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Abstract

We are interested in the phase transformation from austenite to marten-
site. This transformation is typically accompanied by the generation and
growth of small inclusions of martensite. We consider a model from
geometrically linear elasticity with sharp energy penalization for phase
boundaries. Focusing on a cubic-to-tetragonal phase transformation, we
show that the minimal energy for an inclusion of martensite scales like
max{V 2/3, V 9/11} in terms of the volume V . Moreover, our arguments
illustrate the role of self-accommodation to achieve the minimal scaling of
the energy. The analysis is based on Fourier representation of the elastic
energy.
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1 Introduction

The phase transformation from austenite to martensite (e.g. initiated by a
change of temperature) can be realized by the creation and growth of small
inclusions of martensite (see Figure 1). In this article, we investigate how the
minimal energy of such martensitic inclusions depends on their volume. In
turn, this yields the energy for the saddle point of the energy landscape which
connects the two uniform configurations.

More specifically, we consider the case of a material undergoing a cubic-to-
tetragonal phase transformation. We adopt the framework of geometrically lin-
ear elasticity where the elastic energy can be expressed in terms of the linearized
strain e(u) = 1

2 (∇u +∇⊥u); here u : Ω → R3 describes the displacement from
a reference configuration. Choosing the austenite as reference lattice, the stress
free strains are given by the strain e(0) = 0 — representing the austenitic phase
— and by three different symmetry related strains e(1), e(2), e(3) corresponding
to the martensitic phase. Next to the elastic energy, we also include a sharp in-
terface energy in our model. This energy penalizes interfaces between austenite
and martensite as well as interfaces between the three martensite variants.

In the case of an inclusion with sufficiently small volume, the interfacial energy
is dominant. Clearly, in this case the energetically optimal inclusion has ap-
proximately the shape of a ball and its energy scales like V 2/3. On the other
hand, the shape and minimal energy of a larger inclusion is determined by a
competition between elastic and interfacial energy. We will show that in this
case, the minimal energy scales like V 9/11. Our result is ansatz-independent
which means that the proof does not rely on any assumptions about the specific
shape of the inclusion.

It turns out that two notions are essential to understand the shape and en-
ergy of the optimal inclusion for the cubic-to-tetragonal phase transformation:
compatibility and self-accommodation. Roughly speaking, compatibility (of two
strains) means the possibility of an interface separating these two strains. Fur-
thermore, self-accommodation of a set of strains (e.g. the variants of marten-
site) with respect to another strain (e.g. austenite) means the ability to embed
a combination of these strains into a matrix of the reference strain. In the
cubic-to-tetragonal phase transformation, the situation is as follows: No single
variant of martensite is compatible with austenite. Furthermore, only all three
variants of martensite together (i.e. at equal volume fraction) have the property
of self-accommodation with respect to the austenite. As we will see, this leads
to formation of fine scale twinning of martensite variants near the martensite-
austenite interface. Moreover, the minimal scaling of the energy can only be
achieved by an inclusion which contain all three variants of martensite in almost
equal volume fraction.

Pattern formation for the austenite-to-martensite phase transformation has been
investigated using geometrically nonlinear elasticity as well as in the framework

2



Figure 1: Inclusion of martensite within austenite. Experimental pictures by Tan &
Xu [23], courtesy of Springer.

of geometrically linear elasticity. In the framework of the geometrically non-
linear theory, most of the analysis on pattern formation has been focused on
zero energy states of the elastic energy (in particular, interfacial energy is not
considered). For a two well potential, Müller and Dolzmann [10] showed that
zero energy states are locally laminar (1-d) if y is locally BV . Interestingly the
latter condition cannot be omitted [20]. For further results in this direction,
see also [1, 14]. For quantitative versions of the above rigidity results, it is
necessary to consider the full energy including the term penalizing interfacial
energy. Most quantitative analysis so far has been done in the framework of the
geometrically linear theory: The first rigorous analysis on pattern formation for
the austenite-martensite interface has been given by Kohn and Müller in terms
of reduced scalar model [17, 19]. The authors show the energetic optimality
of a self-similar configuration of two martensitic phases. Extending this result,
Conti showed asymptotic self-similarity of minimizers [9]. The energetic scaling
of a austenite-martensite mixture for a 3-d model has been recently addressed
by Capella and Otto [4, 5] for the cubic-to-tetragonal phase transformation.

The above results focus on the energy of planar austenite-martensite interfaces.
In particular, they do not capture the volume dependence of the energy of a
martensite inclusion embedded into a 3-dimensional austenitic environment. So
far, the only ansatz-independent result on the volume dependence of the energy
of an elastic inclusion (including interfacial energy) has been given by Knüpfer
and Kohn in the case of a 2-well potential [15]. In this paper, we establish
the volume dependence of a martensitic inclusion in the case of the cubic-to-
tetragonal phase transformation. Our proof is based on the Fourier represen-
tation of the elastic energy, including some precise results on the anisotropic
Fourier multiplier representing the elastic energy.

Notation. The following notation will be used throughout the article: The
symbols ∼,. and & indicate that an estimate holds up to a universal constant.
For example, A ∼ B says that there are universal constants c, C > 0 such that
cA ≤ B ≤ CA. The symbols � and � indicate that an estimate requires a
small universal constant. If we e.g. say that A . B for ε � 1, this means
that A ≤ CB holds for all ε ≤ ε0 where ε0 > 0 is a small universal constant.
For u ∈ BV (E), the total variation of u is sometimes denoted by ‖Du‖E . The
strain e(u) of a function u ∈ H1(R3, R3) is defined by e(u) = 1

2 (∇u + ∇⊥u).
The tensor product u ⊗ v is defined as the 3 × 3-matrix which is component-
wise defined by (u ⊗ v)ij = uivj . Furthermore, we use the notation u � v =
1
2 (u ⊗ v + v ⊗ u) for the symmetrized tensor product. The set of symmetric
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Figure 2: (a) In the geometrically nonlinear theory the deformation with respect to a
reference configuration is described by v(x) = x + δu(x) for a small parameter δ > 0.
The geometrically linear theory is formulated in terms of the displacement u. (b)
Schematic picture for the cubic-tetragonal transformation.

3 × 3-matrices is denoted by Σ(3). Finally, for two 3 × 3-matrices A,B, the
contraction is defined by A : B =

∑
i,j AijBij , and the corresponding matrix

norm is given by ‖A‖ =
√

A : A.

2 Model

2.1 Stress-free strains

Shape memory alloys have a high temperature phase, the so called austenite, and
a low temperature phase, the so called martensite. The austenite-to-martensite
phase transformation can e.g. be initiated by a change of temperature. We con-
sider in particular, the cubic-to-tetragonal phase transformation when the lattice
structure of austenite is cubic and the lattice structure of martensite is tetrag-
onal (a list of examples for materials undergoing this phase transformation can
for instance be found in [3, Table 4.1]). Since the symmetry of the cubic lattice
is higher, the transformation can occur in three distinct ways, corresponding to
stretching along one of the three main axes of the cubic lattice, see Figure 2b).
The transformation is correspondingly described by the three transformation
matrices: U1 = diag(β, α, α), U2 = diag(α, β, α) and U3 = diag(α, α, β) where
α, β > 0 are material parameters. By frame indifference, the set of all transfor-
mations leading to a stress-free martensite lattice are then given by all strains
of type RUi, where R ∈ SO(3) is a rotation and for i = 1, 2, 3. Each transfor-
mation strain corresponds to a distinct variant of martensite. We consider the
case when the transformation is volume preserving, i.e. det Ui = 1.

We use the geometrically linear approximation of elasticity. In this case, the
transformation is described in terms of the displacement u(x) where v(x) = x+
δu(x) is the deformed position of the particle at x and for a small parameter δ >
0 [12, 22]. In this approximation, it is assumed that the displacement gradient
is uniformly small throughout the material. In particular, the austenite strain,
corresponding to the undeformed state is represented by the trivial matrix e(0) =
0. The preferred strains for the three variants of martensite are given, after a
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suitable normalization, by

e(1) :=

−2 0 0
0 1 0
0 0 1

 e(2) :=

1 0 0
0 −2 0
0 0 1

 , e(3) :=

1 0 0
0 1 0
0 0 −2

 , (1)

see e.g. [3, 4]. In the geometrically linear theory, the elastic energy only depends
on the symmetric part of the displacement gradient. In this sense, the elastic
energy in the geometrically linear theory is invariant with respect to infinitesimal
rotations.

2.2 Compatibility & incompatibility

Two strains A, B ∈ Σ(3) are called compatible (as linear strains) if they can
be connected through an interface: This means that there is a plane Π ⊂ R3

and a function u ∈ H1(R3, R3) with e(u) = A, respectively e(u) = B, on both
sides of the interface. The corresponding alternating pattern between the two
strains is called a twin pattern while the corresponding stress-free interfaces are
twin planes. The direction normal to the twin planes is called twin direction.
A straightforward calculation shows that two strains A and B are compatible if
and only if A− B = a� b, for some vectors a, b ∈ R3. The two possible twin
directions are then given by the directions parallel to a and b.

For the cubic-to-tetragonal phase transformation (1), the single variants of
martensite are mutually compatible. More precisely, we have for i 6= j

e(i) − e(j) = 6εijk(bij � bji), (2)

where εijk is the sign of the permutation (ijk). Furthermore the vectors bij are
given by

b12 =
1√
2

1
1
0

 , b31 =
1√
2

1
0
1

 , b23 =
1√
2

0
1
1

 ,

b21 =
1√
2

−1
1
0

 , b13 =
1√
2

−1
0
−1

 , b32 =
1√
2

 0
−1
1

 .

(3)

We introduce some further notation: The set of two possible twin directions
for laminates between the martensite variants i and j, i 6= j is denoted by Bij ,
i 6= j, i.e.

Bij :=
{
bij , bji

}
,

note that Bij = Bji. The set of all four twin directions for laminates including
variant i is denoted by

Bi := Bij ∪ Bik =
{
bij , bji, bik, bki

}
where (ijk) is an arbitrary permutation of (123). Finally, the set of all six twin
directions for any pair of martensite variants is denoted by

B := B1 ∪ B2 ∪ B3 =
{
b12, b21, b31, b13, b23, b32

}
.
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A straightforward calculation shows that no single variant of martensite is com-
patible with the austenite. However, compatibility of the austenite with certain
convex combinations of the martensite variants does hold. Indeed, for all i 6= j
we have (

1
3
e(i) +

2
3
e(j)

)
− e(0) = 2εijk(bjk � bkj). (4)

where (ijk) is a permutation of (123) and where εijk is the sign of the permu-
tation (ijk). We also recall that e(0) = 0. The above calculation (4) shows
that by a fine scale oscillation of two martensite variants, the corresponding
macroscopic strain allows for a (macroscopically) stress-free interface with the
austenite. This macroscopically stress-free interface separating the austenite
and a pair of martensite variants is also called habit plane. The corresponding
normal direction is called habit direction.

2.3 Self-accommodation

The notion of compatibility ensures that two strains can be connected via an
interface across which the displacement is continuous. However, in the situation
of a certain phase (e.g. martensite) embedded into a matrix of another phase
(e.g. austenite), it is desirable to have a construction which avoids macroscopic
stress in all three spatial directions. In particular, a fine scale oscillation of two
martensite variants can avoid the creation of macroscopic stress along certain
planes separating martensite and austenite (habit planes, see also (4)). However,
such a configuration still may lead to the creation of macroscopic stress in normal
direction to the interface. This issue motivates to introduce the concept of self-
accommodation. In contrast to the notion of compatibility which is concerned
about the possibility of stress-free interfaces, the notion of self-accommodation
is concerned about the possibility of stress-free three-dimensional configurations.

In the spirit of [2], we say that a set of strains {E1, . . . , En} ⊂ Σ(3) is self-
accommodating with respect to another strain A0 if for any bounded Ω ⊂ R3,
there is a sequence of functions uk ∈ H1(R3) such that e(uk) → E0 in R3\Ω
and e(uk) ∈ {E1, . . . , En} in Ω eventually for almost all x ∈ R3. A particular
important situation is the case when the set of strains is the set of all martensite
strains and A0 is the austenite strain. Note that the set of martensite strains
(1) satisfies

e(1) + e(2) + e(3) = 0. (5)

This cancellation indicates that self-accommodation is possible for our set of
martensite strains. Indeed, our constructions shows that the three strains e(1),
e(2) and e(3) are self-accommodating. Note that self-accommodation in a more
general setting has been investigated by Bhattacharya for different types of
phase transformations [2].

2.4 Energy

In the piecewise linear elasticity theory the deviation of the displacement strain
from the energy wells is penalized by Hooke’s Law, see e.g. [3, Ch. 11]. In
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general, the energy is given by

Eelast[u] =
∫

R3
min

i=0,1,2,3

ω(i) +
∑

α,β,γ,δ

C(i)
αβγδ

(
e(u)− e(i)

)
αβ

(
e(u)− e(i)

)
γδ

 ,

(6)

where the elastic rank-4 tensors C(i) are the elastic moduli of the austenite and
the three martensite phases and where the constants ω(i) are the corresponding
energy densities of martensite and austenite. We assume that the variants of
martensite have the same energy, i.e. ω(1) = ω(2) = ω(3). By renormalization
of the energy, we may also assume that ω(0) = 0. Since we will consider the
case when the total volume of martensite is prescribed we will even assume that
ω(i) = 0 for i = 1, 2, 3. We also assume that the phases are elastically isotropic
with identical strength of shear modus and vanishing second Lamé constant.
We hence consider the energy

Eelast[u] = κ

∫
R3

min
i=0,1,2,3

‖e(u)− e(i)‖2. (7)

In fact, since we are only concerned about the scaling of the minimal energy (but
not the leading order constant), our results also extend to the general energy
(6) with ω(i) = 0, i = 1, 2, 3, as long as the tensors C(i) are non-degenerate. The
extension of our results to the of arbitrary ω(i) with ω(1) = ω(2) = ω(3) is also
straightforward, see [15]. Note that the minimization in (7) also determines the
areas which are occupied by the particular variants of martensite. We introduce
three characteristic functions χi, i = 1, 2, 3 for the region occupied by the i-th
variant of martensite,

χ1, χ2, χ3 ∈ BV (R3, {0, 1}), χ1 + χ2 + χ3 ≤ 1. (8)

Instead of defining the characteristic functions by minimization in (7), we rather
express the elastic energy directly in terms of χi. We therefore use the elastic
energy in the form

Eelast[χ] = κ inf
u∈H1(R3,R3)

∫
R3
‖e(u)−

3∑
i=1

χie
(i)‖2 dx. (9)

Indeed, both energies (7) and (9) agree with each other if the functions χi are
the indicator functions for the region occupied by the martensite variant i and
if the displacement is u chosen energetically optimal. We refer to [3, p.102] for
further reading.

One benefit of this description of the energy is that the interfacial energy can
be defined conveniently. We define the following anisotropic interfacial energy

Einterf [χ] := σ

∫
R3

(|∇χ1|+ |∇χ2|+ |∇χ3|) dx, (10)

where the parameter σ measures the strength of interfacial energy. The varia-
tional model we consider consists of these two terms,

E [χ] := Einterf [χ] + Eelast[χ]. (11)
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3 Main result and overview of the proof

3.1 Main result

The main result in this paper is the dependence of the energy of martensitic
inclusions on their volume. Note that the total volume of martensite can be
conveniently expressed in terms of the characteristic functions

V :=
∫

R3
(χ1 + χ2 + χ3) dx. (12)

With this notation, we have

Theorem 1. 1. (Minimal scaling of the energy) The minimal scaling of the
energy (16) is

inf
χ satisfies (8)

E [χ] ∼
{

σV 2/3 if V ≤ σ3κ−3,
σ6/11κ5/11V 9/11 if V ≥ σ3κ−3,

(13)

where V is defined by (12).

2. (Equipartition of energy) Suppose that the minimal scaling of the energy
(13) is achieved by χ. Then for large volumes, V ≥ σ3κ−3, we have
equipartition of energy in the sense that

Einterf [χ] ∼ Eelast[χ] ∼ σ6/11κ5/11V 9/11. (14)

Furthermore, for small volumes, V ≤ σ3κ−3, the interfacial energy domi-
nates, i.e. Eelast[χ] . Einterf [χ].

Theorem 1 determines the scaling of the minimal energy up to a universal con-
stant. At the core of the analysis is the proof of the lower bound which will be
given in Section 5. The proof of the upper bound follows by a specific construc-
tion which is presented in detail in Section 6.

Notice that our estimate (13) only addresses the scaling (but not the leading
order constant) of the minimal energy. For this reason it cannot predict the
precise shape of the minimizer. In fact, we believe that it would be necessary to
use the Euler-Lagrange equation to obtain the precise shape of the minimizer.
However, our analysis does give some necessary conditions on the qualitative
shape of the minimizer; these conditions are stated in Proposition 1 and 2.

In the following we motivate and sketch the shape and structure of an inclu-
sion which does achieve the minimal scaling of energy (13), see Figure 3. The
construction is motivated by the following three observations:

• Incompatibility of each single variant: No single variant of martensite is
compatible with the austenite.

• Compatibility of two variants: A convex combination of two martensite
variants is compatible with the austenite.

• Self-accommodation of three variants: The set of all three martensite vari-
ants together is self-accommodating.
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Figure 3: 2-d sketch for an inclusion achieving minimal scaling of energy
in Theorem 2. Created using Matlab.

b
2

n

These observations motivate the following ansatz for the optimal inclusion: In
order to achieve self-accommodation, the inclusion should contain all three vari-
ants of martensite in equal volume fraction. Since, locally, laminates between
two variants are preferred, the inclusion is divided into two macroscopic layers
where the first layer only consists of the martensitic variants 1 and 2 while the
second layer consists of the martensitic variants 1 and 3, see Figure 3. In each
macroscopic layer, the regions occupied by the single variants of martensite re-
fine towards the martensite austenite surface. Furthermore, the the shape of
the inclusion as a whole resembles a lens where the normals to the two large
surfaces are oriented with one of the habit direction between martensite and
austenite. Notice that constructions with self-similar refinement in have been
used before in linear elasticity theory, see e.g. [19, 4, 5] and other settings, see
e.g. [21, 7, 8, 6, 16]. Furthermore, our construction can be seen as a realization
of the second order twins of Bhattacharya [2].

Notice that the above theorem describes the energy barrier for the transforma-
tion from austenite to martensite. However, for the reverse transformation, the
result does not apply directly. In fact, in order to achieve self-accommodation,
a macroscopic change of the lattice pattern might be necessary. This consid-
eration suggests that there should be a higher energy barrier for the reverse
transformation. To analyze the precise energy barrier for this situation seems
to be an interesting open question.

3.2 Non-dimensionalization

We non-dimensionalize and rescale the model as follows: We measure length
in units of σ

κ and energy in units of σ3

κ2 . The rescaled energy, expressed in the
non-dimensionalized variable is then given by

Eelast[χ] = inf
u∈H1(R3,R3)

∫
R3
‖e(u)−

3∑
i=1

χie
(i)‖2 dx. (15)

while the interfacial energy is given by

Einterf [χ] :=
∫

R3
(|∇χ1|+ |∇χ2|+ |∇χ3|) dx. (16)

Finally, the total energy is determined by the relation

E[χ] := Einterf [χ] + Eelast[χ].

9



With this rescaling, we obtain the following rescaled version of Theorem 1:

Theorem 2. 1. (Minimal scaling of the energy) The minimal scaling of the
energy (16) is

inf
χ satisfies (8)

E[χ] ∼
{

V 2/3 if V ≤ 1,
V 9/11 if V ≥ 1,

(17)

where V is defined by (12).

2. (Equipartition of energy) Suppose that the minimal scaling of the energy
(17) is achieved by χ. Then for large volumes, V ≥ 1, we have equiparti-
tion of energy in the sense that

Einterf [χ] ∼ Eelast[χ] ∼ V 9/11. (18)

Furthermore, for small volumes, V ≤ 1, the interfacial energy dominates,
i.e. Eelast[χ] . Einterf [χ].

3.3 Overview of the proof of the lower bound

For the proof of the lower bound of the energy, we combine two estimates related
to self-accommodation and compatibility. More precisely, we will use the fact
that in order to achieve self-accommodation, all three variants of martensite
have to appear in equal volume fractions. In fact, if the three variants (locally)
do not appear in equal volume fraction, then we obtain a lower bound on the
elastic energy (Proposition 1). On the other hand, due to the incompatibility of
the single martensite variants with the austenite, it is energetically expensive if
(locally) all three martensite variants appear which yields another lower bound
for the energy (Proposition 2). The proof of the lower bound of the theorem
follows by combining these two lower bounds.

For the proof of the lower bound it is essential to identify a suitable length scale
which connects interfacial energy with the elastic energy. We use the operation
of convolution to detect this local length scale. We recall the definition of the
convolution:

Definition 1. Consider a function f(x). We denote by fL(x) its mollification
on length scale L, that is, its convolution with the kernel ϕL(x) = 1

L3 ϕ1( x
L ),

where ϕ1 is a universally chosen function with∫
R3

ϕ1 dx = 1, suppϕ1 ⊂ B1(0), sup |Fϕ1(k)| ≤ C,

∫
R3
|Fϕ1(k)| < ∞.

The first proposition is related to the phenomenon of self-accommodation and in-
volves only the elastic energy. By self-accommodation we mean the phenomenon
that by a suitable microstructure of martensitic twins, the elastic energy can
be made arbitrarily small for a martensitic inclusion of volume V and arbitrary
shape. The lemma states that this can only be achieved for a microstructure
where the martensitic phases have identical volume fraction. Here, volume frac-
tion is meant with respect to a given length scale L (which will be chosen in the
proof of Theorem 2) and defined via convolution.
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Proposition 1. For any χ1, χ2, χ3 satisfying (8) and for any L > 0, we have∫
R3

(
(χ2,L − χ3,L)2 + (χ3,L − χ1,L)2 + (χ1,L − χ2,L)2

)
dx

. max{V (L−3Eelast)1/2, Eelast},
(19)

where V is defined in (12)

The second proposition is related to the phenomenon of compatibility. It in-
volves both elastic and interface energy. At its core lies the fact that each
single variant of martensite is incompatible with the austenite. An inclusion of
martensite into a matrix of austenite hence requires fine twinning of the marten-
site variants. The characterized scaling L1/3 of the energy where L represents
the thickness of the martensite inclusion is also observed in other problems re-
lated to branching phenomena, see e.g. [19]. In particular, the proposition
provides a full-space variant of the rigidity result in [4].

Proposition 2. For any χ1, χ2, χ3 satisfying (8) and for any L > 0, we have∣∣∣∣∫
R3

(χ̃1 − χ̃1,L)(χ̃2 − χ̃2,L)(χ̃3 − χ̃3,L) dx

∣∣∣∣
. L1/3

(
E

2/3
interfE

1/3
elast

)1/2

V 1/2,

(20)

where V is defined in (12) and where the functions χ̃i, i = 1, 2, 3 are defined in
(22).

Let us sketch the argument how the proof of the lower bound follows from the
two propositions (the precise proof is given in Section 5.3). Consider a fixed
length scale L > 0. We start with the following (mathematically not fully
precisely stated) dichotomy: Either, (1) all three martensite variants appear in
the same volume fraction on length scales of size L or (2) they do not appear in
equal volume fraction on length scales of size L. We will give a precise version
of this dichotomy in the proof of Theorem 2 showing that for any L > 0 at
least one of the left hand sides of (19) or (20) scales like the volume. The lower
bound then follows by optimization in L. We remark that the length scale L
which appears both in the proof of lower as well as upper bound represents the
thickness of the expected optimal lens-shaped inclusion.

The detailed proof Propositions 1-2 and of the lower bound of Theorem 2 will
be given in Section 5.

4 Elastic energy and laminar structure

4.1 Fourier representation of the elastic energy

We start with the observation in [4] that the elastic energy can be written as

Eelast[χ, u] = inf
e

∫
R3

∥∥∥∥∥∥e(u)−

χ̃1 0 0
0 χ̃2 0
0 0 χ̃3

∥∥∥∥∥∥
2

dx, (21)
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where χ̃ := (χ̃1, χ̃2, χ̃3) is given by χ̃1 := −2χ1 + χ2 + χ3,
χ̃2 := χ1 − 2χ2 + χ3,
χ̃3 := χ1 + χ2 − 2χ3.

(22)

Since this is a problem in the whole space, it is natural to appeal to the Fourier
transform F and express the energy in terms of the Fourier transformed function
F χ̃ = (F χ̃1,F χ̃2,F χ̃3). The Fourier representation of the elastic field has been
extensively studied in the literature, see e.g [13]. For the convenience of the
reader we sketch the proof. For details, we refer to a corresponding derivation
in a periodic geometry in [4, Lemma 3.1].

Lemma 1. The elastic energy, defined in (7) can be expressed by

Eelast =
∫

R3
(F χ̃)tM(k̂)F χ̃ dk, (23)

where the tensor-valued symmetric and positive semi-definite multiplier M(k̂) is
given by

M(k̂) :=

 (k̂2
2 + k̂2

3)
2 k̂2

1 k̂
2
2 k̂2

1 k̂
2
3

k̂2
2 k̂

2
1 (k̂2

1 + k̂2
3)

2 k̂2
2 k̂

2
3

k̂2
3 k̂

2
1 k̂2

3 k̂
2
2 (k̂2

1 + k̂2
2)

2

 (24)

and where k̂ := k
|k| is the normalized wave-vector k.

Proof. In view of the representation (21) and by Plancherel, the elastic energy
can be expressed by

Eelast =
∫

R3

∥∥∥∥∥∥i(k �Fu)−

F χ̃1 0 0
0 F χ̃2 0
0 0 F χ̃3

∥∥∥∥∥∥
2

dk.

The Euler-Lagrange equation for the above functional can be explicitly solved:
A straightforward calculation yields that the solution Fu is given by

i|k|Fu(k) = 2Qk̂ − (k̂, Qk̂)k̂. (25)

where we have introduced the notation Q = diag(F χ̃1,F χ̃2,F χ̃3). In particular,
by testing (25) with k̂�, we get

i(k �Fu) = 2(Qk̂ � k̂)− (k̂, Qk̂)(k̂ ⊗ k̂) (26)

and hence

‖i(k �Fu)−Q‖2 = ‖2(Qk̂ � k̂)− (k̂, Qk̂)(k̂ ⊗ k̂)−Q‖2. (27)

Note that since Q is symmetric, we have

Qk � k̂ : Q = |Qk̂|2 and k̂ ⊗ k̂ : Q = (k̂, Qk̂). (28)
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Also using the identities (a⊗b) : (c⊗d) = (a, c)(b, d), 2‖a�b‖2 = |a|2|b|2+(a, b)2

and (a � b) : (b ⊗ b) = (a, b)|b|2 which hold for all a, b, c, d ∈ R3, equality (27)
simplifies to

‖i(k �Fu)−Q‖2 = ‖Q‖2 − 2|Qk̂|2 + (k̂, Qk̂)2.

We therefore get

‖i(k �Fu)−Q‖2 =
3∑

i=1

|F χ̃i|2 − 2
3∑

i=1

|k̂i|2|F χ̃i|2 +

∣∣∣∣∣
3∑

i=1

k̂2
iF χ̃i

∣∣∣∣∣
2

=
3∑

i=1

(1− 2k̂2
i + k4

i )|F χ̃i|2 +
3∑

i,j=1

k̂ik̂jF χ̃iF χ̃j

(24)
= (F χ̃)tM(k̂)F χ̃.

This concludes the proof of the lemma.

4.2 Lower bound for the elastic energy

It is helpful to characterize the elastic energy in terms of the modified character-
istic functions χ̃j and Fourier multipliers mj which will be defined in (30). The
following lemma is taken from Lemma 3.1 and Step 1 in the proof of Proposition
2.4 in [4]. We reproduce its proof, since there is a gap in the argument of Step
1 in the proof of Proposition 2.4 in [4]: the identity of the zero set of two (even
homogeneous) Fourier multipliers does not imply that they are comparable.

Lemma 2. We have

Eelast &
3∑

j=1

∫
R3

mj |F χ̃j |2 dk, (29)

where for j = 1, 2, 3 the multiplier mj(k̂), k̂ := k
|k| , is defined by

mj(k) := dist2(k̂,Bj). (30)

Proof. Note that by definition we have χ̃1 + χ̃2 + χ̃3 = 0 so that F χ̃1 + F χ̃2 +
F χ̃3 = 0. Hence we need to show that

ctM(k̂)c̄ ≥
3∑

j=1

mj(k̂)|cj |2, (31)

for all c = (c1, c2, c3) ∈ C3 with c1+c2+c3 = 0 and where the Fourier multipliers
mj are given by (30). By symmetry, we may assume without loss of generality
that c is ordered, i.e.

|c1| ≤ |c2| ≤ |c3|. (32)

13



Under the assumption (32) we will even show that

ctM(k̂)c̄ & |c1|2, (33)

ctM(k̂)c̄ & dist2(k̂,B23)|c2|2, (34)

ctM(k̂)c̄ & dist2(k̂,B23)|c3|2. (35)

Clearly, since B23 = B2 ∩ B3, these three estimates yield (31). Notice further-
more, that since c1+c2 = −c3 and by (32) we have |c2| ≤ |c3| ≤ |c1|+|c2| ≤ 2|c2|
and hence

|c2| ∼ |c3|, (36)

i.e. the middle component of c still controls the length of the whole vector. In
particular, (34) and (35) are equivalent so that it suffices to prove (33) and (34).
In view of (24), we calculate

ctM(k̂)c = (k̂2
2 + k̂2

3)
2|c1|2 + (k̂2

3 + k̂2
1)

2|c2|2 + (k̂2
1 + k̂2

2)
2|c3|2

+ 2k̂2
1 k̂

2
2Re(c1c̄2) + 2k̂2

1 k̂
2
3Re(c1c̄3) + 2k̂2

2 k̂
2
3Re(c2c̄3)

= |k̂2
2c3 + k̂2

3c2|2 + |k̂2
3c1 + k̂2

1c3|2 + |k̂2
1c2 + k̂2

2c1|2

+ 2k̂2
2 k̂

3
3|c1|2 + 2k̂2

1 k̂
3
3|c2|2 + 2k̂2

1 k̂
2
2|c3|2. (37)

Replacing c3 = −c1 − c2 in the term |k̂2
2c3 + k̂2

3c2|, we obtain

|k̂2
2c3 + k̂2

3c2|2 = |(k̂2
2 − k̂2

3)c2 + k̂2
2c1|2 ≥ 1

2
(k̂2

2 − k̂2
3)

2|c2|2 − k̂4
2|c1|2. (38)

where we used that (a + b)2 ≥ 1
2a2 − b2 for all a, b ∈ R. Furthermore, we use

the estimate

|k̂2
1c2 + k̂2

2c1|2 ≥ k̂4
1|c2|2 + k̂4

2|c1|2 − 2k̂2
1 k̂

2
2|c1||c3|

(32)

≥ k̂4
1|c2|2 + k̂4

2|c1|2 − 2k̂2
1 k̂

2
2|c3|2. (39)

Finally, we trivially have

|k̂2
2c3 + k̂2

3c2| ≥ 0, (40)

Inserting (39), (38) and (40) into (37), we infer that

ctM(k̂)c ≥ 1
2
(k̂2

2 − k̂2
3)

2|c2|2 + k̂4
1|c2|2 + 2k̂2

2 k̂
3
3|c1|2 + 2k̂2

1 k̂
2
3|c2|2. (41)

Now, in view of (32), this yields

ctM(k̂)c
(32)

≥
(

1
2
(k̂2

2 − k̂2
3)

2 + k̂4
1 + 2k̂2

2 k̂
3
3 + 2k̂2

1 k̂
2
3

)
|c1|2

=
(

1
2
(k̂2

2 + k̂2
3)

2 + k̂4
1 + 2k̂2

1 k̂
2
3

)
|c1|2

& |c1|2,
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where the last estimate is a consequence of |k̂| = 1. This completes the proof of
(33). We next turn to the proof of (34): Again from (41), we have

ctM(k̂)c ≥
(

1
2
(k̂2

2 − k̂2
3)

2 + k̂4
1 + 2k̂2

1 k̂
2
3

)
|c2|2.

Hence, in order to prove (34), we need to show that

1
2
(k̂2

2 − k̂2
3)

2 + k̂4
1 + 2k̂2

1 k̂
2
3 & k̂2

1 + min{(k̂2 + k̂3)2, (k̂2 − k̂3)2}. (42)

Observe that (42) holds if |k̂1| & 1 or |k̂2 − k̂3| & 1. Therefore we may assume
|k̂1| � 1 and |k̂2 − k̂3| � 1 and in particular (also using that |k̂| = 1),

|k̂1| � 1 and |k̂2| ∼ |k̂3| ∼ 1. (43)

The estimate (42) now follows easily: Since by (43), we have k̂2
1 k̂

2
3 ∼ k̂2

1, it
follows that

1
2
(k̂2

2 − k̂2
3) + k̂4

1 + 2k̂2
1 k̂

2
3

(43)

& (k̂2
2 − k̂2

3)
2 + k̂2

1 = k̂2
1 + (k̂2 − k̂3)2(k̂2 + k̂3)2

(43)∼ k̂2
1 + min{(k̂2 − k̂3)2, (k̂2 + k̂3)2}.

This concludes the proof of (34) and hence of the lemma.

4.3 Decomposition into almost laminates

In this section, we give two ’rigidity results’, i.e. we show that the indicator
functions χk (and χ̃k), k = 1, 2, 3, can be decomposed into a set of functions
which are almost laminates if the energy is low. These results are global versions
of corresponding results in a periodic setting in [4]. We give a first decomposition
in Lemma 3, then this result is refined in Proposition 3.

Lemma 3. There exist functions fj,bij , j = 1, 2, 3, bij ∈ Bij, such that

χ̃1 = f1,b23 + f1,b32 + f1,b31 + f1,b13 + f1,b12 + f1,b21 ,
χ̃2 = f2,b23 + f2,b32 + f2,b31 + f2,b13 + f2,b12 + f2,b21 ,
χ̃3 = f3,b23 + f3,b32 + f3,b31 + f3,b13 + f3,b12 + f3,b21 .

(44)

Furthermore, we have for any bij ∈ Bij, i, j = 1, 2, 3,

f1,bij + f2,bij + f3,bij = 0. (45)

Additionally, the variation of fj,bij within the twin plane with normal bij is
controlled in the sense that for all i, j = 1, 2, 3, i 6= j we have

1
|s|2/3

∫
R3
|fj,bij − fj,bij (·+ sa)|2 dx . E

2/3
interfE

1/3
elast (46)

for any unit vector a with a · bij = 0 and all s ∈ R. Moreover, fj,bij satisfies∫
R3
|fj,bij |4 dx . V. (47)
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Proof. We select a partition of unity {ηb(k̂)}b∈B of the unit sphere in Fourier
space such that for any b ∈ B, ηb = 1 in a neighborhood of b. Furthermore, we
choose ηb to be even, i.e. ηb(−k̂) = ηb(k̂). We define the 18 functions fi,b in
(44) by using ηb as Fourier multipliers, i.e.

fj,b := (F−1ηbF)χ̃j . (48)

Since {ηb}b∈B is a partition of unity, it follows that (44) and (45) are satisfied.
It remains to give the proof of the estimates (46) and (47) which is is divided
into several steps. We fix j ∈ {1, 2, 3}, b ∈ B and a unit vector a with a · b = 0.

Step 1: We first consider the elastic energy: Note that by our definition of the
function ηb we have ηb = 0 in the neighborhood of any b′ with b′ ∈ B, b′ 6= b. In
particular, in view of the definition of the functions mj , we have

mj(k̂)ηb(k) & (a · k̂)2ηb(k). (49)

for any unit vector a with a · b = 0. In view of Lemma 3 this yields

Eelast

(29)

&
∫

R3
(a · k̂)2|F χ̃j |2 dk

(48)

&
∫

R3

1
|k|2

|(a · k)Ffj,b|2 dk

=
∫

R3

1
|k|2

|F∂afj,b|2 dk. (50)

Clearly, this estimate still holds when the derivative is replaced by a correspond-
ing finite difference: For every s ∈ R we have

Eelast &
∫

R3

1
s2|k|2

|F(fj,b − fj,b(·+ sa))|2 dk.

We only need the control on the low frequencies, i.e. for any L > 0 (which will
be fixed later) we have

s2

L2
Eelast &

∫
{L|k|≤1}

|F(fj,b − fj,b(·+ sa))|2 dk. (51)

Step 2: We now turn to the interfacial energy: In order to pass from the χj ’s
via the χ̃j ’s to the fj,b’s we first express interfacial energy on an L2-level and
then on the Fourier level. We first pass from the functions χj to the functions
χ̃j and from the perimeter to the L2-level: For all vectors c ∈ R3, we have

Einterf &
3∑

k=1

1
|c|

∫
R3
|χk − χk(·+ c)| dx

&
1
|c|

sup
x
|χ̃j |

∫
R3
|χ̃j − χ̃j(·+ c)| dx

&
1
|c|

∫
R3
|χ̃j − χ̃j(·+ c)|2 dx. (52)

By Plancherel’s theorem (52) can be equivalently expressed in frequency vari-
ables. Furthermore, in terms of the frequencies variables, we only need the
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control of the interfacial energies over the high frequency spectrum of fj,b. For
any L to be fixed later, we hence estimate

|c|Einterf

(52)

&
∫

R3
|(1− eic·k)F χ̃j |2 dk

≥
∫
{L|k|≥1}

|(1− eic·k)F χ̃j |2 dk. (53)

We integrate (53) in c over the sphere ∂BL with radius L = |c|. Furthermore
exchanging the order of integration, we get

L3Einterf &
∫

∂BL

∫
{L|k|≥1}

|(1− eic·k)F χ̃j |2 dk dc

=
∫
{L|k|≥1}

|F χ̃j |2
∫

∂BL

|1− eic·k|2 dc dk

& L2

∫
{L|k|≥1}

|F χ̃j |2 dk. (54)

where in order to get the last line in the above argument we have used∫
∂BL

|1− eic·k|2 dc ∼
∫ L

−L

sin2(|k|x1)
√

L2 − x2
1 dx1

= L2

∫ 1

−1

sin2(|k|Lt)
√

1− t2 dt

& L2

∫ 1/2

−1/2

sin2(|k|Lt) dt ∼ L2. (55)

The last equivalence holds true since the sinus function satisfies sin & 1 for a
considerable part (& 1) of its period (here the assumption L|k| & 1 is needed).
In view of the definition (48), estimate (54) can also be expressed in terms of
the function fj,b,

LEinterf &
∫
{L|k|≥1}

|Ffj,b|2 dk.

We reformulate the last estimate in terms of finite differences,

LEinterf &
∫
{L|k|≥1}

|F(fj,b − fj,b(·+ sa))|2 dk, (56)

since in this form, we may combine it with (51).

Step 3: We turn to the proof of (46)–(47). By (51) and (56), we have∫
R3
|F(fj,b − fj,b(·+ sa))|2 dk . s2L−2Eelast + LEinterf . (57)

Minimizing the right hand side of (57) in L yields L = |s|2/3E
1/3
elastE

−1/3
interf and∫

R3
|fj,b − fj,b(·+ sa)|2 dx =

∫
R3
|F(fj,b − fj,b(·+ sa))|2 dk

. |s|2/3E
2/3
interfE

1/3
elast
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which concludes the proof of (46).

We now turn to the estimate of (47). Since ηb(k) ∈ [0, 1] is smooth and 0-
homogeneous, we can apply the Hörmander-Mihlin multiplier theorem [11, Thm.
5.2.7] which ensures L4(R3)-boundedness of ηb as a multiplier, i.e.∫

R3
|fj,b|4 dx .

∫
R3
|χ̃j |4 dx .

3∑
k=1

∫
R3
|χk|4 dx =

3∑
k=1

∫
R3

χk dx = V.

This yields (47) thus concluding the proof of the lemma.

The decomposition in 3 can be refined as follows:

Proposition 3. There exist 6 functions fbij with bij ∈ Bij such that

χ̃1 = − fb31 − fb13 + fb12 + fb21 ,
χ̃2 = + fb23 + fb32 − fb12 − fb21 ,
χ̃3 = − fb23 − fb32 + fb31 + fb13 .

(58)

Furthermore, for any fbij
we have the following control on the variation in

directions orthogonal to bij,

1
|s|2/3

∫
R3
|fbij

(x)− fbij
(x + sa)|2 dx . E

2/3
interfE

1/3
elast (59)

for any unit vector a with a · bij = 0 and all s ∈ R. Moreover, fbij
satisfies∫

R3
|fbij (x)|4 dx . V. (60)

Proof. Note that the estimate (49) in the proof of Lemma 3 can be strengthened:
Indeed, if b ∈ B\Bj , then (49) holds for any unit vector a, i.e.

mj(k)ηb(k)
(30)

& ηb(k) & (a · k̂)2ηb(k). (61)

This estimate is stronger than the corresponding estimate (49) which only ap-
plies if a and b are orthogonal. The functions fk,ij with k 6∈ {i, j} hence have a
small modulus of continuity independent of the direction. This will be used to
reduce the number of functions in the decomposition. We first observe that in
view (45), we can rewrite the tableau (44) as

χ̃1 = + f1,b23 + f1,b32 − f3,b31
:::::::

− f3,b13
:::::::

+ f1,b12
:::::::

+ f1,b21
:::::::

− f2,b31 − f2,b13 ,

χ̃2 = + f2,b23
:::::::

+ f2,b32
:::::::

+ f2,b31 + f2,b13 − f1,b12
:::::::

− f1,b21
:::::::

− f3,b12 − f3,b21 ,

χ̃3 = − f2,b23
:::::::

− f2,b32
:::::::

+ f3,b31
:::::::

+ f3,b13
:::::::

+ f3,b12 + f3,b21

− f1,b23 − f1,b32 ,

(62)

where we have underlined the functions where the modulus of continuity is only
controlled in certain directions (the other function should be “absorbed” into
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these functions). Note that all functions in the tableau (62) appear in pairs:
twice in every column and with alternating sign. This motivates to define the 6
functions fb, b ∈ B as follows

fb12 := f1,b12 − f2,b31 , fb21 := f1,b21 − f2,b13 ,

fb23 := f2,b23 − f3,b12 , fb32 := f2,b32 − f3,b21 ,

fb31 := f3,b31 − f1,b23 , fb13 := f3,b13 − f1,b32 ,

(63)

Note that in view of (61), the functions fb still satisfy (49). By repeating the
arguments in the proof of the previous lemma, it is then clear that the functions
fb also satisfy the estimates (59)-(60). Furthermore, in view of (62), it follows
that we indeed get (58).

5 Proof of the lower bound

5.1 Proof of Proposition 1

In this section, we give the proof of Proposition 1. For the proof, we use the
lower bound of the energy given in Lemma 2. Let

m(k̂) := inf
{
m1(k̂), m2(k̂), m3(k̂)

}
.

By Lemma 2, we then have in particular,

Eelast &
∫

R3
m(k̂)

(
|F χ̃1|2 + |F χ̃2|2 + |F χ̃3|2

)
dk,

From the definition (30), we just need to use that for 0 < ε . 1 we have

H2
({

k̂ ∈ S2 | m(k̂) ≤ ε2
})

. ε2. (64)

Indeed, because of the (at most) quadratic vanishing of m, the set{
k̂ ∈ S2 | m(k̂) ≤ ε2

}
is contained in the union of 2 × 6 disks of radius ∼ ε, with a two-dimensional
measure ∼ ε2 each. In order to pass from the functions χ̃ to the characteristic
functions χi, we note that by definition (22) we have 3(χ2 − χ3) = χ̃3 − χ̃2

3(χ3 − χ1) = χ̃1 − χ̃3

3(χ1 − χ2) = χ̃2 − χ̃1

(65)

Using (65), we obtain∫
R3

m(k̂)
(
|F(χ2 − χ3)|2 + |F(χ3 − χ1)|2 + |F(χ1 − χ2)|2

)
dk . Eelast. (66)

By definition of our mollification (1), we have for all i, j = 1, 2, 3,

|F(χi,L − χj,L)(k)| = (2π)3/2|FϕL(k)| |F(χi − χj)(k)|
. |Fϕ1(Lk)| |F(χi − χj)(k)|
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so that∫
R3

(
(χ2,L − χ3,L)2 + (χ3,L − χ1,L)2 + (χ1,L − χ2,L)2

)
dx

.
∫

R3
|Fϕ1(Lk)|

(
|F(χ2 − χ3)|2 + |F(χ3 − χ1)|2 + |F(χ1 − χ2)|2

)
dk. (67)

We need a last ingredient, which brings in the total martensitic volume: By
definition of the Fourier transform we have for all k:

|Fχ1|+ |Fχ2|+ |Fχ3| ≤
1

(2π)3/2

∫
(|χ1|+ |χ2|+ |χ3|) dx

(12)

. V,

so that in particular

|F(χ2 − χ3)|2 + |F(χ3 − χ1)|2 + |F(χ1 − χ2)|2 . V 2. (68)

We now may conclude by splitting the integral in k-space; for any 0 < ε . 1 we
have∫

R3

(
(χ2,L − χ3,L)2 + (χ3,L − χ1,L)2 + (χ1,L − χ2,L)2

)
dx

(67)

.
∫
{m(k̂)≥ε2}

|Fϕ1(Lk)|
(
|F(χ2 − χ3)|2 + |F(χ3 − χ1)|2 + |F(χ1 − χ2)|2

)
dk

+
∫
{m(k̂)≤ε2}

|Fϕ1(Lk)|
(
|F(χ2 − χ3)|2 + |F(χ3 − χ1)|2 + |F(χ1 − χ2)|2

)
dk

≤ 1
ε2

∫
R3

m(k̂)
(
|F(χ2 − χ3)|2 + |F(χ3 − χ1)|2 + |F(χ1 − χ2)|2

)
dk

+
∫
{m(k̂)≤ε2}

|Fϕ1(Lk)| dk

× sup
k

(
|F(χ2 − χ3)|2 + |F(χ3 − χ1)|2 + |F(χ1 − χ2)|2

)
(66),(64),(68)

.
1
ε2

Eelast +
ε2

L3
V 2,

where in order to get the last line we have calculated∫
{m(k̂)≥ε2}

|Fϕ1(Lk)| dk . H2({m(k̂) ≥ ε2})L−3

∫ ∞

0

|Fϕ1(q)|dq

∼ ε2L−3. (69)

We optimize by choosing ε2 = E
1/2
elastL

3/2V −1, which is admissible for Eelast �
V 2

L3 . In the opposite case, that is, for Eelast & V 2

L3 we choose ε = 1.

5.2 Proof of Proposition 2

In this section we address the proof of Proposition 2. Before presenting the proof
of the proposition at the end of the section, we start by stating and proving two
auxiliary lemmas. The following lemma is a quantitative version of Step 4 in
the proof of [4, Theorem 2.1].
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Lemma 4. Let the three unit vectors b1, b2, b3 form a basis of R3. Consider
three functions f, g, h that have the following moduli of continuity: Suppose that
the change of f is controlled in direction b1 and b2,

1
|s|2/3

∫
R3
|f − f(·+ sb1)|2 dx +

1
|s|2/3

∫
R3
|f − f(·+ sb2)|2 dx ≤ Ccont (70)

for s ∈ R and that the change of g and h is controlled in direction b3,

1
|s|2/3

∫
R3
|g − g(·+ sb3)|2 dx +

1
|s|2/3

∫
R3
|h− h(·+ sb3)|2 dx ≤ Ccont. (71)

Furthermore, suppose that the following integrability condition is satisfied∫
R3
|f |4 dx +

∫
R3
|g|4 dx +

∫
R3
|h|4 dx ≤ Cint. (72)

Then we have

1
L1/3

∣∣∣∣∫
R3

(f − fL)(g − gL)(h− hL) dx

∣∣∣∣ . C
1/2
contC

1/2
int .

Proof of Lemma 4. We start with two reformulations of the statement of the
lemma. We first note that it is sufficient to prove the following asymmetric
version of Lemma 4

1
L1/3

∣∣∣∣∫
R3

(f − fL)gh dx

∣∣∣∣ . C
1/2
contC

1/2
int , (73)

since if we replace g and h by g − gL and h− hL, respectively, the assumptions
(70)-(71) and (72) are preserved up to universal factors. Because the unit vectors
b1, b2, b3 form a basis, in order to show (73), it is enough to prove

1
|s|1/3

∣∣ ∫
R3

(
f(x)− f(x + s1b1 + s2b2 + s3b3)

)
g(x)h(x) dx

∣∣ . C
1/2
contC

1/2
int

for each s = (s, s2, s3) ∈ R3.

Setting G := gh, we note that by the triangle inequality and Hölder’s inequality
we have(∫

R3
|G(x)−G(x + s3b3)|4/3 dx

)3/4

≤
(∫

R3
|g(x)− g(x + s3b3)|4/3|h(x)|4/3 dx

)3/4

+
(∫

R3
|g(x + s3b3)|4/3|h(x)− h(x + s3b3)|4/3 dx

)3/4

≤
(∫

R3
|g(x)− g(x + s3b3)|2 dx

)1/2 (∫
R3
|h(x)|4 dx

)1/4

+
(∫

R3
|g(x)|4 dx

)1/2 (∫
R3
|h(x)− h(x + s3b3)|2 dx

)1/4

. (Ccont|s3|2/3)1/2C
1/4
int = |s3|1/3C

1/2
contC

1/4
int .
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Moreover, by Hölder’s inequality∫
R3
|G|2 dx ≤

(∫
R3
|g|4 dx

)1/2 (∫
R3
|h|4 dx

)1/2

≤ Cint.

We hence have reduced Lemma 4 from its symmetric three-factor version to the
following asymmetric two-factor version: Under the assumptions∫

R3
|f(x)− f(x + s1b1 + s2b2)|2 dx ≤ (|s1|+ |s2|)2/3Ccont, (74)∫

R3
|G(x)−G(x + s3c)|4/3 dx ≤ |s3|4/9C

2/3
contC

1/3
int (75)∫

R3
|f |4 dx +

∫
R3
|G|2 dx ≤ Cint, (76)

we need to show that

1
|s|1/3

∣∣∣∣∫
R3

(f(x)− f(x + s1b1 + s2b2 + s3c))G(x) dx

∣∣∣∣ . C
1/2
contC

1/2
int . (77)

This estimate follows by a straightforward calculation using the triangle inequal-
ity and Hölder’s inequality:∣∣∣∣∫

R3
(f(x)− f(x + s1b1 + s2b2 + s3c))G(x) dx

∣∣∣∣
≤

∣∣∣∣∫
R3

(f(x)− f(x + s1b1 + s2b2))G(x) dx

∣∣∣∣
+

∣∣∣∣∫
R3

f(x + s1b1 + s2b2)(G(x)−G(x + s3c)) dx

∣∣∣∣
≤

(∫
R3
|f(x)− f(x + s1b1 + s2b2)|2 dx

)1/2 (∫
R3
|G(x)|2 dx

)1/2

+
(∫

R3
|f(x)|4 dx

)1/4 (∫
R3
|G(x)−G(x + s3c)|4/3 dx

)3/4

.
(
(|s1|+ |s2|)2/3Ccont

)1/2

C
1/2
int + C

1/4
int

(
|s3|4/9C

2/3
contC

1/3
int

)3/4

∼ |s|1/3C
1/2
contC

1/2
int

which concludes the proof of (77) and thus the proof of the lemma.

Proof of Proposition 2. Recall that we need to show∣∣∣∣∫
R3

(χ̃1 − χ̃1,L)(χ̃2 − χ̃2,L)(χ̃3 − χ̃3,L) dx

∣∣∣∣ . L1/3
(
E

2/3
interfE

1/3
elast

)1/2

V 1/2.

(78)

In view of the representation (58), the triple product in (78) with factors of the
form χ̃j − χ̃j,L is the sum of triple products with factors of the form fb − fb,L,
i.e. the left hand side in (78) can be expressed as a sum of terms of the form∫

R3
(f − fL)(g − gL)(h− hL) dx, (79)
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where

f = fb1 , g = fb2 , h = fb3 .

and where b1, b2, b3 ∈ B. From the representation (44), it is also clear that
not all vectors are equal, i.e. the case b1 = b2 = b3 does not occur. It hence
suffices to consider the case when either b1, b2, b3 form a basis or otherwise b2

and b3 are linear independent and b1 = b2. In the first case, we chose b′1 := b1,
in the second case we chose b′1 to be any vector independent of b2 and b3. In
particular, b′1, b2, b3 form a basis. We choose another basis a1, a2, a3 such that
a3 ⊥ b′1, b2 and a1, a2 ⊥ b3. Since a1, a2 ⊥ b3 and by (59) we have

1
|s|2/3

∫
R3
|h− h(·+ sa1)|2 dx +

1
|s|2/3

∫
R3
|h− h(·+ sa2)|2 dx . E

1/3
interfE

2/3
elast

for s ∈ R. Again by (59) and since a3 ⊥ b′1, b2 (and also a3 ⊥ b1, b2), we have

1
|s|2/3

∫
R3
|f − f(·+ sa3)|2 dx +

1
|s|2/3

∫
R3
|g − g(·+ sa3)|2 dx . E

1/3
interfE

2/3
elast.

Moreover, by (60), we have∫
R3
|f(x)|4 dx +

∫
R3
|g(x)|4 dx +

∫
R3
|h(x)|4 dx . V.

The above estimates show that the assumptions of Lemma 3 are satisfied for in-
tegrals of type (79). The proof of Proposition 2 is then concluded by application
of Lemma 3.

5.3 Proof of Theorem 2 — Lower bound

Note that for V . 1, the lower bound is a direct consequence of the isoperimetric
inequality. Hence, it remains to prove that E & V 9/11 for V � 1.

The crucial ingredient to pass from Proposition 1 and Proposition 2 to Theorem
2 is the estimate

V .

∣∣∣∣∫
R3

(χ̃1 − χ̃1,LL)(χ̃2 − χ̃2,LL)(χ̃3 − χ̃3,LL) dx

∣∣∣∣
+

∫
R3

(χ2,L − χ3,L)2 + (χ3,L − χ1,L)2 + (χ1,L − χ2,L)2 dx, (80)

where the subscript LL stands for the twofold application of the convolution
operator. This elementary estimate is the only place where we use the non-
convexity, that is, χi ∈ {0, 1}. In fact, we will show∣∣∣∣∫

R3
(χ̃1 − χ̃1,LL)(χ̃2 − χ̃2,LL)(χ̃3 − χ̃3,LL) dx + 2

∫
R3

(χ1 + χ2 + χ3) dx

∣∣∣∣
≤ V + C

∫
R3

(χ2,L − χ3,L)2 + (χ3,L − χ1,L)2 + (χ1,L − χ2,L)2 dx (81)
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which yields (80) by application of the triangle inequality and using the defini-
tion of V . Recall the definition (22) of the functions χ̃j as linear combination of
the functions χj . Observe that since the characteristic functions χj have disjoint
support, the triple product of the linear combinations χ̃1, i = 1, 2, 3 collapses
to the sum of the three characteristic functions χi,

χ̃1χ̃2χ̃3 = −2(χ1 + χ2 + χ3). (82)

We calculate,

(χ̃1 − χ̃1,LL)(χ̃2 − χ̃2,LL)(χ̃3 − χ̃3,LL) + 2(χ1 + χ2 + χ3)
(82)
= (χ̃1 − χ̃1,LL)(χ̃2 − χ̃2,LL)(χ̃3 − χ̃3,LL)− χ̃1χ̃2χ̃3

= −χ̃1,LLχ̃2χ̃3 − χ̃2,LLχ̃3χ̃1 − χ̃3,LLχ̃1χ̃2

+ χ̃1χ̃2,LLχ̃3,LL + χ̃2χ̃3,LLχ̃1,LL + χ̃3χ̃1,LLχ̃2,LL

− χ̃1,LLχ̃2,LLχ̃3,LL

Hence in order to establish (80), it is enough to show that∣∣∣∣∫
R3

χ̃i,LLχ̃jχ̃k dx

∣∣∣∣ (83)

+
∣∣∣∣∫

R3
χ̃i,LLχ̃j,LLχ̃k dx

∣∣∣∣ +
∣∣∣∣∫

R3
χ̃i,LLχ̃j,LLχ̃k,LL dx

∣∣∣∣ (84)

≤ V +
∫

R3
(χ2,L − χ3,L)2 + (χ3,L − χ1,L)2 + (χ1,L − χ2,L)2 dx, (85)

for any permutation (ijk) of (123). We first address the estimate of the two
terms in line (84): Note that since the functions χ̃i are linear combinations of
the functions χj and since χj ∈ {0, 1} we have in particular

‖χ̃j,LL‖L∞ . ‖χ̃j‖L∞ . 1 for any j = 1, 2, 3. (86)

Furthermore, we also have for all j ∈ {1, 2, 3},∫
R3
|χ̃j,LL|2 dx .

∫
R3
|χ̃j |2 dx =

∫
R3

χj dx ≤ V (87)

By using (86)–(87) on the term in line (83) and by application of Hölder’s and
Young’s inequalities, we get∣∣∣∣∫

R3
χ̃i,LLχ̃jχ̃k dx

∣∣∣∣ ≤ Cε

∫
R3
|χ̃i,LL|2 dx + εV

for any ε > 0. An analogous estimate can also applied to the terms in line (84)
so that in order to show (85), it suffices to show∫

R3
|χ̃i,LL|2 dx .

∫
R3

(χ2,L − χ3,L)2 + (χ3,L − χ1,L)2 + (χ1,L − χ2,L)2 dx

(88)

for any i ∈ {1, 2, 3}. In order to see this inequality, we rewrite the definition
(22) in the form

χ̃i = (χj − χi) + (χk − χi)
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where (ijk) is any permutation of (123). This identity carries over to the con-
volved functions, i.e.

χ̃i,LL = (χj,LL − χi,LL) + (χk,LL − χi,LL). (89)

In particular,∫
R3
|χ̃i,LL|2 dx

.
∫

R3
(χ2,LL − χ3,LL)2 + (χ3,LL − χ1,LL)2 + (χ1,LL − χ2,LL)2 dx.

(90)

Inequality (88) and hence also (85) now follow from (90) and Jensen’s inequality
which implies that∫

(χ2,LL − χ3,LL)2 + (χ3,LL − χ1,LL)2 + (χ1,LL − χ2,LL)2 dx. (91)

.
∫

R3
(χ2,L − χ3,L)2 + (χ3,L − χ1,L)2 + (χ1,L − χ2,L)2 dx.

This concludes the proof of estimate (83)-(84) and thus establishes (81) and
(80).

The conclusion of the proof of the theorem is now easy: Inserting Proposition 1
and Proposition 2 (applied to the twofold convolution that is of the same type
as the simple convolution) into (80) we obtain the estimate

V . L1/3
(
E

2/3
interfE

1/3
elast

)1/2

V 1/2 + max
{

L−3/2E
1/2
elastV,Eelast

}
.

With help of Young’s inequality, we may upgrade this estimate to

V . L2/3(E2/3
interfE

1/3
elast) + max{L−3/2E

1/2
elastV,Eelast}.

Since we may without loss of generality assume that Eelast � V , this estimate
simplifies to

V . L2/3(E2/3
interfE

1/3
elast) + L−3/2E

1/2
elastV. (92)

We optimize the estimate (92) in L by choosing

L = E
−4/13
interf E

1/13
elastV

6/13.

This leads to

V . E
6/13
interfE

5/13
elastV

4/13.

and hence

V 9/11 . E
6/11
interfE

5/11
elast . Einterf + Eelast ≤ E (93)

thus concluding the proof of the lower bound for Theorem 2. Note that the
equipartition of energy (18) follows by the multiplicative estimate in (93).
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Figure 4: 3-d sketch for the (expected) total shape for inclusions with large volume.

6 Proof of the upper bound

6.1 Construction

We present the construction of an inclusion which realizes the minimal scaling
of the energy (17) for inclusions with large volume V � 1. Notice that construc-
tions of the austenite-to-martensite interface have been given in the literature
(e.g. [18, 19, 4, 5]). As in the previous constructions, our construction includes
a self-similar refinement of the regions related to the single martensite vari-
ants towards the martensite-austenite interface. But in contrast to the previous
constructions we need to optimize our construction within a three-dimensional
setting where the martensite is surrounded by an austenite environment in all
three directions. In particular, the martensitic inclusion needs to be constructed
such that it is self-accommodating. Another technical difficulty which has to
be taken into account is that the martensite-austenite interface in our situation
has a macroscopic bending.

The displacement u we construct consists of a ‘macroscopic’ part uM and a
‘microscopic’ part um,

u = uM + um.

The function uM is related to the phenomenon of self-accommodation. The
function um describes the fine scale structure within the inclusion; it is related
to the phenomenon of compatibility.

Shape of inclusion. In our construction, the region occupied by martensite
has the shape of a thin lens. The shape of the lens is described by the two
parameters R and L representing its radius and its thickness respectively, see
Figure 4. In particular, the volume V occupied by martensite satisfies the
relation

V ∼ R2L. (94)

We assume that the lens is large and relatively thin,

1 � L � R; (95)

the precise value of the two parameters R,L will be fixed later. Furthermore,
the two large surfaces of the lens are approximately perpendicular to the vector

n := b32, (96)

see Figure 5. Recall that n is one of the two possible twin directions between
austenite and either one of the strains

1
3
e(1) +

2
3
e(2) or

1
3
e(1) +

2
3
e(3),
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Figure 5: Notation used in the construction

cf. (4). We next choose a function ϕ which represents the precise profile of
the lens. We choose ϕ ∈ W 1,∞([0,∞)) such that ϕ(0) = L, ϕ(R) = 0 and
furthermore

ϕ′(0) = 0, ϕ′(t) ≤ 0, |ϕ′(t)| .
L

R
. (97)

In particular, ϕ is compactly supported in [0, R]. The region Ω occupied by the
martensite is defined by

Ω :=
{
x ∈ R3 : |Px| ≤ R, |x · n| ≤ ϕ(|Px|)

}
,

where we have introduced the projection operator Px := x − (x · n)n onto the
linear space orthogonal to n. The lens Ω is decomposed into two parts,

Ω = Ω+ ∪ Ω−, where Ω± = Ω ∩ {x : ±x · n ≥ 0}.

Choice of gradients. In our construction, we have fine scale oscillation of
the martensite variants 1 and 2 in the upper part of the lens Ω+ and we have
fine scale oscillation of the martensite variants 1 and 3 in the lower part of the
lens Ω−. The oscillation is realized by a specific choice of gradients which is
presented in the following.

We choose b21 as the direction of the fine scale twinning between the martensite
variants 1 and 2 in the region Ω+. The gradients D

(i)
+ , i = 1, 2 are representa-

tions of stress-free martensite strains related to variant i. They are chosen such
that D

(1)
+ and D

(2)
+ allow for twinning in direction b21, i.e.

Sym(D(1)
+ ) = e(1), Sym(D(2)

+ ) = e(2) and D
(1)
+ −D

(2)
+ = 6(b12 ⊗ b21), (98)

where Sym A := 1
2 (A + At). Furthermore, their convex combination is compat-

ible with the austenite in direction n,

DM
+ :=

1
3
D

(1)
+ +

2
3
D

(2)
+ = 2(b23 ⊗ b32) = 2(b23 ⊗ n). (99)

The above assumptions are satisfied by

D
(1)
+ =

−2 2 0
−2 1 1
0 −1 1

 , D
(2)
+ =

1 −1 0
1 −2 1
0 −1 1

 , DM
+ =

0 0 0
0 −1 1
0 −1 1

 . (100)
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Analogous considerations lead to the following choice of gradients for the con-
struction in Ω−,

D
(1)
− =

−2 0 2
0 1 −1
−2 1 1

 , D
(3)
− =

1 0 −1
0 1 −1
1 1 −2

 , DM
− =

0 0 0
0 1 −1
0 1 −1

 , (101)

in particular Sym(D(1)
− ) = e(1), Sym(D(2)

− ) = e(2), D
(1)
− − D

(3)
− = 6(b31 ⊗ b13),

and D− := 1
3D

(1)
− + 2

3D
(3)
− = −DM

+ . This means that D
(1)
− and D

(3)
− allow

for twinning in direction b13 and their convex combination DM
− = −DM

+ is
compatible with the austenite in direction n = b23.

Decomposition of Ω into cells. The microscopic displacement um models
a fine scale twinning and refinement of two martensite variants towards the
boundary of the lens and towards the plane at its center, see Figure 3. We
present the definition of the fine scale displacement um in the upper half of the
lens Ω+; in particular, χ3 = 0 in Ω+ since the construction of um in Ω− proceeds
analogously. It is convenient to introduce the (normalized but not orthogonal)
basis b1, b2, b3 by

b3 :=
b21 × n

|b21 × n|
=

1√
3

1
1
1

 , b2 :=
n× b3

|n× b3|
=

1√
6

−2
1
1

 ,

b1 :=
b3 × b21

|b3 × b21|
=

1√
6

−1
−1
2

 . (102)

and the corresponding coordinates yi = (x, bi). The refinement of martensite
domains in Ω+ occurs along the ’transition’ direction b1, oscillation occurs in
direction b2 and the microscopic displacement is constant in direction b3.

Construction of χ, um on a “cell” Z: The microscopic displacement is described
in terms of an approximately self-similar arrangement of elementary building
blocks or cells, see e.g. [21, 7, 8]. For w, h > 0, the cell Z of width w and height
h is given by

Z =
{

x : 0 ≤ y1 ≤ h, 0 ≤ y2 ≤ w, 0 ≤ y3 ≤ w
}
,

see Fig 6. We define χ1 = 1 on the union of the three sets{
|y2

w
− 1

6
| ≤ y1

18h

}
∩ Z,

{
|y2

w
− 5

6
| ≤ y1

18h

}
∩ Z,

{
|y2

w
− 1

2
| ≤ 1

6
− y1

9h

}
∩ Z

and χ1 = 0 in the remaining part of Z. Furthermore, we set χ2 = 1 − χ1 and
χ3 = 0 on Z. This construction satisfies χ1 + χ2 + χ3 = 1; moreover on each
fixed slice {y1 = const} in Z, the volume fraction of variant 1 is 1

3 and the
volume fraction of variant 2 is 2

3 , i.e.∫
{y1=const}∩Z

χ1 =
w

3
,

∫
{y1=const}∩Z

χ2 =
2w

3
. (103)

The microscopic displacement um in Z is defined as follows: The displacement
um vanishes on the tangential components of the boundary of Z, i.e.

um := 0 on
{
x ∈ Z : y2 ∈ {0, w} or y3 ∈ {0, h}

}
. (104)
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Furthermore, the derivative of um in b2- and b3-direction is

∂b2u
m :=

[
(D(1)

+ −DM
+ )χ1 + (D(2)

+ −DM
+ )χ2

]
b2

(100)
= (2χ1 − χ2)

1√
6
(3, 3, 0)t,

∂b3u
m :=

[
(D(1)

+ −DM
+ )χ1 + (D(2)

+ −DM
+ )χ2

]
b3

(100)
= (0, 0, 0)t.

By (103), the above definition is consistent with the assumption (104). Further-
more, the derivative in b1 direction is implicitly given by these assumptions. In
fact, ∂b1u

m is constant on each connected component of the support of χ1 and
χ2 and it has jump of order w

h at the interface of these sets.

Decomposition of Ω+ (up to a boundary layer) into cylinders: Up to a bound-
ary layer with thickness of order 1, we shall cover the set Ω+ by translation
of cells described above. On the set covered by these cells we then use the
definition of χi and u on Z. We need some notation: For any x ∈ Ω+ let

d(x) = inf
{

t ≥ 0 : x + tb1 ∈ ∂Ω+

}
be the distance between x and ∂Ω+ in b1-direction and let

L(x) = sup
{

d(x + tb1) : t ∈ R, x + tb1 ∈ Ω+

}
be the thickness of Ω+ at x in b1-direction. Furthermore, we introduce the
following subset of the center plane of the lens,

A =
{
x ∈ Ω+ : x · n = 0 and L(x) ≥ 2

}
.

Let Q be a covering of A with two-dimensional squares Q ⊂ {x · n = 0} with
disjoint interior. For any Q ∈ Q, let w(Q) be its side length and let L(Q) be
the minimal thickness of the set Ω+ over Q in b1-direction, i.e.

L(Q) = inf{L(x) : x ∈ Q}.

We may assume that the covering Q is furthermore chosen such that

L(Q) ∼ w(Q)3/2 for all Q ∈ Q. (105)

Note that condition (105) is chosen to minimize energy in the construction, see
Section 6.2. For every Q ∈ Q, we define a corresponding cylinder ΣQ ⊂ Ω+

which has Q as its base,

ΣQ =
{

x ∈ Ω+ : x = q + αb1 for q ∈ Q, 0 ≤ α ≤ L(Q)− 1
}
⊂ Ω+.

The side lengths of the cylinder are correspondingly denoted by w(ΣQ) = w(Q),
its length in b1-direction is denoted by

L(ΣQ) := {L(x) : x ∈ Σ} = L(Q)− 1.

Decomposition of cylinder ΣQ into cells: In the following, for any such cylinder
Σ = ΣQ, we construct a covering with a refining collection of the above described
cells Z. The size of the cells is largest in the center of the cylinder and decreases
both towards top an bottom of the cylinder, see Figure 6b). We present the
construction of the cells only in the direction of +b1; the construction for the
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cells in direction −b1 proceeds analogously. Consider the slice at the center of
the cylinder: {|x·b1| = L(Σ)

2 }. This slice represents the bottom of a cell of height
h0 (to be fixed later) and width w0; this is the 0-th generation of cells. On top of
this cell, there are 9 cells with height h1 and width w1 = w0

3 , see Figure 6; this
is the 1-st generation of cells. Following this algorithm, iteratively the cylinder
is filled by M generations of cells. The width and height of the i-th generation
of cells is defined by

wj =
wj−1

3
, hj = C1w

3/2
j . (106)

Note that hj ratio is chosen in order to minimize the energy, see Section 6.2. The
algorithm is terminated after M iterations when the reaching the termination
criterion

hM ≤ wM . (107)

Now, the constant C1 is implicitly chosen such that the M generations of cells
precisely fill out ΣQ, i.e.

∑∞
j=1 hj = L(Σ)

2 . Notice that the sequence hj is
geometric, in particular by (105), it follows that C1 ∼ 1.

Definition of χ, u: Finally, let Ωint ⊂ Ω be the set covered by the union of the
above constructed cells and let Ωbl = Ω\Ωint, i.e.

Ω = Ωint ∪ Ωbl. (108)

In our construction, we have covered Ωint
+ by “cells” Z. The functions χi and

um are defined on these cells as described before. This determines χi and um

on Ωint. We furthermore set

χ1 = 1 and χ2 = χ3 = 0 in Ωbl, (109)

χ1 = χ2 = χ3 = 0 in R3\Ω, (110)

We also set um = 0 in R3\Ω. Note that the thickness of the transition layer Ωbl

is of order 1. We hence may extend um continuously onto Ωbl such that

‖∇um‖L∞(Ωbl
+ ) . ‖um‖L∞(∂Ωbl

+ ) + ‖∇um‖L∞(∂Ωbl
+ ). (111)

Construction of uM. Finally, the macroscopic displacement uM is chosen
such that its gradient is almost constant on each of the sets Ω±,

uM(x) =
{
±

(
DM
± x− ϕ(|Px|)DM

±n
)

in Ω±,
0 outside Ω. (112)

Recall that the Jacobian DM
± allows for twins with the austenite in direction n

since

DM
±

(99)
=

1
3
D

(1)
+ +

2
3
D

(2)
+

(100)
= ±b23 ⊗ n. (113)
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6.2 Proof of Theorem 2 — upper bound

We first note that for V . 1, the upper bound follows by choosing an inclusion
in the shape of a ball, filled with a single variant of martensite (for details see
e.g. [15]). Hence, in the following we consider the case V � 1.

Since in our construction, we have u = 0 outside of Ω, elastic energy is cre-
ated only within the inclusion. Furthermore, by symmetry the total energy is
estimated by its contribution within Ω+. Also using the triangle inequality, we
hence obtain

E .
∫

Ω+

2∑
i=0

|∇χi|+
∫

Ω+

‖e(u)−
2∑

i=0

χie
(i)‖2

.
∫

Ω+

‖e(uM)− e(DM
+ )‖2 (114)

+
∫

Ωint
+

2∑
i=0

|∇χi|+
∫

Ωint
+

‖e(um)−
2∑

i=0

χi

(
e(i) − e(DM

+ )
)
‖2 (115)

+
∫

Ωbl
+

2∑
i=0

|∇χi|+
∫

Ωbl
+

‖e(um)−
(
e(1) − e(DM

+ )
)
‖2. (116)

The estimate for the macroscopic contribution to the energy in line (114) is
straightforward: Noting that DuM = DM

+ −ϕ′DM
+ n⊗Px/|Px| in Ω+, we obtain∫

Ω+

‖e(uM )− e(DM
+ )‖2 ≤

∫
Ω+

‖DuM −DM
+ ‖2

.
∫

Ω+

|ϕ′|2|DM
+ n|2 . ‖ϕ′‖2L∞ |Ω+| . L3, (117)

where we have used ‖ϕ′‖L∞ . L/R and |Ω+| ∼ R2L.

We next address the estimate of the terms in line (115): We first consider the
energy of a single cell Z with height h and width a and where the functions χi

and u are defined as in the construction in Section 6.1. Note that in the con-
struction the derivatives of ∂b2u and ∂b3u agree exactly with the corresponding
entries of the strain D

(1)
+ − DM

+ (respectively D
(2)
+ − DM). Since, furthermore

(D(1)
+ −DM

+ )b2 = 0 and (D(2)
+ −DM

+ )b3 = 0, we have

∫
Z

‖e(um)−
2∑

i=0

χi

(
e(i) − e(DM

+ )
)
‖2 ≤

∫
Z

|∂b1u|2 .
w4

h
,

where we have used |Z| = w2h and |∂b1u| . w
h . Also, since by (107) we have

w . h, it follows that the interfacial energy of the cell is estimated by Ch.
Hence∫

Z

2∑
i=1

|∇χi|+
∫

Z

‖e(um)−
2∑

i=1

χi(e(i) −DM
+ )‖2 . hw +

w4

h
∼ w5/2,
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n

Figure 6: (a) Unit cell (b) Self-similar refinement. The green areas are occupied
by martensite variant 1, the orange regions are occupied by variant 1

where we have chosen h by (106) thus optimizing the estimate. Recalling the
definitions of wj and hj in the construction, the corresponding energy of each
cylinder Σ of width w0 = a(Σ) and length L(Σ) is then estimated by∫

Σ

2∑
i=1

|∇χi|+
∫

Σ

‖e(um)−
2∑

i=1

χi(e(i) − e(DM
+ ))‖2

. w
5/2
0

∞∑
j=0

3j(
1
3
)3j/2 . w

5/2
0 . L1/3w2

0,

where we have used (105) and L(Σ) . L. Summing the energy over all cylinders
Σ in Ω+, we obtain∫

Ωint
+

2∑
i=1

|∇χi|+
∫

Ωint
+

‖e(um)−
2∑

i=1

χi(e(i) −DM
+ )‖2 . L1/3R2. (118)

It remains to give the estimate of the term in line (116): By construction, the
thickness of Ωbl in b1-direction is of order 1. In particular, its surface area and
volume are estimated by

|∂Ωbl| . R2, |Ωbl| . R2. (119)

We furthermore notice that in view of (106) and (107) the last generation of cells
satisfies aM ∼ 1. In particular, we obtain ‖Dum‖L∞(∂Ωbl

+ ) + ‖um‖L∞(∂Ωbl
+ ) . 1.

By (111), we hence get∫
Ωbl

+

2∑
i=1

|∇χi|+
∫

Ωbl
+

‖e(um)− (e(1) −DM
+ )‖2 . R2 � L1/3R2, (120)

where we have used that L � 1.

The estimates (117), (120) and (118) together show that the energy is estimated
by above by

E . L1/3R2 + L3 (94)∼ L−2/3V + L3. (121)

Optimizing in L yields L = V 3/11 and E . V 9/11. By (94) we get R ∼ V 4/11,
in particular the consistency condition 1 � L � R is satisfied for V � 1. This
concludes the proof of the upper bound in Theorem 2.

32



Acknowledgement: R. Kohn gratefully acknowledges support from the NSF
grants DMS-0807347 and OISE-0967140.

References

[1] J. Ball and R. James. Fine phase mixtures as minimizers of energy. Arch.
Rat. Mech. Anal., 100(1):13–52, 1987.

[2] Kaushik Bhattacharya. Self-accommodation in martensite. Arch. Rational
Mech. Anal., 120(3):201–244, 1992.

[3] Kaushik Bhattacharya. Microstructure of martensite. Oxford Series on
Materials Modelling. Oxford University Press, Oxford, 2003. Why it forms
and how it gives rise to the shape-memory effect.

[4] Antonio Capella and Felix Otto. A rigidity result for a perturbation of
the geometrically linear three-well problem. Comm. Pure Appl. Math.,
62(12):1632–1669, 2009.

[5] Antonio Capella and Felix Otto. A quantitative rigidity result for the
cubic to tetragonal phase transition in the geometrically linear theory with
interfacial energy. submitted, 2010.

[6] Rustum Choksi, Sergio Conti, Robert V. Kohn, and Felix Otto. Ground
state energy scaling laws during the onset and destruction of the intermedi-
ate state in a type I superconductor. Comm. Pure Appl. Math., 61(5):595–
626, 2008.

[7] Rustum Choksi and Robert V. Kohn. Bounds on the micromagnetic energy
of a uniaxial ferromagnet. Comm. Pure Appl. Math., 51(3):259–289, 1998.

[8] Rustum Choksi, Robert V. Kohn, and Felix Otto. Domain branching in
uniaxial ferromagnets: a scaling law for the minimum energy. Comm. Math.
Phys., 201(1):61–79, 1999.

[9] Sergio Conti. Branched microstructures: scaling and asymptotic self-
similarity. Comm. Pure Appl. Math., 53(11):1448–1474, 2000.

[10] Georg Dolzmann and Stefan Müller. Microstructures with finite surface
energy: the two-well problem. Arch. Rational Mech. Anal., 132(2):101–
141, 1995.

[11] Loukas Grafakos. Classical Fourier analysis, volume 249 of Graduate Texts
in Mathematics. Springer, New York, second edition, 2008.

[12] A Khachaturyan. Some questions concerning the theory of phase transfor-
mations in solids. Fizika Tverdogo Tela, 8:2709–2717, 1966.

[13] A. Khachaturyan. A theory of structural transformations in solids. Wiley,
New York, 1983.
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