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Abstract

By testing 88 different funds of the Chinese fund market (CFM), we find frac-
tal behavior and long-range correlations in the return series, which are insensitive
to the funds kind. Meanwhile, a power-law relationship between the deviation D
of prices and the Hurst exponent H has been obtained, which may be useful for
predicting the price time series. In addition, with funds being viewed as nodes, and
the connections among the funds being determined by the cross-correlation coeffi-
cients, using a winner-take-all approach, we investigate the topological properties
of the fund network. Our analysis reveals that, during different time periods, the
cumulative degree distributions of the fund network all obey the double power-law
format. Moreover, the small-world property is also found for the fund network.
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1 Introduction

To understand the universal properties of the financial market, such as the
scaling behaviors [1-3], the cross-correlations [4,5], etc, physicists are searching
for some unified framework [6-8] which is applicable to a wide class of financial
systems. Particularly in the past few years, the empirical evidence of fractal
behavior [9-13], long-range correlations [14-18] in the financial time series
has received widespread attention, since such self-similarity characteristics are
analogous to those displayed by the complex physical systems [19-22].

In the recent progress of research on complex networks, much attention has
been given to analyze the formation principles [23] and the topological prop-
erties [24-26] of financial networks. For instance, using the minimal spanning
tree (MST) method, Mantegna [23] proposed a stock network to investigate
the interactions among the stocks. Schweitzer and Stanley [27,28] anticipate a
challenging research agenda in economic networks, built upon a methodology
that strives to capture the rich process resulting from the interplay between
agents’ behavior and the dynamic interactions among them.

The fund market plays an important role in the world economy [29,30]. As an
indispensable part of the Chinese financial system, the Chinese fund market
(CFM) receives an increasing attention [31]. Especially, with the rapid devel-
opment of the Chinese economy, there will be huge room for the development
of the CFM. Therefore, to find some commonly shared characteristics of dif-
ferent funds, and to understand the cross-correlations among different funds,
will make great significance [32,33].

It has been found that there exist fractal behavior and long-range correlations
in the return series of CFM [34]. In order to check whether these properties
are valid for the majority of funds, we test on more examples and show further
the self-consistency of the two self-similarity characteristics. One of the main
goals of time series analysis is to forecast future values of certain variables.
We find the power-law relationship between the deviation D of the price series
and the Hurst exponent H, which may be used to predict the change of prices.

Fluctuations of the fund prices are not independent, since the funds with simi-
lar investment perspectives are strongly correlated with each other and tend to
be grouped into communities, which influences all other funds’ transactions.
Thus to analyze the cross-correlations of the CFM is crucial to understand
the interactions among the funds, which we can investigate from the complex
network perspective [35].

The whole text is organized as follows: The fractal behavior and long-range
correlations of the CFM are depicted in Subsection 2.1. We present the self-
consistency of the fractal behavior and long-range correlations in Subsection



2.2. The power-law relationship between the deviation D and the Hurst expo-
nent H is shown in Subsection 2.3. We construct the Chinese fund network in
Subsection 3.1. The cumulative degree distribution is exhibited in Subsection
3.2, and the basic parameters of the network are calculated in Subsection 3.3.
The conclusion is given in the last part, Section 4.

2 Self-similarity of the time series

Self-similarity [36] is ubiquitous in nature and human society, for instance,
the financial markets [37], the telecommunications [38], the hydrology [39]
and the geophysics [40] etc. While for financial markets, it means the time
series have similar statistical features in different time scales, and exhibit the
characteristics of long-range correlations.

2.1 Fractal behavior and long-range correlations of the time series

The Hurst exponent H [41] has been widely used to analyze the fractal
behavior in time series, one can classify the time series into three categories:
H =~ 0 indicates a random walk, 0<H <0.5 means the anti persistent behavior,
and 0.5<H <1.0 implies the persistent behavior.

We can create a new time series by calculating the standard deviation of
a certain time series. And we can proceed further to calculate the standard
deviation of the new time series as follows,

Std(t) ~ 7, (1)

where Std(t) is the standard deviation, ¢ is the time scale, and H, the Hurst
exponent.

The method of detrended fluctuation analysis (DFA) [11] is a scaling analysis
method which has been employed to characterize long-range correlations in
time series:

F(S) o 8¢, (2)

where F'(S) is the root mean square fluctuation of the integrated and de-
trended time series, S is the size of time scale, and « is used to classify the
time series which appear to be long-memory process or 1/f noise [11].
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Fig. 1. The linear relationship between the Hurst exponent H and long-range cor-
relations scaling exponent «, with slope 1.2. The top panel corresponds to 52 stock
funds (SF), while the bottom one, 36 active configuration funds (ACF).

2.2 Self-consistency of fractal behavior and long-range correlations

Based on the investment objective and the degree of investment risk, the
funds can be classified into stock fund (SF), and active configuration fund
(ACF), etc. For example, a stock fund is one that invests mainly in stocks,
and a bond fund adopts a collective investment scheme that invests mostly in
bonds and other debt securities, etc. Due to limited financial data, here we
choose a 4-year research period ranging from June 2005 to October 2009, and
collected the daily closed prices of 52 stock funds and 36 active configuration
funds from the web site of the Chinese fund market [42].

Applying the methods in the above subsection, we test 88 different funds.
Fig. 1 presents the relationship between the Hurst exponent H and long-range
correlations scaling exponent «. As seen, on the one hand, the values of the
scaling exponents H and « of the 88 different funds are all greater than 0.5,



which suggests the time series possess characteristics of the fractal behavior
and persistent long-range power law correlations.

On the other hand, one can see that the relationship between H and « is linear
with slope 1.2, which reflects the self-consistency of the two characteristics.
The self-similar time series may have some similar statistical properties in
different time scales, and the probability distributions of the series still retain
the same profile even if the time scale changes.

2.3 A way to predict the fluctuation of prices

0 200 400 ',[660 " 800 1000

ACF p @
iy At
. m Adu y Wh;;;w«\wwﬂ,?ﬂw
Py
<.

— H=0.58
— H=0.8
— H=0.91

0 200 400 600 800 1000 1200
t

Fig. 2. Time series of prices of the stock fund (SF) and the active configuration fund
(ACF), with small, medium and large Hurst exponents H.

The price time series of the funds with large, medium and small Hurst
exponent are presented in Fig. 2, as one can observe that the larger the Hurst
exponent H, the stronger persistent behavior of its price series, and the less
risk of the fund. Therefore the question is, whether we can predict the risk of



the fund by its Hurst exponent, or whether we can find a quantity based on
the price series, which can be related to the Hurst exponent. We formulated
as follows:

(1) Time series sample N of the price is divided into n bins, the length of
each bin being T', with T'= N/n.

(2) With p; being the price of a fund at time ¢, the standard deviation S(j)
is calculated in all non-overlapping bins of length T', which denotes the risk
distributed in every bin.

S(j) = $# 4T (i — P)%j = 1,2..n. (3)

1
p:

zpi' (4)

N

(3) The average value St of the standard deviation S(j) is calculated within
n bins.

Sr =3 50) )

(4) Repeat steps (1) — (3) over different lengths of 7" ranging from 3 to 20,
one can then define the deviation D as the average value of Sp.

1 20
D=—> 8. (6)
18 7=

The relationship between the deviation D and the Hurst exponent H is
shown in Fig. 3, which has been tested by using a KS type goodness-of-fit test
for power law distribution hypothesis [43]. Firstly, the power-law exponent
has been calculated by applying the maximum likelihood estimation (MLE),
then the KS test has been employed to calculate the maximum distance be-
tween the hypothesized cumulative distribution and the empirical one. It is
found that K = 0.0512 and 0.0526, is below, the 0.9 quantile and 100 samples,
therefore, with the observed significance level greater than 10%, there is insuf-
ficient evidence to reject the hypothesis that the relationship is a power-law.
D ~ H~% means the larger the Hurst exponent of a fund, the smaller its corre-
sponding deviation. Therefore, if the Hurst exponent H of a fund in a certain
period is obtained, then the deviation D can be estimated, which reflects the
fluctuations of the price. This feature might be used to make predictions.



Fig. 3. The power-law relationship between the Hurst exponent H and the deviation
D of the time series with a simple definition.

3 Network perspective of the Chinese fund market

Based on the cross-correlation matrix, the method of minimal spanning tree
(MST) [23] has been introduced to study the correlations of prices in the finan-
cial network, in which the nodes are stocks or funds, and the distances between
them are obtained from the corresponding cross-correlation coefficients. While
in this paper we employ the winner-take-all approach [35] to establish edges
of the network, which makes binary decision on connecting two fund prices
according to the absolute values of their cross-correlation coefficients being
greater than a threshold value.



3.1 Construction of the Chinese Fund Network

Let p;(t) be the price of fund 7 at moment ¢, then the return of the fund ¢
after a time interval At is defined as

ri(t) = Inp;(t + At) — Inp;(1), (7)

where the return r;(¢) denotes the logarithm fluctuation of the price during
the time interval At, which can be taken to be 1 day, 1 week, or 1 month.

To reduce the influence of different investment portfolio, we define the relative
return

Rit) = ri(t) — 5 3 r5(0), (8)

where R;(t) denotes the relative return of the fund i at time ¢, which refers to
the return r;(¢) as compared to average returns of the whole 88 funds at time
t.

Then the cross-correlation coefficient Cj; is defined as
(RiR;) — (Ri)(R;)
SR — (R () — ()
where the values of C;; range from -1 to 1: C;; = 1 means the prices of funds 7

and j have perfect similar variation profiles, while C;; = —1 shows the perfect
inverse variation features and Cj; = 0 predicts no correlations.

Oij =

, (9)

Our aim is to analyze the interactions among the funds in a certain period,
therefore, if the absolute value of the cross-correlation coefficient between two
funds is greater than a threshold (e.g. 0.8), then an edge is assumed to connect
them. Supposing the threshold is A, thus the connection criterion between
funds ¢ and 7 is

To reflect the strong interactions among the funds, we start with the relatively

large values of A to construct the Chinese fund network, with A = 0.7, 0.75
and 0.8, respectively.

3.2 Cumulative degree distribution

The cumulative degree distributions of the Chinese fund network from June
2005 to May 2009 are shown in Fig. 4. It was indicated in the literature that



many similar degree distributions have been found in the transport networks,
such as the airport network of China [44], the US flight network [45], the
worldwide air transportation network [46], the urban road network of Le Mans
in France [47], etc. This kind of degree distributions have been very well fitted
by the following function [48]:

1

P(K > k) - _&krl i bk’r?’

(11)

where a, b are two fitting parameters, ry, ro are the scaling exponents in the
two regions of power-law.

From this formula, the two regimes of power-law are separated by a critical
degree k., which can be determined through

aklt = bk, (12)

When 0 < k < k., there will be akl* > bkl?, thus, p(K > k) ~ k~™. When
k > k., then bk?> > akl', and hence, p(K > k) ~ k=",

We fitted our empirical data with Eq. (11), the results are shown in Fig.
4. One could find that the degree distributions are pretty well matched with
the double power-law function, in both the small and large degree regimes.
The values of a, b, 1,7y, as well as the critical degree k., are presented in the
Figure.

The double power-law degree distribution implies that, when k > k., at the
second power-law regime, the large degree decrease very rapidly with little
fluctuations, just like the cutoff. Thus, we may doubt whether the second
power-law is real, or nothing but a finite size effect.

We tried on more examples, since the immature of the Chinese fund market,
the funds with a relatively long trading period, just like the previous 88 funds,
are not too many, and we only find 20 more new ones here. We show the degree
distributions of the Chinese fund network, with 108 funds, in Fig. 5, compared
with those in Fig. 4, one could find, the double power-law degree distributions
in Fig. 5 might be more convincing, we therefore may judge that, the second
power-law is not caused by the finite size effect, but a reality.

The results also suggest that, most individual funds have a small number of
links with the other ones, while a few funds, namely the hubs, have a large
number of links. In other words, there might exist some leading fund manage-
ment companies, whose investment portfolios prevail, and whose actions may
have strong influence on the fund network, which may affect the fluctuation of
other funds prices. And this observation is consistent with that of our previous



work.
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Fig. 4. The double power-law degree distributions of the Chinese fund network, with
88 funds, in different time periods, formed by a winner-take-all connection criterion,
with threshold A = 0.75.

3.8 Basic parameters of the network

Basic parameters which reflect the topological structure of the fund network
are calculated in different time periods, with the threshold A=0.7, 0.75 and
0.8, respectively.

From Fig. 6, one can see that, as A\ decreases, the network becomes more
compactly connected. The total number of connections L, the average degree
(K) and the average clustering coefficient (C) increase, while the average
shortest path length (d) and the diameter decrease accordingly. Also, the same
trend is observed with the passing of time.

Moreover, no matter which threshold is chosen, the large average clustering

coefficient and the small average shortest-path length have all been observed.
These features may imply the compact topology of the Chinese fund network.
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Fig. 5. The double power-law degree distributions of the Chinese fund network, with
108 funds, the previous 88 funds and 20 more new ones, the threshold A also equals
0.75, to test whether the second power-law is real.

4 Conclusion

The self-similarity characteristics of the return series of the Chinese fund
market have been investigated, in connection with the fractal structure and
long-range correlation. It has been shown that these two properties are com-
patible with each other, and also commonly shared in the CFM.

To interpret the factors that influence the Hurst exponents, we defined the de-
viation D, which reflects the fluctuations of the price. A power-law relationship
between the deviation D and the Hurst exponent H is observed. Therefore,
if the Hurst exponent in a certain period is obtained, the deviation D can be
calculated correspondingly, which may be applied to predict the risk.

The cross-correlations of the CFM have been studied from the complex net-
work perspective with funds as nodes. A winner-take-all approach has been
used to determine if two nodes are connected. The double power-law degree
distributions have been found for different time periods. This law suggests
that, at the second regimes of power-law, when k > k., the large degree de-
crease very rapidly, which means a relatively small number of funds may exert
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Fig. 6. The basic network parameters of the Chinese fund network from 2006 to 2009,
including the total number of connections L, the average degree (K), the average
clustering coefficient (C), the average shortest-path length (d) and the diameter,
with the threshold |C| > 0.7, |C| > 0.75 and |C| > 0.8.

much influence on the fluctuations of the other funds’ prices. Basic quantities
which reflect the topological structure are also calculated. Our future work
might pay attention to the relationship between the fund performance and its
topological quantities.
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