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Abstract

In the present paper, we propose and analyse a class of tensor methods for the
efficient numerical computation of dynamics and spectrum of high-dimensional Hamil-
tonians. The main focus is on the complex-time evolution problems. We apply the
recent quantized-TT (QTT) matrix product states tensor approximation that allows
to represent N -d tensors generated by grid representation of d-dimensional functions
and operators with log-volume complexity, O(d logN), where N is the univariate dis-
cretization parameter in space. Making use of the truncated Cayley transform method
allows us to recursively separate the time and space variables and then introduce the
efficient QTT representation of both the temporal and spatial parts of solution to the
high-dimensional evolution equation. We prove the exponential convergence of the
m-term time-space separation scheme and describe the efficient tensor-structured pre-
conditioners for the arising system with multidimensional Hamiltonians. For a class of
“analytic” and low QTT-rank input data, our method allows to compute the solution at
a fix point in time t = T > 0 with the asymptotic complexity of order O(d logN lnq 1

ε ),
where ε > 0 is the error bound and q a fixed small number. The time-and-space
separation method via the QTT-Cayley-transform enables us to construct the global
m-term separable (x, t)-representation of a solution on very fine time-space grid with
complexity of order O(dm4 logNt logN), where Nt is the number of sampling points
in time. The latter allows the efficient energy spectrum calculations by FFT (or QTT-
FFT) of autocorrelation function computed on sufficiently long time interval [0, T ].
Moreover, we show that the spectrum of Hamiltonian can also be represented by the
poles of the t-Laplace transform of a solution. In particular, the approach can be an op-
tion to compute dynamics and spectrum in the time-dependent molecular Schrödinger
equation.

AMS Subject Classification: 65F30, 65F50, 65N35, 65F10
Key words: High-dimensional problems, rank structured tensor approximation, quantized
representation of vectors, matrix valued functions, Cayley transform, model reduction,
molecular dynamics.
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1 Introduction

High dimensional problems whose solutions are functions of d variables with large d arise
in many important applications, e.g. electronic and molecular modeling, stochastic PDEs,
quantum computations, finance mathematics, etc. [4, 43, 38, 30, 13, 26, 18, 32]. Even with
modern computers their solution represents a challenging problem due to the so-called “curse
of dimensionality”. Roughly speaking, the computational costs to find such a function grows
exponentially as d → ∞ even in the case if the function is analytical. If we restrict only
to computation of high dimensional integrals then Quasi-Monte Carlo algorithms maight
be efficient [39]. In some cases the curse of dimensionality can be circumvented by using
the so-called sparse grid spaces, based on tensor product of d one-dimensional multiscale
functions. In particular, in the case of high dimensional parabolic problems this approach
has been successfully applied in [36, 14, 15]. In this way the additional complexity due to
the in-stationarity can be avoided.

One of the new ideas to overcome the course of dimensionality is to (approximately) sep-
arate the variables and reduce the solution process to d one-dimensional problems. One can
say in the language of operator/matrix calculus: the solution operator of the discrete prob-
lem should be represented as the tensor product of the solution operators of one-dimensional
problems or a short sum of such tensor products. Some tensor-structured numerical meth-
ods based on this approach were proposed and analyzed in [8, 21, 20, 26]. In order to
separate the time variable in nonstationary problems one may use the techniques based on
the Cayley transform which were proposed for the first order (parabolic) differential equa-
tions with an operator coefficient in [2] and then developed for various other problems in
[9, 10]. Various tensor-product techniques for separation of the spatial Hamiltonians were
recently introduced [23, 27, 28, 19].

Let W be a complex Hilbert space and H be a self-adjoint positive definite operator with
the domain D(H) and the spectrum Σ(H) ∈ [λ0,∞), λ0 > 0. For the ease of presentation
we further assume that the Hamiltonian operator H has the complete eigenbasis, W =
span{φn}∞n=0, with the real eigenvalues 0 < λ0 ≤ λ1 ≤ .... Let us consider the following
initial value problem for the Schrödinger-type equation

ψ̇(t) = iHψ(t) + f(t), ψ(0) = ψ0 ∈ D(H) ⊂ W. (1.1)

The solution operator of this problem is the operator exponential family S(t) = eiHt, and
the solution of the initial value problem is given by

ψ(t) = eiHtψ0 +

∫ t

0

eiH(t−τ)f(τ)dτ.

In the following we focus on the special case f = 0. The general case f = f(x, t) can be
included in our scheme.

In quantum mechanics, equation like (1.1) may represent the molecular or electronic
Schrödinger equation in d dimensions that describes how the quantum state of a physical
system evolves in time (see Example 2.2 below). In this case the many particle HamiltonianH
is given by a sum of d−dimensional Laplacian and certain interaction potential, say, potential
energy surface [4, 31]. In general, in multidimensional setting, a separable approximation of
the operator S(t) in molecular dynamics is the challenging problem.
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In the present paper we apply the truncated Cayley transform combined with the
quantics-TT (QTT) separable approximation of the evolving functions and the resolvent
of spatial Hamiltonian operator. This enables us to derive the low-parametric tensor
structured representation to the solution ψ(x, t) globally in t over fixed interval 0 ≤ t ≤ T .
Hence, at this stage a time discretization does not appear.

Specifically, we propose to approximate S(t) by simplified operator family Sm(t) obtained
by the m-term truncated series expansion in the Laguerre t-polynomials. For a class of H-
analytic data ψ0, we prove a super exponential convergence

‖S(t)− Sm(t)‖ ≤ cm−1/12e−c1m1/3

,

where m ∈ N is a truncation parameter. This ensures the rank-m time-space separability
for a class of initial data. Even more important, this approach creates the robust adaptive
basis for the so-called proper orthogonal decomposition (POD) being the building block in
the model reduction techniques.

In order to compute Sm(t) one should solve O(m) linear problems with the d-dimensional
spatial Hamiltonian H+ iI discretized over d-fold N×N× ...×N tensor grid. Under certain
separability assumptions on H, this will be reduced to the preconditioned iteration requiring
the treatment of O(d) one-dimensional problems of size N ×N . Thus, in order to achieve a
prescribed accuracy ε > 0, an amount of computational work,

O(dmW (N)| ln ε|q),

is required, whereW (N) is the computational cost to treat a single one-dimensional problem
in the QTT format, and we arrive at a linear complexity scaling in d.

The time-space separation method via QTT-Cayley-transform enables us to construct the
global (x, t)-representation of a solution on very fine time-space grid of size N × ...×N ×Nt

by simultaneous time-space low-parametric tensor representation, where Nt is the number
of sampling points in time. Under certain regularity assumptions on ψ0 we are able to prove
the asymptotic complexity bound for the (x, t) tensor representation, Cdm4 logNt logN ,

ensuring the approximation error e−c1m1/3
, where the constant C scales at most quadratically

in the tensor rank of (H + iI)−mψ0 (cf. Lemma 3.4). The latter allows the efficient energy
spectrum calculations by FFT transform of autocorrelation function computed on sufficiently
long time interval [0, T ]. Moreover, we show that the spectrum of Hamiltonian can be also
represented by the poles of Laplace transform of autocorrelation function. In particular, our
approach can be an option to compute dynamics and spectrum of time-dependent molecular
Schrödinger equations describing the molecular vibration [32].

The rest of the paper is organised as follows. In Section 2 we discuss the separation of
the time and space variables via Cayley transform. The error analysis of m-term truncated
series representation for certain class of initial data is presented. Section 3 discuss spatial
tensor approximation of the solution ψ(x, t) via TT/QTT formats. In particular, we prove
the log− log complexity tensor representation in time and space for a class of so-called H-
analytic initial data ψ0 with the controlled tensor rank of (H + iI)−mψ0. The computation
of the spectrum of d-dimensional Hamiltonian is addressed in Section 4.
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2 Separation of the time variable via Cayley transform

2.1 Infinite series representation

The idea on separation of the time and space variables is based on the well known expansion
[3, 40] for the generating (reproducing) function of the Laguerre polynomial of degree p with
a parameter α,

(1− z)−α−1e
tz

z−1 =
∞∑
p=0

L(α)
p (t)zp.

After the formal substitution z → λ(λ+ i)−1 := T (λ), and setting α = 0, we obtain

eiλt = i(λ+ i)−1

∞∑
p=0

L(0)
p (t)T p(λ), (2.1)

where L
(0)
p (t) = Lp(t) is the Laguerre polynomial of degree p. Hence, on every initial vector

ψ0 ∈ D(H), i.e.,

ψ0 =
∞∑
k=0

akφk, such that
∞∑
k=0

|ak|2λ2k <∞, (2.2)

the solution operator can be represented by

eiHt = i(H + iI)−1

∞∑
p=0

L(0)
p (t)T p(H), (2.3)

where
T = T (H) = H(H + iI)−1

is the (non-classical) Cayley transform of the operator H. This representation can be used
for separation of the time variable t from the spatial part of the solution. In fact, it can be
seen that the solution of our initial value problem subject (2.2) can be represented as

ψ(t) =
∞∑
p=0

L(0)
p (t)up ≡ i(H + iI)−1

∞∑
p=0

L(0)
p (t)T p(H)ψ0, (2.4)

where the elements up can be found from the recursion

u0 = i(H + iI)−1ψ0,

up+1 = H(H + iI)−1up, p = 0, 1, ...

or, equivalently, as the solutions of the operator equations

(H + iI)u0 = iψ0,

(H + iI)up+1 = Hup, p = 0, 1, ...
(2.5)

Notice that the recursion up = T pu0, p = 0, 1, 2, ... indicates the opportunity for optimization
of the set {up} by analogy to the Krylov subspace method commonly used in the numerical
linear algebra.
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Lemma 2.1 Let ψ0 ∈ D(Hσ) with some σ > 3/2, then the representation (2.4) is well
defined, and ψ(t) solves equation (1.1).

Proof. First, we use the estimates (2.12) which yield limp→∞ L
(0)
p (t) = O(p−1/4) for each

fixed t. Then the following bound ‖up+1‖ ≤ cp−σ/2‖Hσψ0‖ (see (2.15) below) proves that
(2.4) is well defined. Furthermore, from (2.5) it follows that

up = iH(up − up−1), p = 0, 1, 2, ...; u−1 = iH−1ψ0. (2.6)

Substituting this representation into (2.4) and using the summation by parts

N∑
n=1

unvn = uNvN − u0v0 +
N−1∑
n=0

unvn,

we obtain

ψ(t) = u0 + iH
∞∑
p=1

L(0)
p (t)(up − up−1)

= u0 − iHu0L(0)
0 (t)− iH

∞∑
p=0

(L
(0)
p+1(t)− L(0)

p (t))up

= ψ0 − iH
∞∑
p=0

(L
(0)
p+1(t)− L(0)

p (t))up.

(2.7)

Now using the well known relation [40, 3]

d

dt

[
L
(0)
p+1(t)− L(0)

p (t)

]
= −L(0)

p (t),

combined with (2.7) yields

ψ̇(t) = iH
∞∑
p=0

L(0)
p (t)up = iHψ(t), (2.8)

which completes the proof.

Example 2.2 (Harmonic oscillator). In quantum mechanics the operator H in (1.1) might
be the Hamiltonian of an oscillated particle of mass m subject to a potential V(x) given by
V (x) = 1

2
mω2x2, where ω is the angular frequency of the oscillator. The operator H in

W = L2(−∞,∞) is defined by

D(H) = {u ∈ H2(−∞,∞) : ψ(−∞) = ψ(∞) = 0},

Hψ = − ~2

2m

d2ψ

dx2
+
mω2

2
x2ψ ∀ ψ ∈ D(H).

(2.9)

It is known that the normalized eigenfunctions (subject to
∫∞
−∞ φ2(x)dx = 1) are given by

φn(x) = Cne
−ξ2/2Hn(ξ), n = 0, 1, 2, ... (2.10)
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where x = αξ, α =
√

~
mω
, Cn = 1√

α
· 1√

2nn!
√
π
and Hn(ξ) are the Hermite polynomials [41, 40].

These eigenfunctions correspond to the eigenvalues En = (n+1/2)~ω. In d-dimensional set-

ting we have W = Ld
2(−∞,∞) and the separable Hamiltonian H =

d∑
k=1

(
− ~2

2m
d2

dx2
k
+ mω2

2
x2k

)
.

The Harmonic oscillator plays the same role in quantum mechanics, as Newton’s law in
classical mechanics. For 1D Harmonic oscillator the operator S(t) is easily diagonalisable,
while for d ≥ 2 it is a rank-1 separable, and thus the computational complexity of its tensor
representation scales linearly in d. Hence, it provides the base for efficient preconditioner
(see Section 3.5).

Remark 2.3 In the case of non-homogeneous right hand side, f = f(x, t), the Cayley trans-
form representation (2.4) can be adapted if we are given the converging decomposition

f(x, t) =
∞∑
p=0

L(0)
p (t)fp(x), fp ∈ D(H).

2.2 Truncated series representation and error bounds

As a computable approximation to the exact solution we consider the m-term truncated
series representation

ψm(t) = ψ0 − iH
m∑
p=0

(L
(0)
p+1(t)− L(0)

p (t))up. (2.11)

We start the error analysis by collecting some standard properties of the Laguerre polyno-
mials. First, we recall the following properties of the Laguerre polynomials ( see e.g. [40, p.
243, 248] and [3, vol. 2, Ch. 10.18]):

L(α)
n (t) = π−1/2et/2t−α/2−1/4nα/2−1/4[cos (2

√
nt− βπ) +O(n−1/2)],

for t ∈ [a, b], 0 < a < b <∞, β = (2α+ 1)/4, α > −1;

|L(α)
n (t)| ≤ cn

α
2
− 1

4 t−
α
2
− 1

4 e
t
2 (1 + n− 1

4 t
5
4 ), α +

1

2
≥ 0, t ≥ 0;

|L(0)
n | ≤ et/2, t ≥ 0,

(2.12)

where c is a constant independent of n and 0 < a < b, are arbitrary fixed numbers. Moreover,
it holds

|L(0)
n (t)− L

(0)
n−1(t)| =

t

n
|L(1)

n−1(t)| ≤ ct1/4et/2n−3/4(1 + n−1/4t5/4), (2.13)

uniformly in t ∈ [0, T ] (it follows from the representations nLα
n(t)−(n+α)Lα

n−1(t) = t d
dt
Lα
n(t)

and d
dt
Lα
n(t) = −Lα+1

n−1(t), see [40], p.226).

We say that u =
∞∑
k=0

akφk ∈ D(Hσ) with σ > 0, if
∞∑
k=0

a2kλ
2σ
k < ∞. The next theorem

characterizes the convergence rate of the truncated series representation.
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Theorem 2.4 Let ψ0 ∈ D(Hσ), with some σ > 3/2, then for fixed T > 0, the following
estimate holds true,

‖ψ(t)− ψm(t)‖ ≤ cm−σ/2+1/4‖Hσψ0‖, t ∈ [0, T ], (2.14)

with some constant c > 0 independent of m.

Proof. First, we observe that for ψ0 =
∞∑
k=0

akφk there holds

up+1 = i(H + iI)−1[H(H + iI)−1]pψ0 =
∞∑
k=0

ak
i

λk + i

(
λk

λk + i

)p

φk

=
∞∑
k=0

akλ
−σ
k

i

λk + i

(
λk

λk + i

)p

λσkφk,

implying

‖up+1‖ ≤ max
λ∈[λ0,∞)

∣∣∣∣λ−σ

(
λ

λ+ i

)p∣∣∣∣‖Hσψ0‖ ≤ cp−σ/2‖Hσψ0‖. (2.15)

Now taking into account (2.13) we obtain the estimates

‖ψ(t)− ψm(t)‖ ≤
∞∑

p=m+1

|L(0)
p+1(t)− L(0)

p (t)|‖up‖

≤ c‖Hσψ0‖t
1
4 e

t
2

∞∑
p=m+1

p−σ/2−3/4

≤ c‖Hσψ0‖t
1
4 e

t
2m−σ/2+1/4,

which completes our proof.
Theorem 2.4 shows that increase of σ in the H-regularity condition ψ0 ∈ D(Hσ) will pro-

vide an arbitrary high polynomial rate of convergence in the truncated series representation.
In the following we show that approximation (2.11) leads to an exponential convergence

rate for the H-analytical input data to be introduced below.

Definition 2.5 A vector f =
∞∑
k=0

akφk ∈ D(H) is called analytical for H (H-analytic) if

there is a constant C = C(f) > 0, such that

‖Hnf‖ =

√√√√ ∞∑
k=0

|ak|2λ2nk ≤ Cnn! for all n = 1, 2, 3, ...

Remark 2.6 For H-analytic vector f the power series
∞∑
n=0

sn

n!
‖Hnf‖ =: ‖f‖s,H possesses a

positive convergence radius r > 0, i.e., ‖f‖s,H <∞ if 0 ≤ s < r.
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Proposition 2.7 The finite sum u0(x) =
m∑
k=0

γkφk(x) gives rise to the H-analytic vector with

C ≈ λm. In particular, in Example 2.2, we have C ≈ ~ω(m+ 1/2).

Proof. The representation Hnu0 =
m∑
k=0

γkλ
n
kφk(x) leads to the following estimate,

‖Hnu0‖ =

(∫ ∞

−∞

∣∣∣∣ m∑
k=0

γkλ
n
kφk(x)

∣∣∣∣2dx)1/2

=

( m∑
k=0

|γk|2λ2nk
)1/2

≤ λnm

( m∑
k=0

|γk|2
)1/2

≤ λnm‖u0‖,
(2.16)

that ensures the required bound.
The next theorem shows an exponential convergence of approximation (2.11) provided

that the initial vector is H-analytic.

Theorem 2.8 Let ψ0 be H-analytic and let r > 0 be the convergence radius of the series
∞∑
k=0

sk

k!
‖Hkψ0‖. Then for every fixed s < r, and fixed T > 0, the approximation (2.11)

converges exponentially in m implying the error estimate

‖ψ(t)− ψm(t)‖ ≤ cm−1/12e−c1 3
√
m‖ψ0‖s,H, t ∈ [0, T ], (2.17)

where c, c1 are positive constants independent of m.

Proof. First, we note that the estimates (2.12) yield for t ∈ [ε, T ]

‖ψ(t)− ψm(t)‖ ≤ ct−
1
4 e

t
2

∞∑
p=m+1

p−3/4‖up‖, (2.18)

where the iterand up allows the representation

up+1 =
∞∑
k=0

ak

(
λk

λk + i

)p

φk

=
∞∑
k=0

ake
−λks

(
λk

λk + i

)p( ∞∑
n=0

λnks
n

n!

)
φk,

=
∞∑
k=0

ake
−λks

(
λk

λk + i

)p ∞∑
n=0

sn

n!
Hnφk,

=
∞∑
n=0

sn

n!
Hn

( ∞∑
k=0

akΦs(λk)φk

)
,

(2.19)

with

Φs(λ) := e−λs

(
λ

λ+ i

)p

.
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Let us notice that

‖Hn

( ∞∑
k=0

akΦs(λk)φk

)
‖ ≤ max

λ∈[λ0,∞)

∣∣∣∣Φs(λ)

∣∣∣∣‖Hnψ0‖.

Simple variational analysis indicates that the function Φs(λ) takes its maximum at a point
λ∗ that solves the equation s = p

λ(1+λ2)
implying that λ∗ � 3

√
p/s. The latter ensures the

existence of positive constants c, c1 independent of p (but c1 ≈ s2/3 depends on s), such that

max
λ∈[λ0,∞)

∣∣∣∣Φs(λ)

∣∣∣∣ = max
λ∈[λ0,∞)

e−λs

(
λ2

1 + λ2

)p/2

≤ ce−c1 3
√
p,

thus implying

‖up+1‖ ≤ ce−c1 3
√
p‖ψ0‖s,H. (2.20)

Furthermore, we have

‖ψ(t)− ψm(t)‖ ≤ ct
1
4 e

t
2‖ψ0‖s,H

∞∑
p=m+1

p−1/12p−2/3e−c1 3
√
p

≤ ct
1
4 e

t
2m−1/12e−c1 3√m‖ψ0‖s,H,

(2.21)

which completes our proof.
Theorem 2.8 shows that for H-analytic initial data the truncated Cayley transform en-

sures the time-space separation with ε-rank of order m = O(log3 1/ε).

Remark 2.9 We also observe that the set of vectors, U := [u0, u1, ..., uN ], creates the robust
adaptive basis for the so-called proper orthogonal decomposition (POD) being the building
block in the model reduction techniques for parabolic problems. In fact, the set U can be or-
thonormalised and further used for solving a problem with slightly/smoothly modified operator
or initial value (parameter dependent problems).

The Cayley transform method is also applicable to the real-time evolution problems.

Remark 2.10 The Cayley transform T (H) = H(H + I)−1 can be adapted to the real-time
evolution equation

ψ̇(t) = −Hψ(t), ψ(0) = ψ0 ∈ D(H) ⊂ W, (2.22)

where H is a self-adjoint positive definite operator. The infinite series representation is then
the simple modification of (2.4) but providing the better approximation properties (cf. (2.19))

up+1 =
∞∑
n=0

sn

n!
Hn

( ∞∑
k=0

akΦ1,s(λk)φk

)
, (2.23)

with

Φ1,s(λ) := e−λs

(
λ

λ+ 1

)p

.
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Contrary to the case of function Φs(λ) in (2.19) now Φ1,s(λ) takes its maximum at a point
λ∗ �

√
p, and we arrive at the estimate ‖up+1‖ ≤ ce−c1

√
p‖ψ0‖s,H, implying (cf. (2.17))

‖ψ(t)− ψm(t)‖ ≤ ct
1
4 e

t
2‖ψ0‖s,H

∞∑
p=m+1

p−1/4p−1/2e−c1
√
p

≤ ct
1
4 e

t
2m−1/4e−c1

√
m‖ψ0‖s,H.

(2.24)

3 Spatial tensor approximation in TT/QTT format

Theorems 2.4 and 2.8 prove the separability of time-space variables. In the following, based
on these results, we propose the low-parametric tensor representation of the solution ψ(x, t)
in time and space. In this way, we analyse the so-called TT/QTT tensor decomposition of
the multivariate spacial functions up(x) and a vector obtained by sampling of the Laguerre
polynomials Lp(t) on uniform grid over [0, T ].

3.1 Tensor-product Hilbert spaces

Tensors of order d are defined as the elements of finite dimensional tensor-product Hilbert
space (TPHS) Wn ≡ Wn,d of the d-fold, N1 × ... × Nd real-valued arrays, which can be
represented componentwise,

A = [A(i1, ..., id)] with i` ∈ I` := {1, ..., N`}, and n = (N1, ..., Nd).

For the ease of presentation, we mainly consider the equal-size tensors, i.e., I` = {1, ..., N}
(` = 1, ..., d). We call the elements of Wn = RI with I = I1 × ...× Id, as N -d tensors. The
Euclidean scalar product, 〈·, ·〉 : Wn ×Wn → R, is defined by

〈A,B〉 :=
∑
i∈I

A(i)B(i), A,B ∈ Wn.

The storage demand for N -d tensors scales exponentially in d, dim Wn,d = Nd (”curse of
dimensionality”).

In the case of complex-valued TPHS, Wn,d = CI , the description is similar.

3.2 Matrix product states tensor model by QTT format

To get rid of the ”curse of dimensionality“, we apply modern tensor formats based on the
dimension splitting via factorized representation, matrix product states (MPS), see [44, 42,
37]. In the recent mathematical literature such a construction appeared as the tensor train
(TT) format [33, 35] corresponding to the case of so-called ”open“ boundary conditions in
the matrix product state.

The rank-r TT format is defined in the spirit of traditional Tucker model, but with
essentially reduced “connectivity” constraints (see [35]). Its storage size scales linearly in
both d and N . The generalisation of the TT-format to the case of connected index chain
corresponding to the case of periodic boundary condition in MPS, can be described by the
following definition (cf. [24]).
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Definition 3.1 (Tensor chain/train formats). Given the rank parameter r = (r0, ..., rd),
and the respective index sets J` = {1, ..., r`} (` = 0, 1, ..., d), with the periodicity constraints
J0 = Jd. The rank-r tensor chain (TC) format contains all elements V ∈ Wn = RI which
can be represented as the chain of contracted products of 3-tensors over the d-fold product
index set J := ×d

`=1J`,

V = {×`}d`=1G
(`) with 3-tensors G(`) ∈ RJ`−1×I`×J` . (3.1)

Denote this set of tensors by TC[r, d]⊂ Wn. In the case J0 = Jd = {1} (disconnected
chain), TC-format coincides with the respective definition of TT format, implying TT[r, d]
⊂ TC[r, d].

The beneficial properties of the TC/TT formats are due to linear storage complexity in d,
dr2N , with r = max` r`. Moreover, the approximation of the canonical or TT-tensor by using
the low TT-rank elements (rank truncation) can be fulfilled by the SVD/QR decompositions
[33] applied to `-mode TT-unfolding matrices (known in MPS literature as the Schmidt
decomposition, cf. [42]).

In the rest of this subsection, we describe the quantics transform (linear isometry) of
N -d tensors to higher dimensional tensor space with D = d logN . Given q = 2, 3, ..., we
suppose that N = qL with some L = 1, 2, .... Next definition introduces the folding of
N -d tensors into the elements of auxiliary higher-dimensional tensor space with dimension
D = d logqN > d.

Definition 3.2 ([24]) Introduce the q-adic folding transform of degree 2 ≤ p ≤ L,

Fq,d,p : Wn,d → Wm,dp, m = (m1, ...,md), m` = (m`,1, ...,m`,p),

with m`,1 = qL−p+1, and m`,ν = q for ν = 2, ..., p, (` = 1, ..., d), that reshapes the initial n-d
tensor in Wn,d to the element in quantics space Wm,dp as follows:
(A) For d = 1 a vector X(N,1) = [X(i)]i∈I ∈ WN,1, is reshaped to the element of WqL−p+1,p by

Fq,1,p : X(N,1) → Y(m,p) = [Y (j)] := [X(i)], j = {j1, ..., jp},

with j1 ∈ {1, ..., qL−p+1}, and jν ∈ {1, ..., q} for ν = 2, ..., p. For fixed i, jν = jν(i) is defined
by jν = 1 + CL−p−1+ν, (ν = 1, ..., p), where the CL−p−1+ν are found from the partial radix-q
representation of i− 1,

i− 1 = CL−p + CL−p+1q
L−p+1 + · · ·+ CL−1q

L−1.

For the maximal degree folding corresponding to p = L, the multi-index j − 1 is the q-adic
representation of i− 1 for i ∈ I, in radix-q system, such that jν takes values in {1, ..., q}.

(B) For d > 1 the construction is similar.

For the sake of higher compressibility, the maximal degree folding, Fq,d,L, can be applied.
The high-dimensional image Fq,d,LA ∈ Wq,dL is called the quantics transform of A ∈ WN,d.
An element in Wq,dL can be represented/approximated in the TT format that is called the
quantics-TT or quantized-TT (QTT) representation of the tensor A ∈ WN,d.
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The computational efficiency of the QTT format is substantiated by the basic approxima-
tion properties (see [24]): the class of discrete exponential (resp. trigonometric) N -vectors
allows the rank-1 (resp. rank-2) q-folding representation, reducing the storage complexity
O(N) to the logarithmic scale O(q logqN). Moreover, it can be shown [24] that Chebyshev
polynomials sampled over Chebyshev grid can be represented by rank-2 quantics tensor, while
the general polynomial vector sampled over uniform grid has the rank-(m + 1) QTT repre-
sentation for any polynomial of degree m (see also [12] for related results). Combined with
the well known sinc-approximation results, this ensures the high compressibility features of
the QTT representation applied to large class of function related tensors. Moreover, we are
able to compute the fast QTT-FFT and QTT-convolution transforms of large N -vectors as
well as to represent the classes of multidimensional operators (Hamiltonians) effectively (see
[25] for more detailed discussion).

We summarize that on the one hand, the QTT representation may reduce the storage
complexity of spatial vectors up to log-volume size O(d logN) � Nd, on the other hand, this
enables us to construct the global (x, t)-representation of ψ(x, t) on very fine time/space grids
with complexity of order O(dm logNt logN), where Nt is the number of sampling points
in time. The latter allows the efficient energy spectrum calculations by FFT transform
(or QTT-FFT) of autocorrelation function (see Section 4.1) computed by our method on
sufficiently long time interval [0, T ]. In the case of long-time integration the restarted version
of the Cayley-QTT representation can be applied on smaller subintervals of the initial time
interval [0, T ].

3.3 Tensor Truncation

Representation of tensors in low separation rank formats is the key point in the design
of fast tensor-structured numerical methods in higher dimension. In fact, it allows the
implementation of basic linear and bilinear algebraic operations on tensors such as addition,
scalar, Hadamard and convolution products with linear complexity in the univariate tensor
size (see [22, 25, 19, 20, 5]).

These tensor operations (excepting scalar product) increase the separation rank of the
resultant tensor. Hence, the complexity control requires further “projection” of such inter-
mediate results to the set of tensors with smaller rank parameter (rank truncation).

To perform computation over nonlinear set of rank-structured tensors S (say, in the
truncated iteration) we need to perform a “projection” of the current iterand onto that set
S. The latter may represent the Tucker, canonical, TT or QTT formats. This action is
fulfilled by implementing the tensor truncation operator TS : Wn,d → S defined by

A0 ∈ Wn,d : TSA0 = argminT∈S ‖A0 − T‖S , (3.2)

that is a challenging nonlinear approximation problem. In practice, the computation of
the minimizer TSA0 can be performed only approximately. The replacement of A0 by its
approximation in S is called the tensor truncation to S and denoted by TSA0. As it was
already mentioned, in the case of TT/QTT formats it can be computed by conventional
QR/SVD algorithm.
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3.4 QTT-Cayley approach for complex-time evolution equations

Below, we discuss the more general (than the harmonic oscillator) example of complex-time
evolution equation arising in quantum molecular dynamics.

Example 3.3 (Quantum molecular dynamics). Important example in molecular dynamics
is given by the Schrödinger equation for the motion of d nuclei obtained from the Born-
Oppenheimer approximation (see [4, 31, 32] for more detail),

i~
∂ψ

∂t
= Hψ, H = T + V, ψ(0) = ψ0, (3.3)

with kinetic energy T = −
d∑̀
=1

h2

2M`
∆x`

and a potential V = V (x1, ..., xd), x` ∈ R3 (` = 1, ..., d)

being an approximation to an electronic potential energy surface E(x1, ..., xd).

In some cases the possible tensor approximation of the solution ψ(x, T ) can be computed
without time stapping by the direct approximation of the solution operator via tensor rep-
resentation of the matrix exponential family

ψ(t) = e−Htψ0 ≈ TS(e
−Ht)ψ0, t ≥ 0,

providing mean for application of the tensor-structured (say in QTT format) matrix expo-
nential to each fixed t > 0 [27].

This approach allows a considerable coarsening in the time stepping by restarting the
algorithm with rather large step-size ∆T = O(1), hence reducing the number of grid points
in the time domain to O(log T ), in order to compute the solution at t = T . In the case of
moderate T the time stepping can be avoided completely.

In general, the solution operator e−iHt could not be approximated by QTT -matrix expo-
nential with uniform bound on the TT-ranks. However, for some classes of PES (for example
the Henon-Heiles potential) the multivariate function E(x1, ..., xd) can be represented with
low QTT-rank [28], which makes it possible to apply our QTT-Cayley transform solver to
the energy spectrum computations. Taking into account the exponentially convergent in m
time-space separation scheme, the QTT approximability of a function (H + iI)−mψ0 then
ensures the low complexity tensor representation of a solution ψ(x, t).

3.5 On QTT approximation of (H + iI)−1

To perform the algorithm (2.4), (2.5) efficiently in multidimensional setting we switch to
semi-discrete formulation and assume that H is a matrix acting in the real-valued TPHS
Wn = RI of dimension Nd, specified by the univariate “grid-size” N . Correspondingly, all
multivariate functions ψp(t) : Rd → R, t ∈ [0, T ], and up, will be substituted by N -d tensors,
ψp(t) ∈ Wn, and Up, respectively.

Hence, the application of the operator T = H(H + iI)−1, is reduced to the solution of
huge linear system of equations

(H + iI)U = F, U,F ∈ Wn, (3.4)
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projected onto the low-parametric tensor manifold S ∈ {TT,QTT}.
Along the line of [23], we consider the model discrete elliptic problem of stationary type

with H = D + V , where D ∈ RI×I represents the elliptic diffusion operator, −∇Ta(x)∇,
0 < a0 ≤ a(x) ≤ a1 ∈ Rd×d, defined on tensor-product domain in Rd, and a matrix V ∈ RI×I ,
represents some physically relevant potential. In particular, the scaled finite difference neg-
ative d-Laplacian over uniform tensor grid is known to have the Kronecker rank-d represen-
tation,

∆d = A⊗ IN ⊗ ...⊗ IN + IN ⊗ A⊗ IN ...⊗ IN + ...+ IN ⊗ IN ...⊗ A ∈ RI⊗d×I⊗d

, (3.5)

with A = ∆1 = tridiag{−1, 2,−1} ∈ RN×N , and IN being the N × N identity. The QTT
(resp. TT) rank of the operator ∆d is equal to 4 (resp. 2) for any d, see [19].

Our goal is to solve equation (3.4) in the tensor-structured format S. As the main prereq-
uisite, matrices D and V , as well as the solution U and loading vector F, are supposed to have
a low S-tensor rank representation uniformly in the main discretization/model parameters.

For the linear system (3.4) the simple truncated preconditioned iteration takes the form

U(0) ∈ S : Ũ
(k+1)

= U(k)−B((H+iI)U(k)−F), U(k+1) := TS(Ũ
(k+1)

), k = 0, 1, .... (3.6)

Now we assume that the preconditioner B is constructed in such a way that

ρ(I − B(H + iI)) < 1,

uniformly in N , and it has the low S-tensor rank. Then with the adaptive choice of the tensor
rank (controlled by the chosen approximation error of the discrete scheme), the truncated
iteration (3.6) can be proved to converge geometrically [17]. The preconditioner B = BM

can be chosen as:
(a) the shifted anisotropic d-Laplacian inverse, or
(b) the shifted d-dimensional harmonic oscillator inverse.

In case (a), the rank-(2M + 1), canonical tensor approximation is given by

∆−1
d ' BM :=

M∑
k=−M

ck

d⊗
`=1

exp(−tk∆1 + iI1), (3.7)

tk = ekh, ck = htk, h = π/
√
M, ∆1 ∈ RN×N ,

providing the exponential convergence rate in the canonical rank (cf. sinc-method in [8]),∥∥∆−1
d − BM

∥∥ ≤ Ce−π
√
M‖∆−1

d ‖.

Numerical examples on O(d log n) complexity scaling for QTT representation of the high-
dimensional Laplacian can be found [25]. Here we do not count the (problem independent)
preprocessing cost required to compute the QTT representation of a family of 1D matrix
exponentials, {exp(−tk∆1)}, tk > 0, k = −M, ...,M , of size N × N (the latter can be
precomputed once and stored). The total numerical cost is estimated by O(d log ε−1 logN).

In case (b) one can apply the results on QTT-rank analysis of the d-dimensional harmonic
oscillator as well as the more general multivariate polynomial potentials (see [28] for more
detail). In particular, in Example 2.2 the operator (H + iI)−1 allows a rank-(2M + 1)
canonical approximation obtained along the line of (3.7).
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3.6 Simultaneous QTT representation in time and space

Now we are in a position to prove the principal result on low-rank simultaneous time-and-
space QTT decomposition as maintained in the following lemma. In the following discussion
we assume that ψm(t) represents a d-dimensional tensor obtained by the truncated series
representation (2.11) in terms of discretized solutions up(x), further denoted by Up, p =
0, 1, ...,m. The QTT rank of a tensor will be called by rankQTT .

Lemma 3.4 The QTT-rank of a tensor Pm = [ψm(t0), ..., ψm(tNt)]
Nt
k=0 ∈ Wn × RNt+1, tk =

kτ , is bounded by

rankQTT (Pm) ≤
m∑
p=0

(p+ 1)rankQTT (T
pψ0).

For the harmonic oscillator we have for the QTT ε-rank,

rankQTT (Pm) ≤ Cm2| log ε|2rankQTT (ψ0).

Proof. We notice that QTT-rank of the discretized Laguerre polynomial L
(0)
p (t) sampled

over uniform grid is bounded by p+1 independently of the number of sampling points Nt in
the time variable (see §3.2). This means that each tensor term [(Lp+1(tk) − Lp(tk))Up]

Nt
k=0,

tk = kτ , (k = 0, 1, ..., Nt) in the discretized truncated series representation (2.11) has the
QTT-rank bounded by (p+1)rankQTTUp ensuring the low-rank simultaneous time-and-space
QTT decomposition as stated by lemma. The second assertion follows from the observation
that in the case of harmonic oscillator the rank-(2M + 1) representation like (3.7) can be
adapted.

Lemma 3.4 combined with Theorem 2.8 ensures that for given ε > 0 there exists the
m-term QTT ε-approximation Pm ∈ Wn × RNt+1 to the exact solution ψ(x, t) defined on
the time-grid tk = kτ , (k = 0, 1, ..., Nt) whose QTT-rank can be controlled by

rankQTT (Pm) ≤ Cm2rankQTT (T
mψ0), with m = O(log3

1

ε
),

independently of d and the spatial and time grid parameters N and Nt.
Hence, we conclude that the block two-diagonal system of equations defined, say, by the

implicit Euler scheme,

ψ0 = ψ(0), (I − τiH)ψk+1 − ψk = 0, k = 0, 1, ..., Nt − 1, (3.8)

where ψk ∈ Wn will approximate the value ψ(tk), has a low QTT rank solution with
O(d logN logNt) complexity scaling. Consequently, (3.8) can be solved in the QTT format
as the global system of equations with respect to the unknown space-time vector (tensor)

P = [ψ0, ψ1, ..., ψNt ] ∈ Wn × RNt+1 ≈ Pm.

Similar approach can be applied to the Crank-Nicolson scheme.
The solution of global system (3.8) can be approached by either tensor-truncated precon-

ditioned iteration (say, GMRES) or by DMRG iteration, both in the D-dimensional space
with the virtual dimension D = d logN logNt (work in progress).
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4 Computation of the spectrum of Hamiltonian

4.1 Computing QTT-FFT of autocorrelation function

Autocorrelation function is given by

a(t) = 〈ψ(t), ψ(0)〉 =
m∑
p=0

(L
(0)
p+1(t)− L(0)

p (t))〈up, ψ0〉, 0 ≤ t ≤ T. (4.1)

Given vectors up, p = 0, 1, ...,m, the function a(t) can be sampled at very fine time-grid
t0, t1, ..., tNt and with low cost. The energy spectrum can be then recovered by means of
Fourier transform (in practice by the FFT),

Λ(E) =

∫ ∞

0

a(t)eiEtdt. (4.2)

Assuming that each vector up, (p = 0, ...,m) and ψ0 allow the low-rank QTT representation
(implicitly we assume the H-analyticity of ψ0), and making use of FFT for the truncated
sum in (4.1), the total asymptotical cost of spectrum calculations can be estimated by
O(dm logNt logN).

4.2 Spectrum recovering by the QTT-Cayley-Laplace transform

Using the well known correspondence for the Laplace transform

L{tn−1eat} =
Γ(n)

(s− a)n
,

as well as the relation

L{tαL(α)
n (t)} =

Γ(α+ n+ 1)(s− 1)n

n!sα+n+1
, <α > −1, <s > 0,

which for α = 0 reads as

L{L(0)
n (t)} =

(s− 1)n

sn+1
,

we obtain for the complete series representation (2.4),

L{eiHtψ0} = L{
∞∑
p=0

L(0)
p (t)up} =

∞∑
p=0

LL(0)
p (t)up =: Σ(s),

where

Σ(s) =
∞∑
p=0

(s− 1)p

sp+1
[H(H + iI)−1]p−1u0

=
s− 1

s2

[
I − s− 1

s

(
H(H + iI)−1

)]−1

u0,
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with u0 = i(H + iI)−1ψ0. Note that here the following conditions ‖H(H + iI)−1‖ ≤ 1 and∣∣ s−1
s

∣∣ < 1 for <s > 1/2 have to be satisfied as soon as the formula for the sum of the infinite
geometrical series has been used.

Thus, the discrete spectrum of the Schrödinger operator coincides with the poles of the
function ‖Σ(s)‖ multiplied by −i. The total cost now is determined by the complexity to

evaluate the elements

[
I − s−1

s

(
H(H + iI)−1

)]−1

u0 at all sampling points in s variable.

Calculation by truncated representation leads to the m-term summation using a function

Σm(s) =
m∑
p=0

(s−1)p

sp+1 up ≈ Σ(s).

Finally, we notice that numerical illustrations on the proposed approach will be presented
in the forthcoming papers.
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