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Fast Quadrature Tehniques for RetardedPotentials Based on TT/QTT TensorApproximationB. N. Khoromskij∗ S. Sauter† A. Veit‡§
AbstratWe onsider the Galerkin approah for the numerial solution of retarded boundaryintegral formulations of the three dimensional wave equation in unbounded domains.Reently smooth and ompatly supported basis funtions in time were introduedwhih allow the use of standard quadrature rules in order to ompute the entries of theboundary element matrix. In this paper we use TT and QTT tensor approximations toinrease the e�ieny of these quadrature rules. Various numerial experiments showthe substantial redution of the omputational ost that is needed to obtain aurateapproximations for the arising integrals.AMS Subjet Classi�ation: 65F30, 65F50, 65N35, 65F10Key words: Multi-dimensional problems, tensor approximation, quantized representation ofvetors, model redution, retarded potentials, 3D wave equation, quadrature rules.1 IntrodutionAousti and eletromagneti sattering problems in three dimensions have a wide rangeof pratial appliations in physis and engineering. An important model problem for thedevelopment of e�ient and aurate numerial methods for suh types of time-dependentphysial appliations is the three-dimensional wave equation in unbounded exterior domains.Here, boundary element methods show their natural strength, reduing the problem in theunbounded domain to integral equations on the bounded surfae of the satterer.The e�ient numerial solution of suh retarded boundary integral equations has gainedgrowing attention in the last years. Existing approahes inlude methods based on onvo-lution quadrature (f. [3, 4, 5, 11, 12℄) and methods based on bandlimited interpolationand extrapolation (f. [32, 33, 34, 36℄). Here, we onsider a Galerkin method in order to
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disretize the integral equations in spae and time (f. [2, 6, 8, 9℄). It an be shown thatthe orresponding spae-time variational formulation in this approah satis�es a oerivityproperty whih ensures the unonditional stability of onforming Galerkin shemes. Fur-thermore, this approah is very �exible with regard to the use of variable time steppingand spatially urved satterers. The standard Galerkin approah uses pieewise polynomialbasis funtions in time. The drawbak of the method in this ase is that due to the retardedtime argument the domain for the spatial integration is the intersetion of (possibly urved)pairs of surfae panels with the disrete light one. The stable numerial handling of theseintersetions is ompliated even for �at panels and might be intratable for urved surfaepathes. We refer to [7, 21, 29℄ for examples of quadrature shemes tailored to this problem.In [26℄ smooth and ompatly supported basis funtions in time were introdued. Thishoie irumvents the problem of integrating on the ompliated intersetions of the dis-rete light one with the spatial surfae mesh and allows to apply standard quadrature rulesto ompute the entries of the boundary element matrix. Due to the ompat support ofthe basis funtions the sparsity of the system matrix is maintained. On the other hand thisleads to C∞ but, in general, non-analyti integrands, whih makes the quadrature problemmore di�ult. In general, more quadrature points have to be used as for analyti integrandsas they arise, e.g., for boundary element methods applied to ellipti boundary value prob-lems. In this paper we therefore address the problem how to e�iently evaluate the arisingintegrals using tensor Gauss quadrature and TT/QTT approximation.The integrals whih de�ne the entries of the blok system matrix are de�ned over pairs ofsurfae panels. They are transformed to the referene triangle in Eulidean spae and byapplying simplex oordinates the quadrature problems boils down to the approximation ofan integral over the four-dimensional unit ube. A tensor quadrature rule applied to theseintegrals leads to a four dimensional tensor A of size N ×N ×N ×N whose entries are thevalues of the integrand evaluated at the di�erent quadrature points.To redue the storage and omputational osts to handle this large data array, we applythe methods of tensor approximation based on the idea of separation of variables. Thereare various tensor-produt formats whih allow the low parametri representation of high-dimensional data. The most ommonly used are the anonial, Tuker formats as well asthe lass of so-alled matrix produt states (MPS) representations [35, 30, 31℄ ommonlyused in high-dimensional quantum omputations (see survey paper [16℄ for more details).Reently these types of tensor formats have attrated muh attention in the ommunity ofnumerial anylysis. In partiular, the hierarhial Tuker [13℄, the tensor train (TT) [23℄and the tensor hain (TC) [17℄ formats were onsidered. In the following we make useof the TT format applied to both the initial fourth order tensor and to its quantized-TT(QTT) representation. Suh representations allow to redue the asymptotial storage andomputational osts from O(N4) to O(r2N) or even to O(r2 logN), where r is the smallrank parameter, haraterizig the separability properties of the target tensor A. Notie thatthe hierarhial Tuker format was reently applied in omputation of ertain multivariateintgrals arising in boundary element methods [1℄.Various numerial experiments show that these tensors have usually a low rank represen-tation in TT and QTT format whih redues the storage and omputational ost substan-tially. The evaluation of the quadrature then orresponds to a simple salar produt of theTT/QTT representation of A and a rank-1 tensor ontaining the weights of the quadraturerule. This evaluation an be performed onsiderably faster ompared to the standard ap-proah. In order to ompute the TT/QTT approximation of A diretly, without omputing2



A itself, we use a TT/QTT ross approximation sheme (f. [24℄). This further redues theomputational ost, sine onsiderably less evaluations of the integrand are required. Weperform numerial experiments to show the e�ieny of this sheme in our ase.Note that our sparse approximation method for high-dimensional quadrature problems isby no means restrited to the retarded potential integral equation but, potentially, anbe applied to a muh larger lass of problems. We restrited to this appliation beausequadrature is the major bottlenek for the diret disretization of retarded potentials.2 Problem SettingLet Ω ⊂ R
3 be a Lipshitz domain with boundary Γ. We onsider the homogeneous waveequation

∂2
t u− ∆u = 0 in Ω × [0, T ] (2.1a)with initial onditions
u(·, 0) = ∂tu(·, 0) = 0 in Ω (2.1b)and Dirihlet boundary onditions

u = g on Γ × [0, T ] (2.1)on a time interval [0, T ] for T > 0. In appliations, Ω is often the unbounded exterior ofa bounded domain. For suh problems, the method of boundary integral equations is anelegant tool where this partial di�erential equation is transformed to an equation on thebounded surfae Γ. We employ an ansatz as a single layer potential for the solution u
u(x, t) := Sφ(x, t) :=

∫

Γ

φ(y, t− ‖x− y‖)

4π‖x− y‖
dΓy, (x, t) ∈ Ω × [0, T ] (2.2)with unknown density funtion φ. S is also referred to as retarded single layer potential dueto the retarded time argument t− ‖x− y‖ whih onnets time and spae variables.The ansatz (2.2) satis�es the wave equation (2.1a) and the initial onditions (2.1b). Sinethe single layer potential an be extended ontinuously to the boundary Γ, the unknowndensity funtion φ is determined suh that the boundary onditions (2.1) are satis�ed. Thisresults in the boundary integral equation for φ,

∫

Γ

φ(y, t− ‖x− y‖)

4π‖x− y‖
dΓy = g(x, t) ∀(x, t) ∈ Γ × [0, T ] . (2.3)In order to solve this boundary integral equation numerially we introdue the followingspae-time variational formulation (f. [2, 8℄): Find φ in some Sobolev spae V suh that

∫ T

0

∫

Γ

∫

Γ

φ̇(y, t− ‖x− y‖)ζ(x, t)

4π‖x− y‖
dΓydΓxdt =

∫ T

0

∫

Γ
ġ(x, t)ζ(x, t)dΓxdt (2.4)for all ζ ∈ V , where we denote by φ̇ the derivative with respet to time.Let VGalerkin be a �nite dimensional subspae of V being spanned by N basis funtions

{bi}
N
i=1 in time and M basis funtions {ϕj}

M
j=1 in spae. This leads to the fully disreteansatz

φGalerkin(x, t) =

N∑

i=1

M∑

j=1

α
j
iϕj(x)bi(t), (x, t) ∈ Γ × [0, T ] , (2.5)3



where αj
i are the unknown oe�ients. Plugging this ansatz in (2.4) and rearranging termsshows that this is equivalent to: Find αj

i for i = 1 . . . , N and j = 1, . . . ,M suh that
N∑

i=1

M∑

j=1

A
i,k
j,lα

j
i = gk

l ∀1 ≤ k ≤ N ∀1 ≤ l ≤M, (2.6)where
gk
l :=

∫ T

0

∫

Γ
ġ(x, t)ϕl(x) bk(t)dΓxdtand

A
i,k
j,l :=

∫

supp(ϕl)

∫

supp(ϕj)
ϕj(y)ϕl(x)ψi,k(‖x− y‖)dΓydΓx. (2.7)The funtion ψi,k ontains the time integration and is de�ned, for r > 0, by

ψi,k(r) :=

∫ T

0

ḃi(t− r)bk(t)

4πr
dt.Let G :=

{
τi : 1 ≤ i ≤M

} denote a �nite element mesh on Γ onsisting of (possibly urved)triangles. More preisely, we assume that for any τ ∈ G, there exists a smooth bijetion
χτ : τ̂ → τ from the referene element τ̂ := conv {(0, 0)⊺ , (1, 0)⊺ , (1, 1)⊺} to the surfaetriangle τ . Then, in the solution proess, the following quadrature problem arises: For
τ, τ̃ ∈ G and 1 ≤ i, j ≤M , ompute

I
i,k
τ,τ̃ (ϕj , ϕl) :=

∫

τ

∫

τ̃
ϕj(y)ϕl(x)ψi,k(‖x− y‖)dΓydΓx, (2.8)where ϕj and ϕl, typially, are lifted polynomials, i.e., ϕj ◦ χτ and ϕl ◦ χτ̃ are polynomialson τ̂ .The de�nition of smooth and ompatly supported temporal shape funtions was ad-dressed in [26℄ and is as follows. Let

f (t) :=






1
2 erf (2 artanh t) + 1

2 |t| < 1,
0 t ≤ −1,
1 t ≥ 1and note, that f ∈ C∞ (R). Next, we will introdue some saling. For a funtion g ∈

C0 ([−1, 1]) and real numbers a < b, we de�ne ga,b ∈ C0 ([a, b]) by
ga,b (t) := g

(
2
t− a

b− a
− 1

)
.We obtain a bump funtion on the interval [a, c] with joint b ∈ (a, c) by

ρa,b,c (t) :=






fa,b (t) a ≤ t ≤ b,

1 − fb,c (t) b ≤ t ≤ c,

0 otherwise.Let us now onsider the losed interval [0, T ] and 2N (not neessarily equidistant) timesteps
0 = t0 < t1 < . . . t2N−2 < t2N−1 = T.4



We de�ne τi := [ti−1, ti] for i = 1, ..., 2N − 1. Then T := {ωi : 1 ≤ i ≤ 2N − 1} with
ω1 := τ1, ω2N := τ2N−1, ∀2 ≤ i ≤ 2N − 1 ωi := τi−1 ∪ τide�nes a over of [0, T ]. A smooth partition of unity subordinate to T then is de�ned by

ϕ1 := 1 − ft0,t1 , ϕ2N := ft2N−2,2N−1
, ∀2 ≤ i ≤ 2N − 1 : ϕi := ρti−2,ti−1,ti .Smooth and ompatly supported basis funtions in time {bi}

2N
i=1, an then be obtained bymultiplying these partition of unity funtions with suitably saled Legendre polynomials (f.[26℄ for details).Remark 2.1. It holds1. suppψi,k ⊂ [tk−2 − ti, tk − ti−2].2. In partiular, ψi,k = 0 for k ≤ i− 2.3. LetR (τ, τ̃) := [dist (τ, τ̃) ,maxdist (τ, τ̃)], where maxdist (τ, τ̃) := sup(x,y)∈τ×τ̃ ‖x− y‖.Then,

I
i,k
τ,τ̃ (ϕj , ϕl) = 0 if R (τ, τ̃) ∩ [tk−2 − ti, tk − ti−2] = ∅.Let

I (τ, τ̃) :=
{

(i, k) ∈ {1, 2, . . . , N}2 | Ii,k
τ,τ̃ (ϕj , ϕl) 6= 0

}and, vie versa,
I (i, k) :=

{
(τ, τ̃) ∈ G × G | Ii,k

τ,τ̃ (ϕj , ϕl) 6= 0
}
.Note that the index sets I (τ, τ̃) and I (i, k) are sparse.Our goal is, in the following, to approximate Ii,k

τ,τ̃ (ϕj , ϕl) e�iently using TT- and QTT-approximations. For simpliity we assume that we have pieewise onstant basis funtionsin spae so that suppϕl = τ and suppϕk = τ̃ with τ, τ̃ ∈ G. In general these basis funtionsare lifted pieewise polynomials and typially of low order. Therefore we do not expet asevere impat of higher order basis funtions in spae on the rank deomposition in TT/QTTformat. Let us denote by τ̂ = conv
{
(0, 0)T, (1, 0)T , (1, 1)T} the referene triangle in R

2.The pullbaks of the surfae panels to the referene triangle are denoted by χτ : τ̂ → τ and
χτ̃ : τ̂ → τ̃ and assumed to be smooth bijetions. Beause simplex oordinates transformtriangles to squares, integrals of the form (2.8) an be written as

∫

τ

∫

τ̃
ψi,k (‖x− y‖) dΓydΓx = (2.9)
∫

[0,1]4
4π|τ ||τ̃ |ξxξy ψi,k(‖χτ (ξx, ξxηx) − χτ̃ (ξy, ξyηy)‖)︸ ︷︷ ︸

=:f(ξx,ηx,ξy,ηy)

dηydξydηxdξx.We apply properly saled tensor Gauss-Legendre quadrature rules for the numerial approx-imation of the arising integrals over the four-dimensional unit ube. Let n1, n2, n3, n4 ∈ N>0be the number of Gauss quadrature points in the �rst/seond/third/forth dimension withnodes
(x1,i)

n1

i=1, (x2,j)
n2

j=1, (x3,k)n3

k=1, (x4,l)
n4

l=1 ∈ [0, 1]5



and weights
(w1,i)

n1

i=1, (w2,j)
n2

j=1, (w3,k)
n3

k=1, (w4,l)
n4

l=1 ∈ R.Then,
∫

[0,1]4
f(ξx, ηx, ξy, ηy) dηydξydηxdξx ≈

n1∑

i=1

n2∑

j=1

n3∑

k=1

n4∑

l=1

w1,iw2,jw3,kw4,lf(x1,i, x2,j , x3,k, x4,l).(2.10)For simpliity and in order to test the QTT approximation we set n1 = n2 = n3 =
n4 =: NG and assume that NG is a power of 2. The evaluation of an approximation inthe form (2.10) requires O(N4

G) additions/multipliations and furthermore O(N4
G) funtionevaluations. Sine f , or more spei�ally ψi,k, ontains itself an integral, suh funtionevaluations might be expensive. Due to the non-analytiity of f and the need to omputethe integrals (2.9) aurately in order to obtain stable solutions of the time-domain boundaryintegral equations, we need a medium number of quadrature points in eah diretion. Thus,depending on the required auray of the approximation, the quadrature problem anbeome ostly. Therefore the question arises if the right hand side in (2.10) an be evaluatedmore e�iently. For this purpose we will investigate, in the following, the TT and QTT lowrank approximations to the fourth order tensor A = [A(i, j, k, l)] de�ned entrywise by

A(i, j, k, l) = f(x1,i, x2,j , x3,k, x4,l), (i, j, k, l) ∈ {1, ..., NG}
4. (2.11)Note that for the singular ase, where dist (τ, τ̃ ) = 0, regularizing oordinate transformshave to be applied to remove the singularity of the kernel funtion (f. [28℄, [25℄). Alsoin this ase, the transformed integral is (a sum of integrals) over the four-dimensional unitube and our ompression method an be applied also to these ases. However, sine only

O (M) integrals are singular (ompared to O (
M2

) regular ones) we restrit in this paperto the approximation of the regular integrals.3 Tensor Approximation of I
i,j
τ,τ̃ (ϕj, ϕl)In the following we apply the matrix-produt states (MPS) type tensor representations in theform of tensor train (TT) and quantized-TT (QTT) formats to represent sparsely the fourthorder oe�ients tensor arising in the quadrature approximation of the above integrals (see(2.10)).3.1 Matrix-produt states (MPS) tensor formatsA tensor of order d is de�ned as an element of �nite dimensional tensor-produt Hilbert spae

Wn ≡ W
n,d of the d-fold, N1 × ...×Nd real-valued arrays, and equipped with the Eulidean(Frobenius) salar produt 〈·, ·〉 : Wn ×Wn → R. Eah tensor in Wn, n = (N1, ..., Nd), anbe represented omponentwise,

A = [A(i1, ..., id)] with iℓ ∈ Iℓ := {1, ..., Nℓ},where for the ease of presentation, we mainly onsider the equal-size tensors, i.e., Nℓ = N(ℓ = 1, ..., d). We all the elements of Wn = R
I1×...×Id as N -d tensors. The dimension ofthe tensor-produt Hilbert spae Wn sales exponentially in d, dim W

n,d = Nd implyingthe exponential storage ost for a general N -d tensor.6



In our appliation the quadrature oe�ients for approximating Ii,k
τ,τ̃ (ϕj , ϕl) onstitutethe N ×N ×N ×N tensor A of order 4 as in (2.11), requiring N4 storage size. Hene, inthe ase of multiple omputations of a tensor and high numerial ost of evaluation a singleentry, the alulations beome nontratable already for N of order several tens.The MPS representation of a d-th order tensor redues the omplexity of storage to

O(dr2N), where r is the maximal mode rank [35, 30℄. The MPS tensor approximationwas proved to be e�ient in high-dimensional eletroni/moleular struture alulations,in quantum omputing and in stohasti PDEs (see survey paper [16℄ for more details). Inthe reent mathematial literature the various versions of MPS tensor deomposition weredisovered as the hierarhial Tuker [13℄, the tensor train (TT) [23℄ and the tensor hain(TC) [17℄ formats. In the following we make use of the TT format applied to both the initial
N -d tensor and to its quantized representation (quantis-TT).De�nition 3.1. (Tensor hain/train format) For a given rank parameter r = (r0, ..., rd),and the respetive index sets Jℓ = {1, ..., rℓ} (ℓ = 0, 1, ..., d), with the periodiity onstraints
J0 = Jd (i.e., r0 = rd), the rank-r TC format ontains all elements A = [A(i1, ..., id)] ∈ Wnwhih an be represented as the hain of ontrated produts of 3-tensors over the d-foldprodut index set J := ×d

ℓ=1Jℓ,
A(i1, ..., id) =

∑

α1∈J1

· · ·
∑

αd∈Jd

A(1)(αd, i1, α1)A
(2)(α1, i2, α2) · · ·A

(d)(αd−1, id, αd).In the matrix form we have the entrywise MPS representation
A(i1, i2, . . . , id) = A

(1)
i1
A

(2)
i2
. . . A

(d)
id
, (3.1)where eah A(ℓ)

iℓ
is rℓ−1 × rℓ matrix.In the ase J0 = Jd = {1}, the TC format oinides with TT representation in [23℄.The TC/TT format redues the storage ost of N -d tensor to O(dr2N), r = max rℓ.The important multilinear algebrai operations with TT tensors an be implemented withlinear omplexity saling in d and N . In partiular, for the Hadamard produt we have

Z = X ◦ Y : Z(k)(ik) = X(k)(ik) ⊗ Y (k)(ik),implying the formatted representation of the salar produt (in O(dr3N) ≪ Nd operations)
〈X,Y〉 = 〈X ◦ Y,1〉.3.2 Quantized-TT (QTT) Approximation of N-d tensorsFurther redution of the asymptoti storage omplexity an be based on the so-alledquantized-TT (QTT) representation obtained from the initial N × N × N × N tensor bysimple folding (reshaping) to higher dimensional 2× ...× 2 array. It was shown in [17℄ thatthe omputational gain of the QTT representation is due to the fat that a lass of disreteexponential (resp. trigonometri) N -vetors allows the rank-1 (resp. TT rank-2) dyadifolding representation, reduing the storage omplexity O(N) to the logarithmi bound

O(2 log2N); similar result holds for polynomial vetors sampled over uniform or gradedsurfae meshes.We suppose thatN = 2L with some L = 1, 2, .... The next de�nition introdues the foldingof N -d tensors into the elements (quantized 2 × ... × 2 tensors) of auxiliary D-dimensionaltensor spae with D = d log2N . 7



De�nition 3.2. ([17℄) Introdue the binary folding transform of degree 2 ≤ L,
Fd,L : W

n,d → W
m,dL, m = (m1, ...,md), mℓ = (mℓ,1, ...,mℓ,L),with mℓ,ν = 2 for ν = 1, ..., L, (ℓ = 1, ..., d), that reshapes the initial n-d tensor in W

n,d tothe elements of quantized spae W
m,dL as follows:(A) For d = 1 a vetor X = [X(i)]i∈I ∈ WN,1, is reshaped to the element of W2,L by

F1,L : X → Y = [Y (j)] := [X(i)], j = {j1, ..., jL},with jν ∈ {1, 2} for ν = 1, ..., L. For �xed i, jν = jν(i) is de�ned by jν − 1 = C−1+ν , wherethe C−1+ν are found from the binary representation of i− 1,
i− 1 = C0 + C12

1 + · · · + CL−12
L−1 ≡

L∑

ν=1

(jν − 1)2ν−1.(B) For d > 1 the onstrution is similar.Notie that the folding transform Fd,L is the linear isometry between WN,d and W2,dL(see [17℄).Remark 3.3. Every 2-dL tensor in the quantis spae W2,dL an be represented (approxi-mated) in the low rank TT format. This leads to the so-alled QTT representation of N -dtensors. Assuming that rk ≤ r, k = 1, ..., dL, the omplexity of QTT representation an beestimated by O(dr2 logN), providing log-volume asymptotis ompared with the volume sizeof initial tensor O(Nd).3.3 Sketh of numerial TT/QTT approximationThe manifold [14℄ of rank-r TT tensors in Wn is known to be losed in the Frobenius norm[24℄.From the omputational point of view, one of the most attrative features of TT format isthe following: the numerial omputation of rk−1×rk matries A(k)
ik

in the TT representation(approximation) of a full format tensor A = [A(i1, ..., id)],
A(i1, i2, . . . , id) = A

(1)
i1
A

(2)
i2
. . . A

(d)
id
,an be implemented by a stable SVD-based algorithm (MATLAB Toolbox http://spring.inm.rus.ru/osel).For the ompleteness of presentation, we sketh the full-to-TT ompression algorithm [23℄to be applied in �4 to our partiular fourth order oe�ients tensor.Input: a tensor A of size n1 × n2 · · · × nd and auray bound ε > 0.1: First unfolding: Nr =

∏d
k=2 nk, M := reshape(A, [n1, Nr]).2: Compute the trunated SVD of M ≈ UΛV , so that the approximate rank r ensures

min(n1,Nr)∑

k=r+1

σ2
k ≤

(ε · ‖A‖F )2

d− 1
.3: Set A(1) = U , M := ΛV T , r1 = r, and proess modes k = 2, ..., d − 1.4: for k = 2 to d− 1 do 8



4a: Construt the next unfolding: Nr := Nr

nk
, M := reshape(M, [rnk, Nr]).4b: Compute the trunated SVD of M ≈ UΛV , so that the approximate rank r ensures

min(nk,Nr)∑

k=r+1

σ2
k ≤

(ε · ‖A‖F )2

d− 1
.4: Set rk = r and reshape the matrix U into a tensor:

A(k) := reshape(U, [rk−1, nk, rk]).4d: Reompute M := ΛV .end for5: Set A(d) = M .Output: TT ores Ak, k = 1, . . . d, de�ning a TT ε-approximation to A.The above algorithm has the numerial omplexity O(nd+1). In the present paper we di-retly apply this algorithm to the fourth-order tensor of interest to demonstrate the e�ientrank deomposition in the TT format that redues drastially the storage and omputa-tional ost. Moreover, assuming the existene of low-rank TT representation the rank-rTT approximation an be omputed by the heuristi algorithm alled TT-ross approxima-tion [24℄ avoiding the �urse of dimensionality� (see the numerial example below). Thisalgorithm also applies to QTT format (QTT-ross approximation).Remark 3.4. Notie that the QTT approximation of the target N ×N ×N ×N tensor Aan be performed by the same deomposition algorithm but applied in the partiular setting
nk = 2, d = 4 logN . The rank-r QTT-ross approximation takes the advantage of lowost O(r4 logN) sine, due to the main property of TT-ross algorithm, it alls only for
O(r2 logN) entries of the initial tensor A. In this way, the generation of the full tensor anbe avoided by using the rank-r QTT-ross approximation method that requires to omputeonly few entries (hosen adaptively) of the target tensor. The numerial results show thatthe ompression is omparable with the omplete QTT approximation method (see �4.6).3.4 Computation of I

i,j
τ,τ̃ (ϕj, ϕl) using TT/QTT approximationLet us denote the TT and QTT representations of A as in (2.11) by ATT and AQTT . Anapproximation of the integral in (2.10) using these representations instead of A an beobtained by a simple tensor operation in the quantis spae W2,dL, d = 4, L = logNG,spei�ally as the salar produt of the rank-1 oe�ients tensor W = w1 ⊗ w2 ⊗ w3 ⊗ w4with ATT or AQTT . Let

QG := 〈W,A〉 =

NG∑

i=1

NG∑

j=1

NG∑

k=1

NG∑

l=1

w1,iw2,jw3,kw4,lf(x1,i, x2,j , x3,k, x4,l), (3.2)
QTT := 〈W,ATT 〉, (3.3)
QQTT := 〈W,AQTT 〉, (3.4)denote the quadrature formulas based on the di�erent representations of A. As pointed outin Setion 3.1 the ost to evaluate the salar produts QTT or QQTT sales with O(4r3NG),9



where r is muh smaller than NG, ompared to O(N4
G) for the exat evaluation of QG.Therefore the approximations QTT and QQTT an be omputed onsiderably faster, pro-vided that A has TT and QTT representations with low rank.Sine ATT and AQTT are only approximations of A, the formulas QTT and QQTT intro-due additional quadrature errors. An important question therefore is how aurate theapproximations ATT/QTT have to be, suh that the relative errors

EG,TT :=
|QG −QTT |

|QG|
and EG,QTT :=

|QG −QQTT |

|QG|
(3.5)are small and the additional error does not a�et the auray of the quadrature QG.4 Numerial ExperimentsIn the following, we investigate the ompression properties of A and the auray of QTTand QQTT using di�erent triangles and time meshes in order to over various ases, thatmight our during the solution of the disrete system (2.6) . Therefore, let

τ := conv
{
(0, 0, 0)T, (1, 0, 0)T , (1, 1, 0)T }

τ̃ := cshift + conv

{
(1, 0, 0)T, (1, 1

2
, 1)T , (0, 1,

1

2
)T }with cshift ∈ R. These triangles will be used for all numerial experiments. Only cshift ∈ Ris variable and will be set individually for eah ase. Furthermore we will de�ne di�erenttime grids for eah ase onsisting of six points t1 ≤ . . . ≤ t6 ∈ R≥0. We then hoose basisfuntion b(t) and b̃(t) in time suh that supp b = [t1, t3] and supp b̃ = [t4, t6]. More preisely,

b and b̃ will be the smooth bump funtions as de�ned in Setion 2 multiplied with properlysaled Legendre polynomials of degree 1 (f. [26℄), i.e.,
b(t) = ρt1,t2,t3(t)

(
2
t− t1

t3 − t1
− 1

) and b̃(t) = ρt4,t5,t6(t)

(
2
t− t4

t6 − t4
− 1

)
. (4.1)
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Figure 4.1: ψ(r) for the time gridgiven in (4.3).

Thus, the integrals we want to approximate are ofthe form
Iτ,τ̃ :=

∫

τ

∫

τ̃
ψ (‖x− y‖) dΓydΓxwith

ψ(r) :=

∫ T

0

ḃ(t− r)b̃(t)

4πr
dt (4.2)where r ∈ R>0. Note that

suppψ = [t4 − t3, t6 − t1].We denote the domain of the spatial integration by
S =

{
z ∈ R

3 s.t. z = x− y, x ∈ τ, y ∈ τ̃
}10



and de�ne
Smin := min

z∈S
‖z‖ = dist(τ, τ̃ ), Smax := max

z∈S
‖z‖ = maxdist(τ, τ̃ ).It an be easily seen that the position of triangle τ̃ , i.e. cshift, has to be hosen suh that

[SminSmax]∩[t4−t3, t6−t1] 6= ∅ in order to obtain Iτ,τ̃ 6= 0 (f. Remark 2.1). In the followingwe will perform numerial experiments for the following ases:1. Smin < t4− t3 and Smax < t6− t1. Here, the domain S is only partially enlighted fromone side (f. Figure 4.2). The ase Smin > t4 − t3 and Smax > t6 − t1 leads to similarnumerial results in our example and will not be treated separately.2. Smin > t4 − t3 and Smax < t6 − t1. In this ase the domain S is ompletely enlighted(f. Figure 4.4).3. Smin < t4 − t3 and Smax > t6 − t1. Here, the disrete light one is a narrow strip (f.Figure 4.6).4. Smin small. In this ase we examine how small distanes between the triangles in�uenethe ompression rates.5. At last we onsider the ase of higher order basis funtions in time and therefore amore osillatory funtion ψ.Remark. In the following numerial experiments the TT/QTT approximations of thetensor A were omputed using the TT-toolbox 1.0 for MATLAB written by I. Oseledets(http://spring.inm.rus.ru/osel).4.1 Case 1: Partially enlighted integration domainFor this ase we de�ne the time grid
t1 = 0.6, t2 = 1.2, t3 = 1.7, t4 = 9.8, t5 = 10.5, t6 = 11.0 (4.3)and cshift = 4.4 suh that Smin ≈ 7.2 and Smax ≈ 9.6. This hoie of the parameters leads toa situation as illustrated in Figure 4.2. The integration domain is only partially enlightedfrom one side, whih leads (depending of the hoie of cshift) to many zero entries in theresulting tensor A. In this example cshift was hosen suh that approximately 50% of theentries of A are nonzero.For the approximation of Iτ,τ̃ we set NG = 32, i.e., we use 32 Gauss quadrature points ineah diretion leading to a tensor A with size(A) = 32 × 32 × 32 × 32. In order to test theQTT approximation we reshape A to a matrix B of size 322 × 322.The table below shows the e�ieny of the TT-approximation ATT and the QTT-approximation AQTT of A. We listed the mean ranks of the orresponding ores for di�erentapproximation auraies. We additionally omputed the singular value deomposition of

B and listed the number of relative singular values that are greater than the presribedauray. The deay of the singular values is shown in Figure 4.3.
11
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Figure 4.3: Relative singular values of B: Non-zero entries of B: ≈ 50%.Auray Mean rank of ATT Mean rank of AQTT Rel. SV of B

10−2 5.7 8.0 7
10−3 9.4 15.2 12
10−4 13.0 23.1 18
10−5 18.7 33.4 28
10−6 25.4 45.5 41It an be observed that the ranks of the TT- and QTT-approximation are small, espe-ially for low and medium auraies. The low ranks in this ase ould be found also forother on�gurations of the numerial experiment. In general it an be notied that theompression is better if many entries of A are zero or in other words that the enlighted partof the integration domain is small. (That a sparse A however does not neessarily lead togood ompression rates an be seen in Setion 4.3).In the next table we ompare the time that is needed to ompute the approximations

QG, QTT and QQTT for di�erent auraies of the TT- and QTT-approximation. We as-sume that A, ATT , and AQTT are given in eah ase, so that only the di�erent salarproduts (3.2)-(3.4) have to be evaluated. Furthermore we ompute the relative errors
EG,TT and EG,QTT (f. (3.5)) in order to see the e�et of the additional approximation onthe quadrature result.Auray Time QG Time QTT EG,TT Time QQTT EG,QTT

10−2 100 1.3 2 · 10−3 9.8 2 · 10−4

10−3 100 1.3 4 · 10−5 10.1 1 · 10−4

10−4 100 1.4 2 · 10−6 10.3 6 · 10−6

10−5 100 1.5 1 · 10−7 10.8 2 · 10−7

10−6 100 1.6 7 · 10−8 11.2 4 · 10−8It an be seen above that the evaluation of QTT and QQTT is onsiderably faster thanthe evaluation of QG due to the low ranks of ATT and AQTT and the indued low number12
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Figure 4.5: Relative singular values of B. Non-zero entries of B: 100%.of arithmeti operations, that is needed to ompute the orresponding salar produts.Furthermore it an be observed that the errors EG,TT and EG,QTT are small even for lowand medium auraies of the TT- and QTT-approximation. In this ase it is su�ientto determine ATT and AQTT with relatively low auray in order to obtain aurateapproximations for QG. On the one hand this is advantageous sine we bene�t from lowranks in this ase and on the other hand the omputation of ATT and AQTT diretly viaTT/QTT ross approximation beomes heaper as well (f. Setion 4.6).4.2 Case 2: Completely enlighted integration domainFor this ase we again use the time grid (4.3) and set cshift = 5.1 suh that Smin ≈ 8.42and Smax ≈ 10.28. We are therefore in the situation where the integration domain τ × τ̃is ompletely enlighted (f. Figure 4.4). Thus, A is in general densely populated with novanishing entries. We set again NG = 32 and ompute the mean ranks of the TT- and QTTapproximation of A. The deay of the relative singular values of the reshaped matrix B isshown in Figure 4.5.The results of the numerial experiments indiate that the ompression rates in this aseare very similar to Case 1. Thus a fully populated tensor A does not have a severe negativeimpat on the ranks of ATT and AQTT ompared to a situation where the integrationdomain ist only partially enlighted and similar basis funtions in time are used.Auray Mean rank of ATT Mean rank of AQTT Rel. SV of B

10−2 6.7 10.4 9
10−3 9.8 18.2 14
10−4 13.4 29.1 20
10−5 18.4 40.5 29
10−6 25.0 53.3 42The next table shows the time that is needed to ompute the di�erent approximations of

Iτ,τ̃ . Thereby we again assume that A,ATT and AQTT are given for eah auray.13
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Figure 4.7: Relative singular values of B. Non-zero entries of B: ≈ 64%.Auray Time QG Time QTT EG,TT Time QQTT EG,QTT

10−2 100 1.3 7 · 10−3 10.0 5 · 10−2

10−3 100 1.4 1 · 10−3 10.3 4 · 10−4

10−4 100 1.4 8 · 10−5 10.6 4 · 10−5

10−5 100 1.5 3 · 10−6 10.8 3 · 10−6

10−6 100 1.7 4 · 10−8 11.3 1 · 10−8As expeted the evaluation of the salar produt using the TT- and QTT approximationis onsiderably faster. Furthermore, the relative errors EG,TT and EG,QTT are, as in theprevious ase, small for medium auraies of ATT and AQTT .4.3 Case 3: Narrow disrete light oneHere we want to examine how a narrow disrete light one, i.e., the support of ψ is a smallinterval, in�uenes the ompression rates. Therefore we onsider the time mesh
t1 = 0.6, t2 = 0.8, t3 = 1.0, t4 = 10.3, t5 = 10.45, t6 = 10.7suh that suppψ = [9.3, 10.1]. Choosing cshift = 5.4 leads to the ase where Smin < 9.3and Smax > 10.1. We are thus in the situation illustrated in Figure 4.6. We set again

NG = 32 and ompute the mean ranks of the TT- and QTT approximation of A whihhas approximately 64% nonzero entries. The deay of the relative singular values of thereshaped matrix B is shown in Figure 4.7.Auray Mean rank of ATT Mean rank of AQTT Rel. SV of B

10−2 14.4 21.8 23
10−3 23.3 46.8 37
10−4 33.2 69.7 60
10−5 44.3 97.1 89
10−6 57.0 130.1 12614



As one an see in the table above, the ompression rates are worse than in the previousases. This is not surprising sine ψ has the same osillatory behavior as before but varieson a smaller interval. The approximation of the tensor A, whih is based on the evaluationof ψ at di�erent points in τ × τ̃ and not only in a narrow strip ontaining the disrete lightone, is therefore learly more di�ult. This is on�rmed by various numerial experiments.The narrower the disrete light one is, the higher are the mean ranks of the TT- and QTTapproximation of A in general. This ase is therefore an example where a more sparse Adoes not lead to better ompression rates.Although the mean ranks of ATT and AQTT are larger here than in the previous ases,the ompression is still good enough to redue the omputing times of the quadraturesonsiderably.Auray Time QG Time QTT EG,TT Time QQTT EG,QTT

10−2 100 1.3 4 · 10−1 9.0 6 · 10−1

10−3 100 1.4 1 · 10−2 9.5 2 · 10−2

10−4 100 1.6 1 · 10−4 10.2 1 · 10−3

10−5 100 1.8 5 · 10−5 11.1 5 · 10−5

10−6 100 2.1 1 · 10−6 12.4 1 · 10−6Another e�et that an be observed here is, that the errors EG,TT and EG,QTT deayslower than before. The approximations of A have therefore to be omputed with higherauray in order to obtain good approximations of QG.4.4 Case 4: Near �eld integralsWe now want to test the ompression rates in the ase where the triangles in (2.9) are loseto eah other. Sine the integrand in (2.9) is weakly singular for x = y, the onvergene ratesof standard quadrature rules deteriorate for dist(τ, τ̃ ) → 0. We examine if low distanesbetween the triangles also have a negative in�uene on the ompression rates of the TT- andQTT-approximation. In order to test this numerially we use the triangles τ, τ̃ as beforeand set cshift = 1. In this ase we have
dist(τ, τ̃) ≈ 1.44 and maxdist(τ, τ̃ ) ≈ 3.20.As time grid we hoose

t1 = 0.6, t2 = 1.2, t3 = 1.9, t4 = 4.2, t5 = 4.7, t6 = 5.7,suh that suppψ = [2.3, 5.1]. Thus, we are in the ase of a partially enlighted integrationdomain as in Case 1. Setting again NG = 32, we obtain the following mean ranks for ATTand AQTT .Auray Mean rank of ATT EG,TT Mean rank of AQTT EG,QTT

10−2 5.5 4 · 10−3 7.4 1 · 10−3

10−3 9.1 2 · 10−4 13.6 6 · 10−4

10−4 13.8 2 · 10−6 22.1 4 · 10−5

10−5 20.0 9 · 10−7 33.2 5 · 10−7

10−6 27.4 1 · 10−8 46.0 3 · 10−815
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Figure 4.9: Plot of ψhigh,2As we an see above small distanes between the triangles τ and τ̃ do not have an in�u-ene on the ompression rates of the TT- and QTT approximation and that the ranks areomparable to those in Case 1. Note however that the number of Gauss points NG usuallyhas to hosen larger for suh near �eld integrals in order to preserve a ertain auray ofthe quadrature rule (f. [25℄).As in Case 1, EG,TT and EG,QTT are quikly dereasing suh that a relatively low aurayof ATT and AQTT is su�ient for the quadrature. The omputing times for QTT and QQTTare very similar to those in Case 1 and we therefore refrain from listing them here.4.5 Case 5: Higher order basis funtions in timeAt last we examine the ase of a higher order of the basis funtions than onsidered before.Therefore we adopt the setting in Case 1, i.e., we use the time grid (4.3) and set cshift=4.4.Instead of using the basis funtion in (4.1) we �rst set
b(t) = ρt1,t2,t3(t)P2

(
2
t− t1

t3 − t1
− 1

) and b̃(t) = ρt4,t5,t6(t)P3

(
2
t− t4

t6 − t4
− 1

)
,where Pp denotes Legendre polynomials of degree p. We denote the orresponding funtion

ψ in (4.2) by ψhigh,1 (f. Figure 4.8). As a seond example we hoose
b(t) = ρt1,t2,t3(t)P5

(
2
t− t1

t3 − t1
− 1

) and b̃(t) = ρt4,t5,t6(t)P5

(
2
t− t4

t6 − t4
− 1

)
.As above we denote the orresponding ψ in (4.2) by ψhigh,2 (f. Figure 4.9). In the followingwe list the mean ranks and the relative errors for both settings.Auray Mean rank of ATT EG,QTT Mean rank of AQTT EG,QTT

10−2 4.7 4 · 10−3 7.0 3 · 10−3

10−3 8.5 6 · 10−5 13.3 2 · 10−4

10−4 12.5 4 · 10−5 22.1 6 · 10−5

10−5 18.3 6 · 10−6 32.2 1 · 10−5

10−6 24.7 6 · 10−7 44.6 1 · 10−616



The table above shows the results for ase ψhigh,1. As we an see the mean ranks are nota�eted by the higher order of the basis funtions in this example. They are even slightlylower than in Case 1. This is due to the fat that ψhigh,1 is not onsiderably more osillatingthan ψ in Case 1 even though Legendre polynomials of higher order are involved. In order tosee a negative e�et of higher order basis funtion we have to onsider Legendre polynomialsof degree 5, i.e. ψhigh,2, as the next table shows.Auray Mean rank of ATT EG,QTT Mean rank of AQTT EG,QTT

10−2 5.5 5 · 10−1 9.1 6 · 10−1

10−3 10.7 1 · 10−2 16.8 3 · 10−3

10−4 14.3 1 · 10−3 26.8 7 · 10−5

10−5 20.8 4 · 10−5 37.7 2 · 10−5

10−6 27.5 1 · 10−5 50.9 2 · 10−5

10−7 44.3 5 · 10−7 77.6 1 · 10−6Also here we an see that the ompression rates are not onsiderably worse than beforeor in Case 1 even though ψhigh,2 is more osillatory now. A negative aspet that beomesevident, however, is the slower derease of EG,QTT and EG,QTT .4.6 Example on QTT-ross approximationAs it was mentioned in Remark 3.4 the rank-r QTT-ross approximation takes the advantageof the log-volume ost O(r4 logN) requiring an evaluation of only O(r2 logN) ≪ N4 entries.In the following we give the numerial illustration on QTT-ross approximation for Case1 above. The next table presents the results on ε-QTT-ross approximation of the targettensor A of size 32 × 32 × 32 × 32. We give the CPU time (se.), QTT and TT ε-ranksand the relative storage size for the obtained TT and QTT approximations. In all ases thestorage ost of QTT representation is lower than those for the TT-format.
ε 10−6 10−5 10−4Time (se.) 10.4 6.3 3.1QTT-rank 31 21 14TT-rank 18 13 9stor(TT)/stor(QTT) 1.14 1.17 1.24Finally we notie that the numerial evaluation of the full tensor A amounts to 321 se.5 ConlusionIn this paper, we have presented a new method for the e�ient evaluation of the integralswhih arise from the diret disretization of retarded potential integral operators. Sinethe integrands are C∞ but, in general, not analyti the number of quadrature points isrelatively large while the total number of suh integrals is huge during the generation ofthe system matrix. We have introdued the TT and the QTT representations for the four-dimensional quadrature tensors arising from the evaluation of the (transformed) integrands17
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