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Abstract

We consider two operations in the QTT format: composition of a multilevel Toeplitz matrix gen-
erated by a given multidimensional vector and convolution of two given multidimensional vectors.
We show that low-rank QTT structure of the input is preserved in the output and propose efficient
algorithms for these operations in the QTT format.

For a d-dimensional 2n× . . .×2n-vector x given in a QTT representation with ranks bounded by
p we show how a multilevel Toeplitz matrix generated by x can be obtained in the QTT format with
ranks bounded by 2p in O

(
dp2 log n

)
operations. We also describe how the convolution x ? y of x

and a d-dimensional n× . . .× n-vector y can be computed in the QTT format with ranks bounded
by 2t in O

(
dt2 log n

)
operations, provided that the matrix xy′ is given in a QTT representation

with ranks bounded by t. We exploit approximate matrix-vector multiplication in the QTT format
to accelerate the convolution algorithm dramatically.

We demonstrate high performance of the convolution algorithm with numerical examples in-
cluding computation of the Newton potential of a strong cusp on fine grids with up to 220×220×220

points in 3D.

Keywords: Toeplitz matrices, circulant matrices, convolution, tensorisation, virtual levels, ten-
sor decompositions, tensor rank, low-rank representation, Newton potential, Tensor Train, TT,
Quantics Tensor Train, QTT.
AMS Subject Classification: 15A69, 15B05, 44A35, 65F99.

1 Introduction

Computation of discrete convolution has been discussed in numerous research articles and
monographs. For arbitrary N -component vectors represented elementwise this operation is typ-
ically performed by means of the Fast Fourier Transform with the complexity O (N logN), which
is unaffordable for large vectors and especially restrictive in high dimensions. Tensor-structured
algorithms, which assume that the input data possesses some structure related to separation of vari-
ables, i. e. tensor structure, provide a dramatic leverage in various computational problems [1, 2, 3],
including evaluation of convolution [4, 5].

A novel algorithm QTT-FFT of the Fast Fourier Transform in the Quantics Tensor Train format
[6, 7, 8] with the complexity logarithmic w. r. t. N has been recently proposed and used for computa-
tion of discrete convolution [9]. However, the QTT-FFT algorithm requires a lot of TT truncations to
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be applied to intermediate data that may have much worse QTT structure than the input and output
vectors, which impedes application of the algorithm to computation of convolution. Alternatively,
we propose a straightforward approach to this particular problem, which yields more advantageous
algorithms.

In this paper we study QTT structure of two sorts of objects: the first one is a multilevel
Toeplitz matrix T generated by a vector x; the second one is a convolution x ?y of vectors x and
y. For the sake of brevity let us consider a circulant n × n-matrix and periodic convolution of n-
component vectors in one dimension, which can be written as Cij ≡ x(i−j) modn =

∑n
m=1 P ijmxm,

1 ≤ i, j ≤ n and (x ?y) i ≡
∑n

j=1 x(i−j) modnyj =
∑n

j=1

∑n
m=1 P ijmxmyj , 1 ≤ i ≤ n, where P is a

stack of n periodic shift n × n-matrices. We point out that the two operations under consideration
are represented in this way in terms of multiplication of the input data (the vector x and the matrix
xy′) and a “structuring” tensor P .

Regarding this special case taken for example, our basic accomplishment is the following: we
propose explicitly a rank-2 QTT representation of the tensor P . This means that we derive such
U, V ∈ R2×2×2×2 and W ∈ R2×2×2×2×2 that the following equality holds elementwise for 1 ≤ i, j,m ≤
n:

P ijm =
2∑

αd−1=1

. . .

2∑
α1=1

P (id, jd,md, αd−1) ·W (αd−1, id−1, jd−1,md−1, αd−2) · . . .

· W (α2, i2, j2,m2, α1) · V (α1, i1, j1,m1) , (1)

where free indices on the right-hand side take values 1 and 2 to represent those on the left-hand side
in a binary coding; for example, i = id . . . i1 = 1 +

∑d
k=1 2k−1 (ik − 1). This observation on the QTT

structure of P leads to appealing theoretical and practical results. Assume that x and y are given in
QTT representations

xm =
pd−1∑

αd−1=1

. . .

p1∑
α1=1

Xd (md, αd−1) ·Xd−1 (αd−1,md−1, αd−2) · . . .

· X2 (α2,m2, α1) ·X1 (α1,m1) , 1 ≤ m ≤ n, (2)

yj =
qd−1∑

βd−1=1

. . .

q1∑
β1=1

Yd (jd, βd−1) · Yd−1 (βd−1, jd−1, βd−2) · . . .

· Y2 (β2, j2, β1) · Y1 (β1, j1) , 1 ≤ j ≤ n, (3)

of ranks pd−1, . . . , p1 and qd−1, . . . , q1 respectively. Then, first, we construct explicitly QTT decomposi-
tions of the matrix C with ranks 2pd−1, . . . , 2p1; and of the convolution x ?y, with ranks 2pd−1qd−1, . . . , 2p1q1.
Minimal possible ranks of an exact or ε-accurate QTT decomposition of a tensor are referred to as
QTT ranks or ε-ranks of the tensor [6, 7, 8]. Therefore, our results, in particular, impose upper
bounds on QTT ranks or ε-ranks of C and x ?y in terms of those of x and y. Furthermore, if xy′ is
given in a QTT representation

(
xy′
)
mj =

rd−1∑
γd−1=1

. . .

r1∑
γ1=1

Gd (md, jd, γd−1) ·Gd−1 (γd−1,md−1, jd−1, γd−2) · . . .

· G2 (γ2,m2, j2, γ1) ·G1 (γ1,m1, j1) , 1 ≤ m, j ≤ n, (4)

of ranks rd−1, . . . , r1, then x ?y has a QTT decomposition with ranks 2rd−1, . . . , 2r1. This yields better
estimates of the ranks when rd−1, . . . , r1 are smaller than pd−1qd−1, . . . , p1q1, which means that the
vectors convolved have some structure in common and is typically the case when we deal with
discretizations of reasonable problems.

Second, we propose practical algorithms computing C and x ?y as the decompositions con-
structed explicitly or their approximations, based on matrix-vector multiplication in the QTT format.
How to perform the latter basic operation efficiently is a general and fundamental question, but, no
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matter what particular method is used, its complexity depends drastically on ranks of the QTT de-
compositions inputed and arising in computations. Fortunately, in many practical situations we may
expect ranks to be low, i. e. about 10, tens or O (d) [10, 11]. If we let all QTT ranks of decompositions
of x (2) and y (3) equal to p and q respectively, then the explicit exact multiplications computing C

and x ?y cost O
(
p2 log n

)
and O

(
p2q2 log n

)
flops respectively. In some cases even this straightfor-

ward approach preforms well enough, while more sophisticated approximate multiplication methods
with on-the-fly truncation may perform far much better (see Section 5).

All the results presented above briefly in the case of circulant matrices and periodic convolution
in one dimension are obtained in this paper for multilevel Toeplitz matrices and a few important types
of convolution in many dimensions, complexity of the algorithms scaling linearly w. r. t. the number
of dimensions.

It is also to be pointed out that the representation (1) and further results were obtained with
the use of the technique developed in [12], where QTT structure of matrices was studied analytically
for the first time and explicit QTT decompositions of some matrices, including the Laplace operator
in D dimensions and, in one dimension, its inverse as well, were presented.

1.1 Bibliography overview

Toeplitz matrices are widely used in mathematics, physics and engineering. The problems
they arise in, such as solution of integral and partial differential equations, signal and image pro-
cessing, queuing problems and time series analysis, exploit various Toeplitz-specific computational
algorithms for matrix-vector multiplication, linear system preconditioning and solution, matrix in-
version and the eigenvalue problem [13, 14, 15, 16]. Toeplitz structure was also generalized to the
displacement structure possessed by Toeplitz-like matrices [17]. However, the Toeplitz (as well as
Toeplitz-like) structure itself does not allow one to gain the asymptotic complexity sublinear w. r. t.
the matrix size.

Another kind of structure brought into play in order to reduce the complexity of computations
with Toeplitz matrices is the tensor structure, which is related to the idea of separation of variables
for the sake of low-parametric data representation and handling. Several tensor decompositions
generalizing the low-rank representation of matrices or, to refer to algorithmic aspects, the Singular
Value Decomposition of them, are presented in the surveys [1, 2, 3]. The one that has been most
extensively employed to Toeplitz matrices and convolution so far is the canonical decomposition, also
known as CANDECOMP, PARAFAC and CP.

CP structure of multilevel Toeplitz matrices related to that of generating vectors was presented
in [18] and a general approach to fast algorithms for multilevel tensor-structured matrices in the CP
format was considered in the same paper. For two-level Toeplitz matrices a fast approximate CP-
structured inversion algorithm with the complexity typically sublinear w. r. t. the matrix size was
introduced in [19].

On the other hand, in scientific computing much more emphasis has been placed so far on
CP-structured methods of convolution, which may alleviate evaluation of potentials in 3D drastically
compared to the FFT-based convolution algorithm in the full format . These methods rely on re-
duction of computation of the multidimensional convolution zi1,...,iD =

∑r
γ=1

∏D
K=1 ZK (iK , γ), where

iK = 1, . . . , n for K = 1, . . . , D, of two D-dimensional vectors given in the canonical representations
xm1,...,mD =

∑p
α=1

∏D
K=1XK (mK , α) and yj1,...,jD =

∑q
β=1

∏D
K=1 YK (jK , β), where mK , jK = 1, . . . , n

for K = 1, . . . , D, of ranks p and q respectively to evaluation of D · p · q one-dimensional full-format
convolutions

ZK(·, αβ) = XK(·, α) ? YK(·, β) (5)

of their canonical factors, so that γ = (α, β) and r = p · q (see, for example, [20]). While the basic
idea is simple, a truncation procedure needed to wind up with moderate ranks, say O

(√
pq
)

instead
of O (pq), is to be considered as a necessary ingredient yielding a particular method. Computation
of the exact representation (5) requires O (Dpq n log n) operations and, thus, has the complexity
sublinear w. r. t. the problem size nD, provided that the canonical ranks of the input vectors are
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small enough. This makes the CP-structured convolution more favorable compared to the FFT-based
convolution in the full format, for example, in quantum chemistry computations [21, 22, 23, 20, 24,
25] and other applications (see the paper [5] on linear filtering and references therein) and allows
(up to efficiency of the truncation procedure) to avoid the “curse of dimensionality” [26]. We would
like also to mention the method combining CP-structured approach to convolution with local grid
refinement strategies, that was proposed in [27] and developed further in [28].

However, the CP-structured convolution has two major downsides. First, there is no robust
truncation procedure in the CP format available and, furthermore, such a procedure cannot exist
since the format itself is unstable and the best rank-r approximation problem can easily turn out
to be ill-posed for r > 1 [29]. The Tensor Train (TT) decomposition [30, 31, 32, 33, ?], which we
employ in this paper for tensor-structured representation of multilevel Toeplitz matrices and multi-
dimensional convolution, is free from this disadvantage and is equipped with a robust arithmetics
including truncation. It is to be pointed out that the TT format, in fact, has been known and ex-
ploited for almost two decades now as the Matrix Product States (MPS) underlying the Density
Matrix Renormalization Group (DMRG) approach to quantum spin systems proposed by White in
1992 and widely used by physicists nowadays [34, 35, 36]. The same concept was also introduced in
the quantum information theory by Vidal in 2003 as the state decomposition [37]. In this paper we
use the CP structure of convolution, exploited in (5), in the TT format the same straightforwardly.

But the main point of this paper relates more to the second drawback of the CP-structured
convolution, which is that the complexity is still higher than linear w. r. t. n. In order to make it
sublinear, one may adopt the QTT format [6, 7, 8], which is the particular case of the TT format
with the smallest possible mode sizes, applied to tensors reshaped correspondingly. This allows to
propose methods with the complexity logarithmic w. r. t. n. QTT-FFT, an FFT algorithm in the QTT
format attaining such a complexity, was recently proposed and shown to be an efficient tool for fast
evaluation of convolution [9]. The similar transformation of the tensors could be coupled formally
with CP instead of TT, but due to restrictiveness of the former and the lack of robust arithmetics for
it this would make the problem even less tractable than in the case of the “regular” CP.

The idea of introducing additional dimensions (virtual levels) was applied to analysis of canoni-
cal decomposition of asymptotically smooth functions as early as in 2003 in [38]. In that paper ranks
of particular unfoldings, which are now referred to as QTT ranks since [8, 7], were estimated above.
After the TT format, the idea of “tensorization” of vectors was adopted for the Hierarchical Tucker
format [39] in [40]. Algebraic view of convolution of tensorized vectors in the Hierarchical Tucker
format was presented in [41].

The concept of TT ranks is crucial for the present paper. According to the basic paper on TT
[32], theD−1 TT ranks of aD-dimensional tensor are the ranks of the corresponding unfoldings X(k)

of x, which are obtained from x by reshaping, indices 1, . . . , k and k+1, . . . , d being considered as row
and column indices respectively: X(k)

i1...ik; ik+1...iD = xi1...id . The TT ranks of a tensor defined in such
a way are the minimal possible ranks of an exact TT decomposition of the tensor. They are important
in view of storage costs and complexity of the TT arithmetics operations, such as the dot product,
multidimensional contraction, matrix-vector multiplication, rank reduction and orthogonalization of
a decomposition are polynomial w. r. t. TT ranks of the tensor involved [33]. QTT ranks of a tensor
are defined as the TT ranks of the tensor subject to a proper reshaping. For example, QTT ranks of
the decomposition given by (2) are pd−1, . . . , p1.

2 Notation

Some tensor notation. We use the symbol “|” to denote three-dimensional tensors by listing their
slices along the third mode. To put it specifically, if Ai3 , 1 ≤ i3 ≤ n3, are n1 × n2-matrices, then by
A1|A2| . . . |An3 we mean a n1 × n2 × n3-tensor with elements Ai1i2i3 = (Ai3)i1i2 .

For tensor contraction of tensors A and B we use the notation A •ξ1,...,ξdη1,...,ηd B, writing the cor-
responding modes of A and B they are to be summed over on the top and at the bottom of the
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contraction mark, respectively. By omitting contraction modes of a tensor we mean that all modes
of the tensor are contracted. For example, for matrices A and B and a vector x this implies that
A •21B = AB, A •22B = AB′, A •1,21,2B = A •B =

∑
i,j AijBij = 〈A,B〉 and A •21 x = A •2 x = Ax.

We also extensively use the following binary representation of indices: by i = id . . . i1 = 1 +∑d
k=1 2k−1 (ik − 1) we mean a scalar index with the range 1, . . . , 2d, while the scalar binary indices ik,

1 ≤ k ≤ d, take values 1 and 2.

Core matrices and core products. By a TT core of rank p×q and mode size n1× . . .×nν we mean
a ν + 2-dimensional array with two rank indices varied in the ranges 1, . . . , p and 1, . . . , q and ν mode
indices varied in the ranges 1, . . . , nκ, 1 ≤ κ ≤ ν. We refer to subarrays of a core, obtained by fixing
both the rank indices, as blocks of the core. In order to focus on rank structure of a core we may
consider it as a matrix, indexed by the two rank indices, with entries that are blocks of the core. We
call such matrices core matrices.

For example, let n1 × . . . × nν -tensors Aαβ, α = 1, . . . , p, β = 1, . . . , q be blocks of a core U of
rank p× q and mode size n1× . . .×nν , i. e. U (α, i1, . . . , iν , β) = (Aαβ)i1...iν for all values of the indices
involved. Then we write the core matrix of U as

U =

A11 · · · A1q
...

...
...

Ap1 · · · Apq

 . (6)

In order to avoid confusion we use parentheses for regular matrices, which are to be multiplied as
usual, and square brackets for cores (core matrices), which are to be multiplied by means of the
two core products “on” and “•” introduced in [12] and defined below. Addition of cores is meant
elementwise, as well as that of matrices or tensors. Any n1 × . . . × nν -tensor A can be regarded as
a core of rank 1 × 1. Then the core products defined below coincide with corresponding operations
over tensors. Also we may think of Aαβ or any submatrix of the core matrix in (6) as of subcores of
U .

Definition 2.1 (Rank core product). Consider cores U1 and U2 of ranks r0×r1 and r1×r2, composed
of blocks A

(1)
α0α1 and A

(2)
α1α2 , 1 ≤ αk ≤ rk for 0 ≤ k ≤ 2, of mode sizes n

(1)
1 × . . .×n

(1)
ν and n

(2)
1 × . . .×n

(2)
ν

respectively. Let us define a rank product U1 onU2 of U1 and U2 as a core of rank r0 × r2, consisting
of blocks

Aα0α2 =
r1∑

α1=1

A(1)
α0α1
⊗A(2)

α1α2
, 1 ≤ α0 ≤ r0, 1 ≤ α2 ≤ r2,

of mode size n
(1)
1 n

(2)
1 × . . .× n

(1)
ν n

(2)
ν .

In other words, we define U1 onU2 as a regular matrix product of the two corresponding core
matrices, their elements (blocks) being multiplied by means of tensor product. For example,[

A11 A12

A21 A22

]
on
[
B11 B12

B21 B22

]
=
[
A11⊗B11 +A12⊗B21 A11⊗B12 +A12⊗B22

A21⊗B11 +A22⊗B21 A21⊗B12 +A22⊗B22

]
.

Definition 2.2 (Mode core product). Consider TT cores U1 and V1 of ranks p0 × p1 and q0 × q1,
composed of blocks A

(1)
α0α1 , 1 ≤ α0 ≤ p0, 1 ≤ α1 ≤ p1, and B

(1)
β0β1

, 1 ≤ β0 ≤ q0, 1 ≤ β1 ≤ q1 respectively.

Let us define a mode product U1 •ξ1,...,ξdη1,...,ηd V1 of U1 and V1 over d modes ξ1, . . . , ξd of U1 and d modes
η1, . . . , ηd of V1 as a core of rank p0q0 × p1q1, consisting of blocks

C
(1)
α0β0;α1β1

= A(1)
α0α1
•ξ1,...,ξdη1,...,ηd

B
(1)
β0β1

, 1 ≤ ακ ≤ pκ, 1 ≤ βκ ≤ qκ, κ = 0, 1.

This definition implies that we consider a tensor product of corresponding core matrices, their
elements (blocks) being multiplied by means of tensor contraction w. r. t. the specified modes.
Similarly to tensors, when a core is involved in the mode core product operation w. r. t. all its modes,
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for the sake of brevity we omit their list at the corresponding position near the symbol “•”. For
instance, for matrices Aαβ and vectors Xαβ we can write

[
A11 A12

A21 A22

]
•2
[
X11 X12

X21 X22

]
=


A11X11 A11X12 A12X11 A12X12

A11X21 A11X22 A12X21 A12X22

A21X11 A21X12 A22X11 A22X12

A21X21 A21X22 A22X21 A22X22

 .
The two core products are similar, tensor contraction and tensor product being interchanged

in them. The core products inherit some basic properties of tensor contraction (in particular, regular
matrix multiplication) and tensor product, which we employ routinely throughout the paper. For
instance, we can transform rows and columns of core matrices just the same way as we do it with
regular matrices:[

α1U1 β1U1

α1V1 β1V1

]
on
[
α2U2 α2V2

β2U2 β2V2

]
=

([
U1

V1

]
on
[
α1 β1

])
on
([
α2

β2

]
on
[
U2 V2

])
=

[
U1

V1

]
on
([
α1 β1

]
on
[
α2

β2

])
on
[
U2 V2

]
= (α1α2 + β1β2)

[
U1

V1

]
on
[
U2 V2

]
(7)

for any coefficients α1, β1, α2, β2 and blocks or subcores U1, V1, U2, V2 of proper ranks and mode sizes.
The two core products introduced above are helpful in dealing with TT decompositions. For example,
(1) and (2) can be recast as P = P onW on . . .onW onV and x = Xd onXd−1 on . . .onX2 onX1.

Let A = Ud on . . .onU1 and B = Vd on . . .onV1, then a linear combination of A and B can be put
down in the following way:

αA + βB =
[
Ud Vd

]
on
[
Ud−1

Vd−1

]
on . . .on

[
U2

V2

]
on
[
αU1

βV1

]
;

a tensor product of A and B, as A⊗B = Ud on . . .onU1 onVd on . . .onV1; a transpose A′ of A is
equal to the rank core product of the same cores, their blocks being transposed; a Frobenius
product of A and B is 〈A,B〉 =

∑
ij AijBij = (Ud • Vd) on . . .on (U1 • V1); a matrix product of A

and B and a matrix-vector product of A and x = Xd onXd−1 on . . .onX2 onX1, as AB = A •21 B =(
Ud •21 Vd

)
on . . .on

(
U1 •21 V1

)
and Ax = A •2 x =

(
Ud •2Xd

)
on . . .on

(
U1 •2X1

)
respectively. The latter

equalities can be trivially generalized to the case of the mode product of TT cores presented by
Definition 2.2.

Proposition 2.3. Mode product of two rank products can be recast core-wise:

(U1 onU2) •ξ1,...,ξdη1,...,ηd
(V1 onV2) =

(
U1 •ξ1,...,ξdη1,...,ηd

V1

)
on
(
U2 •ξ1,...,ξdη1,...,ηd

V2

)
.

The core notation introduced just above bears a strong resemblance to the MPS notation (see
Section 1.1), according to which, for instance, the right-hand side of (2) is usually written as the
matrix product X

(md)
d ·X(md−1)

d−1 · . . . ·X(m2)
2 ·X(m1)

1 of a row, d − 2 matrices and a column indexed by
rank indices αd−1, . . . , α1 and depending also on mode indices as parameters. In our calculations we
prefer to omit the mode indices correctly, so neither the MPS notation nor the elementwise one of
(2) is convenient enough for our purposes and we have to use a more suitable core notation.

Elementary QTT blocks. We will describe QTT structure of tensors in terms of the following four
TT blocks of size 2× 2:

I =
(

1 0
0 1

)
, J =

(
0 1
0 0

)
, J ′ =

(
0 0
1 0

)
and P =

(
0 1
1 0

)
.
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Other notation. Finally, by A⊗ k, k being nonnegative integer, we mean a k-th tensor power of A.
For example, I⊗ 3 = I ⊗ I ⊗ I, and likewise for the rank core product operation “on“.

3 QTT structure of shift matrices

3.1 One dimension

Let us consider the following one-dimensional shift 2d × 2d-matrices:

P
(d)
2 =



0 1

1
. . .

0
. . .

. . .
. . .

. . .
. . .

0 1 0


of periodic downward shift and

Q
(d)
2 =



0

1
. . .

0
. . .

. . .
. . .

. . .
. . .

0 1 0


and R

(d)

2d
=



0 1 0
. . .

. . .
. . .

. . .
. . . 0
. . . 1

0


of zero fill downward and upward shift respectively.

Lemma 3.1. The following QTT representations of the shift matrices hold.

P
(d)
2 =

[
I P

]
on
[
I J ′

J

]on(d−2)

on
[
J ′

J

]
,

Q
(d)
2 =

[
I J ′

]
on
[
I J ′

J

]on(d−2)

on
[
J ′

J

]
,

R
(d)

2d
=

[
I J

]
on
[
I J

J ′

]on(d−2)

on
[
J

J ′

]
.

Proof. The block structure

Q
(k)
2 =

(
Q

(k−1)
2

J⊗(k−1) Q
(k−1)
2

)
= I ⊗Q

(k−1)
2 + J ′⊗ J⊗(k−1),

of Q
(k)
2 can be described in terms of the rank product as

Q
(k)
2 =

[
I J ′

]
on

[
Q

(k−1)
2

J⊗(k−1)

]
, (8)

which holds for 2 ≤ k ≤ d. Let us apply (8) with k = d− 1 to (8) with k = d:

Q
(d)
2 =

[
I J ′

]
on
[
I J ′

J

]
on

Q
(d−2)
2

J⊗(d−2)

J⊗(d−2)

 .
The latter decomposition is obviously redundant: we can exclude the third row of the right-hand
core similarly to (7). We do this recursively and come to the decomposition to be proven:

Q
(d)
2 =

[
I J ′

]
on
[
I J ′

J

]
on

[
Q

(d−2)
2

J⊗(d−2)

]
= . . . =

[
I J ′

]
on
[
I J ′

J

]on(d−2)

on

[
Q

(1)
2

J

]

7



=
[
I J ′

]
on
[
I J ′

J

]on(d−2)

on
[
J ′

J

]
.

The periodic shift matrix can be obtained as follows:

P
(d)
2 = Q

(d)
2 +

(
1
)

= Q
(d)
2 +

[
J
]on d

,

hence we can derive its decomposition from this sum by sweeping through the “tensor train” and
excluding redundancy:

P
(d)
2 =

[
I J ′ J

]
on

I J ′

J

J

on(d−2)

on

J ′J
J



=
[
I J ′ J

]
on

I J ′

J

J

on(d−3)

on
[
I J ′

J

]
on
[
J ′

J

]

= . . . =
[
I P

]
on
[
I J ′

J

]on(d−2)

on
[
J ′

J

]
.

As long as R
(d)

2d
= Q

(d)
2

′
, the decomposition of R

(d)

2d
follows trivially from the one of Q

(d)
2

′
.

Being applied to a vector of proper size, the two shift matrices considered above perform a
one-position downward shift of its elements. We are interested in all shift matrices defining Toeplitz
or, in particular, circulant matrix structure. So let us introduce also matrices

Q
(d)
l =

(
Q

(d)
2

)l−1
=



1 · · · 2d − l + 1 · · · 2d

1
...
l 1
...

. . .

2d 1

,

R
(d)
l =

(
R

(d)

2d

)2d−l+1
=



1 · · · 2d − l + 2 · · · 2d

1 1
...

. . .

l − 1 1
...
2d

,

and P
(d)
l =

(
P

(d)
2

)l−1
= Q

(d)
l + R

(d)
l for 1 ≤ l ≤ 2d and also

S
(d)
l =

{
R

(d)
l , 2 ≤ l ≤ 2d,

Q
(d)

l−2d
, 2d + 1 ≤ l ≤ 2d+1.

(9)

It is crucial for the course of the paper that, as we show below, these l-shift matrices can be repre-
sented in the QTT format with rank 2, altogether as well as singly.

Lemma 3.2. Let d ≥ 2 and 1 ≤ l ≤ 2d. Then the matrices P
(k)
l , Q

(k)
l , R

(k)
l and S

(k)
l have the following

QTT representations:

S
(d)

ld+1...l1
= Sld+1

onWld on . . .onWl2 onVl1 ,

P
(d)

ld...l1
= Pld onWld−1

on . . .onWl2 onVl1 ,
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Q
(d)

ld...l1
= Qld onWld−1

on . . .onWl2 onVl1 ,

R
(d)

ld...l1
= Rld onWld−1

on . . .onWl2 onVl1 ,

where ld . . . l1 is a binary representation of l = 1 +
∑d

k=1 2k−1 (lk − 1) and the cores are

S1 =
[
0 1

]
, S2 =

[
1 0

]
,

P1 =
[
I P

]
, P2 =

[
P I

]
,

Q1 =
[
I J ′

]
, Q2 =

[
J ′

]
,

R1 =
[

J
]
, R2 =

[
J I

]
,

W1 =
[
I J ′

J

]
, W2 =

[
J ′

J I

]
,

V1 =
[
I
]
, V2 =

[
J ′

J

]
.

(10)

Proof. For any 2 ≤ k ≤ d and 1 ≤ λ ≤ 2k−1 we have

Q
(k)
λ = I ⊗Q

(k−1)
λ + J ′⊗R

(k−1)
λ ,

R
(k)
λ = J ⊗R

(k−1)
λ ,

Q
(k)

2k−1+λ
= J ′⊗Q

(k−1)
λ ,

R
(k)

2k−1+λ
= J ⊗Q

(k−1)
λ + I ⊗R

(k−1)
λ ,

which can be revised as Q
(k)

lk...l1

R
(k)

lk...l1

 = Wlk on

Q
(k−1)

lk−1...l1

R
(k−1)

lk−1...l1


for 2 ≤ k ≤ d. By applying the latter equation to itself recursively, we conclude thatQ

(d)

ld...l1

R
(d)

ld...l1

 = Wld onWld−1
on . . .Wl2 on

[
Q

(1)

l1

R
(1)

l1

]
=
[
Qld
Rld

]
onWld−1

on . . .Wl2 onVl1 ,

which completes proof for Q
(d)

ld...l1
and R

(d)

ld...l1
. Since P

(d)
l = Q

(d)
l +R

(d)
l , 0 ≤ l ≤ 2d− 1, we come to the

representation of P
(d)

ld...l1
:

P
(d)

ld...l1
=

[
1 1

]
on

Q
(d)

ld...l1

R
(d)

ld...l1

 =
[
1 1

]
onWld onWld−1

on . . .Wl2 onVl1

= Pld onWld−1
on . . .Wl2 onVl1 .

The representation of S
(d)

ld+1...l1
follows trivially from its definition (9) and the decompositions

obtained just above.

The decompositions elicited in Lemma 3.2 are remarkable owing to the fact that each core of
them depends on the corresponding bit lk of l only. This allows us to draw up at once a decomposition
of the shift matrices as a whole. Let us stack the matrices P

(d)
l , 1 ≤ l ≤ 2d, Q

(d)
l , 1 ≤ l ≤ 2d, R

(d)
l ,

1 ≤ l ≤ 2d, and S
(d)
l , 1 ≤ l ≤ 2d+1, into 2d × 2d × 2d-tensors P , Q and R and a 2d × 2d × 2d+1-tensor S

respectively so that

P (d)
·,·,m = P (d)

m (·, ·) , Q(d)
·,·,m = Q(d)

m (·, ·) , R(d)
·,·,m = R(d)

m (·, ·)

for 1 ≤ m ≤ 2d and S(d)
·,·,m = S

(d)
m (·, ·) for 1 ≤ m ≤ 2d+1. Then QTT representations of these four

tensors follow clearly from Lemma 3.2: we just recast its results by considering subscript indices of
cores as their third mode indices.
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Corollary 3.3. Let d ≥ 2. Then the tensors S(d), P (d), Q(d) and R(d) have the following rank-2 QTT
representations:

S(d) = SonWon(d−1) onV,

P (d) = P onWon(d−2) onV,

Q(d) = QonWon(d−2) onV,

R(d) = RonWon(d−2) onV,

where the TT cores are

S =
[
0|1 1|0

]
, P =

[
I|P P |I

]
, Q =

[
I|J ′ J ′|O

]
, R =

[
O|J J |I

]
,

W =
[
I|J ′ J ′|O
O|J J |I

]
, V =

[
I|J ′
O|J

]
.

This modest result is a milestone in the analysis of QTT structure of multilevel Toeplitz matrices
we do in this paper: the tensors S(d), P (d), Q(d) and R(d) define Toeplitz, circulant and lower and
upper triangular Toeplitz structure at each level, respectively. We exploit this in the next section to
decompose multilevel Toeplitz matrices in the QTT format.

3.2 Many dimensions

In the multidimensional case we deal with matrices of multidimensional shift of the form

S̃lD...l1 = S̃
(dD)
lD
⊗ . . .⊗ S̃

(d1)
l1 ,

where each S̃
(dk)
lk

, 1 ≤ k ≤ D, is a one-dimensional lk + 1-shift nk × nk-matrix; in particular, we may

consider any of S
(dk)
lk

, P
(dk)
lk

, Q
(dk)
lk

and R
(dk)
lk

for each k. These matrices are stacked in a lexicographic
order in the tensor

S̃ = S̃
(dD)⊗ . . .⊗ S̃

(d1)
= S̃

(dD) on . . .on S̃
(d1)

,

where each tensor S̃
(dk)

, 1 ≤ k ≤ D, is S(dk), P (dk), Q(dk) or R(dk) correspondingly. Then S̃ can be
represented in the QTT format with ranks 2, . . . , 2,1, 2, . . . , 2,1, 2, . . . , 2 by Corollary 3.3. For example,
a stack of two-dimensional downward periodic shift matrices can be written as

P = P (d2)⊗P (d1) = P onWon(d2−2) onV onP onWon(d1−2) onV,

where the cores P , W and V are the same as in Corollary 3.3. We use such multidimensional shift
matrices to represent multilevel Toeplitz structure below.

4 Toeplitz structure in the QTT format

4.1 Structure of Toeplitz and circulant matrices

To start with, let us consider Toeplitz n×n-matrices, where n = 2d. Each of them is parameter-
ized by 2n− 1 entries of its first row and column. For any 2n-component vector x we may consider a
Toeplitz matrix

T =



xn+1 xn · · · x3 x2

xn+2
. . .

. . .
. . . x3

...
. . .

. . .
. . .

...

x2n−1
. . .

. . .
. . . xn

x2n x2n−1 · · · xn+2 xn+1


, (11)
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which we refer to as a Toeplitz matrix generated by the vector x. The component x1 is dummy and
used for keeping the formal number of parameters even. In the particular cases

x =
(

x̃

x̃

)
, x =

(
0
x̃

)
, and x =

(
x̃

0

)
,

where x̃ is an n-component vector, we obtain a circulant matrix

C =



x̃1 x̃n · · · x̃3 x̃2

x̃2
. . .

. . .
. . . x̃3

...
. . .

. . .
. . .

...

x̃n−1
. . .

. . .
. . . x̃n

x̃n x̃n−1 · · · x̃2 x̃1


(12)

and lower and upper triangular Toeplitz matrices

L =



x̃1

x̃2
. . .

...
. . .

. . .

x̃n−1
. . .

. . .
. . .

x̃n x̃n−1 · · · x̃2 x̃1


and U =



0 x̃n · · · x̃3 x̃2

. . .
. . .

. . . x̃3

. . .
. . .

...
. . . x̃n

0


(13)

generated by the vector x̃.

The relation between a generating vector and the matrix generated by it in the case of the
Toeplitz structure is often expressed in terms of shift matrices:

T =
2d+1∑
m=1

S(d)
m xm =

2d+1∑
m=1

S(d)
·,·,mxm ≡ S(d) •3 x (14)

and by the same token

C = P (d) •3 x̃, L = Q(d) •3 x̃, and U = R(d) •3 x̃. (15)

The following four theorems describe QTT structure of matrices T , C, L and U generated by
QTT-structured vectors x and x̃, as well as their products with a QTT-structured vector y. Proof of
all the four theorems follows at once from the Proposition 2.3, which we use to combine our result
stated in Corollary 3.3 with the representations of Toeplitz and circulant matrices in terms of shift
matrices (14), (15).

Theorem 4.1. Let x be a 2d+1-component vector, d ≥ 2, given in a QTT representation

x = Xd+1 onXd onXd−1 on . . .onX2 onX1

of ranks pd, pd−1, . . . , p1. Then a Toeplitz 2d × 2d-matrix T generated by the vector x in the sense of
(11) has a QTT decomposition

T = Td onTd−1 on . . .onT2 onT1

of ranks 2pd−1, . . . , 2p1, composed of TT cores

Td = (S •Xd+1) on
(
W •3Xd

)
,

Tk = W •3Xk, d− 1 ≥ k ≥ 2,

T1 = V •3X1,

where TT cores S, W and V are the same as in Corollary 3.3.
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By relation (14), the matrix-vector product of a vector y and the Toeplitz matrix T generated
by a vector x can be presented as

Ty =
(
S(d) •3 x

)
· y ≡

(
S(d) •3 x

)
•2 y ≡ S(d) •2,3 xy′, (16)

which leads us immediately to the following theorem.

Theorem 4.2. Assume that x and y are 2d+1-component and 2d-component vectors respectively such
that a 2d+1 × 2d-matrix xy′ has a QTT representation

xy′ = Gd+1 onGd onGd−1 on . . .onG2 onG1

of ranks td, td−1, . . . , t1. Then a matrix-vector product of a Toeplitz 2d × 2d-matrix T generated by
the vector x in the sense of (11) and the vector y has the following QTT decomposition of ranks
2td−1, . . . , 2t1:

Ty = Td onTd−1 on . . .onT2 onT1,

where

Td = (S •Gd+1) on
(
W •2,3Gd

)
,

Tk = W •2,3Gk, d− 1 ≥ k ≥ 2,

T1 = V •2,3G1,

the TT cores S, W and V being the same as in Corollary 3.3.

Remark 4.3. In Theorem 4.1 and Theorem 4.2 we come across QTT decompositions of tensors and
matrices of inequal mode sizes, e. g. the tensor S of size 2d × 2d × 2d+1 and the matrix xy′ of size
2d+1×2d. In these cases the highest (left-hand) cores in their QTT decompositions have fewer modes,
e. g. either of S and Gd+1 has only one mode index.

Similar theorems hold for circulant, lower triangular Toeplitz and upper triangular Toeplitz
matrices.

Theorem 4.4. Let x̃ be a 2d-component vector, d ≥ 2, given in a QTT representation

x̃ = X̃d on X̃d−1 on . . .on X̃2 on X̃1

of ranks pd−1, . . . , p1. Then a circulant, lower triangular Toeplitz and upper triangular Toeplitz 2d×2d-
matrices C, L and U generated by the vector x̃ in the sense of (12) and (13) have QTT decomposi-
tions

C =
(
P •3 X̃d

)
on
(
W •3 X̃d−1

)
on . . .on

(
W •3 X̃2

)
on
(
V •3 X̃1

)
,

L =
(
Q •3 X̃d

)
on
(
W •3 X̃d−1

)
on . . .on

(
W •3 X̃2

)
on
(
V •3 X̃1

)
,

U =
(
R •3 X̃d

)
on
(
W •3 X̃d−1

)
on . . .on

(
W •3 X̃2

)
on
(
V •3 X̃1

)
of ranks 2pd−1, . . . , 2p1, TT cores P , Q, R, W and V being the same as in Corollary 3.3.

Theorem 4.5. Assume that x̃ and y are 2d-component vectors such that a 2d × 2d-matrix x̃y′ has a
QTT representation

x̃y′ = G̃d+1 on G̃d on G̃d−1 on . . .on G̃2 on G̃1

of ranks td−1, . . . , t1. Then each of matrix-vector products of a circulant, lower triangular Toeplitz
and upper triangular Toeplitz 2d × 2d-matrices C, L and U generated by the vector x̃ in the sense of
(12), (13), and the vector y has a QTT representation Zd onZd−1 on . . .onZ2 onZ1 of ranks 2td−1, . . . , 2t1,
where Zd is equal to P •2,3 G̃d, Q •2,3 G̃d or R •2,3 G̃d in the cases of a circulant, lower triangular
Toeplitz and upper triangular Toeplitz matrix respectively and Zk = W •2,3 G̃k for d − 1 ≥ k ≥ 2,
Z1 = V •2,3 G̃1, where the TT cores P , Q, R, W and V are the same as in Corollary 3.3.
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4.2 Structure of a multilevel Toeplitz matrix

Let us now proceed to many dimensions. First, we put N1 = n1 and say that Toeplitz matrices
T

[1]
m2 , 1 ≤ m2 ≤ 2n2, generated by 2n1-component vectors x

[1]
m2 , are multilevel Toeplitz N1 × N1-

matrices with 1 level, generated by 2n1-tensors x
[1]
m2 . Assume that k ≥ 1 and multilevel Toeplitz

Nk×Nk-matrices T
[k]
mk+1 , 1 ≤ mk+1 ≤ 2nk+1, with k levels, generated by 2n1× . . .×2nk-tensors x

[k]
mk+1 ,

are defined. Let us put Nk+1 = nk+1 ·Nk and consider a Toeplitz-block Nk+1 ×Nk+1-matrix

T [k+1] =



T
[k]
nk+1+1 T

[k]
nk+1 · · · T

[k]
3 T

[k]
2

T
[k]
nk+1+2

. . .
. . .

. . . T
[k]
3

...
. . .

. . .
. . .

...

T
[k]
2nk+1−1

. . .
. . .

. . . T
[k]
nk+1

T
[k]
2nk+1

T
[k]
2nk+1−1 · · · T

[k]
nk+1+2 T

[k]
nk+1+1


=

2nk+1∑
mk+1=1

S
(dk+1)
mk+1 ⊗T [k]

mk+1
(17)

as a multilevel Toeplitz Nk+1×Nk+1-matrix with k+ 1 levels, generated by a 2n1× . . .× 2nk+1-tensor
x[k+1] such that

x[k+1]
m1...mk+1

=
(
x[k]
mk+1

)
m1...mk , 1 ≤ mκ ≤ 2nκ, 1 ≤ κ ≤ k + 1.

A matrix T = T [D] defined by the recursion on k described above is called multilevel Toeplitz
with D levels. We say that it is generated by the tensor x = x[D], which has D dimensions and mode
size 2n1 × . . .× 2nD. This relation can also be expressed explicitly elementwise just in this way:

T ij = xi−j+n+1, 1 ≤ ik, jk ≤ nk, 1 ≤ k ≤ D, (18)

where i = (i1, . . . , iD), j = (j1, . . . , jD) and n + 1 = (n1 + 1, . . . , nD + 1) are multi-indices added and
subtracted elementwise.

It might be easier to see from the recursive definition (17), that the multilevel Toeplitz matrix
generated by a tensor may also be represented as a mode product of a “structuring tensor” and the
generator:

T = S •3 x, (19)

where S = S(dD)⊗ . . .⊗S(d1). Then, like in the case of one-dimension, with the use of Proposition 2.3
we can apply the QTT representation of S following immediately from Corollary 3.3 and discussed
briefly in Section 3.2.

Theorem 4.6. Let x be a 2d1+1 × . . .× 2dD+1-tensor, D ≥ 1, given in a QTT representation

x = (XD,dD+1 on . . .onXD,1) on . . . , . . .on (X1,d1+1 on . . .onX1,1)

of ranks pD,dD , . . . , pD,1, p̂D−1, . . . , . . . , p̂1, p1,d1 , . . . , p1,1. Then a multilevel Toeplitz matrix T with D

levels, generated by the tensor x, has a QTT decomposition

T = (TD,dD on . . .onTD,1) on . . . , . . .on (T1,d1 on . . .onT1,1)

of ranks 2pD,dD−1, . . . , 2pD,1, p̂D−1, . . . , . . . , p̂1, 2p1,d1−1, . . . , 2p1,1, composed of the TT cores

TK,dK = (S •XK,dK+1) on
(
W •3XK,dK

)
,

TK,k = W •3XK,k, dK − 1 ≥ k ≥ 2,

TK,1 = V •3XK,1,

1 ≤ K ≤ D, where the TT cores S, W and V are the same as in Corollary 3.3.

Similarly to (14), the matrix-vector product of a vector y and the multilevel Toeplitz matrix T

generated by a vector x can be presented as

Ty =
(
S •3 x

)
· y ≡

(
S •3 x

)
•2 y ≡ S •2,3 xy′. (20)

This yields immediately the following result.
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Theorem 4.7. Assume that x and y are 2d1+1 × . . . × 2dD+1 and 2d1 × . . . × 2dD -tensors respectively
such that a

(
2d1+1 × . . .× 2dD+1

)
×
(
2d1 × . . .× 2dD

)
-matrix xy′ has a QTT representation

xy′ = (GD,dD+1 on . . .onGD,1) on . . . , . . .on (G1,d1+1 on . . .onG1,1)

of ranks tD,dD , . . . , tD,1, t̂D−1, . . . , . . . , t̂1, t1,d1 , . . . , t1,1. Then a matrix-vector product of a multilevel
Toeplitz matrix T with D levels, generated by the tensor x, and the tensor y has the following QTT
decomposition of ranks 2tD,dD−1, . . . , 2tD,1, t̂D−1, . . . , . . . , t̂1, 2t1,d1−1, . . . , 2t1,1:

Ty = (ZD,dD on . . .onZD,1) on . . . , . . .on (Z1,d1 on . . .onZ1,1) ,

where

ZK,dK = (S •GK,dK+1) on
(
W •2,3GK,dK

)
,

ZK,k = W •2,3GK,k, dK − 1 ≥ k ≥ 2,

ZK,1 = V •2,3GK,1,

1 ≤ K ≤ D, the TT cores S, W and V being the same as in Corollary 3.3.

The multilevel matrix structure defined recursively by (17) and explicitly by (18) encompasses
circulant, lower and upper triangular structure as well. For example, we may impose a requirement
xm = xm+nkek for 1 ≤ mκ ≤ 2nκ, κ 6= k, and nk + 1 ≤ mk ≤ 2nk, where the multi-index ek =
(0, . . . 0, 1, 0, . . . 0) has 1 at the k-th position, on the generator x, then the matrix T can be said to have
circulant structure at the k-th level, and similarly for the triangular Toeplitz structures. In this cases
we may reduce the k-th mode size of the generator x from 2nk down to nk. Then Theorem 4.6 and
Theorem 4.7 can be also specified to exclude redundant computations.

Remark 4.8. Once QTT representations of a 2d+1-component vector x and a 2d-component vector y

of ranks pd, pd−1, . . . p1 and qd−1, . . . q1 respectively are given, the matrix xy′ ≡ x •21 y′ can be trivially
decomposed in the QTT format with ranks pd, pd−1qd−1, . . . p1q1. This gives us an upper bound of the
QTT ranks of the vector Ty itself: they are not higher than 2pd, 2pd−1qd−1, . . . 2p1q1, as follows from
Theorem 4.2, and this upper bound appears to be sharp in numerical experiments, which is a reliable
evidence since the TT arithmetics is robust. Also, this suggests us a naive way of computing the
matrix-vector product with a Toeplitz matrix. However, ranks of the decomposition of xy′ assumed
to be given in Theorem 4.2 may be remarkably lower than pd, pd−1qd−1, . . . p1q1 and can be found out
by standard matrix algorithms (see Introductions and references therein).

4.3 Discrete convolution in the QTT format

We also study discrete convolution, which is closely related to multilevel Toeplitz matrices, as
we point out in this section. We start with convolution h = f ? g of functions f and g of a Z-valued
argument, that is

hi =
+∞∑
j=−∞

f i−jgj , i ∈ Z. (21)

One of or both the functions convolved are periodic. If f or g is periodic with a period n, then
(21) can be recast as

hi =
n−1∑
j=0

f i−jgj =
n−1∑
j=0

f (i−j) modngj (22)

or hi =
n−1∑
j=0

f i−jgj =
n−1∑
j=0

f (i−j) modngj (23)
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respectively, where gj =
∑+∞

s=−∞ gj+sn and f j =
∑+∞

s=−∞ f j−sn are periodic summations of g and f .
Both the operands are now periodic with the period n.

When both the functions to be convolved are periodic; for example, if they are considered on
a contour, (21) makes no sense in a nontrivial case. Alternatively, the following is usually meant by
convolution of two periodic functions of a Z-valued argument with a common period n:

hi =
n−1∑
j=0

f i−jgj =
n−1∑
j=0

f (i−j) modngj , i ∈ Z. (24)

The convolutions (22), (23), (24) discussed above have the same form

hi =
n−1∑
j=0

f̂ (i−j) modnĝj , i ∈ Z, (25)

which is defined for i = 0, . . . , n−1 as a vector z =
(
h0 · · · hn−1

)′
by vectors x =

(
f̂0 · · · f̂n−1

)′
and y =

(
ĝ0 · · · ĝn−1

)′
and to be continued periodically to Z. In this regard we can recast (25)

with the help of the circulant matrix structure (12) as follows:

z = C · y, (26)

where C is a circulant matrix generated by the vector x.

Both the functions convolved have compact supports. In this case we assume that f j = gj = 0,
j 6= 0, . . . , n− 1 for some n ∈ N in (21). Then the convolution h of f and g is nonzero at 2n− 1 points
only and equals

hi =

{∑n−1
j=0 f i−jgj , 0 ≤ i ≤ 2n− 2,

0, otherwise.
(27)

It is defined for i = 0, . . . , 2n−1 as a vector z =
(
h0 · · · h2n−2 0

)′
by vectors x =

(
f0 · · · fn−1

)′
and y =

(
g0 · · · gn−1

)′
and can be expressed in terms of matrix-vector multiplication as

z = L̃ · y = T ·
(

y

0

)
, (28)

where

L̃ =



x1 0 · · · 0
...

. . .
. . .

...
...

. . .
. . . 0

xn
. . .

. . . x1

0
. . .

. . .
...

...
. . .

. . .
...

...
. . . xn

0 · · · · · · 0


(29)

and T is a Toeplitz matrix generated by the vector
(
0 0 x′ 0

)′
.

One of the functions convolved has compact support. If we assume only that gj = 0, j 6=
0, . . . , n− 1 for some n ∈ N in (21), i. e. g has compact support while f may not, their convolution h

cannot be expected to have compact support either. But values of f at the points 1, . . . , 2n − 1 and
all the non-zero values of g allow us to calculate

hi =
n−1∑
j=0

f i−jgj , n ≤ i ≤ 2n− 1. (30)
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Let us compose vectors x =
(
∗ f1 · · · f2n−1

)′
and y =

(
g0 · · · gn−1

)′
, then (30) can be rewrit-

ten for a vector z =
(
hn · · · h2n−1

)′
as

z = T · y, (31)

the matrix T being Toeplitz generated by the vector x.

Discrete convolution in many dimensions and Toeplitz matrix structure. In D dimensions
we deal with convolution h = f ? g of functions f and g of a ZD-valued argument, which generalizes
(21) and (24) to the following:

hi =
∑

j

f i−jgj , (32)

where i = (i1, . . . , iD) and j = (j1, . . . , jD) are multi-indices, which are added and subtracted el-
ementwise. For each k the range of ik and summation limits of jk depend on the particular kind
of convolution applied with respect to the k-th dimension. We emphasized it above that in one di-
mension in each of the particular cases we have considered so far convolution can be obtained as a
product of a matrix and a vector composed of values of g, the matrix being Toeplitz generated by a
vector of values of f . Therefore, a vector z of values of the convolution h (32), on the condition that
it is considered in the sense of (25), (27) or (30) with respect to each level, can be calculated from
tensors x and y of values of f and g respectively as

z = T · y, (33)

where T is a multilevel Toeplitz matrix with D levels, generated by the tensor x.

5 How to compute multilevel Toeplitz matrices and their products
with vectors in the QTT format

In Section 4.2 we applied the QTT decomposition of the “structuring” tensor S, following from
Corollary 3.3, to relations (19) and (20) in order to describe QTT structure of a multilevel Toeplitz
matrix T and its product Ty with a multidimensional vector. Though Theorem 4.6 and Theorem 4.7
present these results in terms of single TT cores, the theorems actually propose nothing else than
matrix-vector multiplication in the QTT format for evaluation of T and Ty.

The most straightforward approach to compute T is to exploit the QTT structure of matrix-
vector multiplication, which allows to rewrite it core-wise (see Proposition 2.3) explicitly and perform
it exactly in this very way. We assume that the generator x is given in a QTT representation of
reasonable ranks: if it is not the case, we can truncate it in a robust way and get rid of overestimated
ranks (see references on TT in Introduction). As long as construction of a Toeplitz matrix from a
vector boosts QTT ranks not more than by the factor of 2, we may carry it out by means of the exact
matrix-vector multiplication, as we describe in Algorithm 5.1, and wind up with still feasible ranks.

However, the rank issue gets severe if we compute a matrix-vector product of T and another
vector y. Exact computation according to equation (20) (or Theorem 4.7) by two successive tensor
contractions, which are actually matrix-vector multiplications of properly reshaped data in this case,
leads to a QTT representation of the result with QTT ranks up to 2pq, where p and q are the corre-
sponding ranks of x and y. Complexity of TT arithmetics being polynomial w. r. t. QTT ranks, such
high ranks hinder further computations with the output, while the actual QTT structure of it might
be not worse or even better than that of the input vectors (which can be observed as a smoothening
effect of convolution in the case of function-related data). To obtain a truncated decomposition of the
result, which is the same tractable in terms of QTT rank structure as the input QTT representations
of x and y, several approaches may be brought into play.

The simplest idea is to employ the innate QR-SVD-based TT truncation of the output decompo-

sition of multiplied ranks, which can be done by O
(
Dd · 2 · (2pq)3

)
= O

(
Ddp3q3

)
operations with a
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Algorithm 5.1 T = tt_qtoepl(x)

Require: QTT decomposition S = SonWon(dD−1) onV on . . . , . . .onSonWon(d1−1) onV ; exact TT matrix-
vector multiplication subroutine tt_mv

Input: a 2d1+1 × . . .× 2dD+1-tensor x in a QTT decomposition
x = (XD,dD+1 on . . .onXD,1) on . . . , . . .on (X1,d1+1 on . . .onX1,1) of ranks pD,dD , . . . , pD,1,
p̂D−1, . . . , . . . , p̂1, p1,d1 , . . . , p1,1

Output: the multilevel Toeplitz matrix T generated by the tensor x in a QTT decomposition T =
(TD,dD on . . .onTD,1) on . . . , . . .on (T1,d1 on . . .onT1,1) of ranks 2pD,dD−1, . . . , 2pD,1, p̂D−1, . . . , . . . , p̂1,
2p1,d1−1, . . . , 2p1,1

1: merge indices i and j in cores V and W {reshape S into a matrix of size 4
PD
k=1 dk × 2

PD
k=1(dk+1)}

2: T = tt_mv(S,x) {exact matrix-vector multiplication in the TT format}
3: split indices i and j in cores TK,k, dK ≥ k ≥ 1, D ≥ K ≥ 1 {reshape T into a matrix of size

2
PD
k=1 dk × 2

PD
k=1 dk}

D-dimensional 2d × . . .× 2d-vector of rank 2pq. However, the cubic dependence of the complexity on
either of the ranks makes such an approach unfavorable for even moderate p and q.

Another and much more efficient way is to perform the most expensive tensor contraction,
which involves both the input vectors, approximately rather than exactly. This allows to accomplish
the truncation on the fly and attain a proper rank structure of the output without constructing its
exact representation of QTT rank 2pq.

Algorithm 5.2 relying on an abstract matrix-vector multiplication subroutine fulfills both the
approaches, depending on what particular subroutine is used. It may be either exact or inexact
and require some extra arguments (e. g. accuracy), which should be also passed to the algorithm.
Subsequent truncation, if needed (for example, in the case of exact matrix-vector multiplication),
should be applied additionally afterwards.

Algorithm 5.2 z = tt_qconv_x(x,y, . . .)
Require: multilevel Toeplitz matrix construction subroutine tt_qtoepl; TT matrix-vector multiplica-

tion subroutine tt_mv_x
Input: a 2d1+1 × . . .× 2dD+1-tensor x and a 2d1 × . . .× 2dD -tensor y in QTT decompositions

x = (XD,dD+1 on . . .onXD,1) on . . . , . . .on (X1,d1+1 on . . .onX1,1) and
y = (YD,dD on . . .onYD,1) on . . . , . . .on (Y1,d1 on . . .onY1,1) of ranks
pD,dD , . . . , pD,1, p̂D−1, . . . , . . . , p̂1, p1,d1 , . . . , p1,1 and
qD,dD−1, . . . , qD,1, q̂D−1, . . . , . . . , q̂1, q1,d1−1, . . . , q1,1 respectively

Output: matrix-vector product of y and the multilevel Toeplitz matrix generated by x in a QTT
decomposition z = (ZD,dD on . . .onZD,1) on . . . , . . .on (Z1,d1 on . . .onZ1,1) of the ranks bounded from
above by 2pD,dD−1qD,dD−1, . . . , 2pD,1qD,1, p̂D−1q̂D−1, . . . , . . . , p̂1q̂1, 2p1,d1−1q1,d1−1, . . . , 2p1,1q1,1

1: T = tt_qtoepl(x) {construction of the multilevel Toeplitz matrix generated by x}
2: z = tt_mv_x(T ,y, . . .) {matrix-vector multiplication in the TT format}

We propose to use the iterative DMRG matrix-vector multiplication procedure described in
[42] to compute z = Ty = x ?y with a prescribed relative `2-accuracy ε. In order to estimate clearly
the complexity of such a procedure and Algorithm 5.2 based on it, let us assume that dk = d for
k = 1, . . . , D, p and q bound from above QTT ranks of x and y respectively, r bounds from above
those of the ε-approximation zε of z being computed. Then the complexity of a single iteration of the
DMRG matrix-vector multiplication for z = Ty reads

O
(
Dd
[
2 · r3 + 22 · (2p)2 · q · r + 22 · 2p · q2 · r + 2 · 2p · q · r2

])
= O

(
Ddr3 +Ddpqr (p+ q + r)

)
,

which agrees to the complexity estimate in [42, Section 3.2] if we assume additionally that r = q, and
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exact construction of T in the QTT format according to Algorithm 5.1 still costs O
(
Ddp2

)
, which is

negligible.

6 Numerical experiments

We present the following numerical experiments of convolution of vectors in one and three
dimensions with the use of Algorithm 5.2 implemented in MATLAB. A workhorse of our compu-
tations is the TT Toolbox developed by Ivan Oseledets with contributions from his colleagues at
the Institute of Numerical Mathematics of Russian Academy of Sciences and publicly available at
http://spring.inm.ras.ru/osel. We use the following functions of the toolbox:

• (T ,y) 7→ z = tt_mv(T ,y) multiplies a matrix T by a vector y in the QTT format exactly core-
wise as described in Proposition 2.3;

• z 7→ zε = tt_compr2(z, ε) truncates a TT representation of z passed in a quasi-optimal way
with a given relative accuracy ε in the Frobenius norm;

• (T ,y, ε) 7→ zε = tt_mv_k2(T ,y, ε) multiplies a matrix T by a vector y in the TT format with the
use of the DMRG approach with a given relative accuracy ε in the Frobenius norm;

and also full_to_tt to approximate tensors in the TT format, tt_dist2 to compute the Frobenius
distance between two given tensors and tt_dot to compute their dot product. Details on truncation
and exact matrix-vector multiplication in the TT format can be found in the papers on the TT format
referred to in Introduction. The DMRG algorithm for matrix-vector multiplication is presented in
[42].

We propose the following three implementations of Algorithm 5.2, discussed in Section 5:

• “exact”: (x,y) 7→ z = tt_qconv(x,y) computes the convolution exactly (tt_mv_x = tt_mv);

• “exact + tr.”: (x,y, ε) 7→ zε = tt_compr2(tt_qconv(x,y), ε) computes the convolution exactly
and truncates it with a prescribed accuracy ε (tt_mv_x = tt_mv);

• “DMRG”: (x,y, ε) 7→ zε = tt_qconv_k2(x,y) computes the convolution approximately with
a prescribed accuracy ε with the use of the DMRG matrix-vector multiplication (tt_mv_x =
tt_mv_k2).

In order to present concisely rank structure of the QTT decompositions involved in our numer-
ical experiments, we utilize the following two widely used aggregate rank characteristics. Let us
consider a n1 × . . . nd-tensor given in a TT decomposition, the rank structure of which is described
completely by d− 1 ranks r1, . . . , rd−1. Then we refer to rmax = maxk=1,...,d−1 rk as the maximum rank
of the decomposition in question, while its effective rank reff is defined by the equation

n1r1 +
d−1∑
k=2

rk−1nkrk + rd−1nd,= n1reff +
d−1∑
k=2

reffnkreff + reffnd

which equals memory needed to store the decomposition given and a decomposition of ranks reff , . . . , reff

of the tensor given, so that the “effective rank” is meant to be effective w. r. t. memory. But it allows
to evaluate exactly complexity of some operations in the TT format, such as matrix-vector multipli-
cation and Hadamard product, and gives a reasonable measure of complexity of others, e. g. TT
truncation.

All the numerical experiments presented below were executed in MATLAB 2009b on a single
core of a CPU Intel Xeon E5504 2.00GHz with 72 Gb memory available. We compare our results to
the preprint [9], experiments for which were carried out on the same computer and on a single core
as well, but in FORTRAN. The latter circumstance should be taken into account, as long as MATLAB
and FORTRAN implementations of TT truncation and matrix-vector multiplication might differ in
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performance more remarkably than those of the Fast Fourier Transform calling external more or
less similarly optimized subroutines.

Note that we do not compare our algorithm to the CP-structured convolution based on one-
dimensional FFT directly (see (5) with explanation in Section 1.1 or [23, 20] for more details), as long
as such a comparison follows trivially from collation of our algorithm and the FFT-based convolution
in the full format presented in Section 6.1.

6.1 Convolution of random QTT-structured vectors in 1D

To start with, we consider periodic convolution of vectors with random QTT decompositions of
prescribed ranks in one dimension and compare our approach to the FFT-based convolution in the
full format. For a given dimensionality d and rank r, we generate QTT cores of 2d-vectors x and y as
arrays of random numbers uniformly distributed in [0, 1]. All the ranks of the cores are let equal to
r, so both the effective and maximum ranks of the decompositions also equal r.

In the QTT format ranks are bounded by minimal sizes of the corresponding unfolding matrices
(see Introduction and references therein), which are 21, 22, 23, . . . , 23, 22, 21. Therefore, ranks of the
decompositions generated in the way described above may be reduced by exact transformations of
cores similar to (7) down to min

(
r, 21

)
, min

(
r, 22

)
, min

(
r, 23

)
, . . . ,min

(
r, 23

)
, min

(
r, 22

)
, min

(
r, 21

)
,

which are actual QTT ranks of the random tensors involved. However, in this experiment we use
rank-r, . . . , r decompositions to make it easier to track how the performance of convolution depends
on r = reff = rmax.

Regarding the choice of the one-dimensional case of 2d-vectors for this experiment, we point
out that for random vectors it cannot differ any significantly from theD-dimensional case of 2d1×. . .×
2dD -vectors once d = d1 + . . . + dD, as long as there is no special “interaction” between dimensions
in a random tensor and our convolution algorithm is even a little faster in higher dimensions due to
the fact that the QTT ranks of the structuring tensor S, connecting “real” dimensions, are equal to 1
instead of 2.

Time of periodic convolution is presented in Table 1 and Figure 1 for r = 5, 15, 40. Trunca-
tion parameter ε is equal to 10−2 in both the approximate implementations of Algorithm 5.2, which
ensures the accuracy 10−2 of the result.

We compare the algorithm proposed to the FFT-based convolution algorithm consisting of three
FFTs and a single Hadamard product in the full format. Note that we do note take into account any
expenses related to conversion from the full format to QTT or vice versa, we just assume that con-
volution is done in either of the two and compare corresponding times. Generally speaking, we are
interested in convolution in time logarithmic w. r. t. the number of components of the input vectors,
which could be efficient as a stage of a particular computational process carried out in the QTT
format, while QTT approximation of full vectors and their convolution with subsequent conversion
back to the full format do not make any sense and are not available in more high-dimensional prob-
lems, which we deal with in other numerical experiments. Of course, performance of the FFT-based
algorithm is in no way affected by QTT structure (e. g. ranks) of the random vectors in question.

We also consider the times presented in [9] multiplied by the factor of three in order to make
a comparison to the convolution algorithm based on QTT-FFT. In that paper computation of FFT of
a sum of r complex planes with random amplitudes and frequencies was considered, so the input
decompositions had ranks r, . . . , r and the vectors themselves were of ranks min

(
r, 21

)
, min

(
r, 22

)
,

min
(
r, 23

)
, . . . ,min

(
r, 23

)
, min

(
r, 22

)
, min

(
r, 21

)
, which conforms to our experiment. We assume that

introduction of the factor of three leads to a reasonable estimate of QTT-FFT convolution time, but,
rigorously speaking, the difference in QTT structure of the data may lead to that in performance.
Because of this we postpone a rigorous comparison of our methods to the QTT-FFT-based convolution
till Section 6.2.2. One may look at the times of FFT-based convolution we measured and those of FFT
presented in [9] and tripled by us to compare performance of these computations in MATLAB and
FORTRAN and take the corresponding scaling into account while comparing the two QTT-structured
convolution algorithms. For them, however, the difference between MATLAB and FORTRAN might
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Figure 1: Time (sec.) of convolution of random 2d-vectors vs. d. The four lines marked with ∗ present
time of three FFTs and QTT-FFTs of a sum of r plane waves with random amplitudes and frequencies.

be more noticeable than for the standard FFT subroutines.

The experiment shows that Algorithm 5.2 outperforms the convolution method based on FFT
in the full format when the vectors are long enough and their QTT ranks are reasonably bounded
from above. The crossing points starting from which QTT convolution performs better are d = 16 for
r = 5 (exact version), d = 18 for r = 15 (DMRG version) and d = 22 for r = 40 (DMRG version). For
practical ranks (say, more than 10) exact convolution becomes too expensive compared to the DMRG
version and subsequent truncation of the output to reasonable ranks takes a lot of extra time. Also,
for all the three values of r considered the DMRG version is faster than we can expect the QTT-FFT
convolution method to be, while the exact version and that with subsequent truncation excel it only
for moderate ranks. So we may suggest the DMRG version of Algorithm 5.2 as the method of choice.

6.2 Convolution of function-related vectors in 3D

As we mentioned in Section 1.1, convolution plays important role in scientific computing and,
in particular, computational quantum chemistry and solid state physics. Gaussian Type Orbitals
(GTO), which are Gaussians with polynomial weights [43], were and are still widely used to represent
electronic and molecular structure, potentials and all the intermediate data in plenty of commercial
and non-commercial software packages, e. g. MOLPRO, GAMESS, Q-Chem, CASINO, ABINIT, etc. A
great advantage of GTOs is that they are highly capable of representing strong cusps typical for this
kind of applications and suitable for analytical calculations.

Alternatively, tensor methods (in the Tucker [44, 45], CP, TT or QTT format) may be applied
directly to electronic density functions, potentials and other data and operators involved in computa-
tions (see [22, 23, 25, 24] for details and further references). This propels us to consider convolution
of a Gaussian with another Gaussian (Section 6.2.1) and the Newton kernel (Section 6.2.2) as ex-
amples in the case of function-related data. Convolution f ? g ∈ Lr

(
RD
)

of functions f ∈ Lp
(
RD
)

and g ∈ Lq
(
RD
)

is defined as (f ? g) (u) =
∫

RD f(u − v)g(v)dv, u ∈ RD, and by Young’s inequality for
convolutions we have for 1 ≤ p, q, r ≤ ∞ that

‖f ? g‖Lr(RD) ≤ ‖f‖Lp(RD)‖g‖Lq(RD), provided that 1 +
1
r

=
1
p

+
1
q
, (34)
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in the full format in the QTT format
d FFT conv. 3×FFT ∗ r exact exact+tr. DMRG 3×QTT-FFT ∗

15 2.9 · 10−3 1.8 · 10−3

5 4.9 · 10−3 2.0 · 10−2 3.3 · 10−2 7.4 · 10−2

15 1.4 · 10−1 2.9 · 10+0 4.9 · 10−2 3.6 · 10−1

40 1.1 · 10+1 6.4 · 10+2 6.8 · 10−1 1.5 · 10+0

16 7.9 · 10−3 4.8 · 10−3

5 5.2 · 10−3 2.2 · 10−2 3.0 · 10−2 8.3 · 10−2

15 1.4 · 10−1 3.2 · 10+0 5.3 · 10−2 4.5 · 10−1

40 1.3 · 10+1 7.5 · 10+2 7.3 · 10−1 2.1 · 10+0

17 1.8 · 10−2 1.2 · 10−2

5 5.5 · 10−3 2.3 · 10−2 3.5 · 10−2 8.5 · 10−2

15 1.6 · 10−1 3.6 · 10+0 5.7 · 10−2 5.5 · 10−1

40 1.3 · 10+1 8.3 · 10+2 9.2 · 10−1 2.7 · 10+0

18 4.2 · 10−2 2.7 · 10−2

5 5.8 · 10−3 2.5 · 10−2 2.5 · 10−2 1.0 · 10−1

15 1.6 · 10−1 3.9 · 10+0 6.1 · 10−2 6.9 · 10−1

40 1.4 · 10+1 9.5 · 10+2 9.0 · 10−1 3.7 · 10+0

19 1.0 · 10−1 5.6 · 10−2

5 6.2 · 10−3 2.7 · 10−2 3.4 · 10−2 1.1 · 10−1

15 1.7 · 10−1 4.2 · 10+0 6.5 · 10−2 7.2 · 10−1

40 1.6 · 10+1 1.0 · 10+3 1.0 · 10+0 4.5 · 10+0

20 2.6 · 10−1 1.1 · 10−1

5 6.5 · 10−3 2.8 · 10−2 2.8 · 10−2 1.3 · 10−1

15 1.8 · 10−1 4.5 · 10+0 6.9 · 10−2 8.4 · 10−1

40 1.7 · 10+1 1.1 · 10+3 1.1 · 10+0 4.8 · 10+0

21 6.3 · 10−1 2.4 · 10−1

5 6.9 · 10−3 3.0 · 10−2 4.4 · 10−2 1.3 · 10−1

15 2.0 · 10−1 4.9 · 10+0 9.9 · 10−2 8.7 · 10−1

40 1.7 · 10+1 1.2 · 10+3 1.1 · 10+0 5.4 · 10+0

22 1.5 · 10+0 5.0 · 10−1

5 7.4 · 10−3 3.2 · 10−2 4.6 · 10−2 1.5 · 10−1

15 2.3 · 10−1 5.5 · 10+0 8.3 · 10−2 1.0 · 10+0

40 1.8 · 10+1 1.3 · 10+3 1.3 · 10+0 6.1 · 10+0

23 2.9 · 10+0 1.1 · 10+0

5 7.6 · 10−3 3.4 · 10−2 3.2 · 10−2 1.7 · 10−1

15 2.4 · 10−1 5.8 · 10+0 8.3 · 10−2 1.1 · 10+0

40 1.9 · 10+1 1.4 · 10+3 1.3 · 10+0 7.2 · 10+0

24 6.5 · 10+0 2.4 · 10+0

5 8.1 · 10−3 3.5 · 10−2 5.1 · 10−2 1.9 · 10−1

15 2.6 · 10−1 6.2 · 10+0 9.0 · 10−2 1.2 · 10+0

40 2.0 · 10+1 1.5 · 10+3 1.4 · 10+0 7.6 · 10+0

25 1.4 · 10+1 5.4 · 10+0

5 8.3 · 10−3 3.8 · 10−2 5.4 · 10−2 2.1 · 10−1

15 2.7 · 10−1 6.5 · 10+0 9.5 · 10−2 1.3 · 10+0

40 2.2 · 10+1 1.7 · 10+3 1.5 · 10+0 8.5 · 10+0

26 3.0 · 10+1 1.2 · 10+1

5 8.8 · 10−3 3.9 · 10−2 3.7 · 10−2 2.1 · 10−1

15 2.9 · 10−1 6.9 · 10+0 1.3 · 10−1 1.4 · 10+0

40 2.2 · 10+1 1.7 · 10+3 1.5 · 10+0 9.2 · 10+0

27 6.6 · 10+1 3.6 · 10+1

5 9.0 · 10−3 4.1 · 10−2 5.9 · 10−2 2.3 · 10−1

15 3.5 · 10−1 7.5 · 10+0 1.0 · 10−1 1.5 · 10+0

40 2.4 · 10+1 1.9 · 10+3 1.7 · 10+0 1.0 · 10+1

Table 1: Time (sec.) of convolution of random 2d-vectors. The two columns marked with ∗ present
time of three FFTs and QTT-FFTs of a sum of r plane waves with random amplitudes and frequencies.

which is very useful for us in view of the convolution error control, since convolution is a bilinear
mapping.

In the following experiments we consider h = f ? g in three dimensions (D = 3) with a Gaussian
g defined by

g (u) =
1(√

2πσ
)3 exp

(
−‖u‖

2

2σ2

)
, u ∈ R3,
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where we let σ = 10−3, so that g represents a strong cusp at 0, which requires very careful inter-
polation to be resolved. The value of σ also allows us to approximate g very accurately by a finite
function

g̃ (u) =

{
g(u), u ∈

[
−1

2 ,
1
2

]3
,

0, otherwise,

which is feasible by (34). The function f is considered on [−1, 1], and f ? g̃ is defined then on
[
−1

2 ,
1
2

]
.

We assume that both the functions convolved are centered in a way, which is not restrictive due to
the translation property of convolution.

To proceed from continuous convolution to (30) and (31), we use a piecewise-constant FEM
discretization of f on [−1, 1]3 and g on

[
−1

2 ,
1
2

]3
, and a piecewise-multilinear FEM discretization of h

on
[
−1

2 ,
1
2

]3
. Finite elements are constructed on the tensor grids

({
2i−1−2n

2n

}2n

i=1

)× 3
,
({

2i−1−n
2n

}n
i=1

)× 3

and
({

2i−n
2n

}n
i=1

)× 3
respectively, where n = 2d.

Next we approximate the FEM discretizations x, y and ẑ of f , g and h respectively in the
QTT format, compute z = x ?y by the three versions of Algorithm 5.2 described at the beginning
of Section 6 and examine the error e = z − ẑ. The latter is done in two ways: we rely mostly on
the relative `2-norm δ = ‖e‖2

‖ẑ‖2 of the error, which we evaluate in the QTT format. But, following [9],
we also est imate accuracy by the relative `2-norm δest of e restricted to the axes. Computation of
δest, which reduces to one dimension, is easier and affordable in the full format with no need to
approximate ẑ in the QTT format. We also keep an eye on the relative `1 and Chebyshev norms of e

restricted to the axes, which prove to follow the same tendencies as δest in our examples and, thus,
are not reported for the sake of brevity.

To obtain QTT approximations y, we take advantage of the perfect separability of a Gaussian:
it is a tensor power of the proper one-dimensional Gaussian g(1) which we represent in the corre-
sponding finite element subspace, reshape the discretization into a 2×. . .×2-tensor and approximate
with in the TT format by the TT Toolbox subroutine full_to_tt in order to obtain its QTT approxi-
mation y(1). We end up with y = y(1) on y(1) on y(1), which has small QTT ranks and approximates the
discretization of g with relative accuracies . 10−13 in the `2, `1 and Chebyshev norms, while reff ≤ 6
and rmax ≤ 12. Since in our experiments f and h are either Gaussians as well or can be approximated
by sums of those, we use the same approach to obtain x and ẑ in the QTT format.

Remark 6.1. The error analysis presented in [20] applies to computation of convolution with the dis-
cretization described above. In particular, the estimate ‖z− ẑ‖C = O

(
1
n2

)
, n→∞ [20, Theorem 2.2]

holds for z if all the QTT approximations involved are absolutely accurate.

6.2.1 Convolution of two Gaussians in 3D

In this experiment we let f be a Gaussian:

f (u) =
1(√

2πσ0

)3 exp
(
−‖u‖

2

2σ2
0

)
, u ∈ [−1, 1]3

with σ0 = 1. A simple calculation shows that the convolution result h is another Gaussian:

h (u) =
1(√

2π
(
σ2

0 + σ2
))3 exp

(
− ‖u‖2

2
(
σ2

0 + σ2
)) , u ∈

[
−1

2
,
1
2

]3

.

As one can see in Figure 2(a), Figure 3(a), Figure 4(a) and Table 2, the accurate and low-rank
QTT approximations of discretizations, which are available in the case of Gaussians, unfortunately,
do not allow us to track the asymptotics of the convolution accuracy with respect to d, predicted by
Remark 6.1: relative Frobenius-norm convolution error is too small with respect to the norm of the
result when the FEM approximation is still not very accurate (small d).

22



d ε rz
eff rz

max δ δest time

exact

10 17.0 24 6.2 · 10−9 6.2 · 10−9 0.009
11 22.2 32 1.1 · 10−14 2.2 · 10−14 0.010
12 26.9 64 1.2 · 10−14 1.7 · 10−14 0.011
14 38.6 96 3.3 · 10−14 4.1 · 10−14 0.013
16 42.3 96 3.1 · 10−14 1.4 · 10−14 0.017
18 43.2 96 7.5 · 10−14 6.6 · 10−14 0.018
20 51.3 120 1.9 · 10−13 6.1 · 10−14 0.022

exact + truncation

10 5.0 · 10−9 3.2 4 6.2 · 10−9 7.1 · 10−9 0.013
11 5.0 · 10−14 4.2 6 1.4 · 10−14 1.2 · 10−14 0.018
12 5.0 · 10−14 4.2 6 1.3 · 10−14 7.6 · 10−15 0.022
14 5.0 · 10−14 4.1 6 2.8 · 10−14 2.3 · 10−14 0.042
16 5.0 · 10−14 3.9 6 3.2 · 10−14 3.4 · 10−14 0.061
18 5.0 · 10−14 3.8 6 8.2 · 10−14 5.0 · 10−14 0.067
20 5.0 · 10−14 3.8 6 1.8 · 10−13 7.9 · 10−14 0.108

DMRG

10 5.0 · 10−9 5.0 6 6.6 · 10−9 6.6 · 10−9 0.084
11 5.0 · 10−13 5.7 7 4.3 · 10−13 9.3 · 10−13 0.096
12 5.0 · 10−13 5.6 7 6.4 · 10−13 1.2 · 10−12 0.106
14 5.0 · 10−13 5.6 7 8.1 · 10−13 1.5 · 10−12 0.128
16 5.0 · 10−13 5.5 7 7.8 · 10−13 1.5 · 10−12 0.152
18 5.0 · 10−13 5.4 7 8.1 · 10−13 1.2 · 10−12 0.166
20 5.0 · 10−13 5.3 7 8.3 · 10−13 1.3 · 10−12 0.187

Table 2: Convolution of two Gaussians. Time is given in seconds

The convolution graphs are similar to the case of random low-rank (r = 5) vectors in one
dimension (Section 6.1): the DMRG version of Algorithm 5.2 is slower than the exact one with
subsequent truncation. However, the results presented in Section 6.1 suggest that this changes if
we deal with higher QTT ranks, which is typical for more practical examples.

6.2.2 Newton potential of a Gaussian in 3D

Another example is the Newton potential of the Gaussian g, which is the result h of convolution
of g with the Newton kernel f defined by

f (u) =
1
‖u‖

, u ∈ [−1, 1]3 .

The convolution result h is expressed analytically in terms of the error function as follows [43, pp.
806–813]:

h (u) =
1
‖u‖

erf
(
‖u‖√
2σ

)
, u ∈

[
−1

2
,
1
2

]3

The discretization applied to f (see Section 6.2) allows us to disregard the singularity at 0 in rather
a naive way, which, however, still yields us a good approximation of the convolution in the end, as
we mentioned in Remark 6.1.

We take advantage of the quadratures presented in [46], which represent the functions r2 7→ 1
r

and r2 7→ 1
r erf

(
1
r

)
, r > 0, as sums of exponentials, to decompose f and h in sums of Gaussians. Then

we discretize and approximate each Gaussian in the QTT format in the same way as g, sum them
and compress the results with tt_compr2. This yields us x and ẑ in the QTT format. We estimate
the accuracy of the decompositions obtained on the axes similarly to how δest is computed (more
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Figure 2: Accuracy of the convolution vs. d
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Figure 3: Effective rank of the convolution vs. d

precisely, the accuracy of x is estimated at the distance 1
2n from each of the axis due to our choice of

discretization of f ). The relative accuracy estimate proves to be . 10−11 in the `2, `1 and Chebyshev
norms.

As we will see from the experiment, the decompositions of x and y obtained as described above
are a bit too accurate and can be truncated before we apply Algorithm 5.2. This is important for x,
which has rather high ranks; for example, rx

eff = 308 and rx
max ≈ 174 for d = 20 in our experiments. We

call tt_compr2 with a truncation parameter εx = εy to approximate x and y with smaller QTT ranks.
This gives rise to two series of experiments, which we denote by “(A)” and “(B)”. The truncation
parameters applied and the characteristic ranks obtained are given in Table 3 and Table 4.

For the series (A) the input data truncation parameter εx = εy is chosen so that the accuracy δ
of the output is about the best possible. For the series (B) we choose such εx = εy that the accuracy
of the output is about the same as and not worse than that reported by the authors of [9] (the results
included in the current version of the preprint [9] are not the best: we found experiments with better
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approximation of f approximation of g
d εx rx

eff rx
max εy ry

eff ry
max

10 2.0 · 10−4 19.6 31 2.0 · 10−4 1.9 2
12 1.0 · 10−5 31.3 50 1.0 · 10−5 2.8 6
14 1.0 · 10−6 43.2 70 1.0 · 10−6 3.6 7
16 1.0 · 10−7 56.9 94 1.0 · 10−7 4.1 8
18 1.0 · 10−8 72.5 120 1.0 · 10−8 4.2 8
20 1.0 · 10−9 91.4 152 1.0 · 10−9 4.6 9

Table 3: Newton potential of a Gaussian (A). Ranks and accuracy of the input vectors

approximation of f approximation of g
d εx rx

eff rx
max εy ry

eff ry
max

10 5.3 · 10−2 6.1 9 5.3 · 10−2 1.9 2
12 4.3 · 10−2 6.7 10 4.3 · 10−2 2.2 4
14 3.2 · 10−2 7.6 12 3.2 · 10−2 2.3 4
16 1.2 · 10−2 10.3 17 1.2 · 10−2 2.3 4
18 3.6 · 10−3 14.7 26 3.6 · 10−3 2.4 4
20 1.2 · 10−3 18.9 32 1.2 · 10−3 2.5 5

Table 4: Newton potential of a Gaussian (B). Ranks and accuracy of the input vectors

convolution times and the same accuracies in the data provided by the authors of [9], and use them
for comparison). Note that the accuracies of x and y we obtained initially are enough to find the
proper values of the truncation parameter εx = εy for the series (A) and are far sufficient for the
series (B).

Figure 2(a), Figure 3(a) and Figure 4(a) present the accuracy δ of the result z, effective rank
of z and the convolution time vs. d, respectively, for both the series. The same data along with the
accuracy estimate δest and the accuracy parameter ε of inexact convolution are given in numbers in
Table 5 (A) and Table 6 (B).

As we can see from the results, the accuracy estimate of Remark 6.1 is achieved by Algo-
rithm 5.2 (for the series (A) the slope is −2.00 in Figure 2(b)). This is not the case for the QTT-FFT
convolution algorithm, the accuracy given for which is also the best possible for the method and is
O
(

1
n

)
. In the series (A), the DMRG version with on-the-fly truncation proves to be faster than exact
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d ε rz
eff rz

max δ δest time

exact

10 75.0 124 1.3 · 10−3 4.0 · 10−2 0.02
12 175.0 528 8.2 · 10−5 2.4 · 10−3 0.07
14 311.2 882 5.1 · 10−6 1.5 · 10−4 0.22
16 473.4 1408 3.2 · 10−7 9.4 · 10−6 0.61
18 614.1 1856 2.1 · 10−8 5.9 · 10−7 1.31
20 854.9 2682 1.3 · 10−9 3.7 · 10−8 2.78

exact + truncation

10 1.0 · 10−4 18.3 29 1.3 · 10−3 4.0 · 10−2 0.11
12 5.0 · 10−6 25.7 41 8.2 · 10−5 2.4 · 10−3 1.26
14 5.0 · 10−7 31.7 54 5.2 · 10−6 1.5 · 10−4 7.66
16 5.0 · 10−8 38.2 69 3.3 · 10−7 9.5 · 10−6 29.43
18 5.0 · 10−9 44.2 84 2.2 · 10−8 5.9 · 10−7 69.71
20 5.0 · 10−10 50.5 103 1.4 · 10−9 3.7 · 10−8 213.59

DMRG

10 1.0 · 10−4 19.6 28 1.3 · 10−3 4.0 · 10−2 0.29
12 5.0 · 10−6 28.2 43 8.2 · 10−5 2.4 · 10−3 1.02
14 5.0 · 10−7 37.0 58 5.2 · 10−6 1.5 · 10−4 3.42
16 5.0 · 10−8 43.9 72 3.3 · 10−7 9.4 · 10−6 7.87
18 5.0 · 10−9 51.7 88 2.1 · 10−8 6.0 · 10−7 18.05
20 5.0 · 10−10 61.6 108 1.4 · 10−9 3.7 · 10−8 45.11

Table 5: Newton potential of a Gaussian (A). Convolution time is given in seconds

convolution with subsequent truncation of the result, as long as QTT ranks are high enough in the
case of the best accuracies, mostly due to the not so good QTT structure of f . This changes when
we switch to the series (B): in this case the DMRG version is slower than exact one with trunca-
tion. However, the difference of the two is not as remarkable of them and the QTT-FFT convolution
algorithm, the latter being from 30 to 150 times slower.

In the series (A) we observe roughly the dependencies rx
eff ∼ d2.2 and ry

eff ∼ d1.8 for the input
(ε ∼ 10−d), while for the output (δ ∼ 10−2d) effective rank changes as rz

eff ∼ d3.2 with no rank
truncation and rz

eff ∼ d1.5 with rank truncation. The latter reflects that the explicit representation
of convolution in terms of x and y instead of xy′ may really have excessive ranks, as we mentioned
in Remark 4.8, and the convolution result is to be compressed even for the best accuracies and in
spite of that the input vectors cannot be truncated separately without introducing an extra error
in the output. For the exact and DMRG versions we see that the convolution time is ∼ d7.3 (with
different constant factors), but truncation of already computed z with rz

eff ∼ d3.2 is really expensive
and requires as much as ∼ d11.0 operations. However, for all the three versions we may remark
the complexity O (logαN) logarithmic w. r. t. the problem size N = n3 = 23d in the series (A), and
the corresponding constants allow our methods to outperform the QTT-FFT-based convolution in the
series (B).

7 Conclusion

We have presented explicitly QTT structure of the multilevel Toeplitz matrix generated by a
QTT-structured vector. This relation is established in the form of matrix-vector multiplication of
the generator and a proper “structuring” tensor in the QTT format (Theorem 4.6). Similar result
has been shown for a matrix-vector product of such a matrix and another QTT-structured vector
(Theorem 4.7). Bounds for QTT ranks of the output follow immediately and numerically prove to be
sharp.
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d ε rz
eff rz

max δ δest time time ∗ δest
∗

exact QTT-FFT conv.

10 22.7 36 3.8 · 10−2 2.8 · 10−1 0.009 2.9 2.9 · 10−1

12 27.6 56 2.8 · 10−2 1.2 · 10−1 0.011 4.7 1.2 · 10−1

14 32.2 64 1.9 · 10−2 3.7 · 10−2 0.013 6.6 3.7 · 10−2

16 45.8 96 6.9 · 10−3 8.8 · 10−3 0.018 8.8 9.9 · 10−3

18 66.5 144 1.9 · 10−3 2.4 · 10−3 0.027 11.2 2.5 · 10−3

20 93.5 250 6.3 · 10−4 5.7 · 10−4 0.042 13.8 5.9 · 10−4

exact + truncation QTT-FFT conv.

10 3.0 · 10−2 6.0 9 4.0 · 10−2 2.8 · 10−1 0.018 2.9 2.9 · 10−1

12 1.0 · 10−2 6.8 10 2.8 · 10−2 1.2 · 10−1 0.026 4.7 1.2 · 10−1

14 3.0 · 10−3 8.9 14 1.9 · 10−2 3.7 · 10−2 0.040 6.6 3.7 · 10−2

16 6.5 · 10−4 12.0 20 6.9 · 10−3 9.8 · 10−3 0.076 8.8 9.9 · 10−3

18 1.5 · 10−4 15.2 27 1.9 · 10−3 2.4 · 10−3 0.176 11.2 2.5 · 10−3

20 3.0 · 10−5 19.1 38 6.3 · 10−4 5.8 · 10−4 0.429 13.8 5.9 · 10−4

DMRG QTT-FFT conv.

10 5.0 · 10−2 7.6 9 4.0 · 10−2 2.9 · 10−1 0.07 2.9 2.9 · 10−1

12 2.5 · 10−2 9.7 12 2.8 · 10−2 1.2 · 10−1 0.11 4.7 1.2 · 10−1

14 5.0 · 10−3 12.1 14 1.9 · 10−2 3.6 · 10−2 0.18 6.6 3.7 · 10−2

16 4.7 · 10−4 15.4 22 6.9 · 10−3 9.5 · 10−3 0.29 8.8 9.9 · 10−3

18 2.5 · 10−4 19.4 26 1.9 · 10−3 2.4 · 10−3 0.56 11.2 2.5 · 10−3

20 3.0 · 10−5 23.3 37 6.3 · 10−4 5.6 · 10−4 0.88 13.8 5.9 · 10−4

Table 6: Newton potential of a Gaussian (B). Convolution time is given in seconds. The two columns
marked with ∗ present convolution times and accuracy estimates of the QTT-FFT convolution algo-
rithm [9]

A method (Algorithm 5.2) of multidimensional convolution (Toeplitz matrix-vector multiplica-
tion) in the QTT format, exploiting the explicit QTT structure presented, has been proposed. Several
versions were considered: exact convolution, exact convolution with subsequent QTT truncation and
inexact convolution with on-the-fly QTT truncation, the latter being based on the DMRG approach to
matrix-vector multiplication in the QTT format. Numerical experiments in 1D and 3D show that the
convolution method proposed is efficient in handling large-scale data and outperforms the FFT-based
convolution (in time) and the QTT-FFT-based convolution (in both time and accuracy).

Computation of the Newton potential of a narrow Gaussian with the use of the method proposed
shows that very fast and accurate convolution with the complexity scaling logarithmically (logα)
w. r. t. the problem size is achievable by employing the QTT format for nonlinear approximation, and
highlights that this format may be beneficial for computations with functions with singularities on
simple uniform tensor grids, while sophisticated adaptive methods are usually brought into play to
deal with such functions.

Apart from numerous applications in scientific computing and signal and image processing, the
results of this paper may be useful in view of handling the algebra of Toeplitz matrices and multipli-
cation of polynomials in the QTT format. It is worth noting that the theoretical results of the paper
are independent of the field under consideration (R or C, for other fields a proper TT arithmetics
might be needed) and the convolution algorithm proposed can be applied straightforwardly to the
complex-valued as well as real-valued data.
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