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COMBINATORIAL LAPLACE OPERATORS:

A UNIFYING APPROACH, NORMALIZATION AND SPECTRA

DANIJELA HORAK

Abstract. In this paper we present a general framework for the systematic

study of all known types of combinatorial Laplace operators i.e. the graph
Laplacian, the combinatorial Laplacian on simplicial complexes, the weighted

Laplacian, the normalized graph Laplacian. Furthermore, we define normal-

ized Laplace operator ∆up
i on simplicial complexes and present its basic prop-

erties. The effects of a wedge sum, a join and a duplication of a motif on the

spectrum of normalized Laplace operator are investigated, and some of the

combinatorial features of a simplicial complex that are encoded in its spec-
trum are identified.

1. Introduction

The study of graph Laplacian has a long and prolific history. It first appeared
in a paper by Kirchhoff [21], where he analysed electrical networks and stated the
celebrated matrix tree theorem. The Laplace operator L considered in [21] is

(1.1) Lf(vi) = deg vif(vi)−
∑
vi∼vj

f(vj),

where f is a function on the vertices of a graph. In spite of its rather early beginnings
this topic did not gain much attention among scientists until the early 1970’s and
the work of Fiedler [12], where he found a correlation among the smallest non-
zero eigenvalue and the connectivity of a graph. Up until then it was common to
characterize graphs by means of the spectrum of its adjacency matrix. However,
after the ground-breaking work of Fiedler, there has been a number of papers ( e.g.
[17] ) arguing in favour of the graph Laplacian and its spectrum. For a good survey
articles on the graph Laplacian the reader is referred to [23] or [24].

The generalization of the graph Laplacian to simplicial complexes has first been
carried out by Eckmann [11], who formulated and proved the discrete version of
Hodge theorem , i.e.

ker(δ∗i δi + δi−1δ
∗
i−1) ∼= H̃i(K,R)

and defined the higher order combinatorial Laplacian as

Li = δ∗i δi + δi−1δ
∗
i−1.

This has led to a further development of the area, which resulted in a substan-
tial amount of work on properties of the higher order combinatorial Laplacian (see
[8],[13],[9]), which build up on properties of the graph Laplacian. This operator has
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been employed extensively in investigating the features of networks related to dy-
namics and coverings (see [25],[26]). Recently the monograph [19] appeared, where
the combinatorial Laplacian is systematically studied in a context of a discrete
exterior calculus.

Almost a century after Kirchhoff’s work a Norwegian scientist Bottema [4] stud-
ied a transition probability operator on graphs which is equivalent to the following
version of the graph Laplace operator

(1.2) ∆f(vi) = f(vi)−
1

deg vi

∑
vi∼vj

f(vj).

This operator was a mean to investigate random walks on graphs. It took an-
other one hundred years, until there has been a significant advance in the study
of operator ∆, which got to be known by the name normalized graph Laplacian to
distinguish it from the graph Laplacian L. The main advantage of ∆ is to address
the problems related to random walks on graphs and graph expanders, which the
graph Laplacian was unable to tackle. For a good introduction to this topic the
reader can consult [6] or [15].

The main goals of this paper are to develop a general and fully established the-
ory, which can be used as a starting point for a study of any of the above mentioned
versions of the Laplace operator and to define the normalized Laplacian on simpli-
cial complexes. The latter is based on a simple observation that the form of the
combinatorial Laplacian is tightly connected to the choice of the scalar product
on the coboundary vector spaces. On the other hand, the scalar products can be
viewed in terms of weight functions. Thus, by controlling these weights, we control
the range of the eigenvalues of the Laplace operator. However, we will concen-
trate on the analysis of the combinatorial Laplacian whose eigenvalues are in range
[0, i + 2], where i is the order of the Laplacian. This is a generalization of the
normalized graph Laplacian ∆. Apart from describing the features of its spectrum
and its connection with the combinatorial structure of simplicial complexes, we
will emphasize how important this approach is to gain new insights on the already
extensively studied normalized graph Laplacian. In the past, there have been few
attempts towards the normalization of the combinatorial Laplace operator, in par-
ticular [5] and recently [27], but unlike the normalized Laplace operator proposed
in this work, they fail to fit into general theory.

This paper is organized as follows. In Section 2 we give the basic definitions
regarding simplicial complexes and recall Eckmann’s discrete version of Hodge the-
orem. We define the combinatorial Laplace operator in its full generality and give
explicit expressions for it. In Section 3 we state and prove the theorem about the
number of zeros in the spectrum of the various versions of the combinatorial Laplace
operators. Furthermore, we discuss the effect of the scalar products on the spec-
trum and give the upper bound of the spectrum. Finally, we state the definition
of the normalized combinatorial Laplace operator, which will be the main object of
the investigation in the remainder of the paper. We calculate spectra of the nor-
malized combinatorial Laplacian for some special classes of simplicial complexes in
Section 4. In particular, we discuss the spectrum of an i-simplex, of an orientable
and a non-orientable circuit, of a path and of a star. In Section 5 we discuss the
effect of wedges, joins and duplication of motifs on the spectrum of the normalized
combinatorial Laplace operator. In Section 6 we identify the combinatorial features
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of simplicial complexes which cause the appearance of certain integer eigenvalues
in the spectrum. We discuss the occurrence of eigenvalue i+ 2 in the spectrum of
∆up
i and its connection to colorability of the underlying graph of a complex. The

relation among eigenvalue i+ 1 and the duplication of vertices is established.

2. Notation, definitions and the combinatorial Laplace operator

An abstract simplicial complex K on a finite set V is a collection of subsets of
V , which is closed under inclusion. An i-face or i-simplex of K is its element of
cardinality i+1. 0-faces are usually called vertices and 1-faces edges. The collection
of all i-faces of simplicial complex K is denoted by Si(K). The dimension of an
i-face is i and the dimension of a complex K is the maximum dimension of a face
in K. The faces which are maximal under inclusion are called facets. We say that
a simplicial complex K is pure if all facets have the same dimension. For two
(i+ 1)- simplices sharing an i-face we use the term i-down neighbours and for two
i-simplices which are faces of an (i + 1)- simplex, we say that they are (i + 1)-up
neighbours. When there is no danger of ambiguity, we will drop the terms up and
down. We say that a face F is oriented if we chose an ordering on its vertices and
write [F ]. Two orderings of the vertices are said to determine the same orientation
if there is an even permutation transforming one ordering into the other. If the
permutation is odd, then the orientations are opposite.

In the remainder, K will be an abstract simplicial complex on a vertex set
[n] = {1, 2, . . . , n}, when not stated otherwise. The i-th chain group Ci(K,R) of a
complex K with coefficients in R is a vector space over field R with the basis
Bi(K,R) = {[F ] | F ∈ Si(K)}. The augmented cochain complex of K with coeffi-
cients in R is a sequence of vector spaces and linear transformations

(2.1) Cd(K,R)← . . .
δi+1←−−− Ci+1(K,R)

δi←− Ci(K,R)
δi−1←−−− . . .← C−1(K,R)← 0.

The cochain groups1 Ci(K,R) are defined as duals of the chain groups, i.e.
Ci(K,R) := hom(K,R). The basis of Ci(K,R) is given by the set of functions
{e[F ] | [F ] ∈ Bi(K,R))} such that

e[F ]([F
′]) =

{
1 if [F ′] = [F ]
0 otherwise

.

The functions e[F ] are also known as elementary cochains. Note that a one-

dimensional vector space C−1(K,R) is generated by the function which is identity
on the empty simplex. For the systematic treatment of the simplicial homology and
cohomology the reader is referred to [18]. The connecting maps δi in the cochain
complex (2.1) given by

(δif)([v0, . . . , vi+1]) =

i+1∑
j=0

(−1)jf([v0, . . . , v̂j . . . vi+1]),

where v̂j denotes that the vertex vj has been omitted, are called simplicial cobound-
ary maps. Alternatively, δi can be viewed as the dual of the boundary map ∂i+1,
for details see [18]. It is trivial to check that δiδi−1 = 0, ergo the image of δi−1 is

1 Traditionally, Ci(K,G) for arbitrary group G, are called cochain groups. Influenced by this
naming, we will sometimes reffer to Ci(K,R) as cochain groups, although we always keep in mind

that Ci(K,R) have the structure of a vector space.
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contained in the kernel of δi and we define the reduced cohomology group for every
i ≥ 0

H̃i(K,R) := ker δi� im δi−1.

After choosing inner products ( , )Ci and ( , )Ci+1 on Ci(K,R) and Ci+1(K,R),
respectively, we define the adjoint δ∗i of the coboundary operator δi as a map

δ∗i : Ci+1(K,R)→ Ci(K,R),

which satisfies the following equality

(δif1, f2)Ci+1 = (f1, δ
∗
i f2)Ci ,

for every f1 ∈ Ci(K,R) and f2 ∈ Ci+1(K,R).

Definition 2.1. We define the following three operators on Ci(K,R):

(i) i-dimensional combinatorial up Laplace operator or simply i-up Laplace
operator

Lupi (K) := δ∗i δi,

(ii) i-dimensional combinatorial down Laplace operator or i-down Laplace op-
erator

Ldowni (K) := δi−1δ
∗
i−1,

(iii) i-dimensional combinatorial Laplace operator or i-Laplace operator

Li(K) := Lupi (K) + Ldowni (K) = δ∗i δi + δi−1δ
∗
i−1.

Since

Ci+1(K,R)
δi←−−−−→
δ∗i

Ci(K,R)
δi−1←−−−−→
δ∗i−1

Ci−1(K,R),

all three operators are well defined. Moreover, directly from the definition follows
that Lupi (K), Ldowni (K) and Li(K) are self-adjoint and non-negative. Hence their
eigenvalues are real and non-negative.

For any operator A acting on a Hilbert space, we denote the weakly increasing

rearrangement of its eigenvalues by s(A) = (λ0, . . . , λm) and write s(A)
◦
= s(B),

when multisets s(A) and s(B) differ only in their multiplicities of zero. We denote

the union of multisets by
◦
∪.

Remark 2.1.
◦
= is an equivalence relation.

The combinatorial Laplace operator first appeared in a study of the discrete
version of Hodge theorem [11]. Here, we formulate the theorem and give its proof
for the sake of completeness.

Theorem 2.1 (Eckmann 1944). For a given abstract simplicial complex K, the
following holds

kerLi(K) ∼= H̃i(K,R)

regardless of the choice of inner products on cochain vector spaces.

Proof. Since δiδi−1 = 0 and δ∗i−1δ
∗
i = 02 , then

imLdowni (K) ⊂ kerLupi (K),(2.2)

imLupi (K) ⊂ kerLdowni (K).(2.3)

2This is due to (δ∗i−1δ
∗
i u, v) = (u, δiδi−1v) = 0 and holds for any choice of scalar products.
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Thus,

kerLi(K) = ker δ∗i δi ∩ ker δi−1δ
∗
i−1

= ker δi ∩ ker δ∗i−1

= ker δi ∩ (im δi−1)⊥

∼= H̃i(K,R).

�

Due to (2.2) and (2.3) λ is a non-zero eigenvalue of Li(K) if and only if it is an
eigenvalue of Lupi (K) or Ldowni (K). Therefore,

(2.4) s(Li(K))
◦
= s(Lupi (K))

◦
∪ s(Ldowni (K)).

Furthermore, as a direct consequence of the fact that s(AB)
◦
= s(BA), for operators

A and B on suitably chosen Hilbert spaces, we get the following equality

(2.5) s(Lupi (K))
◦
= s(Ldowni+1 (K)).

Based on (2.4) and (2.5) we conclude that each of the three families of multisets

{s(Li(K)) | −1 ≤ i ≤ d}, {s(Lupi (K)) | −1 ≤ i ≤ d} or {s(Ldowni (K)) | 0 ≤ i ≤ d}
determines the other two. Therefore, it suffices to observe only one. In the re-
mainder of the paper, we will omit argument K in s(Li(K)), s(Lupi (K)), Lupi (K),
Ldowni (K), Si(K) etc when it is clear which simplicial complex we investigate or
when we state our results for a general simplicial complex K.

In order to write down explicit expressions for up and down Laplacians, it is
necessary to fix scalar products on the cochain groups. To that end, we introduce
the weight function and additional notation.

Definition 2.2. The weight function w is an evaluation function on the set of all
faces of K

w :

dimK⋃
i=−1

Si(K)→ R+.

The weight of a face F is w(F ).

For any choice of the inner product on space Ci(K,R), there exist a weight
function w, such that

(f, g)Ci =
∑

F∈Si(K)

w(F )f([F ])g([F ]).

Furthermore, there is a one-to-one correspondence between weight functions and
possible scalar products on cochain groups Ci(K,R). In the remainder we will
interchangeably use the terms weights, weight function and scalar product.

Definition 2.3. Let F̄ = {v0, . . . , vi+1} be an (i+ 1)-face of a complex K and let
F be an i face of F̄ . Let | p | denote the parity of a permutation, which transforms
the ordering of the vertices of [F̄ ] to the [v0, . . . , vi+1], where v0 < . . . < vi+2 in the
usual ordering of [n]. Then the boundary of the oriented face [F̄ ] is

∂[F̄ ] = (−1)|p|
∑
j

(−1)j [v0, . . . , v̂k, . . . , vi+1],

and the sign of [F ] in the boundary of [F̄ ] is denoted by sgn([F ], ∂[F̄ ]).
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By abuse of notation, we write ∂F̄ to denote the set of all i-faces of F̄ in the
remainder. Finally, the explicit expression for the i-up Laplace operator is given by

(Lupi f)([F ]) =
∑

F̄∈Si+1:

F∈∂F̄

w(F̄ )

w(F )
f([F ])+

∑
F ′∈Si:F 6=F ′,
F,F ′∈∂F̄

w(F̄ )

w(F )
sgn([F ], ∂[F̄ ]) sgn([F ′], ∂[F̄ ])f([F ′]),

and the expression for the i-down Laplace operator is given by

(Ldowni f)([F ]) =
∑
E∈∂F

w(F )

w(E)
f([F ])+

∑
F ′:F∩F ′=E

w(F ′)

w(E)
sgn([E], ∂[F ]) sgn([E], ∂[F ′])f([F ′]).

When dealing with linear operators it is often more convenient to study their ma-
trix form. Hence we give the following expressions for the (e[F ], e[F ′])-th and the

(e[F ], e[F ])-th entry of Lupi and Ldowni , where F 6= F ′

(Lupi )(e[F ],e[F ′])
= sgn([F ], ∂[F̄ ]) sgn([F ′], ∂[F̄ ])

w(F̄ )

w(F )
,

(Lupi )(e[F ],e[F ]) =
∑

F̄∈Si+1,
F∈∂F̄

w(F̄ )

w(F )
,

(Ldowni )(e[F ],e[F ′])
= sgn([E], ∂[F ]) sgn([E], ∂[F ′])

w(F ′)

w(E)
,

(Ldowni )(e[F ],e[F ]) =
∑
E∈∂F

w(F )

w(E)
.

Let Di be the matrix corresponding to operator δi, D
T
i its transpose and Wi matrix

representing scalar product on Ci, then the Lupi and Ldowni operators are expressed
as

Lupi = W−1
i DT

i Wi+1Di

and

Ldowni = Di−1W
−1
i−1D

T
i−1Wi,

respectively. Now it becomes clear that the combinatorial Laplace operator anal-
ysed by Duval, Reiner [10], Friedmann [13] and others [25],[8],etc is combinatorial
Laplace operator Li, where the weight matrices Wi (−1 ≤ i ≤ dimK) are chosen to
be the identity matrices. In the remainder of the paper, this version of the Laplace
operator will be denoted by L. The graph Laplacian (1.1) studied by Kirchhoff
[21], Fiedler [12], Grone and Merris [17] and many others is a special case of L, in
fact it is equal to Lup0 . The normalized graph Laplace operator (1.2) investigated
by Jost [2], Chung[6] is equal to Lup0 , when W1 is chosen to be the identity matrix
and W0 diagonal degree matrix. Therefore, combinatorial Laplacian L, as defined
here, unifies all Laplace operators studied so far and gives the general framework
for a systematic study of different versions of Laplacians.

Our goal in this paper is to define higher dimensional analogue of normalized
graph Laplacian and investigate its properties. However, we will (whenever pos-
sible) state our results in the full generality and emphasize which results do not
depend on the choice of the scalar products and which are the consequence of
suitably chosen weights.



COMB. LAPLACIANS: A UNIFYING APPROACH, NORMALIZATION AND SPECTRA 7

3. The normalized combinatorial Laplacian: definition and its basic
properties

In this section we derive an upper bound on the maximum eigenvalue of Lupi ,
introduce the normalized combinatorial Laplacian ∆up

i , and state and prove its
basic properties. We emphasize its advantages compared to the other choices of
weights.

Let λm and λ0 be the maximum and the minimum eigenvalue of Lupi (K), respec-
tively. Due to the positive definiteness of the Laplace operator, λ0 is always larger
or equal to zero. The exact number of zero eigenvalues in the spectrum of Lupi and
Ldowni is given in the following theorem.

Theorem 3.1. The multiplicity of the eigenvalue zero in

(i) s(Lupi ) is

dimCi −
i∑

j=−1

(−1)i+j(dimCj − dim H̃j),

or equivalently

dimCi +

d−i∑
j=1

(−1)j(dimCi+j − dim H̃i+j).

(ii) s(Ldowni ) is

dim H̃i −
i−1∑
j=0

(−1)i+j−1(dimCj − dim H̃j).

Proof. The following are short exact sequences that split

0→ ker δi → Ci → im δi → 0,

0→ im δi−1 → ker δi → H̃i → 0.

This is a direct consequence of the fact that im δi and H̃i are projective modules3.
Therefore,

(3.1) dimCi = dim ker δi + dim im δi

and

(3.2) dim ker δi = dim H̃i + dim im δi−1.

From (3.1) and (3.2) follows

dim im δi =

i∑
j=0

(−1)i+j(dimCj − dim H̃j).

The number of zeros in the spectrum of Lupi is equal to the dimension of its kernel,
thus

dim kerLupi = dim ker δi

= dimCi −
i∑

j=0

(−1)j+i(dimCj − dim H̃j).

3For details on projective modules and splitting exact sequences the reader is referred to [7].
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The expression (3.1) for the number of zeros in s(Lupi ) is easily obtainable by using

Euler characteristic and equality χ =
∑d
j=−1(−1)i dimCi =

∑d
j=−1(−1)i dim H̃i.

As for the Ldowni , the following holds

dim kerLdowni = dim ker δ∗i−1 = dimCi − dim ker δi−1

= dim H̃i −
i−1∑
j=0

(−1)j+i−1(dimCj − dim H̃j).

�

The number of zero eigenvalues in spectra of various Laplace operators, as ex-
pected, does not depend on a choice of the scalar products on the cochain vector
spaces.

The upper bound on s(Lupi ) follows from the subsequent discussion.

(Lupi f, f) = (δif, δif)(3.3a)

= (
∑

F̄∈Si+1(K)

f(∂[F̄ ]) e[F̄ ],
∑

F̄∈Si+1(K)

f(∂[F̄ ]) e[F̄ ])(3.3b)

=
∑

F̄∈Si+1(K)

f(∂[F̄ ])2w(F̄ )(3.3c)

≤ (i+ 2)
∑

F∈Si(K)

f([F ])2
∑

F̄∈Si+1(K):F∈∂F̄

w(F̄ ),(3.3d)

where (3.3d) is obtained by using the Cauchy-Schwartz inequality. Next we intro-
duce the degree of a simplex F .

Definition 3.1. The degree of an i-face F of K is equal to the sum of weights of
all simplices which contain F in its boundary, i.e.

degF =
∑

F̄∈Si+1(K):F∈∂F̄

w(F̄ ).

The inequality (3.3d) can be restated in terms of degrees as

(3.4) (Lupi f, f) ≤ (i+ 2)
∑

F∈Si(K)

f([F ])2 degF.

By dividing (3.4) by(f, f) we get

(3.5)
(Lupi f, f)

(f, f)
≤ (i+ 2)

∑
F∈Si(K) f([F ])2 degF∑
F∈Si(K) f([F ])2w(F )

.

Replacing f in (3.5) with the eigenfunction fm, corresponding to the largest eigen-
value λm of Lupi gives

(3.6) λm ≤ (i+ 2)

∑
F∈Si(K) fm([F ])2 degF∑
F∈Si(K) fm([F ])2w(F )

.

Therefore, if

(3.7) w(F ) = degF

holds, then λm ≤ i+ 2 and the eigenvalues of Lupi are in the interval [0, i+ 2].
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Definition 3.2. Let w be a weight function on K which satisfies (3.7), then the
Laplace operator defined on the cochain complex of K is called the weighted nor-
malized combinatorial Laplace operator. If additionally, the weights of facets of K
are equal to 1, then the obtained operator is called the normalized combinatorial
Laplace operator and is denoted by ∆up

i .

However, if (3.7) does not hold, we derive a bound on the maximum eigenvalue
of the Laplacian Lupi from the inequality (3.6), i.e.

(3.8) λm ≤ (i+ 2)
maxF∈Si(K) degF

minF∈Si(K) w(F )
.

Here minF∈Si(K) w(F ) stands for the minimum non-zero weight over all i-faces F
of K. The inequality (3.8) in case of the combinatorial Laplacian Lupi reduces to

(3.9) λm ≤ (i+ 2) max
F∈Si(K)

degF,

which for i = 0 becomes exactly

λm ≤ 2 max
v∈S0(G)

deg v.

This is the well-known bound on the maximum eigenvalue of Lup0 (see [1]). Another
upper bound of the spectrum of Lupi was obtained by Duval and Reiner in [10] as
a part of more general study, i.e.

(3.10) λm ≤ n,

where n is the number of vertices of the complex K. The inequality (3.9) is
sharper than (3.10) for large values of n and small values of i. In particular, if
maxF∈Si degF < n

i+2 , then the estimate (3.9) is sharper, otherwise it is (3.10). We
sum up our results in the following theorem.

Theorem 3.2. The spectrum of Lupi is bounded from above by:

(i) i+ 2, if Lupi = ∆up
i ,

(ii) (i+ 2) maxF∈Si(K) degF , if Lupi = Lupi ,

(iii) (i+ 2)
maxF∈Si(K) degF

minF∈Si(K) w(F ) , for all other choices of scalar products.

Remark 3.1 (Negative Weights). If negative weights are allowed in the definition of
the weight function , then instead of positive definite Hermitian sesquilinear forms
(inner products) on cochain vector spaces we observe Hermitian sesquilinear forms.
Therefore Lupi acts on functions on i-simplices

∆up
i f([F ]) =

1

w(F )

∑
F̄∈Si+1

F∈∂F̄

sgn([F ], ∂ ¯[F ])f(∂ ¯[F ]),

where the weights are chosen arbitrary. This approach enables us to use negative
weights, but it also deprives us of the possibility to benefit from the structure
coming from cohomology of simplicial complex. Furthermore, the eigenvalues of
newly obtained operator will be neither real nor non-negative. The Laplacian with
neagtive weights will not be a subject of a further investigation.
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4. Circuits, paths, stars and their spectrum

In this section we calculate the spectrum of the up (down) normalized Laplace
operator for some classes of simplicial complexes.

Theorem 4.1. Let K be a (n− 1)-dimensional simplex. Then s(∆up
i (K)) consists

of eigenvalue n
n−i−1 with multiplicity

(
n−1
i+1

)
and eigenvalue zero with multiplicity(

n−1
i

)
.

Proof. We will prove that a function f ∈ Ci(K,R), given by

f[F̄ ]([F ]) =

{
sgn([F ], ∂ ¯[F ]) if F is facet of (i+ 1)-face F̄

0 otherwise

is an eigenfunction of ∆up
i (K) corresponding to the eigenvalue n

n−i−1 .

It is not difficult to see that there are exactly
(
n−1
i+1

)
linearly independent functions

of this form. Next we check if the equality

(∆up
i f[F̄ ])[F ] =

n

n− i− 1
f([F ])

holds for every i-dimensional face F of K. Here, we distinguish three cases:
(i) F is an arbitrary facet of F̄ . Therefore,

(∆up
i f[F̄ ])([F ]) =

∑
Ē∈Si+1:

F∈∂Ē

w(Ē)

w(F )
f[F̄ ]([F ])

+
∑

F ′∈Si(L):

(∃Ē∈Si+1(L))F,F ′∈∂Ē

w(Ē)

w(F )
sgn([F ], ∂ ¯[E]) sgn([F ′], ∂ ¯[E])f[F̄ ]([F

′])

=
1

n− i− 1

∑
Ē∈Si+1:

F∈∂Ē

f[F̄ ](F )

+
1

n− i− 1

∑
F ′∈Si(L):

(∃Ē∈Si+1(L))F,F ′∈∂Ē

sgn([F ], ∂ ¯[E]) sgn([F ′], ∂ ¯[E])f[F̄ ]([F
′])

= f[F̄ ]([F ]) +
i+ 1

n− i− 1
sgn([F ], ∂ ¯[F ])

=
n

n− i− 1
f([F ]).

(ii) dim(F ∩ F̄ ) = i, i.e. F and F̄ have i vertices in common.
Then by the definition f([F ]) = 0. Let v0, v1, . . . , vi+2 ∈ [n] be arbitrary vertices
of L ordered increasingly. Without a loss of generality assume 0 ≤ j < k <
l ≤ i + 2 and F̄ = [v0, . . . , v̂l, . . . , vi+2] and [F ] = [v0, . . . , v̂j , . . . , v̂k, . . . , vi+2].
Then there exist exactly two i-faces F1 and F2 in the boundary of F̄ and two
(i + 1)-simplices F̄1 and F̄2 of L, such that F, F1 ∈ ∂F̄1 and F, F2 ∈ ∂F̄2. In
particular, F1 = [v0, . . . , v̂k, . . . , v̂l, . . . , vi+2], F2 = [v0, . . . , v̂j , . . . , v̂l, . . . , vi+2] and
F̄1 = [v0, . . . , v̂k, . . . , vi+2], F̄2 = [v0, . . . , v̂j , . . . , vi+2]. Now it is straightforward to
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calculate

(∆up
i f[F̄ ])([F ]) = 0 + sgn([F ], ∂[F̄1]) sgn([F1], ∂[F̄1])f[F̄ ])([F1])

+ sgn([F ], ∂[F̄2]) sgn([F2], ∂[F̄2])f[F̄ ])([F2])

= sgn([F ], ∂[F̄1]) sgn([F1], ∂[F̄1]) sgn([F1], ∂ ¯[F ])

+ sgn([F ], ∂[F̄2]) sgn([F2], ∂[F̄2]) sgn([F2], ∂ ¯[F ])

= (−1)j(−1)l−1(−1)k + (−1)k−1(−1)l−1(−1)j

= 0.

(iii) dim(F ∩ F̄ ) < i, i.e. F and F̄ have less than i vertices in common.
Then there are no faces in the boundary of F̄ which are (i + 1)-up neighbours of
F . This implies that ∆up

i f([F ]) = 0, which completes the proof. �

In the remainder of this section, we calculate the spectrum of circuits, paths and
stars.

Definition 4.1. A pure simplicial complex L of dimension i, is called an i-path of
length m iff there is an ordering of its i-simplices F1 < F2 < . . . < Fm, such that
dim(Fj ∩ Fl) < i − 1 for | j − l |> 1 and dim(Fj ∩ Fl) = i − 1 for | j − l |= 1 for
every 1 ≤ j, l ≤ m.
When Fm coincides with F1, we say that L is an i-circuit of length (m − 1). The

vertices in the intersection
⋂m−1
j=1 Fj are called centers of L.

(a) 2-circuit of
length 6 with

an empty cen-

ter

(b) 2-circuit of
length 6 with

one vertex in a

center

(c) 2-path of
length 3

(d) 2-star of
length 3

Figure 1. Examples of circuits, paths and stars

Note that simplicial complexes in Figures 1(b) and 1(c) have one central vertex,
i.e. a center. Before we proceed to calculate s(∆up

i ) of the above defined complexes,
we recall the definition of orientability.

Definition 4.2. Let K be a pure (i + 1)-dimensional simplicial complex. We say
that K is orientable iff it is possible to assign an orientation to all (i+1)-faces of K
in such a way that any two simplices which intersect by an i-face induce a different
orientation on that face. We say that such simplices are oriented coherently.

Therefore, choosing an orientation on (i+ 1)-faces of orientable simplicial com-
plex K is equivalent to choosing a basis Bi+1(K) of the vector space Ci+1(K,R)
consisting of elementary (i + 1)- chains [F̄ ] which are oriented coherently. The
following theorem from [14] will be extensively used in the subsequent calculations.
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Theorem 4.2 (Greenman, 1977). If two matrices M and P commute, i.e.
MP = PM , and if λ is a simple eigenvalue of matrix P , then its corresponding
eigenvector v is also an eigenvector of M .

We state the proof for the sake of completeness.

Proof. Since P (Mv) = MPv = λMv, Mv is an eigenvector of P corresponding to
eigenvalue λ. Since λ is a simple eigenvalue, then Mv = v. �

Let p̃ be a permutation on the elements of a basis Bi(K) of Ci(K,R), for an
arbitrary simplicial complex K, and let p̄ be a permutation on elementary cochains
of dimension i induced by p̃. Denote the linear extension of p̄ on Ci(K,R) by p.
Then we have the following equivalences

p̃([F ]) = [F ]⇔ p̄(e[F ]) = e[F ] ⇔ p(e[F ]) = e[F ].

To simplify the notation, we will designate any of the maps p̃, p̄, p by p. It will be
clear from the argument of p, which one is used. Furthermore, we will write p(F )
to denote the i-face which is uniquely determined by the mapping p([F ]). To prove
that p and ∆down

i commute, it is necessary to check if p∆down
i e[F ] = ∆down

i pe[F ]

holds for every i-face F . Since

p∆down
i e[F ] =

∑
E∈∂F

w(F )

w(E)
p(e[F ])

+
∑

F ′∈Si(K):

(∃E∈Si−1(K))F∩F ′=E

w(F )

w(E)
sgn([E], ∂[F ]) sgn([E], ∂[F ′])p(e[F ′]),

and

∆down
i pe[F ] =

∑
p(E)∈∂p(F )

w(p(F ))

w(p(E))
ep([E])

+
∑

p(F ′)∈Si(K):
(∃p(E)∈Si−1(K))

p(F )∩p(F ′)=p(E)

w(p(F ))

w(p(E))
sgn(p([E]), ∂p([F ])) sgn(p([E]), ∂p([F ′]))ep([F ′]),

it suffices to show

(4.1)
∑
E∈∂F

w(F )

w(E)
=

∑
p(E)∈∂p(F )

w(p(F ))

w(p(E))

and
(4.2)
w(p(F ))

w(p(E))
sgn(p([E]), ∂p([F ])) sgn(p([E]), ∂p([F ′])) =

w(F )

w(E)
sgn([E], ∂[F ]) sgn([E], ∂[F ′])

for every F and F ′ which are (i− 1)-down neighbours in K and every elementary
i-cochain e[F ]. Now we are ready to prove the following theorem.

Theorem 4.3. Let K be an orientable i-circuit of length m. Then the eigenvalues
of ∆down

i (K) are i− cos( 2πj
m ), j = 0, 1, . . .m− 1.

Proof. Let F1 < F2 < . . . < Fm be the ordering of the i-simplices of K satisfying
the conditions of Definition 4.1. Moreover, let [F1], [F2], . . . , [Fm] be a choice of
coherent orientation on them. The map p : Ci(K,R) → Ci(K,R) is given by
p([Fk]) = [Fk+1], for 1 ≤ k < m and p([Fm]) = [F1]. It is not difficult to check that

(4.3) p∆down
i = ∆down

i p
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In particular, equality (4.1) is satisfied since the weights of all i-faces are equal

to 1 and w(F )
w(E) = w(pF )

w(pE) . Equality (4.2) holds because i-faces of K are coherently

oriented, which gives the equalities

sgn([E], ∂[F ]) sgn([E], ∂[F ′]) = −1

and
sgn([pE], ∂[pF ]) sgn([pE], ∂[pF ′]) = −1,

where F and F ′ are (i− 1)-down neighbours of K and E is their intersecting face.
Hence (4.3) is true.

Denote P to be the matrix associated to mapping p. P is a permutation matrix
and its characteristic polynomial is λm− 1 = 0. The eigenvectors of P are Uθ = (1,
θ, θ2, . . . θm−1)T , where θ is the m-th root of unity. Thus, the eigenfunctions of the
map p are

uθ([Fk]) = θk−1.

Following Theroem 4.2, we can now easily calculate the eigenvalues of ∆down
i .

Let Ek := Fk−1 ∩ Fk for 2 ≤ k ≤ m− 1 and let Em := Fm ∩ F1. We have

∆down
i uθ([Fk]) =

∑
E∈Si−1(L):
E∈∂Fk

w(Fk)

w(E)
θk−1 +

w(Fk)

w(Ek)
sgn([Ek], ∂[Fk]) sgn([Ek], ∂Fk−1)θk−2

+
w(Fk)

w(Ek+1)
sgn([Ek+1], ∂[Fk]) sgn([Ek+1], ∂[Fk+1])θk

= (
2

2
+ i− 1)θk−1 − 1

2
θk−2 − 1

2
θk

= θk−1(i− θ−1 + θ

2
)

= θk−1(i− cos(
2πj

m
)).

It is straightforward to check that a similar equality holds for k = 1 and k =
m. Thus, λj = i − cos( 2πj

n ), where j = 0, 1, . . .m − 1 are the eigenvalues of

∆down
i (K). �

Remark 4.1. The eigenvalues of an orientable i-circuit depend only on its length,
thus there are different combinatorial structures which give the same eigenvalues
of ∆down

i . For example, 1, 1.5, 1.5, 2.5, 2.5, 3 are the eigenvalues of ∆down
2 of the

simplicial complex in Figure 1(b) and the simplicial complex in Figure 1(a).

Remark 4.2. A similar analysis can be done for a non-orientable i-circuit of length
m. In that case we define p to be p([Fk]) = [Fk+1], for 1 ≤ k < m and p([Fm]) =
−[F1]. The remaining calculations are done as in Theorem 4.3.

Theorem 4.4. Let K be a non-orientable i-circuit of length m. Then the eigen-
values of ∆down

i (K) are i− sin( 2πj
m ) for m even and i+ cos(2πj

m ) for m odd, where
j = 0, 1, . . .m− 1.

Corollary 4.5. Eigenvalues of ∆down
i (K) of an i-path K of length m are λk =

i− cos(πkm ), for k = 0, . . . ,m− 1

Proof. Since there are no self-intersections of dimension (i− 1) in an i-path, every
path is orientable. From Theorem 4.3, we conclude that in the spectrum of the i-th
down Laplacian of an i-circuit of length 2m, all eigenvalues appear twice, except

(i− 1) and (i+ 1). In particular, λk = i− cos( 2kπ
2m ) = i− cos( 2(2m−k)π

2m ) = λ2m−k,
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for k 6= 0 and k 6= m. Let φ = ei
k2π
2m

4, then the eigenvector corresponding to λk is

uk = (1, ei
kπ
m , . . . , ei

(2m−1)kπ
m )T .

The function vk = uk + u2m−k is the eigenvector for the eigenvalue λk as well

vk(m) = ei
πk
m + ei

π(2m−k)
m = ei

πk
m + e−i

πk
m .

It is now a straightforward calculation to see that the first m-entries of vk, for
every k = 0, 1, . . .m − 1 constitute the eigenvectors of K, whose corresponding
eigenvalue is i− cos(πkm ). �

This idea generalizes to the paths with self-intersections of dimension (i − 1),
but then it is necessary to distinguish among orientable and non-orientable paths.
The eigenvalues of a star are described in the following theorem.

Theorem 4.6. Let K be a simplicial complex which consist of m i-dimensional
simplices assembled in a star like formation, i.e. all simplices have in common
one (i − 1)-dimensional face. Then non-zero eigenvalues of ∆down

i (K) are: i with
multiplicity (m− 1) and (i+ 1) with multiplicity 1.

Proof. Let Fk, k ∈ {1, . . . ,m}, be an i-dimensional face of K and let
⋂
k Fk = E.

Denote p : Bi(K,R) → Bi(K,R) to be a permutation, such that p([Fk]) = [Fk+1].
Since Fk ∩Fj = E, for any two i-faces of K, then we can fix the orientation on Fk’s
such that they induce the same orientation on E. Now it is easy to check that

p∆down
i = ∆down

i p.

Let θ denote m-th root of unity different from 1 and u the eigenvector of p corre-
sponding to it. Then we obtain

∆down
i uθ([Fk]) =

∑
E,E∈∂Fk

w(Fk)

w(E)
θk−1 +

∑
F,F 6=Fk

w(F )

w(E)
uθ([F ])

=iθk−1 +
1

m
(1 + θ + . . .+ θm−1)

=iθk−1.

Thus, uθ is an eigenfunction of ∆down
i (K) corresponding to the eigenvalue i. The

case when θ = 1 results in the eigenvalue k + 1. �

5. Constructions and their effect on the spectrum: wedges, joins
and duplication of motifs

5.1. Wedges. Let (Xi)i∈I be a family of topological spaces and xi ∈ Xi, then the
wedge sum

∨
iXi is a quotient of their disjoint union by the identification xi ∼ xj ,

for all i, j ∈ I, i.e. ∨
i

Xi :=
⊔
i

Xi / {xi ∼ xj | i, j ∈ I}.

For the purposes of this paper we define a combinatorial wedge sum, which is in
many ways similar to the above defined wedge sum.

4 i appearing in the exponent of ei
k2π
2m is the imaginary unit and has no relation to i which

denotes the order of the Laplace operator.
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Definition 5.1. Given two simplicial complexes K1 and K2 on vertex set [n]
and [m], respectively, and two k-simplices F1 = {v0, . . . , vk} in Sk(K1) and F2 =
{u0, . . . , uk} in Sk(K2), then the combinatorial k-wedge sum of K1 and K2 is an
abstract simplicial complex on a vertex set [m+ n− k − 1], such that

K1 ∨k K2 := {{vi0 , . . . , vik} | {vi0 , . . . , vik} ∈ K1 or if {ui0 , . . . , uik} ∈ K2},

where uij := ul if vij = vl, uij := vij + k + 1 if vij > n and uij := vij for the other
values of vij .

Remark 5.1. The combinatorial wedge sum K1 ∨k K2 can also be viewed as

K1 tK2 / {F1 ∼ F2},

where ∼ is an equivalence relation which identifies the faces F1 and F2.

Remark 5.2. It is not difficult to check that K1 ∨k K2 is a simplicial complex, too.

Remark 5.3. Definition 5.1 can be generalized in the obvious way to the k-wedge
sum of arbitrary many simplicial complexes.

Note that K1∨kK2, for arbitrary k has the same homology as the wedge sum of
K1 and K2 as defined for general topological spaces. From the homological point
of view it is impossible to distinguish among k-wedge sums for different values of k
as well as among different choices of the base points. However, combinatorially, the
distinction among them is notable, e.g. two wedge sums in Figure 2. Consequently,

Figure 2. The homology groups of two spaces on the right are iso-
morphic, nonetheless these complexes are combinatorially
different.

in a combinatorial k wedge sum of simplicial complexes, it is important which
complexes are identified as well as the dimension of these complexes. The follow-
ing theorem gives the first characterization of the effect of the wedge sum on the
spectrum of the Laplacian.

Theorem 5.1.

s(∆up
i (K1 ∨k K2))

◦
= s(∆up

i (K1))
◦
∪ s(∆up

i (K2))

for all ,i, k, such that 0 ≤ k < i.
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Proof. Since we identify K1 and K2 by a face of dimension k, then obviously,
Ci(K1 ∨k K2,R) = Ci(K1,R) ⊕ Ci(K2,R) for every i > k. Thus, the cobound-
ary mapping δi : Ci(K1 ∨k K2,R) → Ci+1(K1 ∨k K2,R) will map Ci(Kj ,R) to
Ci+1(Kj ,R), j = 1, 2 and the same stands for the adjoint δ∗i . �

The operator ∆up
i is uniquely determined by i- and (i+1)-simplices of K. Hence

its non-zero eigenvalues depend only on the structure of (i + 1)-faces of K. By
abuse of notation, let Si+1(K) determine a pure (i+ 1)-dimensional subcomplex of
K, whose facet set is Si+1(K). If

(5.1) Si+1(K) = K1 ∨k1 K2 ∨k2 . . . ∨km−1
Km

for some k1, . . . , km−1 < i, then

s(∆up
i (K))

◦
= s(∆up

i (K1))
◦
∪ . . .

◦
∪ s(∆up

i (Km)).

Therefore, when studying ∆up
i , it is useful to determine if K can be represented as

a combinatorial k-wedge sum of simplicial complexes and if so, how many of them
are there. One possible way to answer this question is via observing (i + 1)-dual
graph of K.

Definition 5.2. Let K be a simplicial complex. Then a graph GK with the vertex
set V = {Fj | Fj ∈ Si(K)} and the edge set E = {(Fj , Fl) | Fj ∩ Fl ∈ Si−1(K)} is
called an i-dual graph of K.

It is not difficult to see that the number of complexes in the wedge sum (5.1) is
exactly the number of connected components of (i+1)-dual graph of K. To explain
this concept further, we will use the term (i+1)-path connected simplicial complex.

Definition 5.3. A simplicial complex K is i-path connected iff for arbitrary two
i-faces F1, F2 of K there exists an i-path connecting them.

Remark 5.4. The definition of i-path connectedness differs from the standard defi-
nition of i-connected simplicial complexes that can be found in [22].

(a) 2-path connected simplicial
complex and its 1-dual graph

(b) Simplicial complex which
is not 2-connected and its 1-

dual graph

Figure 3. Examples of i-path connected simplicial complexes and their
dual graphs

Remark 5.5. If K is an (i + 1)- path connected simplicial complex, it cannot be
decomposed into a combinatorial k-wedge (k < i) of simplicial complexes.

We assemble the observations above into the following proposition.
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Proposition 5.2. The following statements are equivalent.

(i) Si+1(K) ∼= K1 ∨k1 K2 ∨k2 . . . ∨km−1
Km, where k1, . . . , km−1 < i.

(ii) (i+ 1)-dual graph GK of K has m connected components.
(iii) the number of (i + 1)-path connected components in simplicial complex K

is equal to m.

The analysis on the combinatorial wedge sum above does not depend on the
choice of the scalar products. Hence Theorem 5.1 and Proposition 5.2 hold for the
general Laplace operator L as well. In the remainder of this section we investigate
the effect of the k-wedge sum for i = k on the spectrum of the (weighted) normalized
combinatorial Laplacian ∆up

i .

Theorem 5.3. Let K1 and K2 be simplicial complexes, such that eigenvalue λ is
contained in the spectrum of ∆up

i (K1) and ∆up
i (K2) and let f1, f2 be their corre-

sponding eigenfunctions. If an i-wedge K := (K1 ∨i K2) is obtained by identifying
i-faces F1 and F2, for which f1([F1]) = f2([F2]), then the spectrum of ∆up

i (K)
contains eigenvalue λ, too.

Proof. We will prove that

g([F ]) =

{
f1([F ]) for every F which is an i-face of K1 different from F1

f2([F ]) for every F which is an i-face of K2

is an eigenfunction of ∆up
i (K) corresponding to the eigenvalue λ. For an i-dimensional

face F of K1 different than F1, the following equality holds

∆up
i (K) |K1−F1

f1([F ]) = λf1([F ]).

Similar is true when F ∈ Si(K2), F 6= F2, i.e.

∆up
i (K) |K2−F2 f2([F ]) = λf2([F ]).

Let wK1
and wK2

denote the weight functions on complexes K1,K2 respectively.
Since we investigate ∆up

i , then the weights on i-simplicies are uniquely determined
by the weighs on (i + 1)-simplices and the incidence relation among them. Thus,
the weight of any i-simplex in K1 or K2 , different from F1 and F2, will remain
the same in K. As for the weight of the simplex F = F1 = F2, it will be equal to
the sum of the weights of F1 and F2 in K1 and K2, respectively, i.e. w(F )K1∗K2

=
wK1

(F1) + wK1
(F2). Hence

∆up
i (K)f([F ]) =

1

wK1(F1) + wK2(F2)

∑
F̄∈Si+1(K1)

wK1(F̄ ) sgn([F ], ∂[F̄ ])f(∂[F̄ ])

+
1

wK1(F1) + wK2(F2)

∑
F̄∈Si+1(K2)

wK2(F̄ ) sgn([F ], ∂[F̄ ])f2(∂[F̄ ])

=
wK1(F1)

wK1(F1) + wK2(F2)

1

wK1(F1)

∑
F̄∈Si+1(K1)

wK1(F̄ ) sgn([F ], ∂[F̄ ])f(∂[F̄ ])

+
wK2(F2)

wK1(F1) + wK2(F2)

1

wK2(F2)

∑
F̄∈Si+1(K2)

wK2(F̄ ) sgn([F ], ∂[F̄ ])f2(∂[F̄ ])

=
wK1(F1)

wK1(F1) + wK2(F2)
λf1([F ]) +

wK2(F2)

wK1(F1) + wK2(F2)
λf2([F ])

= λf([F ]).

�
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This also includes the case when either f1 or f2 is identically equal to zero.

Remark 5.6. The previous theorem will hold for the weighted normalized Laplacian
if the weight function wK :

⋃
k Sk(K)→ R+ is given as follows

wK(F ) =


wK1(F ) if F is a face of K1 and dimF > i
wK2(F ) if F is a face of K2 and dimF > i∑
F̄1∈K1:
F∈∂F̄1

wK1(F̄1) +
∑

F̄2∈K2
:F∈∂F̄2

wK2(F̄2) if F is a face of K and dimF ≤ i

Example 5.1. Let σ1 be an i-simplex, then s(∆down
i (σ))

◦
= s(∆up

i−1(σ))
◦
= {i+ 1}.

A function which is equal to 1 on every oriented simplex in the boundary of [σ] will
be an eigenfunction of ∆down

i corresponding to (i+ 1).
According to Theorem 5.3, an (i − 1)-wedge of any number of i-simplices, will
contain eigenvalue (i+ 1), as long as we are able to orient them such that any two
simplices whose intersection is of dimension i, induce the same orientation on their
intersecting face. For an alternative proof of this claim see Theorem 6.2.

Theorem 5.3 provides a way to identify some eigenvalues of the combinatorial
wedge sum. However, the results obtained by using the interlacing theorem for
simplicial maps, as shown in the next theorem, are more comprehensive.

Theorem 5.4. Let µ1, . . . , µm be eigenvalues of ∆up
i (K1 ∪K2) and λ1, . . . , λm−1

eigenvalues of ∆up
i (K), where K := (K1 ∨i K2), then

µi ≤ λi ≤ µi+1

for every 0 ≤ i ≤ m− 1.

Proof. Let F1 and F2 be i-faces which are identified in an i-wedge sum K. The
map f : K1 ∪K2 →1 ∨F1F̃2

K2 identifies vertices of F1 with the vertices of F2, and
is identity on the remaining vertices of K1 ∪ K2. Furthermore, f is a simplicial
map. The interlacing theorem for simplicial maps (see [20]) gives

µi ≤ λi ≤ µi+k,
where k =| Si(K1 ∪K2) | − | Si(K) |. �

Thus the spectrum of ∆up
i of the union of two simlicial complexes majorizes the

spectrum of their i-wedge sum.

Remark 5.7. The wedge sums of graphs and its effect on the spectrum of the
normalized graph Laplacian has already been analysed in [2], and the spectrum of
the combinatorial graph Laplacian was analysed in [16]. These are the special cases
of the general theory presented here.

5.2. Joins. Let K1 and K2 be simplicial complexes on vertex sets [n] and [m],
respectively. The join K1 ∗ K2 is a simplicial complex on a vertex set [m + n],
whose faces are F1 ∗F2 := {v0, . . . , vk, n+u0, . . . , n+ul} , where F1 = {v0, . . . , vi1}
is a simplex in K1 and F2 = {u0, . . . , ui2} a simplex in K2. The cochain groups of
K1 ∗K2 are

Ci(K1 ∗K2,R) =
⊕

i1+i2+1=i

Ci1(K1,R)⊗ Ci2(K2,R),

and the coboundary map δi : Ci(K1 ∗K2,R)→ Ci+1(K1 ∗K2,R) is

δi(f ⊗ g) = δi1f ⊗ g + (−1)i1f ⊗ δi2g,
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where f ∈ Ci1(K1) and g ∈ Ci2(K2). The cochain groups of K1 ∗K2 are the sums
of tensor product of Hilbert spaces, hence a naturally defined scalar product on
them is

(5.2) (f1 ⊗ g1, f2 ⊗ g2) = (f1, f2)Ci1 (K1)(g1, g2)Ci2 (K2),

where f1, f2 ∈ Ci1(K1), g1, g2 ∈ Ci2(K2) and i1 + i2 + 1 = i. In terms of the weight
functions the latter equality is

(5.3) wK1∗K2
(F1 ⊗ F2) = wK1

(F1)wK2
(F2).

Then the following proposition5 holds.

Proposition 5.5 (Duval, Reiner).

(δ∗i δi + δi−1δ
∗
i−1)(f ⊗ g) = (δ∗i1δi1 + δi1−1δ

∗
i1−1)⊗ id(f ⊗ g)(5.4)

+ id⊗ (δ∗i2δi2 + δi2−1δ
∗
i2−1)(f ⊗ g)

From the equality above follows

(5.5) s((δ∗i δi + δi−1δ
∗
i−1)(K1 ∗K2))

◦
=

⋃
λi∈s((δ∗i1δi1+δi1−1δ

∗
i1−1)(K1))

µj∈s((δ∗i2δi2+δi2−1δ
∗
i2−1)(K2))

λi + µj .

The adjoint δ∗i of δi in Proposition 5.5 is calculated with respect to scalar products
as defined in (5.2). Furthermore, Proposition 5.5 holds, regardless of the choice of
the scalar products on cochain groups K1 and K2. However, the problem occurring
here is to decide on nature (type) of the Laplace operator δ∗i δi + δi−1δ

∗
i−1 obtained

this way, i.e. is it normalized, combinatorial or some other type of Laplacian.
Duval and Reiner analysed the combinatorial Laplace operator L. In this case,

the weight functions on complexes K1 and K2 are constant, that is equal to 1.
Thus, due to (5.3), the weight function on K1 ∗K2 is 1, as well. In other words,

(δ∗i δi + δi−1δ
∗
i−1)(K1 ∗K2) = Li(K1 ∗K2),

and

(5.6) s(Li(K1 ∗K2))
◦
=

⋃
λi∈s(Li1 (K1))

µj∈s(Li2 (K2))

λi + µj ,

where i = i1 + i2 + 1.

The following theorem gives a characterization of s(∆i(K1 ∗ K2)) in terms of
s(∆i(K1)) and s(∆i(K2)). Note that due to the nature of the weight functions
which determines the normalized Laplacian, this characterization will not be com-
plete as in the case of the combinatorial Laplacian L and (5.7).

Theorem 5.6. Let dimK1 = d1 and dimK2 = d2. Then

(5.7) s(∆down
d1+d2+1(K1 ∗K2))

◦
=

⋃
λi∈s(∆down

d1
(K1))

µj∈s(∆down
d2

(K2))

λi + µj ,

5This is Proposition 4.9. in [10]
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or equivalently

s(∆up
d1+d2

(K1 ∗K2))
◦
=

⋃
λi∈s(∆up

d1−1(K1))

µj∈s(∆up
d2−1(K2))

λi + µj .

Proof. Let wK1
and wK2

be the weight functions corresponding to the normalized
Laplacian on K1 and K2, and let F1, F2 be faces of K1 and K2, respectively. The
weight function wK1∗K2 on the join K1 ∗K2 is determined by (5.3). Note that in
this case (5.5) holds, as well. In the following, we check if wK1∗K2

determines the
normalized combinatorial Laplacian on K1 ∗K2, i.e.

degF1 ⊗ F2 =
∑

F∈Si+1(K1∗K2):
F1⊗F2∈∂F

w(F )

=
∑

F̄1:F1∈∂F̄1

wK1∗K2
(F̄1 ⊗ F2) +

∑
F̄2:F2∈∂F̄2

wK1∗K2
(F1 ⊗ F̄2)

=
∑

F̄1:F1∈∂F̄1

wK1
(F̄1)wK2

(F2) +
∑

F̄2:F2∈∂F̄2

wK1(F1)wK2(F̄2).

If neither F1 nor F2 is a facet of K1,K2, then the degree of F1 ⊗ F2 is equal to

2wK1
(F1)wK2

(F2).

Therefore, (3.7) does not hold. Consequently, the Laplace operator determined by
this function will not be the normalized Laplace operator of join K1 ∗K2. However,
if F1 or F2 is a facet, then

degF1 ⊗ F2 = wK1
(F1)wK2

(F2).

Thus, wK1∗K2 coincides with the weight function which determines ∆up
i (K1 ∗K2),

for i = d1 + d2 + 1. Together with (5.6), this gives equivalence (5.8). �

5.3. Duplication of motifs. Let K be a simplicial complex on a vertex set [n]. If
Σ is its subcomplex on the vertices v0, . . . , vk, containing all of K’s faces on those
vertices, then it is called a motif.

Definition 5.4. A subcomplex Σ of a given simplicial complex K is its k-motif iff:

(i) (∀F1, F2 ∈ Σ) F1 ∗ F2 ∈ K ⇒ F1 ∗ F2 ∈ Σ
(ii) dim lk Σ = k , where lk Σ denotes the link of Σ.

In fact, as a consequence of Theorem 5.1 for i < k we obtain

s(∆up
i (K))

◦
= s(∆up

i (K − St Σ))
◦
∪ s(Cl St Σ).

Therefore, it is meaningful to observe the effect of duplication of k-motif to the
spectrum of ∆up

i only if i = k. For definitions of link lk, star St and closure Cl, the
reader is invited to consult [22].

Remark 5.8. If K is an (i+ 1)-path connected simplicial complex, then any motif
satisfying (i) in Definition 5.4 will have a link of dimension i.

Let u0, . . . , um be vertices of lk Σ. Due to the definition of a link, these vertices
are different than the one in the motif Σ (ui 6= vj , for every 0 ≤ i ≤ m and
0 ≤ j ≤ k). Let Σ′ denote a simplicial complex with vertices v′0, . . . , v

′
k, which is
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isomorphic to Σ. And let f : v′i 7→ vi be a simplicial isomorphism among these com-
plexes. Then KΣ := K ∪ {{v′i0 , . . . , v

′
il
, uj1 , . . . , ujs} | {vi0 , . . . , vil , uj1 , . . . , ujs} ∈

K}.

Proposition 5.7. KΣ is a simplicial complex and Cl St Σ is isomorphic to Cl St Σ′.

Proof. Elementary. �

Definition 5.5. We say that a simplicial complex KΣ is obtained from a simplicial
complex K by the duplication of i-motif Σ.

ΣΣ
lk

Σ‘

ΣΣ
lk

Figure 4. Duplication of motif Σ

Remark 5.9. It could be argued, that it is Cl St Σ that we duplicate rather than
Σ alone. This point of view will be very helpful in the subsequent work, but we
will refer to duplication as the duplication of motif Σ, since this terminology is
consistent with the previous work on the duplication of motifs of graphs (see [2]).

Theorem 5.8. Let n be the number of i-simplices in St Σ. Then there exist n
linearly independent functions f1, . . . , fn, satisfying

∆up
i (K)fj([F ]) = λjfj([F ]),

for every F ∈ Si(St Σ) and some real values λj. The doubling of the motif Σ
produces a simplicial complex KΣ with the eigenvalues λj and the eigenfunctions
gj which agree with fj on St Σ and −fj on St Σ′ and are zero elsewhere.

Proof. It is trivial to check that ∆up
i (Cl St Σ) and ∆up

i (KΣ) coincide on St Σ.
Let ∆up

i (Cl St Σ) |St Σ be a restriction of the operator ∆up
i (Cl St Σ) on St Σ. Let

λ1, . . . , λn be the eigenvalues of ∆up
i (Cl St Σ) |St Σ and f1, . . . fn the corresponding

eigenfunctions. Then

gj([F ]) =

 fj([F ]) for every F in St Σ
−fj([F ]) for every F in St Σ′

0 otherwise

is an eigenfunction of ∆up
i (KΣ) with associated eigenvalue λj . Without a loss of

generality assume that the labelling of the vertices of Σ is v0, . . . , vk and the vertices
of Σ′ is v′0, . . . , v

′
k, and they are choosen such that v0 < . . . < vk < v′0, < . . . < v′k.
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Enumerate vertices of lk Σ with u1, . . . , um
6 such that

v0 < . . . < vk < v′0, < . . . < v′k < u1 < . . . < um. Then it is trivial to check that

∆up
i fj([F ]) = ∆up

i (Cl St Σ) |St Σ fj([F ]) = λjfj([F ])

and

∆up
i (−fj)([F ′]) = ∆up

i (Cl St Σ) |St Σ −fj([F ′]) = −λjfj([F ′])
for all F ∈ Si(Σ) and F ′ ∈ Si(Σ′).
Furthermore, assume that [u1, . . . ui+1] is a face of lk Σ7, then

∆up
i fj([u1, . . . ui+1]) =

∑
vj ,[vj ,u1,...,ui+1]∈Si+1(Cl St Σ)

(−1)1fj(∂[vj , u1, . . . , ui+1])

+
∑

v′j ,[v
′
j ,u1,...,ui+1]∈Si+1 Cl St Σ′

(−1)1(−fj)(∂[v′j , u1, . . . , ui+1])

= 0.

Since the value of the functions fj on the boundary of (i+ 1)-simplices, which are
neither in Cl St Σ nor in Cl St Σ′ is zero, we omit them. Hence λj ’s are eigenvalues
of ∆up

i (KΣ). �

As a simple consequence of Theorem 5.8 we have the following corollary.

Corollary 5.9. If the spectrum of simplicial complex Cl St Σ possesses eigenvalue
λ, with eigenfunction f which is identically equal to zero on lk Σ, then the spectrum
of KΣ will contain eigenvalue λ as well.

Theorem 5.8 is an improved and generalized version of Theorem 2.3 from [2],
which was stated for the case of the normalized graph Laplacian ∆up

0 . The duplica-
tion of the motif Σ will leave a specific trace in a spectrum of newly obtained simpli-
cial complex KΣ. In particular, if λ1, . . . , λn are eigenvalues of ∆up

i (Cl St Σ) |St Σ,
then after duplicating motif Σ m times, the spectrum of newly obtained complex
will contain (m− 1) instances of every eigenvalue λj .

Since it is not always straightforward to calculate eigenvalues of ∆up
i (Cl St Σ) |St Σ,

we prove a theorem about interlacing of λj ’s and eigenvalues of ∆up
i (Cl St Σ), µj ’s.

The notation in the following theorem is as in Theorem 5.8.

Theorem 5.10. The following inequality holds

µi ≤ λi ≤ µi+|Si(lk Σ)|,

where | Si(lk Σ) | denotes the number of i-simplices in the link of a motif Σ.

Proof. Matrix ∆up
i (Cl St Σ) |St Σ is obtained from matrix ∆up

i (Cl St Σ) by deleting
| Si(lk Σ) | rows and columns. Thus, the interlacing inequality follows directly from
the Cauchy interlacing theorem. �

Remark 5.10. Theorem 5.8 and Corollary 5.9 will hold for any choice of the weight
function satisfying (3.7).

6 From the definition of lk, follows that zero simplices of lk Σ and Σ are different.
7Faces of lk Σ which are of dimension less than i are not relevant for the subsequent discussion.
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6. Eigenvalues in the spectrum of ∆up
i and the combinatorial

properties they encode

One of the main advantages of the normalized combinatorial Laplace operator
is the fact that the spectrum of any simplicial complex K is bounded from above
by a constant. The eigenvalues of ∆up

i (K) are in the interval [0, i + 2]. However,
this is not the case for the spectrum of the combinatorial Laplacian L or for any
other known type of the combinatorial Laplace operator L. Therefore, it impossible
to assign combinatorial properties to the existence of particular eigenvalue in the
spectrum of L and L. Nonetheless, it is worthwhile to mention that the global
properties of spectrum of Li relate to combinatorial properties of complex. For
instance, the spectrum of certain combinatorially suitable complexes is proved to
be integer (see [8],[10]).

The appearance of eigenvalue 2 in the spectrum of the normalized graph Lapla-
cian ∆up

0 means that the underlying graph is bipartite (see [6]), while some occur-
rences of eigenvalue 1 appear due to duplication of motifs (see [2]). In the following,
we characterize some of the integer eigenvalues, which appear in the spectrum of
∆up
i .

6.1. Eigenvalue i + 2. Without a loss of generality assume K is an (i + 1)-path
connected simplicial complex on a vertex set [n]. As shown earlier, the following
inequality holds

(∆up
i (K)f, f) =

∑
F̄∈Si+1(K)

f(∂[F̄ ])2w(F̄ )(6.1a)

≤(i+ 2)
∑

F∈Si(K)

f([F ])2w(F ).(6.1b)

The equality in (6.1b) is reached iff there exists a function f ∈ Ci(K,R), which
satisfies

sgn([Fj ], ∂[F̄ ])f([Fj ]) = sgn([Fk], ∂[F̄ ])f([Fk]),

for every F̄ in Si+1 and Fj , Fk ∈ ∂F̄ . Thus | f([F ]) | must be constant for every
F ∈ Si(K). Assume further that | f([F ]) |= 1, then for every F ∈ ∂F̄ , f([F ]) is
equal either to sgn([F ], ∂[F̄ ]) or to − sgn([F ], ∂[F̄ ]). Now it is possible to consider
f as a choice of orientation on (i+ 1)-faces of K.

Theorem 6.1. The existence of a function f satisfying the equality in (6.1b) is
equivalent to the existence of the orientation on (i + 1)-simplices of K, such that
every two (i+ 1)-simplices intersecting by a common i-face induce the same orien-
tation on the intersecting simplex8.

Theorem 6.2. For an i-connected simplicial complex K the following statements
are equivalent

(1) Spectrum ∆up
i (K) has eigenvalue i+ 2,

(2) There are no (i + 1)-orientable circuits of odd length nor (i + 1)-non ori-
entable circuits of even length in K.

Proof. (1) ⇒ (2) This part of the proof is by contradiction. Assume that there
exists an (i + 1)-orientable circuit of odd length, whose i-simplices F1, . . . , F2n+1

are ordered increasingly, as suggested in Definition 4.1. Then it is possible to

8This condition is opposite to the condition of coherently oriented simplices.
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orient these simplices in such a way that every two neighbouring simplices induce
different orientation on their intersecting face. Denote these oriented simplices by
[F1], . . . , [F2n+1]. In order to have the same orientation induced on the intersecting
face, we reverse the orientation of every simplex [Fk], for k even9. Thus, [Fl] and
−[Fl+1] induce the same orientation on [Fl ∩ Fl+1], for every 1 ≤ l ≤ 2n. However,
[F1] and [F2n+1] remain coherently oriented, which contradicts Theorem 6.1. The
analysis for the case of (i+ 1)-non-orientable circuits is analogous.
(2)⇒ (1) Let F1 be an arbitrary (i+1)-face of K. Consider its positive orientation
[F1] and call it initial oriented face . Let [Fi1i2...in ] be an (i + 1)-face of K which
shares an i-face with [Fi1i2...in−1

] and both faces induce the same orientation on their
intersecting face. Now, assume opposite: it is not possible to choose an orientation
on (i + 1)-faces of K, which satisfies the conditions of Theorem 6.1. This means
that after some number of steps in the construction above, two faces [Fi1i2...in ],
[Fi1i2...im ] which are the same, but differently oriented are obtained. Obviously,
there exists a circuit containing [Fi1i2...in ], which does not admit an orientation as
in Theorem 6.1. This is possible only in the case when a circuit is orientable and
odd or even and non-orientable. This is a contradiction, hence i+ 2 is contained in
the spectrum of ∆up

i .
�

The spectrum of the normalized graph Laplacian contains eigenvalue 2 iff the
chromatic number of the underlying graph is 2. However, the connection of chro-
matic number and the boundary eigenvalue in the spectrum of the normalized
combinatorial Laplace operator is one directional.

Theorem 6.3. If the chromatic number of 1-skeleton of simplicial complex K is
i+ 2, then i+ 2 is contained in s(∆up

i (K)).

Proof. Let I0, . . . , Ii+1 be disjoint sets of the vertices of K, such that every simplex
of K contains at most one point of each set. Thus, there are no vertices of F̄ ∈
Si+1(K) which are contained in the same Ij . To avoid notational complications
we relabel the vertices of K: instead of v ∈ Ij (v ∈ {1, . . . , n}) we write in + v.
Therefore, we have

v ∈ Ij , u ∈ Ik and j < k ⇒ v < u.

Function f , defined as f([v0, . . . , v̂j , . . . , vi+1]) = (−1)j ([v0, . . . , vi+1], is an (i+ 1)-
simplex of K whose vertices are ordered increasingly, i.e. v0 < . . . < vi+1) is the
eigenfunction of ∆up

i (K) corresponding to the eigenvalue i+ 2, i.e.

∆up
i f([F ]) =

∑
F̄ :F∈∂F̄ f(∂[F̄ ])

degF

=(i+ 2)f([F ]).

�

Remark 6.1. The opposite claim is not true. A counter example is given in Figure
5 left. However, even if we exclude simplicial complexes of this type, i.e. if we

9One can also consider the option to reverse the orientation for every odd k, but this does not
make any difference in the remainder of the proof.
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assume
(6.2)
(∀F̄1, F̄2 ∈ Si+1(K))F̄1∩F̄2 = F 6= ∅ ⇒ (∃F1 = F11, F12, . . . F1m = F2)(∃1 < k < m)F ∈ F1k,

it is possible to construct a counterexample, see Figure 5 right.

Figure 5. Counterexamples for the equivalence in Theorem 6.2

6.2. Eigenvalues (i + 1) and 1. As a special case of Theorem 5.8 we consider a
motif Σ consisting of only one vertex.

Corollary 6.4. Duplication of an i- motif Σ consisting of one vertex which is the
center of neither an (i+1)-orientable odd circuit nor an (i+1)-non-orientable even
circuit, results in appearance of the eigenvalue (i+ 1) in the spectrum of KΣ.

Proof. Let v0 = Σ and let 0-simplices of lk Σ be u1, . . . , uk. In Cl St Σ all (i + 1)-
simplices must contain v1. Since v1 is neither a center of an (i + 1)-orientable
odd circuit nor a center of an (i+ 1)-non-orientable even circuit, then by Theorem
6.2, i + 2 ∈ s(Cl St Σ). From Theorem 6.1 follows that there is a function f ∈
Ci(Cl St Σ,R), s.t.

sgn([F1], ∂[F̄ ])f([F1]) = . . . = sgn([Fi+2], ∂[F̄ ])f([Fi+2])

for every F̄ ∈ Si+1(Cl St Σ) and each of its i-faces. Let g be a function which
coincides with f on oriented i-faces of St Σ, with −f on oriented i-faces of St Σ′

and is zero elsewhere. We will now show that g is the eigenfunction of ∆up
i (KΣ)

associated to the eigenvalue (i+ 1). Let F be an arbitrary i-face of St Σ, then

∆up
i (Cl St Σ) |St Σ g([F ]) =

1

w(F )

∑
F̄∈Si+1(Cl St Σ)

sgn(F, ∂F̄ )g(∂[F̄ ])

=
1

w(F )

∑
F̄∈Si+1(Cl St Σ)

sgn([F ], ∂[F̄ ])
∑

Fj∈∂F̄
Fj /∈lk Σ

sgn([Fj ], ∂[F̄ ])f([Fj ])

=
1

w(F )

∑
F̄∈Si+1(Cl St Σ)

sgn([F ], ∂[F̄ ])(i+ 1) sgn([F ], ∂[F̄ ])f([F ])

=(i+ 1)
1

w(F )

∑
F̄∈Si+1(Cl St Σ)

f([F ])

=(i+ 1).
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The same analysis holds for i-faces of St Σ′. Let F be an i-faces of Cl St Σ− St Σ,
then

∆up
i (Cl St Σ) |St Σ f([F ]) =

1

w(F )

 ∑
F̄∈Si+1(Cl St Σ)

sgn([F ], ∂[F̄ ])g(∂[F̄ ])

+
∑

F̄∈Si+1(Cl St Σ′)

sgn([F ], ∂[F̄ ])g(∂[F̄ ])


=

1

w(F )
(i+ 1)

 ∑
F̄∈Si+1(Cl St Σ)

g([Fj ]) +
∑

F̄∈Si+1(Cl St Σ′)

g([Fj ])


=

1

w(F )
(i+ 1)

 ∑
Fj∈Si(St Σ)

f([Fj ]) +
∑

F ′j∈Si(St Σ′)

−f([Fj ])


= 0,

where Fj is a face of F̄ . �

Note that, this theorem is a generalization of the vertex doubling effect on the
normalized graph Laplacian ∆up

0 discussed in [2].
In a graph case eigenvalue 1 plays a very important role, since its multiplicity

is significantly higher that other eigenvalues when it comes to graphs obtained by
modelling the real world processes, for details and examples see [3]. However, when
it comes to the Laplace operator defined on simplicial complexes, eigenvalue 1 looses
some of its importance. This is due to the fact that the role of the eigenvalue one
is partially transferred to the eigenvalue (i + 1) in higher dimensions, as shown
previously. The next theorem gives one characterization of eigenvalue 1 in the
spectrum of ∆up

i .

Theorem 6.5. Let K be a simplicial complex with an eigenvalue i + 2 in the
spectrum of ∆up

i and let GiK be its i-dual graph. Then,

1 ∈ s(∆up
0 (GiK))⇔ 1 ∈ s(∆up

i (K)).

Proof. The multiplicity of eigenvalue 1 in the spectrum of ∆up
i (K) is equal to the

dimension of a kernel of adjacency matrix Aupi of i-faces of K. Its entries are

(Aupi )[F ],[F ′] =

{
sgn([F ], ∂[F̄ ]) sgn([F ′], ∂[F̄ ]) F , F ′ are (i+ 1)-up neighbours
0 otherwise

Due to Theorem 6.1, it is possible to orient (i+ 1)-simplices of K such that
sgn([F ], ∂[F̄ ]) sgn([F ′], ∂[F̄ ]) is always positive. Consequently, all entries of matrix
Aupi will be positive. The adjacency matrix of GiK and Aupi are equal, thus the
dimension of the kernel of Aupi is equal to the multiplicity of eigenvalue 1 in the
spectrum of the normalized graph Laplacian of the graph GiK . �
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