).

Although models without the quadratic term yielded very similar results, the model fit for the quadratic

models was substantially better.

Tests

The respective null and alternative models have been compared by two independent statistical tests. First,

we calculated a likelihood ratio χ2 test. This test computes a test statistics from the ratio of the

likelihoods Λ for the null and the alternative model and approximates the test statistics −2 log Λ by a χ2

distribution. The resulting p value is the probability, assuming the null is true, to obtain a value of the test

statistic as or more extreme than the one obtained from our data. Note that this is not the probability

that the null is true. This test was mainly chosen because it is conventional and frequently used for

statistical model comparisons, and many readers will be familiar with it.

Second, we approximated the Bayes factors [25,27] by the Bayesian information criterion (BIC) [28],
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following Raftery, Eq. (29) [25] or Wagenmakers, Eq. (10) [26]:

BF ≈ exp
(

BIC(null)− BIC(alt)
2

)
.
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Figures
Figure 1 - Rationale of the experiment

Figure 1: Chinese and German participants have different perceptual priors in a backward masking task with
Chinese characters. While for German observers, one arbitrary geometrical object is followed by another,
Chinese participants will perceive an object substitution of a meaningful target object by a meaningful mask
object. Will the different priors have an influence on the visual time course already immediately after the
ultrashort stimulus presentations?

Figure 2 - Target stimuli

Figure 2: The 16 pairs of Chinese characters used in the discrimination task. This table was visible to the
participants throughout the whole experiment.

Figure 3 - Experimental setup

Figure 3: A: Schematic of the temporal course of the two experiments. A circular display of eight stimuli is
flashed for 10 ms. One stimulus, the target, is indicated. After a blank interstimulus interval (ISI), a second
stimulus, the mask, is shown for half a second (here, the intact mask of Experiment 2 is shown). B: The
conditions of the two experiments: In the first frame of both experiments, the target is indicated either by a
Chinese character or by four dots. In Experiment 1, the indicator reappears as the mask (a). In Experiment
2, the mask is another Chinese character (either intact or scrambled), shifted to the position right next to
where the the target had appeared before (b).
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Figure 4 - Results of Experiment 1

Figure 4: Group effect for each mask type (A) and mask type effect for each experimental group (B). The
triangular symbols denote means over the observers which were calcultated after a logit transform. The
vertical dashed line denotes the separation between short (≤ 200 ms) and long ISIs. Differences for short
ISIs give evidence for mask influences, differences for long ISIs reflect target effects. The two solid lines show
the GLM model fits for each condition. The statistical measures of two independent tests (χ2 test and BIC
Bayes factor approximation, see text for details) are given below the plots, separately for short and long
ISIs.

Figure 5 - Results of Experiment 2

Figure 5: See caption of Fig. 4 for details.

Figure 6 - Indicator effect

Figure 6: Indicator effect for Experiment 2, Chinese observers. See caption of Fig. 4 for details about the
statistics.

Additional Files
Additional file 1 — Supplementary Figures

Additional figures showing the ratios of correct responses of the single observers.
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