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Abstract

A network of delay-coupled logistic maps exhibits two different synchronization regimes,
depending on the distribution of the coupling delay times. When the delays are homoge-
neous throughout the network, the network synchronizes to a time-dependent state [Atay et
al., Phys. Rev. Lett. 92, 144101 (2004)], which may be periodic or chaotic depending on
the delay; when the delays are sufficiently heterogeneous, the synchronization proceeds to a
steady-state, which is unstable for the uncoupled map [Masoller and Marti, Phys. Rev. Lett.
94, 134102 (2005)]. Here we characterize the transition from time-dependent to steady-state
synchronization as the width of the delay distribution increases. We also compare the two tran-
sitions to synchronization as the coupling strength increases. We use transition probabilities
calculated via symbolic analysis and ordinal patterns. We find that, as the coupling strength
increases, before the onset of steady-state synchronization the network splits into two clusters
which are in anti-phase relation with each other. On the other hand, with increasing delay
heterogeneity, no cluster formation is seen at the onset of steady-state synchronization; how-
ever, a rather complex unsynchronized state is detected, revealed by a diversity of transition
probabilities in the network nodes.

PACS: 05.45.-a Nonlinear dynamics and chaos, 05.45.Xt Synchronization; coupled oscil-
lators, 89.75.-k - Complex systems, 89.75.Hc - Networks and genealogical trees.

1 Introduction

A fascinating and intriguing feature of spatially extended systems composed of many interact-
ing units, like chanting crowds, tropical Malaysian flashing fireflies, pacemaker heart cells, cells
governing the circadian rhythms, pedestrians crossing the Millennium Bridge, etc., is that they
can synchronize even when the units are spread over wide spatial areas [1, 2, 3]. In order to
understand their synchronization phenomena, these systems have been modeled by networks
of coupled phase oscillators, like the Kuramoto model [4], and by networks of coupled maps
[5, 6, 7], such as circle maps [8, 9], Bernoulli maps [10], logistic maps [11, 12, 13], Rulkov maps
[14, 15, 16] etc.

In systems of coupled units, communication delays naturally arise from a realistic consid-
eration of the finite speed of information transmission between pairs of units, and can have a
great impact on their collective behavior. In particular, in networks of coupled maps, synchro-
nization phenomena in the presence of time-delays has received considerable attention and is
still an active research area [10, 11, 12, 13, 14, 15, 17, 18]. Networks of delayed-coupled maps
are popular for studying the effects of delayed interactions because one can simulate large en-
sembles of coupled units, even in the presence of heterogeneous and long delays, with a great
reduction of computational time and memory requirements, as compared to delay-differential
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rate-equations. The logistic map has been a popular choice because is a prototype example
of how chaotic dynamics and universal scaling laws [19, 20, 21, 22] arise in simple non-linear
systems.

In networks of delayed-coupled logistic maps, when the delays are heterogeneous the net-
work exhibits a synchronized collective behavior that is qualitatively different from that of
instantaneously interacting units, or by units interacting with homogeneous delays [23, 24].
Heterogeneous delays can enhance the synchronizability of the network, but they can also affect
its synchronized dynamics. A network of delayed coupled logistic maps displays two qualita-
tively different synchronization regimes, depending on the delay distribution. When the delays
are homogeneous throughout the network, the network synchronizes to a time-varying state
[23], and the synchronizability depends mainly on the network architecture; when the delays
are sufficiently heterogeneous, the network synchronizes to a steady-state, which is unstable
for the uncoupled maps [24], and the synchronizability depends mainly on the average number
of neighbors per node.

The stability of the steady-state of delay-coupled maps is well-understood when the delay is
homogeneous (delta-distributed): Ref. [25] gave exact conditions for stability and showed that
the largest eigenvalue of the Laplacian matrix determines the effect of the network structure on
stability. Such precise results are unavailable for arbitrary delay distributions. Nevertheless, it
is known that distributed delays can induce or improve stability of the steady-state in coupled
limit-cycle oscillators [17], or in more general delay-differential equations in the vicinity of a
Hopf instability [26]. A recent example is reported in [27], for an integro-differential equation
describing the collective dynamics of a neural network with distributed signal delays: With
Gamma distributed delays, which are less dispersed than the exponential distribution, the
system exhibits reentrant phenomena (i.e., the stability is lost but then recovered as the mean
delay is increased), while with delays that are more highly dispersed than exponential, the
system does not destabilize.

The aim of this paper is to characterize the transition to the two synchronized regimes
of delayed coupled logistic maps (time-dependent for homogeneous delays and steady-state
for heterogeneous ones) as the coupling strength or as the width of the delay distribution
increases. The degree of synchronization is measured in terms of the transition probabilities
in the network nodes, which are calculated via symbolic analysis and ordinal patterns. The
symbolic method is based in dividing the state space of a given node into two regions and
considering the relative frequencies of the transitions between those regions [28]; the ordinal
patterns method is based in defining patterns in the time-series of a node that result from
ordering relations in consecutive values in the series [29], and computing the relative frequencies
of the transitions between those patterns. The paper is organized as follows: Section II presents
the network model and the magnitudes employed to quantify the degree of synchronization.
Section III presents the results, and Sec. IV contains a summary and the conclusions.

2 The model and synchronization quantifiers

We consider N logistic maps coupled as

xi(t+ 1) = f [xi(t)] +
ε

ki

N∑
j=1

wij (f [xj(t− τij)]− f [xi(t)]) , (1)

where t is a discrete time index, i is a discrete spatial index, f(x) = ax(1 − x) is the logistic
map with parameter a, ε is the coupling strength, τij denotes the delay in the link from node
j to i, wij are the elements of the adjacency matrix w whose values equals 1 if there is a link
from node j to node i and 0 otherwise, and ki is the in-degree of the node i, ki =

∑
j wij .

Here, τ and w are not restricted to be symmetric matrices.
When the delays are sufficiently heterogeneous, the solution in the spatially homogeneous

steady-state,
xi(t) = x0 ∀i, (2)

is stable in a certain range of coupling strengths [24], where x0 is the fixed point of the
uncoupled logistic map,

x0 = f(x0) = 1− 1/a. (3)
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We will refer to this solution as “steady-state synchronization”. In contrast, when the delays
are homogeneous throughout the network (τij = τ0 ∀i, j) the network synchronizes to a time-
dependent state [23],

xi(t) = x(t) ∀i, (4)

where x(t) is a solution of

x(t+ 1) = f [x(t)] + ε (f [x(t− τ0)]− f [x(t)]) , (5)

and thus, the dynamics can be periodic or chaotic depending on τ0. We will refer to this
situation as “time-dependent” synchronization.

Clearly, other “out of phase” synchronization regimes, where the different nodes maintain
certain lag-times among them, are also possible. For example, a 1D linear globally-coupled
network with distance-dependent delays, τij = |i − j|/v, where v is the speed of information
transmission, synchronizes to a state in which the nodes evolve along a periodic orbit of the
uncoupled logistic map (i.e., xi(t) is a solution of xi(t + 1) = f [xi(t)]), while the spatial
correlation of the nodes along the network is such that xi(t) = xj(t− τij) ∀i, j (i.e., each map
“sees” all other maps in his present, current, state) [30, 31]. In the following we only focus on
“steady-state” and “time-dependent” synchronization.

To capture the degree of synchronization and to distinguish between steady-state syn-
chronization, Eq. (2), and time-dependent synchronization, Eq. (4), we use the following
measures:

1) The variance of the nodes’ states,

σ2 =
1

N
〈
N∑
i=1

(xi(t)− 〈x〉s)2〉t (6)

where 〈.〉s denotes an average over the nodes of the network, and 〈.〉t denotes an average over
time.

2) The variance of the distance to the steady state,

σ′2 =
1

N
〈
N∑
i=1

(xi(t)− x0)2〉t, (7)

where x0 is the fixed point of the uncoupled logistic map, Eq. (3).
One can notice that σ2 = 0 if and only if xi = xj = 〈x〉s ∀i, j, while σ′2 = 0 if and

only if xi = x0 ∀i. Thus, σ′2 allows to distinguish synchronization in the steady state from
synchronization in a time dependent state. In the former case, both σ2 and σ′2 are zero, in
the latter case, only σ2 is zero.

We note that both σ2 and σ′2 are “global” indicators that give no information about the
microscopic local dynamics in the nodes of the network. To gain inside into this local dynamics,
the transition probabilities in individual nodes can be computed via symbolic dynamics [28]
or ordinal patterns [29], as follows.

3) Transition probabilities computed via symbolic dynamics: At each node i, a two-symbol
dynamics is generated by the partition of the phase space as

si(t) = α if xi(t) ≤ x∗

si(t) = β otherwise, (8)

where x∗ is a threshold value, which in the following is chosen equal to the fixed point of the
uncoupled logistic map, x0. The transition probability in node i, Pi,sd(α, α), is calculated as

Pi,sd(α, α) =

∑L
t=1 n(si(t) = α, si(t+ 1) = α)∑L

t=1 n(si(t) = α)
, (9)

where n is a count of the number of times of occurrence in a time-series of length L. The global
properties of the network can be quantified by the variance of Pi,sd(α, α) over the network
[28],

ζ2sd =
1

N

N∑
i=1

(Pi,sd(α, α)− 〈Psd(α, α)〉s)2, (10)
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where 〈Psd(α, α)〉s = (1/N)
∑N
i=1 Pi,sd(α, α) is the average transition probability.

4) In addition, in each node i, a sequence of symbols can be generated via a comparison of
consecutive values (“ordinal patterns” of dimension two, as proposed by Brandt and Pompe
[29])

si(t) = α if xi(t) ≤ xi(t+ 1)

si(t) = β otherwise. (11)

A nice advantage of this procedure is that it does not require the definition of a threshold. As
before, the transition probability in node i, Pi,BP (α, α), can be calculated as

Pi,BP (α, α) =

∑L
t=1 n(si(t) = α, si(t+ 1) = α)∑L

t=1 n(si(t) = α)
, (12)

and its variance,

ζ2BP =
1

N

N∑
i=1

(Pi,BP (α, α)− 〈PBP (α, α)〉s)2, (13)

where 〈PBP (α, α)〉s = (1/N)
∑N
i=1 Pi,BP (α, α), can be used to capture global properties of the

network.

3 Results

In the following we present the results for an Erdös-Renyi random network [32] of N nodes
with an average degree 〈k〉s such that the network has a single component. Unless otherwise
explicitly stated, N = 200, 〈k〉s = 20 and the coupling delays are Gaussian distributed with
a mean delay 〈τ〉s = 5. The parameter that controls the delay heterogeneity is the standard
deviation of the delay distribution, normalized by the mean delay, c∗ = στ/〈τ〉s. The param-
eter of the logistic map is taken to be a = 4 and the simulations start with random initial
conditions. Unless otherwise explicitly stated, the quantifiers σ2, σ′2, ζ2sd and ζ2BP are com-
puted over time series of length L = 500, after the first 3000 iterations are disregarded, and
they are averaged over 20 stochastic trajectories, where the random initial conditions (xi(0)),
delay distribution (τij), and adjacency matrix (wij) are varied.

First we consider the transition to “steady-state” synchronization as the coupling strength
ε increases, while the delay heterogeneity c∗ is kept constant. The delays are sufficiently
heterogeneous such that, for large enough ε, the network synchronizes as xi = x0 ∀i.

Figure 1 displays σ2, σ′2, ζ2sd and ζ2BP vs. the coupling strength ε. It also displays the four
transition probabilities, for one typical stochastic trajectory, in 20 randomly selected nodes,
as computed via symbolic dynamics (circles) and ordinal patterns (squares). It can be seen
that before the onset of synchronization there is a formation of two clusters, as the transition
probabilities Pi(α, α), Pi(α, β) and Pi(β, α) are 0 in some nodes and 1 in others. One can
also notice that Pi(β, β) is very small in all the nodes, and that the transition probabilities
calculated with symbolic dynamics are very similar to those calculated with ordinal patterns.

Further insight into the networks’ dynamics near the synchronization transition can ob-
tained by examining the time evolution of the quantifiers, of the transition probabilities (now
computed over a moving time-window of length 500), and the dynamics of a few, randomly
selected nodes. These are shown in Fig. 2, where the coupling strength is slightly smaller
than that needed for ”steady-state” synchronization. In Fig. 2(d) the network configuration
at a fixed time (i.e., a ’snapshot’ of the states of the nodes) is also shown. One can notice
that the nodes form two clusters that oscillate in anti-phase: when one cluster is above the
fixed-point solution, the other one is below, and at the next time step, the two clusters switch
their positions.

Next, we consider the situation where the delay heterogeneity c∗ increases, starting with
a delay distribution that is a delta function (c∗ = 0), while the coupling strength ε is kept
constant. The coupling strength is strong enough that, for homogeneous delays, the network
synchronizes as xi = xj ∀i, j (time-dependent synchronization), while for sufficiently heteroge-
neous delays, the network synchronizes as xi = x0 ∀i (steady-state synchronization). Figure 3
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Figure 1: Transition to “steady-state” synchronization for fixed delay heterogeneity (c∗ = 0.6)
and increasing coupling strength, ε. The quantifiers σ2, σ′2, and ζ2 are plotted vs. the coupling
strength. The transition probabilities Pi in 20 randomly selected nodes are also shown. In pan-
els (c)-(j) the transition probabilities are computed via symbolic dynamics (circles) and ordinal
patterns (squares; red online).

5



displays the quantifiers vs. the delay heterogeneity and also displays the four transition prob-
abilities for one typical stochastic trajectory, in 20 randomly selected nodes. In this scenario,
for small delay heterogeneity the time-dependent synchronization is gradually lost, and as the
delay heterogeneity increases, there is a smooth transition to the steady-state synchronization.
No cluster formation can be observed at the onset of “steady-state synchronization”, since the
transition probabilities are within a certain range of values.

The dynamics of the network near “steady-state” synchronization is examined in Fig. 4,
with parameters such that the heterogeneity of the delays is slightly smaller than that needed
for “steady-state” synchronization. Here one can notice that the nodes evolve together, in
a single cluster, displaying slow oscillations around the steady state [compare the oscillation
frequencies in Figs. 2(f),(h),(j) with 4(f),(h),(j)]. The period and shape of these oscillations
vary with c∗. One should keep in mind that the scenario we are considering is with strong
coupling, such that, for c∗ = 0 the array synchronizes in a time-dependent state; the network
dynamics near this state (with the presence of a small delay heterogeneity), is shown in Fig.
5.

The approach towards “steady-state synchronization” reveals ‘critical slowing down’ in
the sense that the amplitude of the oscillations in Figs. 2(f),(h),(j) and 4(f),(h),(j) gradually
decreases with increasing ε or c∗, and there is a slow approach towards the fixed-point solution.
The main differences being that for sufficiently heterogeneous delays and small coupling, the
network splits in two clusters which display fast anti-phase oscillations, while for large enough
coupling but not sufficiently heterogeneous delays, the network approaches the fixed point
solution as a single cluster and slow oscillations.

One can then interpret the diversity of transition probabilities seen at the boundary of
steady-state synchronization as “noise amplification”. When the network is almost or nearly
synchronized, for all the nodes we have xi(t) ∼ x0 and therefore very small variations near
x0 result in a diversity of transition probabilities. This occurs when both ε or c∗ is varied.
However, because of the different way the network approaches the homogeneous solution,
increasing ε yields two clusters and the transition probabilities are either close to 0 or to 1,
while, increasing c∗ yields a single cluster and the transition probabilities are within an interval
of values.

Two-dimensional plots in the parameter space (coupling strength, delay heterogeneity),
shown in Fig. 6, provide a more complete picture of the various dynamical regimes. We can
recognize two synchronization regions occurring for large coupling: steady-state synchroniza-
tion for large delay heterogeneity [top-right corner in Figs. 6(a),(b), where both σ2 and σ′2

are zero], and time-dependent synchronization, for homogeneous delays [bottom-right corner
in Figs. 6(a),(b), where only σ2 is zero]. In addition, there is a narrow window of synchroniza-
tion for weak coupling strength and almost homogeneous delays [η ∼ 0.15 − 0.2, bottom-left
corner in Figs. 6(a),(b), where σ2 is zero and σ′2 is small]. This region was reported in [23]
for homogeneous and odd delay values, and it can be seen from Fig. 6 that it is also robust to
small delay heterogeneities.

In Fig. 7 we consider finite-size and time-dependent effects during the onset of steady-state
synchronization, Figs. 7(a),(b) and of time-dependent synchronization, Figs. 7(c),(d). We
plot the time-evolution of the instantaneous values of σ2 and σ′2 [i.e., σ2 and σ′2 are computed
as in Eqs. (6)–(7) but without time-averaging] for various network sizes N , while the average
number of neighbors per node is kept constant. Approaching the steady-state synchronization,
there is a gradual decrease of the quantifiers, and initially their time-evolution is independent of
the network size. In contrast, the approach to time-dependent synchronization, Figs. 7(c),(d)
occurs abruptly, at a time that is nearly independent of the network size.

For parameters close to “steady-state” synchronization critical slowing down occurs during
the approach to the homogeneous steady state, as can be seen in Fig. 8, where we display the
time-variation of σ2 for various values of ε and c∗.

We have checked the robustness of the above observations by considering delays that are
exponentially distributed, and very similar results were found: the formation of two clusters
before the onset of steady-state synchronization for increasing ε, while there is a single cluster
for increasing c∗. The small synchronization region that occurs for weak coupling strength is
also robust to exponentially distributed delays, as long as the width of the distribution is not
too wide. The difference with Gaussian delays is that, with exponentially distributed delays,
for strong coupling (ε ≈ 1), steady state synchronization is lost (σ′2 is small and positive) but

6



0 2000 4000 6000

6

8

10
x 10

−3 (a)

σ
2

t
0 2000 4000 6000

0.005

0.01

0.015
(b)

σ
´2

t

0 2000 4000 6000
0

0.1

0.2

(c) α→α

P
i

t

0 2000 4000 6000
0.8

0.9

1

(e) α→β

P
i

t

0 2000 4000 6000
0.95

1

(g) β→α

P
i

t

0 2000 4000 6000
0

0.02

0.04

(i) β→β

P
i

t

0 100 200

0.6

0.8

1

x
(t

),
 x

(t
+

1
)

(d)

i

0 50 100

0.6

0.8

1

x
i(t

)
(f)

t

0 50 100

0.6

0.8

1

x
j(t

)

(h)

t

0 50 100

0.6

0.8

1

x
k
(t

)

(j)

t
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Figure 7: (a), (b) Time-evolution σ2 and σ′2, during the onset of steady-state synchronization
(ε = 0.69, c∗ = 0.57). (c) Time-evolution of σ2 during the onset of time-dependent synchronization
for homogeneous delays (ε = 0.45, c∗ = 0). σ′2 remains finite and is not shown. (d) Time-evolution
of σ2 during the onset of time-dependent synchronization, in the window for weak coupling existing
only for homogeneous and odd delays (ε = 0.18, c∗ = 0). σ′2 remains finite and is not shown. σ2

and σ′2 were computed for the various network sizes indicated in panel (a).
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the network remains synchronized, as σ2 = 0 and the transition probabilities in the nodes are
all equal.

4 Conclusions

To summarize, we have studied the transition to synchronization in a network of delay-coupled
logistic maps. When the coupling delays are homogeneous throughout the network, the net-
work synchronizes to a time-dependent state; when the delays are sufficiently heterogeneous,
the synchronization occurs in a steady-state. We employed global and local measures to char-
acterize the synchronization transitions. The global measures are the standard deviation of
the distance to the synchronized state, as well as the standard deviation of the transition prob-
abilities in the nodes. The transition probabilities were computed using symbolic analysis and
ordinal patterns. We have found that, as the coupling strength increases or as the width of the
delay distribution grows, there is a gradual approach to the synchronized state, as seen with
the global indicators. An inspection of the local dynamics in the individual nodes, measured
by the transition probabilities, reveals that for increasing coupling there is the formation of
two clusters before the steady-state synchronization, detected by the fact that the nodes ex-
hibit two qualitatively different transition probabilities. For increasing delay heterogeneity, no
cluster formation is seen at the onset of steady-state synchronization, but there is a diversity
of values of transition probabilities.
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