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Abstract

Wave scattering by many (M = M(a)) small bodies, at the boundary
of which an interface boundary condition is imposed, is studied.

Smallness of the bodies means that ka << 1, where a is the char-
acteristic dimension of the body and k = 2π

λ is the wave number in the
medium in which small bodies are embedded.

Equation for the effective field is derived in the limit as a → 0,
M(a) →∞, at a suitable rate.
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1 Introduction

There is a large literature on ”homogenization”, which deals with the proper-
ties of the medium in which other materials is distributed. Quite often it is
assumed that the medium is periodic, and homogenization is considered in the
framework of G-convergence ([1],[2]). In most cases, one considers elliptic or
parabolic problems with elliptic operators positive-difinite and having discrete
spectrum.

The author has developed a theory of wave scattering by many small par-
ticles embedded in an inhomogeneous medium ([5]-[10]). One of the pratically
important consequences of his theory was a derivation of the equation for the
effective (self-consistent) field in the limiting medium, obtained in the limit
a → 0, M = M(a) →∞, where a is the characteristic size of a small particle,
and M(a) is the total number of the embedded particles.

The theory was developed for boundary conditions (bc) on the surfaces of
small bodies, which include the Dirichlet bc, u|Sm = 0, where Sm is the surface

‡Email: ramm@math.ksu.edu



2

of the m-th particle Dm, the impedance bc, ζmu|Sm = uN |Sm , where N is the
unit normal to Sm, pointing out of Dm, ζm is the boundary impedance, and
the Neumann bc, uN |Sm = 0.

In this paper, we develop similar theory for the interface bc:

ρmu+
N = u−N , u+ = u− on Sm, 1 ≤ m ≤ M. (1)

Here ρm is a constant, +(-) denotes the limit of ∂u
∂N

, from inside (outside)
of Dm. Our approach is completely different from the approach developed
in homogenization theory. Our results are of interest also in the case when
the number of scatterers is not large, so the homogenization theory is not
applicable.

Let us formulate the scattering problem we are treating.

Let Ω :=
M⋃

m=1

Dm, Ω′ = R3\Ω,

(∇2 + k2)u = 0 in Ω′, (2)

(∇2 + k2
m)u = 0 in Dm, 1 ≤ m ≤ M, (3)

u = u0 + v, u0 = eikα·x, α ∈ S2, S2 is a unit sphere in R3, (4)

r

(
∂v

∂r
− ikv

)
= o(1), r →∞. (5)

We assume that ρm and k2
m are positive constants, and the surfaces Sm are

smooth. A sufficient smoothness condition is Sm ∈ C1,µ, µ ∈ (0, 1), where Sm

in local coordinates is given by a continuously differentiable function whose
first derivatives are Hölder-continuous with exponent µ.

We assume that xm ∈ Dm is a point inside Dm, a = 1
2
diamDm, d =

O(a
1
3 ) is the distance between the neighboring particles, N (∆) =

∑
xm∈∆ 1, is

the number of particles in an arbitrary open set ∆, the domains Dm are not
intersecting, and

N (∆) =
1

V

∫
∆

N(x)dx[1 + o(1)], a → 0, (6)

where N(x) ≥ 0 is a function which is at our disposal, V is the volume of one
small body, V = O(a3). If Dm are balls of radius a, then V = 4πa3

3
.

It is proved in [3] that problem (1)-(5) has a unique solution.
We study wave scattering by a single small body in Section 2. In other

words, we study in Section 2 problem (1)-(5) with M = 1. The basic results
of this Section are formulated in Theorem 1.

In section 3 wave scattering by many small bodies is considered. The basic
results of this Section are formulated in Theorem 2. We always assume that

ka << 1, d = O(a
1
3 ). (7)
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2 Wave scattering by one small body

Let us look for the solution to problem (1)-(5) with M = 1 of the form

u(x) = u0(x) +

∫
S

g(x, t)σ(t)dt + κ
∫

D

g(x, y)u(y)dy, (8)

where S = S1, D = D1,

κ := k2
1 − k2, g(x, y) :=

eik|x−y|

4π|x− y|
, (9)

and σ(t) is to be found so that conditions (1) are satisfied. For any σ ∈ C0,µ1 ,
µ1 ∈ (0, 1), the solution to (8) satisfies equations (2), (3) with m = 1, (4) and
(5). This is easily checked by a direct calculation. The second condition (1) is
also satisfied. To satisfy the first condition (1), with ρ1 = ρ, one has to satisfy
the following equation

(ρ− 1)u0N
+ ρ

Aσ + σ

2
− Aσ − σ

2
+ (ρ− 1)

∂

∂Ns

Bu = 0, (10)

where

Aσ = 2

∫
S

∂g(s, t)

∂NS

σ(t)dt, Bu = κ
∫

D

g(x, y)u(y)dy, (11)

and we have used the well-known formulas for the limiting values of the normal
derivatives of the single-layer potential Tσ :=

∫
S

g(x, t)σ(t)dt on S from inside
and outside D.

Let us rewrite (10) as

σ = λAσ + 2λB1u + 2λu0N
, (12)

where

λ =
1− ρ

1 + ρ
, B1u = κ

∂

∂Ns

∫
D

g(x, y)u(y)dy (13)

Let us now use the first assumption (7). One has:

g(s, t) = g0(s, t)(1 + O(ka)), a → 0; g0(s, t) =
1

4π|s− t|
, (14)

∂

∂Ns

eik|s−t|

4π|s− t|
=

∂g0

∂Ns

(1 + O((ka)2)), a → 0, (15)

so A = A0(1 + O((ka)2)), a → 0; A0 := A|k=0, (16)

B = B0(1 + O(ka)), B0u = κ
∫

D

g0(x, y)u(y)dy, (17)

B1u = κ
∫

D

∂g0(s, y)

∂N
u(y)dy(1 + O(k2a2)) := κB10u(1 + O(k2a2)). (18)
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It follows from (8) that

u(x) = u0(x) +
eik|x−x1|

|x− x1|

(
1

4π

∫
S

e−ikβ·tσ(t)dt +
κ
4π

u1V1

)
, |x− x1| >> a,

(19)
where V1 is the volume of D = D1, V1 = vol(D1) := |D1|, u1 := u(x1), x1 = 0
is the origin, β := x−x1

|x−x1| .

We did not keep the factor e−ikβ·x in the integral over D because e−ikβ·x =
1 + O(ka), and ∫

D

e−ikβ·yu(y)dy = u1V1(1 + O(ka)), a → 0. (20)

However, it will be proved that this factor under the surface integral can not
be dropped because∫

S

e−ikβ·tσ(t)dt =

∫
S

σ(t)dt− ikβp

∫
S

tpσ(t)dt + O(a4), (21)

where over the repeated indices here and throughout this paper summation is
understood, and the second integral in the right-hand side of (21) is O(a3),
as a → 0, i.e., it is of the same order of smallness as the the first integral
Q :=

∫
S

σ(t)dt. The last statement will be proved later.
With the notations

Q :=

∫
S

σ(t)dt, Q1 :=

∫
S

e−ikβ·tσ(t)dt, (22)

the expression

A(β, α) :=
Q1

4π
+

κ
4π

u1V1, V1 := V := |D|, (23)

is the scattering amplitude, α is the unit vector in the direction of the incident
wave u0 = eikα·x, β is the unit vector in the direction of the scattered wave.
Let us prove that

− ikβp

∫
S

tpσ(t)dt = O(a3) (24)

and therefore, the second integral in the right-hand side of (21) cannot be
dropped.
It follows from (8) that

u(x) ∼ u0(x) + g(x, x1)Q1 + κg(x, x1)u(x1)V1, |x− x1| ≥ d � a, (25)

where ∼ means asymptotic equivalence as a → 0.
Formula (25) can be used for calculating u(x) if two quantities Q1 and u1 :=
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u(x1) are found.
Let us derive asymptotic formulas for these quantities as a → 0. Integrate
equation (12) over S and get

Q = 2λ

∫
S

u0N
ds + λ

∫
S

Aσdt + 2λ

∫
S

B1uds, (26)

Use formulas (14)-(18), the following formula (see [4], p.96):∫
S

A0σds = −
∫

S

σds, (27)

and the Divergence theorem, to rewrite (26) as

Q = 2λ

∫
D

∇2u0dx− λQ + 2λκ
∫

D

dx∇2
x

∫
D

g(x, y)u(y)dy. (28)

Since
∇2u0 = −k2u0; ∇2

xg(x, y) = −k2g(x, y)− δ(x− y), (29)

equation (28) takes the form

(1+λ)Q = 2λ∇2u0(x1)V1−2λk2κ
∫

D

dx

∫
D

g(x, y)udy−2λκ
∫

D

u(x)dx (30)

Let us use the following estimates:∫
D

u(x)dx = u1V1(1 + o(1)), a → 0; u1 := u(x1), (31)∫
D

dx

∫
D

g(x, y)u(y)dy =

∫
D

dyu(y)

∫
D

dxg(x, y) = O(a5), (32)∫
D

g(x, y)dx = O(a2), ∀y ∈ D. (33)

From (30)-(33) it follows that

Q ∼ 2λ

1 + λ
V1∇2u01 −

2λκ
1 + λ

V1u1, a → 0, (34)

where
∇2u01 = ∇2u0(x)|x=x1 . (35)

Let us now integrate equation (8) over D and use estimate (31) to obtain

u1V1 = u01V1 +

∫
S

dtσ(t)

∫
D

g(x, t)dx + κ
∫

D

dyu(y)

∫
D

g(x, y)dx. (36)
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If D is a ball of radius a, then one can easily check that∫
D

g(x, t)dx ∼
∫

D

g0(x, t)dx =
a2

3
, |t| = a, a → 0. (37)

In general, ∫
D

g(x, y)dx = O(a2), y ∈ D, a → 0. (38)

If D is a ball of radius a, then equations (36)-(38) imply

u1 = u01 + Q
a2

34πa3

3

+ κu1O(a2), a → 0. (39)

Consequently,
u1 ∼ u01 + O(a2), a → 0, (40)

because Q = O(a3).
Indeed, from (34) and (40) one gets

Q ∼ V1(1− ρ)[∇2u01 − κu01], (41)

where we took into account that

2λ

1 + λ
= 1− ρ, (42)

the relation u1 ∼ u01 as a → 0, see (40), and neglected the terms of higher
order of smallness. It follows from (41) that

Q = O(a3). (43)

From (40) and (41) one obtains

u1 ∼ u01, a → 0. (44)

Let us now estimate Q1. One has

Q1 =

∫
S

σ(t)dt− ikβp

∫
S

tpσ(t)dt, (45)

up to terms of higher order of smallness as a → 0, and summation is understood
over the repeated indices. It turns out that the integral

I :=

∫
S

tpσ(t)dt (46)
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is of the same order, O(a3), as Q =
∫

S
σ(t)dt.

Let us check that the integral

J :=

∫
S

dttp
∂

∂N

∫
D

g(t, y)u(y)dy = O(a4)

as a → 0, and, therefore, can be neglected when one estimates I. Indeed,
u = O(1),

∫
D

∂
∂N

g(t, y)dy = O(a), and
∫

S
tpdt = O(a3). Thus, J = O(a4).

Define the function σq, q = 1, 2, 3, as the unique solution to the equation

σq = λAσq − 2λNq. (47)

Since λ = (1 − ρ)/(1 + ρ), and ρ > 0, one concludes that λ ∈ (−1, 1), and
it is known (see, e.g., [4]) that the operator A is compact in L2(S) and does
not have characteristic values in the interval (−1, 1). This and the Fredholm
alternative imply that equation (47) has a solution and this solution is unique.

Note that
∫

S
σq(t)dt = O(a3). To prove this, integrate equation (47) over

S, take into account formula (27), the relation (A−A0)σq = O(a3), and obtain

(1 + λ)

∫
S

σq(t)dt = −2λ

∫
S

Nqdt + O(a3) = O(a3),

because
∫

S
Nqdt = 0 by the Divergence theorem.

Define the matrix

βpq := βpq(λ) := V1
−1

∫
S

tpσq(t)dt, p, q = 1, 2, 3. (48)

This matrix is similar to the matrix βpq defined in [4], p. 62, by a similar
formula with λ = 1. In this case βpq is the magnetic polarizability tensor of a
superconductor D placed in a homogeneous magnetic field directed along the
unit Cartesian coordinate vector eq (see [4], p. 62). In [4] analytic formulas
are given for calculating βpq with an arbitrary accuracy.

One may neglect the term B1u in equation (12) because this term is O(a4),
take into account definition (48), and get∫

S

tpσ(t)dt = −βpq
∂u0

∂xq

V, (49)

where V := V1, and summation is done over q. Consequently, one can rewrite
(45) as

Q1 = (1− ρ)V1[∇2(u0(x1)− κu0(x1)] + ikβpq
∂u0

∂xq

βpV1, β :=
x− x1

|x− x1|
, (50)

and (x)p := x · ep is the p−th Cartesian coordinate of vector x.
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Formula (19) can be written as

u(x) = u0(x)+g(x, x1)
(
(1−ρ)[∇2u0(x1)−κu0(x1)]+ikβpq

∂u0(x1)

∂xq

βp+κu0(x1)
)
V1,

(51)
where summation is understood over repeated indices, and |x− x1| >> a.

Formulas (41),(43),(44) are valid for small D of arbitrary shape. Let us
formulate the results of this Section in a theorem.

Theorem 1. Assume that ka � 1. The scattering problem (1)-(5) has
a unique solution. This solution has the form (8) and can be calculated by
formula (51) in the region |x − x1| >> a up to the terms of order O(a4) as
a → 0, where a = 0.5diamD, κ = k2

1 − k2, V1 = volD, β = x−x1

|x−x1| , and βpq is

defined in (48).

3 Wave scattering by many small bodies

Assume for simplicity that the distribution of small bodies is given by formula
(6), and that there are M = M(a) non-intersecting small bodies Dm of size
a. For simplicity we assume that Dm is a ball of radius a, centered at xm.
There is an essential novel feature in the theory, compared with the problems
investigated in [5],[6], [9], where the scattered field was much larger, as a →
0. For example, for the impedance boundary condition, uN = ζu on S, the
scattered field is O(a2), and for the Dirichlet boundary condition, u = 0 on S,
the scattered field is O(a).

For the Neumann boundary condition the scattered field is O(a3). We have
the same order of smallness of the scattered field, O(a3), in the problem we
study, because V1 = O(a3). The basic role in this section is played by formula
(51). We assume that the distance d between neighboring bodies (particles)
is much larger than a, d >> a. This assumption effectively means that the
function N(x) in (6) has to be small, N(x) << 1. Indeed, if on a segment of
unit length there are small particles placed at a distance d between neighboring
particles, then there are O(1

d
) particles on this unit segment, and O( 1

d3 ) in a
unit cube C1. Since V = O(a3), by formula (6) one gets

1

O(a3)

∫
C1

N(x)dx = O(
1

d3
).

Therefore d >> a can hold only if (
∫

C1
N(x)dx)

1
3 << 1.

Let us look for the (unique) solution to problem (1)-(5) with 1 ≤ m ≤ M =
M(a) of the form

u(x) = u0(x) +
M∑

m=1

∫
Sm

g(x, t)σm(t)dt +
M∑

m=1

κm

∫
Dm

g(x, y)u(y)dy. (52)
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Keeping the main terms in equation , as a → 0, one gets (53) as

u(x) = u0(x) +
M∑

m=1

g(x, xm)

(
Qm − ik

(x− xm)p

|x− xm|

∫
Sm

tpσm(t)dt

)
+

+
M∑

m=1

κmg(x, xm)ue(xm)Vm, Qm :=

∫
Sm

σm(t)dt, a → 0, (53)

where we have used formula (51) for the scattered field by every small particle
replacing u0 by the effective field ue, acting on every particle, and taking into
account that β := βm := x−xm

|x−xm| . By (x − xm)p the p-th component of vector

(x− xm) is denoted.
The effective (self-consisting) field ue, acting on j-th particle, is defined as:

ue(x) = u0(x) +
M∑

m=1,m6=j

g(x, xm)
(
(1− ρm)[∇2ue(xm)− κmue(xm)]+

ikβ(m)
pq

∂ue

∂xq

(x− xm)p

|x− xm|

)
Vm +

M∑
m=1,m6=j

κmg(x, xm)ue(xm)Vm, |x− xj| ∼ a

(54)

Setting x = xj in (54) one gets a linear algebraic system for the unknowns

uj := ue(xj), 1 ≤ j ≤ M , and
∂ue(xj)

∂xp
. Differentiating (54) with respect to

xp, p = 1, 2, 3, and then setting x = xj, one obtains a complete set of linear

algebraic systems for the 4M unknowns uj and
∂ue(xj)

∂xp
, 1 ≤ j ≤ M , 1 ≤ p ≤ 3.

This linear algebraic system one gets if one solves by a collocation method the
following integral equation

u(x) = u0(x) +

∫
D

g(x, y)
[
(1− ρ)(∇2 −K2(y) + k2)u(y)+

ikβpq(y, λ)
∂u(y)

∂yq

(x− y)p

|x− y|
+ (K2(y)− k2)u(y)

]
N(y)dy. (55)

Equation (55) is a non-local integrodifferential equation for the limiting effec-
tive field in the medium in which many small bodies are embedded. In the
derivation of this equation from equation (54) we assume that ρm = ρ does
not depend on m, took into account that κ2

m becomes in the limit K2(y)− k2,
and denoted by K2(y) a continuous function in D such that K2(xm) = k2

m.

As a → 0 the function K2(y) is uniquely defined because the set {xm}M(a)
m=1

becomes dense in D as a → 0. The function βpq(y, λ) is defined as

βpq(y, λ) = lim
a→0

∑
xm∈∆p

β
(m)
pq

N (∆p)
,
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where y = yp ∈ ∆p.
To derive (55) from (54) we argue as follows. Consider a partition of D into

a union centered at the points yp of P non-intersecting cubes ∆p, of size b(a),
b(a) >> d, so that each cube contains many small bodies, lima→0b(a) = 0.
Write each sum in (54) as follows (we do it for the first sum, for example):∑

m6=j

g(x, xm)(1− ρm)[∇2ue(xm)− κmue(xm)]Vm

=
P∑

p=1

g(x, yp)(1− ρp)[∇2ue(yp)− κpue(yp)]Vm

∑
xm∈∆p

1

=
P∑

p=1

g(x, yp)(1− ρp)[∇2ue(yp)− κpue(yp)]N(yp)|∆p|(1 + o(1)), (56)

where we have used formula (6), took into account that diam ∆p → 0 as a → 0,
wrote formula (6) as follows:

V
∑

xm∈∆p

1 = VN (∆p) = N(yp)|∆p|(1 + o(1)), a → 0, (57)

and used the Riemann integrability of the functions involved, which holds, for
example, if these functions are continuous. By ρp we denote the value ρ(yp),
where ρ(y) is a continuous function.

The sum in (56) is the Riemann sum for the integral∫
D

g(x, y)(1− ρ(y))[∇2u(y)−K2(y)u(y) + k2u(y)]N(y)dy. (58)

Similarly one treats the other sums in (56).
Let us formulate the results of this Section as a theorem.
Theorem 2. Assume that (6) and (7) hold. Then, as a → 0, the effective

field, defined by (54), has a limit u(x) which solves equation (55).
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