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We consider a non-interacting unbounded spin system with conservation
of the mean spin. We derive a uniform logarithmic Sobolev inequality (LSI)
provided the single-site potential is a bounded perturbation of a strictly con-
vex function. The scaling of the LSI constant is optimal in the system size.
The argument adapts the two-scale approach of Grunewald, Otto, West-
dickenberg, and Villani from the quadratic to the general case. Using an
asymmetric Brascamp-Lieb type inequality for covarianceswe reduce the
task of deriving a uniform LSI to the convexification of the coarse-grained
Hamiltonian, which follows from a general local Cramèr theorem.
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1. Introduction and main result

The grand canonical ensembleµ is a probability measure onRN given by

µ(dx) :=
1

Z
exp (−H(x)) dx.
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Throughout the article,Z denotes a generic normalization constant. The value ofZ
may change from line to line or even within a line. The non-interacting Hamiltonian
H : RN → R is given by a sum of single-site potentialsψ : R → R that are specified
later i.e.

H (x) :=

N
∑

i=1

ψ(xi). (1)

For a real numberm, we consider theN − 1 dimensional hyper-planeXN,m given by

XN,m :=

{

x ∈ R
N ,

1

N

N
∑

i=1

xi = m

}

.

We equipXN,m with the standard scalar product induced byRN .

〈x, x̃〉 :=
N
∑

i=1

xix̃i.

The restriction ofµ toXN,m is called canonical ensembleµN,m i.e.

µN,m(dx) :=
1

Z
exp (−H(x)) HN−1

⌊XN,m
(dx). (2)

Here,HN−1
⌊XN,m

denotes theN − 1 dimensional Hausdorff measure restricted to the hy-
perplaneXN,m . For convenience, we introduce the notation

a . b ⇔ there is a uniform constantC > 0 such thata ≤ Cb,

a ∼ b ⇔ it holds thata . b andb . a.

In 1993, Varadhan [Var93] posed the question for which kind of single-site potentialψ
the canonical ensembleµN,m satisfies a spectral gap inequality (SG) uniformly in the
system sizeN and the mean spinm. A partial answer was given by Caputo [Cap03]:

Theorem 1.1(Caputo). Assume that for the single-site potentialψ exist a splittingψ =
ψc + δψ and constantsβ−, β+ ∈ [0,∞) such that for allx ∈ [0,∞)

ψ′′
c (x) ∼ |x|β+ + 1, ψ′′

c (−x) ∼ |x|β− + 1, and |δψ|+ |δψ′|+ |δψ′′| . 1. (3)

Then the canonical ensembleµN,m satisfies the SG with constant̺ > 0 uniformly in the
system sizeN and the mean spinm. More precisely, for any functionf

varµN,m
(f) =

∫
(

f −
∫

f dµN,m

)2

dµN,m ≤ 1

̺

∫

|∇f |2 dµN,m.

Here,∇ denotes the gradient determined by the Euclidean structureofXN,m.
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In this article, we give a full answer to the question by Varadhan [Var93] and also
consider the question if the statement of the last theorem can be strengthened to the
logarithmic Sobolev inequality (LSI).

Definition 1.2 (LSI). LetX be a Euclidean space. A Borel probability measureµ onX
satisfies the LSI with constant̺ > 0, if for all functionsf ≥ 0

∫

f log f dµ−
∫

fdµ log

(
∫

fdµ

)

≤ 1

2̺

∫ |∇f |2
f

dµ. (4)

Here,∇ denotes the gradient determined by the Euclidean structureofX.

Remark 1.3 (Gradient onXN,m). If we chooseX = XN,m in Definition 1.2, we can
calculate|∇f |2 in the following way: extendf : XN,m → R to be constant on the
direction normal toXN,m. Then

|∇f |2 =
N
∑

i=1

∣

∣

∣

∣

d

dxi
f

∣

∣

∣

∣

2

.

The LSI was originally introduced by Gross [Gro75]. It yields the SG and can be used
as a powerful tool for studying spin systems. Like the SG, theLSI implies exponential
convergence to equilibrium of the naturally associated conservative diffusion process.
The rate of convergence is given by the LSI constant̺ (cf. [SZ92a, SZ92b, SZ95, Yos99,
Zeg96] and Remark 1.7). Therefore, an appropriate scaling of the LSI constant in the
system size indicates the absence of phase transitions. TheSG yields convergence in
the sense of variances in contrast to the LSI, which yields convergence in the sense of
relative entropies. The SG and the LSI are also useful for deducing the hydrodynamic
limit (see [Var93, LY93, Kos01] for the SG and [GOVW09] for the LSI).

We consider three cases of different potentials: sub-quadratic, quadratic, and super-
quadratic single-site potentials. In the case of sub-quadratic single-site potentials, Barthe
& Wolff [BW09] gave a counterexample where the scaling in thesystem size of the SG
and the LSI constant of the canonical ensemble differs in thesystem size. More pre-
cisely, they showed:

Theorem 1.4(Barthe & Wolff). Assume that the single-site potentialψ is given by

ψ(x) =

{

x, for x > 0,

∞, else.

Then the SG constant̺1 and the LSI constant̺2 of the canonical ensembleµN,m satisfy

̺1 ∼
1

m2
and ̺2 ∼

1

Nm2
.
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In the case of perturbed quadratic single-site potentials it is known that Theorem 1.1
can be improved to the LSI. More precisely, several authors (cf. [LY93, LPY02, Cha03,
GOVW09]) deduced the following statement by different methods:

Theorem 1.5 (Landim, Panizo, and Yau). Assume that the single-site potentialψ is
perturbed quadratic in the following sense: There exists a splitting ψ = ψc + δψ such
that

ψ′′
c = 1 and |δψ|+ |δψ′|+ |δψ′′| . 1. (5)

Then the canonical ensembleµN,m satisfies the LSI with constant̺ > 0 uniformly in
the system sizeN and the mean spinm.

There is only left to consider the super-quadratic case. It is conjectured that the optimal
scaling LSI also holds, if the single-site potentialψ is a bounded perturbation of a strictly
convex function (cf. [LPY02, p. 741], [Cha03, Theorem 0.3 f.], and [Cap03, p. 226]).
Heuristically, this conjecture seems reasonable: Becausethe LSI is closely linked to
convexity (consider for example the Bakry-Émery criterion), a perturbed strictly convex
potential should behave no worse than a perturbed quadraticone. However technically,
the methods for the quadratic case are not able to handle the perturbed strictly convex
case, because they require an upper bound on the second derivative of the Hamiltonian.
In the main result of the article we show that the conjecture from above is true:

Theorem 1.6.Assume that the single-site potentialψ is perturbed strictly convex in the
sense that there is a splittingψ = ψc + δψ such that

ψ′′
c & 1 and |δψ|+ |δψ′| . 1. (6)

Then the canonical ensembleµN,m satisfies the LSI with constant̺ > 0 uniformly in
the system sizeN and the mean spinm.

Remark 1.7 (From Glauber to Kawasaki). The bound on the r.h.s. of(4) is given in
terms of the Glauber dynamics in the sense that we have endowedXN,m with the stan-
dard Euclidean structure inherited fromRN . By the discrete Poincaré inequality one can
recover the bound for the Kawasaki dynamics (cf. [GOVW09, Remark 15] or [Cap03])
in the sense that one endowsXN,m with the Euclidean structure coming from the dis-
creteH−1-norm. More precisely, ifΛ is a cubic lattice in any dimension of widthL,
then Theorem 1.6 yields the LSI for Kawasaki dynamics with constantL−2̺, which is
the optimal scaling inL (cf. [Yau96]).

Note that the standard criteria for the SG and the LSI (cf. Appendix A) fail for the
canonical ensembleµN,m:

• The Tensorization principle for the SG and the LSI does not apply because of
the restriction to the hyper-planeXN,m (cf. for example [GZ03, Theorem 4.4] or
Theorem A.1).
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• The Bakry-Émery criterion does not apply because the HamiltonianH is not
strictly convex (cf. [BE85, Proposition 3 and Corollary 2] or Theorem A.3).

• TheHolley-Stroock criterion does not help because the LSI constant̺ has to be
independent of the system sizeN (cf. [HS87, p. 1184] or Theorem A.2).

Therefore, a more elaborated machinery was needed for the proof of Theorem 1.1 and
Theorem 1.5. The approach of Caputo to Theorem 1.1 seems to berestricted to the SG,
because it relies on the spectral nature of the SG. The most common approach for the
proof of Theorem 1.5 is the Lu-Yau martingale method (see [LY93, LPY02, Cha03]).
Recently, Grunewald, Otto, Villani, and Westdickenberg [GOVW09] provided a new
technique for deducing Theorem 1.5 called the two-scale approach. We follow this
approach in the proof of Theorem 1.6.

The limiting factor for extending Theorem 1.5 to more general single-site potentials is
almost the same for the Lu-Yau martingale method and for the two-scale approach: It
is the estimation of a covariance term w.r.t. the measureµN,m conditioned on a special
event (cf. [LPY02, (4.6)] and [GOVW09, (42)]). In the two-scale approach one has to
estimate for some large but fixedK ≫ 1 and any non-negative functionf the covariance

∣

∣

∣

∣

∣

covµK,m

(

f,
1

K

K
∑

i=1

ψ′(xi)

)∣

∣

∣

∣

∣

.

In [GOVW09] this term term was estimated by using a standard estimate (cf. Lemma 2.9
and [GOVW09] [Lemma 22]), which only can be applied for perturbed quadratic single-
site potentialsψ. We get around this difficulty by making the following adaptations:
Instead of one-time coarse-graining of big blocks we consider iterative coarse-graining
of pairs. As a consequence we only have to estimate the covariance term from above in
the caseK = 2. Becauseµ2,m is a one-dimensional measure, we are able to apply the
more robust asymmetric Brascamp-Lieb inequality (cf. Lemma 2.10), which can also
be applied for perturbed strictly convex single-site potentialsψ.

Recently, the optimal scaling LSI was established in [Men10] for a weakly interacting
Hamiltonian with perturbed quadratic single-site potentialsψ i.e.

H(x) =

N
∑

i=1

ψ(xi) + ε
∑

1≤i<j≤N
bijxixj .

Because the original two-scale approach was used, it is an interesting question if one
could extend this result to perturbed strictly convex single-site potentials. A direct trans-
fer of the argument of [Men10] fails because of the iterativestructure of the proof of
Theorem 1.6.
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The remaining part of this article is organized as follows. In Section 2.1 we prove of the
main result. The auxiliary results of Section 2.1 are provedin Section 2.2. There is one
exception: The convexification of the single-site potential by iterated renormalization
(see Theorem 2.6) is proved in Section 3. In the short Appendix A we state the standard
criteria for the SG and the LSI.

2. Adapted two-scale approach

2.1. Proof of the main result

In this section we state the proof of Theorem 1.6, which is based based on an adaptation
of the two-scale approach of [GOVW09]. We start with introducing the concept of
coarse-graining of pairs. We recommend to read [GOVW09, Chapter 2.1] as a guideline.
We assume that the numberN of sites is given byN = 2K for some large number
K ∈ N. The step to arbitraryN is not difficult (cf. Remark 2.7 below).

We decompose the spin system into blocks each containing twospins. The coarse-
graining operatorP : XN,m → XN

2
,m assigns to each block the mean spin of the block.

More precisely,P is given by

P (x) : =

(

1

2
(x1 + x2),

1

2
(x3 + x4), . . . ,

1

2
(xN−1 + xN )

)

. (7)

Due to the coarse-graining operatorP we can decompose the canonical ensembleµN,m
into

µN,m(dx) = µ(dx|y)µ̄(dy), (8)

whereµ̄ := P#µN,m denotes the push forward of the Gibbs measureµ underP and
µ(dx|y) is the conditional measure ofx givenPx = y. The last equation has to be
understood in a weak sense i.e. for any test functionξ

∫

ξ dµN,m =

∫

Y

(
∫

{Px=y}
ξ µ(dx|y)

)

µ̄(dy).

Now, we are able to state the first ingredient of the proof of Theorem 1.6.

Proposition 2.1(Hierarchic criterion for the LSI). Assume that the single-site potential
ψ is perturbed strictly convex in the sense of(6). If the marginalµ̄ satisfies the LSI with
constant̺ 1 > 0 uniformly in the system sizeN and the mean spinm, then the canonical
ensembleµN,m also satisfies the LSI with constant̺2 > 0 uniformly in the system size
N and the mean spinm.
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The proof of this statement is given in Section 2.2. Due to thelast proposition it suffices
to deduce the LSI for the marginalµ̄. Hence, let us have a closer look at the structure
of µ̄. We will characterize the Hamiltonian of the marginalµ̄ with the help of the
renormalization operatorR, which is introduced as follows.

Definition 2.2. Letψ : R → R be a single-site potential. Then the renormalized single-
site potentialRψ : R → R is defined by

Rψ(y) := − log

∫

exp (−ψ(x+ y)− ψ(−x+ y)) dx. (9)

Remark 2.3. The renormalized single-site potentialRψ can be interpreted in the fol-
lowing way: A change of variables (cf. [EG92, Section 3.3.3]) and the invariance of the
Hausdorff measure under translation yield the identity

exp (−Rψ(y)) =
∫

exp (−ψ(x+m)− ψ(−x+m)) dx

=
1√
2

∫

exp (−ψ(x1)− ψ(x2))H1
⌊{x1+x2=2y}(dx).

Therefore, the renormalized single-site potentialRψ describes the free energy of two
independent spinsX1 andX2 (identically distributed according toZ−1 exp(−ψ)) con-
ditioned on a fixed mean value1

2
(X1 +X2) = y.

Lemma 2.4(Invariance under renormalization). Assume that the single-site potentialψ
is perturbed strictly convex in the sense of(6). Then the renormalized HamiltonianRψ
is also perturbed strictly convex in the sense of(6).

Direct calculation using the coarea formula (cf. [EG92, Section 3.4.2]) reveals the fol-
lowing structure of the marginal̄µ.

Lemma 2.5. The marginal̄µ is given by

µ̄(dy) :=
1

Z
exp



−
N
2
∑

i=1

Rψ(yi)



H
N
2
−1

⌊XN
2

,m

(dy).

It follows from the last two lemmas that the marginalµ̄ has the same structure as the
canonical ensembleµN,m. The single-site potential of̄µ is given by the renormalized
single-site potentialRψ. Hence, one can iterate the coarse-graining of pairs. The next
statement shows that after finitely many iterations the renormalized single-site poten-
tial RMψ becomes uniformly strictly convex. Therefore, the Bakry-Émery criterion
(cf. Theorem A.3) yields that the corresponding marginal satisfies the LSI with constant
˜̺ > 0, uniformly in the system sizeN and the mean spinm. Then an iterated applica-
tion of the hierarchic criterion of the LSI (cf. Proposition2.1) yields Theorem 1.6 and
the proof of the main result forN = 2K is finished.
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Theorem 2.6(Convexification by renormalization). Letψ be a perturbed strictly convex
single-site potential in the sense of(6). Then there is an integerM0 such that for all
M ≥ M0 theM−times renormalized single-site potentialRMψ is uniformly strictly
convex independently of the system sizeN and the mean spinm.

We conclude this section by giving some remarks and pointingout the central tools
needed for the proof of the auxiliary results. The next remark shows how Theorem 1.6
is proved in the case of an arbitrary numberN of sites.

Remark 2.7. Note that an arbitrary number of sitesN can be written as

N = K̃2K +R

for some number̃K, a large but fixed numberK, and a bounded numberR < 2K .
Hence, one can decompose the spin system intoK̃ blocks of2K spins and one block
of R spins. The big blocks of2K spins are coarse-grained by pairs, whereas the small
block ofR spins is not coarse-grained at all. After iterating this procedure sufficiently
often, the renormalized single-site potentials of the big blocks are uniformly strictly
convex. On the remaining block ofR spins, the corresponding single-site potentials are
unchanged. Becauseψ is a bounded perturbation of a strictly convex function, it follows
from a combination of the Bakry-Émery criterion (cf. Theorem A.3) and the Holley-
Stroock criterion (cf. Theorem A.2) that the marginal of thewhole system satisfies the
LSI with constant

̺ & exp (−R (sup δψ − inf δψ)) ,

which is independent onN andm. Therefore, an iterated application of the hierarchic
criterion of the LSI (cf. Proposition 2.1) yields Theorem 1.6.

The proof of Proposition 2.1 and Lemma 2.4 is given in Section2.2, whereas the proof
of Theorem 2.6 is stated in Section 3.

Starting point for the proof of Theorem 2.6 is the observation that theM-times renor-
malized single-site potentialRMψ corresponds to the coarse-grained Hamiltonian re-
lated to coarse-graining with block size2M (cf. [GOVW09]).

Lemma 2.8. For K ∈ N let the coarse-grained Hamiltonian̄HK be defined by

H̄K(m) = − 1

K
log

∫

exp(−H(x)) HK−1
⌊XK,m

(dx). (10)

LetM ∈ N. Then there is a constant0 < C(2M) <∞ depending only on2M such that

RMψ = 2MH̄2M + C(2M).
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Because the last statement is verified by a straight-forwardapplication of the area and
coarea formula, we omit the proof. In Lemma 2.8 one could easily determine the exact
value of the constantC(2M). However, the exact value is not important because we are
only interested in the convexity ofRMψ. In [GOVW09], the convexification of̄HK was
deduced from a local Cramér theorem (cf. [GOVW09][Proposition 31]). For the proof
of Theorem 2.6 we follow the same strategy generalizing the argument to perturbed
strictly convex single-site potentialsψ.

Now, we make some comments on the proof of Proposition 2.1 andLemma 2.4. One
of the limiting factors in the proof of Theorem 1.5 is the application of a classical co-
variance estimate (cf. [GOVW09][Lemma 22]). In our framework this estimate can be
formulated as:

Lemma 2.9. Assume that the single-site potentialψ is perturbed strictly convex in the
sense of(6). Letν be a probability measure onR given by

ν(dx) =
1

Z
exp (−ψ(x)) dx.

Then for any functionf ≥ 0 andg

| covν(f, g)| . sup
x

|g′(x)|
(
∫

fdν

)
1

2
(
∫ |f ′|2

f
dν

)
1

2

.

In [GOVW09], the last estimate was applied to the functiong = ψ′. Note that|g′(x)| =
|ψ′′(x)| is only bounded in the case of a perturbed quadratic single-site potentialψ. The
main new ingredient for the proof of the hierarchic criterion for the LSI (cf. Proposi-
tion 2.1) and the invariance principle (cf. Lemma 2.4) is an asymmetric Brascamp-Lieb
inequality, which does not exhibit this restriction.

Lemma 2.10.Assume that the single-site potentialψ is perturbed strictly convex in the
sense of(6). Letν be a probability measure onR given by

ν(dx) =
1

Z
exp (−ψ(x)) dx.

Then for any functionf andg

| covν(f, g)| ≤ exp (−3 osc δψ) sup
x

∣

∣

∣

∣

g′(x)

ψ′′
c (x)

∣

∣

∣

∣

∫

|f ′|dν,

whereosc δψ := supx δψ(x)− infx δψ(x).

We call the last inequality asymmetric, because compared tothe original Brascamp-
Lieb inequality [BL76]L2 × L2 is replaced byL1 × L∞ and the factor 1√

ψ′′
c

is not

evenly distributed. It is an interesting question if an analog statement also holds for
higher dimensions. The proof of Lemma 2.10 is based on a kernel representation of the
covariance. All steps are elementary.
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Proof of Lemma 2.10.Let us consider a Gibbs measureµ associated to the Hamiltonian
H : R → R. More precisely,µ is given by

µ(dx) :=
1

Z
exp (−H(x)) dx.

We start by deriving the following integral representationof the covariance ofµ:

covµ(f, g) =

∫ ∫

f ′(x)Kµ(x, y)g
′(y) dx dy, (11)

where the non-negative kernelKµ(x, y) is given by

Kµ(x, y) :=

{

Mµ(x)(1−Mµ)(y) for y ≥ x
(1−Mµ)(x)Mµ(y) for y ≤ x

}

,

andMµ(x) := µ((−∞, x)) so that(1 −Mµ)(x) = µ((x,∞)). Indeed, we start by
noting that

covµ(f, g) =

∫ ∫

(f(z)− f(x))µ(x) dx

∫

(g(z)− g(y))µ(y) dy µ(z) dz, (12)

where we do not distinguish between the measureµ(dx) and its Lebesgue densityµ(x)
in our notation. UsingM ′

µ(x) = µ(x), we can use integration by parts to rewrite each
factor in terms of the derivative:

∫

(f(z)− f(x))µ(x) dx

=

∫ z

−∞
(f(z)− f(x))M ′

µ(x) dx−
∫ ∞

z

(f(z)− f(x))(1−Mµ)
′(x) dx

=

∫ z

−∞
f ′(x)Mµ(x) dx−

∫ ∞

z

f ′(x)(1 −Mµ)(x) dx

=

∫

f ′(x)
(

I(x < z)Mµ(x)− I(x > z)(1−Mµ)(x)
)

dx,

whereI(x < z) assumes the value1 if x < z and zero otherwise. Inserting this and the
corresponding identity forg(y) into (12), we obtain

covµ(f, g)

=

∫ ∫

f ′(x)
(

I(x < z)Mµ(x)− I(x > z)(1−Mµ)(x)
)

dx

×
∫

g′(y)
(

I(y < z)Mµ(y)− I(y > z)(1−Mµ)(y)
)

dyµ(z)dz

=

∫ ∫

f ′(x)Kµ(x, y)g
′(y) dx dy (13)

10



with kernelKµ(x, y) as desired given by

Kµ(x, y)

= Mµ(x)Mµ(y)
∫

I(x < z)I(y < z)µ(z) dz

− Mµ(x)(1−Mµ)(y)
∫

I(x < z)I(y > z)µ(z) dz

− (1−Mµ)(x)Mµ(y)
∫

I(x > z)I(y < z)µ(z) dz

+ (1−Mµ)(x)(1−Mµ)(y)
∫

I(x > z)I(y > z)µ(z) dz

= Mµ(x)Mµ(y)(1−Mµ)(max{x, y})
− Mµ(x)(1−Mµ)(y)I(y > x)(Mµ(y)−Mµ(x))

− (1−Mµ)(x)Mµ(y)I(y < x)(Mµ(x)−Mµ(y))

+ (1−Mµ)(x)(1−Mµ)(y)Mµ(min{x, y})
= I(y > x)

(

Mµ(x)Mµ(y)(1−Mµ)(y)−Mµ(x)(1−Mµ)(y)(Mµ(y)−Mµ(x))

+(1−Mµ)(x)(1−Mµ)(y)Mµ(x)
)

+ I(y ≤ x)
(

Mµ(x)Mµ(y)(1−Mµ)(x)− (1−Mµ)(x)Mµ(y)(Mµ(x)−Mµ(y))

+(1−Mµ)(x)(1−Mµ)(y)Mµ(y)
)

= I(y > x)Mµ(x)(1−Mµ)(y) + I(y ≤ x)(1 −Mµ)(x)Mµ(y).

We now establish the following identity for the above kernel:
∫

Kµ(x, y)H
′′(y)dy = µ(x). (14)

Indeed, we have by integrations by part
∫

Kµ(x, y)H
′′(y) dy

= (1−Mµ)(x)

∫ x

−∞
Mµ(y)H

′′(y) dy +Mµ(x)

∫ ∞

x

(1−Mµ)(y)H
′′(y) dy

= (1−Mµ)(x)

(

Mµ(x)H
′(x)−

∫ x

−∞
M ′

µ(y)H
′(y) dy

)

+ Mµ(x)

(

−(1−Mµ)(x)H
′(x) +

∫ ∞

x

M ′
µ(y)H

′(y) dy

)

= −(1 −Mµ)(x)

∫ x

−∞
exp(−H(y))H ′(y) dy

+ Mµ(x)

∫ ∞

x

exp(−H(y))H ′(y) dy

= (1−Mµ)(x)µ(x) +Mµ(x)µ(x) = µ(x).

Let us now consider the Gibbs measuresν(dx) andνc(dx) given by

ν(dx) =
1

Z
exp (−ψc(x)− δψ(x)) dx and νc(dx) =

1

Z
exp (−ψc(x)) dx.
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By the integral representation (11) of the covariance we have the estimate

|covν(f, g)| ≤
∫ ∫

|f ′(x)|Kν(x, y) |g′(y)| dx dy.

By a straight-forward calculation we can estimate

Mν(x) =

∫ x

−∞ exp(−ψc(x)− δψ(x))dx
∫

exp(−ψc(x)− δψ(x))dx

≤ exp(− osc δψ)

∫ x

−∞ exp(−ψc(x))dx
∫

exp(−ψc(x))dx
= exp(− osc δψ)Mνc(x).

Together with a similar estimate for(1−Mν(y)) this yields the kernel estimate

Kν(x, y) ≤ exp(−2 osc δψ) Kνc(x, y).

Applying this to the covariance estimate from above yields

|covν(f, g)| ≤ exp(−2 osc δψ)

∫ ∫

|f ′(x)|Kνc(x, y) |g′(y)| dx dy.

Using the identity (14) forµ = νc we may easily conclude:

|covν(f, g)| ≤ exp(−2 osc δψ) sup
y

|g′(y)|
ψ′′
c (y)

∫

|f ′(x)|
∫

Kνc(x, y)ψ
′′
c (y) dy dx

= exp(−2 osc δψ) sup
y

|g′(y)|
ψ′′
c (y)

∫

|f ′(x)| νc(dx)

≤ exp(−3 osc δψ) sup
y

|g′(y)|
ψ′′
c (y)

∫

|f ′(x)| ν(dx).

For the entertainment of the reader, let us argue how the identity (14) also yields the
traditional Brascamp-Lieb inequality in the caseH ′′ > 0. Indeed, by the symmetry of
the kernelKµ(x, y) the identity (14) yields for allx andy

∫

Kµ(x, y)H
′′(y) dy = µ(x) and

∫

Kµ(x, y)H
′′(x) dx = µ(y). (15)

The integral representation of the covariance (11) yields

varµ(f) =

∫ ∫

f ′(x)Kµ(x, y)f
′(y) dx dy

=

∫ ∫

f ′(x)

(

Kµ(x, y) H
′′(y)

H ′′(x)

)
1

2

f ′(y)

(

Kµ(x, y) H
′′(x)

H ′′(y)

)
1

2

dx dy.
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Then a combination of Hoelder’s inequality and the identity(15) for the kernelKµ(x, y)
yields the Brascamp-Lieb inequality:

varµ(f)

≤
(
∫ ∫ |f ′(x)|2

H ′′(x)
Kµ(x, y)H

′′(y)dydx

)
1

2
(
∫ ∫ |f ′(y)|2

H ′′(y)
Kµ(x, y)H

′′(x)dxdy

)
1

2

=

(
∫ |f ′(x)|2

H ′′(x)
µ(x)dx

)
1

2
(
∫ |f ′(y)|2

H ′′(y)
µ(y)dy

)
1

2

=

∫ |f ′(x)|2
H ′′(x)

µ(x)dx. (16)

2.2. Proof of auxiliary results

In this section we outline the proof of Proposition 2.1 and Lemma 2.4. We start with
Proposition 2.1, which is the hierarchic criterion for the LSI. Unfortunately, we cannot
directly apply the two-scale criterion of [GOVW09][Theorem 3]. The reason is that the
number

κ :=
{

〈HessH(x)u, v〉 , u ∈ im(2P tP ), v ∈ im(idX −2P tP ); |u| = |v| = 1
}

, (17)

which measures the interaction between the microscopic andmacroscopic scales, can be
infinite for a perturbed strictly convex single-site potential ψ. However, we follow the
proof of [GOVW09][Theorem 3] with only one major difference: Instead of applying
the classical covariance estimate (cf. Lemma 2.9), we applythe asymmetric Brascamp-
Lieb inequality (cf. Lemma 2.10). Let us assume for the rest of this section that the
single-site potentialψ is perturbed strictly convex in the sense of (6).

For convenience we setX := XN,m andY := XN
2
,m. We choose onX andY the

standard Euclidean structure given by

〈x, y〉 =
N
∑

i=1

xiyi.

The coarse-graining operatorP : X → Y given by (7) satisfies the identity

2PP t = idY ,

whereP t : Y → X is the adjoint operator ofP . Note that ourP t differs from theP t of
[GOVW09], because the Euclidean structure on Y differs fromthe Euclidean structure
used in [GOVW09]. The last identity yields that2P tP is the orthogonal projection of

13



X to imP t. Hence, one can decomposeX into the orthogonal sum ofmicroscopic
fluctuationsandmacroscopic variablesaccording to

X = kerP ⊕ imP t and

x =
(

idX −2P tP
)

x+ 2P tPx.

We apply this decomposition to the gradient∇f of a smooth functionf on X. The
gradient∇f is decomposed into a macroscopic gradient and a fluctuation gradient sat-
isfying

∇f(x) =
(

idX −2P tP
)

∇f(x) + 2P tP∇f(x) and

|∇f(x)|2 =
∣

∣

(

idX −2P tP
)

∇f(x)
∣

∣

2
+
∣

∣2P tP∇f(x)
∣

∣

2
. (18)

Note thatkerP is the tangent space of the fiber{Px = y}. Hence, the gradient off
on {Px = y} is given by(idX −2P tP )∇f(x). The first main ingredient of the proof
of Proposition 2.1 is the following statement.

Lemma 2.11.The conditional measureµ(dx|y) given by(8) satisfies the LSI with con-
stant̺ > 0 uniformly in the system sizeN , the macroscopic profiley, and the mean
spinm. More precisely, for any non-negative functionf

∫

f log fµ(dx|y)−
∫

fµ(dx|y) log
(
∫

fµ(dx|y)
)

≤ 1

2̺

∫ | (idX −2P tP )∇f |2
f

µ(dx|y).

Proof of Lemma 2.11.Observe that the conditional measuresµ(dx|y) have a product
structure: We decompose{Px = y} into a product of Euclidean spaces. Namely for

X2,yi :=

{

(x2i−1, x2i), x2i−1 + x2i = 2yi

}

, i ∈
{

1, . . . ,
N

2

}

we have
{Px = y} = X2,y1 × · · · ×X2,yN

2

.

It follows from the coarea formula (cf. [EG92, Section 3.4.2]) that
∫

{Px=y}
f(x)µ(dx|y)

=

∫

f(x)

N
2
⊗

i=1

1

Z
exp (−ψ(x2i−1)− ψ(x2i)) H1

⌊X2,yi
(dx2i−1, dx2i).

14



Henceµ(dx|y) is the product measure

µ(dx|y) =
N
2
⊗

i=1

µ2,yi(dx2i−1, dx2i), (19)

where we make use of the notation introduced in (2). Because the single-site potential
ψ is perturbed strictly convex in the sense of (6), a combination of the Bakry-Émery
criterion (cf. Theorem A.3) and the Holley-Stroock criterion (cf. Theorem A.2) yield
that the measureµ2,m(dx1, dx2) satisfies the LSI with constant̺ > 0 uniformly inm.
Then the tensorization principle (cf. Theorem A.1) impliesthe desired statement.

For convenience, let us introduce the following notation: Letf be an arbitrary function.
Then its conditional expectation̄f is defined by

f̄(y) :=

∫

f(x)µ(dx|y).

The second main ingredient of the proof of Proposition 2.1 isthe following proposition,
which is the analogue statement of [GOVW09, Proposition 20].

Proposition 2.12. Assume that the marginal̄µ(dy) given by(8) satisfies the LSI with
constantλ > 0 uniformly in the system sizeN and the mean spinm. Then for any
non-negative functionf

|∇f̄(y)|2
f̄(y)

.

∫ |∇f(x)|2
f(x)

µ(dx|y),

uniformly in the macroscopic profiley and the system sizeN .

Before we verify Proposition 2.12, let us show how it can be used in the proof of Propo-
sition 2.1.

Proof of Proposition 2.1.Under the assumption that Lemma 2.11 and Proposition 2.12
hold, the argument is exactly the same as in the proof of [GOVW09, Theorem 3]: Let
φ denote the function

φ(x) := x log x.

First, the additive property of the entropy implies
∫

φ(f)dµN,m − φ

(∫

fdµN,m

)

=

∫ [∫

φ (f(x))µ(dx|y)− φ
(

f̄(y)
)

]

µ̄(dy)

+

[
∫

φ
(

f̄(y)
)

µ̄(dy)− φ

(
∫

f̄(y)µ̄(dy)

)]

.
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An application of Lemma 2.11 yields the estimate

∫
[
∫

φ (f(x))µ(dx|y)− φ
(

f̄(y)
)

]

µ̄(dy)

≤ 1

2̺

∫ ∫ | (idX −2P tP )∇f(x)|2
f(x)

µ(dx|y)µ̄(dy).

By assumption the marginal̄µ satisfies the LSI with constantλ > 0. Together with
Proposition 2.12 this yields the estimate

∫

φ
(

f̄(y)
)

µ̄(dy)− φ

(
∫

f̄(y)µ̄(dy)

)

≤ 1

2λ

∫ |∇f̄(y)|2
f̄(y)

µ̄(dy)

.

∫ ∫ |∇f(x)|2
f(x)

µ(dx|y)µ̄(dy).

A combination of the last three formulas and the observations (8) and (18) yield
∫

φ(f)dµN,m − φ

(
∫

fdµN,m

)

.

∫ | (idX −2P tP )∇f(x)|2
f(x)

µN,m(dx) +

∫ |∇f(x)|2
f(x)

µN,m(dx)

.

∫ |∇f(x)|2
f(x)

µN,m(dx),

uniformly in the system sizeN and the mean spinm.

Because the hierarchic criterion for the LSI is an importantingredient in the proof of
the main result, we outline the proof of Proposition 2.12 in full detail. We follow the
proof of [GOVW09][Proposition 20], which is based on two lemmas. We directly take
over the first lemma (cf. [GOVW09, Lemma 21]), which in our notation becomes:

Lemma 2.13.For any functionf onX and anyy ∈ Y it holds
∫

P∇f(x)µ(dx|y) = 1

2
∇f̄(y) + P covµ(dx|y)(f,∇H).

Remark 2.14. The notational difference compared to [GOVW09, Lemma 21] isbased
on our choice of the Euclidean structure onY = XN

2
,m. Compared to the notation in

Lemma 21 of [GOVW09] we have

∇Y f̄(y) =
N

2
∇f̄(y).

Hence we omit the proof, which is a straight-forward calculation.
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The more interesting ingredient of the proof of [GOVW09, Proposition 20] is the esti-
mate (see [GOVW09, (42),(43)])

|2P covµ(dx|y)(f,∇H)|2 ≤
√
2κ2

̺2
f̄(y)

∫ |(idX −2P tP )∇f(x)|2
f(x)

µ(dx|y). (20)

The estimate (20) follows in [GOVW09] by direct calculationfrom the standard covari-
ance estimate given by Lemma 2.9. In contrast to [GOVW09] we cannot use the esti-
mate (20), because the constantκ given by (17) maybe infinite for a perturbed strictly
convex single-site potentialψ. We avoid this problem by applying the more robust
asymmetric Brascamp-Lieb inequality given by Lemma 2.10. Our substitute for (20) is:

Lemma 2.15.For any non-negative functionf

|2P covµ(dx|y)(f,∇H)|2 . f̄(y)

∫ |∇f(x)|2
f(x)

µ(dx|y),

uniformly in the system sizeN , the macroscopic profiley, and the mean spinm.

We postpone the proof of Lemma 2.15 and show how it is used in the proof of Proposi-
tion 2.12 (cf. proof of [GOVW09][Proposition 20]).

Proof of Proposition 2.12.Note that because for anya, b ∈ R

1

2
(a+ b)2 ≤ a2 + b2,

it follows form the definition (7) ofP that for anyx

|Px|2 ≤ |x2|. (21)

By successively using Lemma 2.13 and Jensen’s inequality (with the convex function
(a, b) 7→ |b|2/a), we have

|∇f̄(y)|2
f̄(y)

=
4

f̄(y)

∣

∣

∣

∣

P

∫

∇f(x)µ(dx|y)− P covµ(dx|y)(f,∇H)

∣

∣

∣

∣

2

.
1

f̄(y)

∣

∣

∣

∣

∫

P∇f(x)µ(dx|y)
∣

∣

∣

∣

2

+
1

f̄(y)

∣

∣P covµ(dx|y)(f,∇H)
∣

∣

2

.

∫ |P∇f(x)|2
f(x)

µ(dx|y) + 1

f̄(y)

∣

∣2P covµ(dx|y)(f,∇H)
∣

∣

2
.

On the first term on the r.h.s. we apply the estimate (21). On the second term we apply
Lemma 2.15, which yields the desired estimate.
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Now, we state the proof of Lemma 2.15, which also represents one of the main differ-
ences compared to the two-scale approach of [GOVW09]. The main ingredients are
the product structure (19) ofµ(dx|y) and the asymmetric Brascamp-Lieb inequality
(cf. Lemma 2.10).

Proof of Lemma 2.15.We have to estimate the covariance

|2P covµ(dx|y)(f,∇H)|2 =
N
2
∑

j=1

| covµ(dx|y) (f, (2P∇H)j) |2. (22)

Therefore, let us consider forj ∈
{

1, . . . N
2

}

the termcovµ(dx|y) (f, (2P∇H)j). Note
that the function

(2P∇H(x))j = ψ′(x2j−1) + ψ′(x2j )

only depends of the variablesx2j−1 and x2j . Hence, the product structure (19) of
µ(dx|y) yields the identity

covµ(dx|y)(f, 2 (P∇H)j)

=

∫

covµ2,yj (dx2j−1,dx2j )
(f, (2P∇H)j)

N
2
⊗

i=1,i 6=j
µ2,yi(dx2i−1, dx2i). (23)

As we will show below, we obtain by using the asymmetric Brascamp-Lieb inequality
of Lemma 2.10 and the Csiszár-Kullback-Pinsker inequalitythe estimate

∣

∣

∣
covµ2,yj (dx2j−1,dx2j )

(f, (2P∇H)j)
∣

∣

∣
.

(
∫

f(x)µ2,yj (dx2j−1, dx2j)

)
1

2

×
(

∫ | d
dx2j−1

f(x)|2 + | d
dx2j

f(x)|2

f(x)
µ2,yj(dx2j−1, dx2j )

)
1

2

(24)

uniformly in j andyj. Therefore, a combination of the identity (23), the last estimate,
and Hölder’s inequality yield

| covµ(dx|y)(f, (2P∇H)j)|2

.

∫

f(x)µ(dx|y)
∫ | d

dx2j−1
f(x)|2 + | d

dx2j
f(x)|2

f(x)
µ(dx|y),

which implies the desired estimate by the identity (22). It is only left to deduce the
estimate (24). We assume w.l.o.g.j = 1. Recall the splittingψ = ψc+ δψ given by (6).
We use the bound on|δψ′| to estimate
∣

∣covµ2,y1 (dx1,dx2)(f, (2P∇H)1)
∣

∣ .
∣

∣covµ2.y1 (dx1,dx2) (f, ψ
′
c(x1) + ψ′

c(x2))
∣

∣

+

∫
∣

∣

∣

∣

f −
∫

fµ2,y1(dx1, dx2)

∣

∣

∣

∣

µ2,y1(dx1, dx2). (25)
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Now, we consider the first term on the r.h.s. of the last estimate. Fory1 ∈ R let the
one-dimensional probability measureν(dz|y1) be defined by the density

ν(dz|y1) :=
1

Z
exp (− (ψ(z + y1) + ψ(−z + y1))) dz.

A reparametrization of the one-dimensional Hausdorff measure implies
∫

ξ(x1, x2)µ2,y1(dx1, dx2) =

∫

ξ(−z + y1, z + y1)ν(dz|y1) (26)

for any measurable functionξ. We may assume w.l.o.g. that the functionf(x) =
f(x1, x2) just depends on the variablesx1 andx2. Hence for

f̃(z, y1) := f(−z + y1, z + y1) and g̃(z, y1) := ψ′
c(−z + y1) + ψ′

c(z + y1)

the last identity yields

covµ2,y1 (dx1,dx2) (f, ψ
′
c(x1) + ψ′

c(x2)) = covν(dz|y1)(f̃ , g̃).

Because
∣

∣

∣

∣

∣

d
dz
g̃(z, y1)

ψ′′
c (−z + y1) + ψ′′

c (z + y1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

−ψ′′
c (−z + y1) + ψ′′

c (z + y1)

ψ′′
c (−z + y1) + ψ′′

c (z + y1)

∣

∣

∣

∣

≤ 2,

an application of the asymmetric Brascamp-Lieb inequality(cf. Lemma 2.10) yields

∣

∣

∣
covν(dz|y1)(f̃ , g̃)

∣

∣

∣
.

∫

| d
dz
f̃ |ν(dz|y1) .

(
∫

f̃ ν(dz|y1)
) 1

2

(

∫ | d
dz
f̃ |2

f̃
ν(dz|y1)

)
1

2

.

From the last inequality and (26) follows the estimate
∣

∣covµ2,y1 (dx1,dx2) (f, ψ
′
c(x1) + ψ′

c(x2))
∣

∣

.

(
∫

f µ2,y1(dx1, dx2)

)
1

2

(

∫ | d
dx1
f |2 + | d

dx2
f |2

f
µ2,y1(dx1, dx2)

)
1

2

. (27)

We turn to the second term on the r.h.s. of (25). For convenience we writef̃(y1) :=
∫

fµ2,y1(dx1, dx2). An application of the (well-known) Csiszár-Kullback-Pinsker in-
equality (cf. [Csi67, Kul67]) yields
∫

∣

∣

∣
f − f̃(y1)

∣

∣

∣
µ2,y1(dx1, dx2) = f̃(y1)

∫
∣

∣

∣

∣

f

f̃(y1)
− 1

∣

∣

∣

∣

µ2,y1(dx1, dx2)

. f̃(y1)

(
∫

f

f̃(y1)
log

f

f̃(y1)
µ2,y1(dx1, dx2)

)
1

2

.
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An application of the LSI for the measureµ2,y1(dx1, dx2) implies
∫
∣

∣

∣

∣

f −
∫

fµ2,y1(dx1, dx2)

∣

∣

∣

∣

µ2,y1(dx1, dx2)

.

(
∫

fµ2,y1(dx1, dx2)

) 1

2

(

∫ | d
dx1
f |2 + | d

dx2
f |2

f
µ2,y1(dx1, dx2)

)
1

2

.

A combination of (25), (27), and the last inequality yield the desired estimate (24).

We turn to the proof of Lemma 2.4. Again, the main ingredient of the proof is the
asymmetric Brascamp-Lieb inequality.

Proof of Lemma 2.4.We define

ψc(m) := −1

2
log

∫

exp (−ψc(−x+m)− ψc (x+m)) dx

and

δψ(m) : = −1

2
log

∫

exp (−ψ(−x+m)− ψ (x+m)) dx

+
1

2
log

∫

exp (−ψc(−x+m)− ψc (x+m)) dx.

Now, we show that the splittingRψ = ψc+δψ satisfies the conditions given by (6). Us-
ing the strict convexity ofψc it follows by a standard argument based on the Brascamp-
Lieb inequality (cf. [BL76] and (16)) that the first condition is preserved i.e.

ψ
′′
c & 1.

We turn to the perturbationδψ. For convenience, we introduce the measures

ν(dx) :=
1

Z
exp (−ψ(−x +m)− ψ (x+m)) dx

and

νc(dx) :=
1

Z
exp (−ψc(−x+m)− ψc (x+m)) dx

so that

δψ(m) = −1

2
log

∫

exp (−δψ(−x +m)− δψ (x+m)) νc(dx).

Direct calculation using the bound|δψ| . 1 yields

|δψ(m)| . 1.
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We turn to the first derivative ofδψ. A direct calculation based on the definition ofδψ
yields

2δψ
′
(m) =

∫

(ψ′(−x+m) + ψ′ (x+m)) ν(dx)

−
∫

(ψ′
c(−x+m) + ψ′

c (x+m)) νc(dx).

Fors ∈ [0, 1] we define the measure

νs(dx) :=
1

Z
exp (−ψc(−x+m)− ψc (x+m)− sδψ(−x+m)− sδψ (x+m)) dx

that interpolates betweenν0 = νc andν1 = ν. By the mean-value theorem there is
s ∈ [0, 1] such that

2δψ
′
(m)

=
d

ds

∫

(ψ′
c(−x+m) + ψ′

c (x+m) + sδψ′(−x+m) + sδψ′ (x+m)) νs(dx)

=

∫

(δψ′(−x+m) + δψ′ (x+m)) νs(dx)

+ covνs

(

ψ′
c(−x+m) + ψ′

c (x+m) , δψ(−x+m) + δψ (x+m)

)

+ covνs

(

sδψ′(−x+m) + sδψ′ (x+m) , δψ(−x+m) + δψ (x+m)

)

.

The first term on the r.h.s. is controlled by the assumption|δψ′| . 1. We turn to the
estimation of the first covariance term. An application of the asymmetric Brascamp-
Lieb inequality of Lemma 2.10 and|δψ|+ |δψ′| . 1 yields the estimate
∣

∣

∣

∣

covνs

(

ψ′
c(−x+m) + ψ′

c (x+m) , δψ(−x+m) + δψ (x+m)

)∣

∣

∣

∣

. sup
x

∣

∣

∣

∣

ψ′′
c (−x+m)− ψ′′

c (x+m)

ψ′′
c (−x+m) + ψ′′

c (x+m)

∣

∣

∣

∣

∫

|−δψ′(−x+m) + δψ′ (x+m)| νs(dx)

. 1.

The second covariance term can be estimated using the assumption |δψ| + |δψ′| . 1.
Summing up, we have deduced the desired estimate|δψ′| . 1.

3. Convexification by iterated renormalization

In this section we prove Theorem 2.6 that states the convexification of a perturbed
strictly convex single-site potentialψ by iterated renormalization. The proof relies on a
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local Cramér theorem and some auxiliary results. The proof of Theorem 2.6 is given in
the Subsection 3.1. The proofs of the auxiliary results are given in the Subsection 3.2.

3.1. Proof of Theorem 2.6

In view of Lemma 2.8 it suffices to show the strict convexity ofthe coarse-grained
HamiltonianH̄K defined by (10) for largeK ≫ 1. The strategy is the same as in
[GOVW09, Proposition 31]. Letϕ denote the Cramér transform ofψ, namely

ϕ(m) := sup
σ∈R

(

σm− log

∫

exp(σx− ψ(x))dx

)

.

Becauseϕ is the Legendre transform of the strictly convex function

ϕ∗(σ) = log

∫

exp(σx− ψ(x))dx, (28)

there exists for anym ∈ R a uniqueσ = σ(m) such that

ϕ(m) = σm− ϕ∗(σ). (29)

From basic properties of the Legendre transform it follows that theσ is determined by
the equation

d

dσ
ϕ∗(σ) =

∫

x exp(σx− ψ(x))dx
∫

exp(σx− ψ(x))dx
= m. (30)

The starting point of the proof of the convexification of the coarse-grained Hamiltonian
H̄K(m) is the explicit representation

g̃K,m(0) = exp
(

Kϕ(m)−K H̄K(m)
)

. (31)

Here,g̃K,m denotes the Lebesgue density of the distribution of the random variable

1√
K

K
∑

i=1

(Xi −m) ,

whereXi areK real-valued independent random variables identically distributed as

µσ(dx) := exp (−ϕ∗(σ) + σx− ψ(x)) dx. (32)

We note that in view of (30) the mean ofXi ism. As in [GOVW09, (125)] the Cramér
representation (31) follows from direct substitution and the coarea formula. As we will
see in the proof of Lemma 3.3, the Cramér transformϕ is strictly convex. The main
idea of the proof is to transfer the convexity fromϕ to H̄K using the representation (31)
and a local central limit type theorem for the densityg̃K,m, which is formulated in the
next statement.
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Proposition 3.1. Let ψ(x) be a smooth function that is increasing sufficiently fast as
|x| ↑ ∞ for all subsequent integrals to exist. Note that the probability measureµσ

defined by(32) depends on the field strengthσ. We introduce its meanm and variance
s2

m :=

∫

xµσ(dx) and s2 :=

∫

(x−m)2µσ(dx). (33)

We assume that uniformly in the field strengthσ, the probability measureµσ has its
standard deviations as unique length scale in the sense that

∫

|x−m|kµσ(dx) . sk for k = 1, · · · , 5, (34)
∣

∣

∣

∣

∫

exp(ixξ)µσ(dx)

∣

∣

∣

∣

. |sξ|−1 for all ξ ∈ R. (35)

ConsiderK independent random variablesX1, · · · , XK identically distributed accord-
ing to µσ. Let gK,σ denote the Lebesgue density of the distribution of the normalized
sum 1√

K

∑K
i=1

Xi−m
s

.

ThengK,σ(0) converges forK ↑ ∞ to the corresponding value for the normalized
Gaussian. This convergence is uniform inm, of order 1√

K
, andC2 in σ:

|gK,σ(0)−
1√
2π

| .
1√
K
, (36)

|1
s

d

dσ
gK,σ(0)| .

1√
K
, (37)

|(1
s

d

dσ
)2gK,σ(0)| .

1√
K
. (38)

Let us comment a bit on this result: Quantitative versions ofthe central limit theo-
rem like (36) are abundant in the literature, see for instance [Fel71][Chapter XVI],
[KL99][Appendix 2], [GPV88][Section 3], and [LPY02][p. 752 an Section 5]. In his
work on the spectral gap, Caputo appeals even to a finer estimate that makes the first
terms in an error expansion in1√

K
explicit [Cap03, Theorem 2.1]. The coefficients of

the higher order terms are expressed in terms of moments ofµσ. However, following
[GOVW09, Proposition 31], for our two-scale argument we need pointwisecontrol of
the Lebesgue densitygK,σ (in form of gK,σ(0)) and, in addition, control of derivatives of
gK,σ w.r.t. the field parameterσ, cf. (37), (38). Note that the derivatived

dσ
has units of

length (becauseσ, which multipliesx in the Hamiltonian, cf. (32), has units of inverse
length) so that1

s
d
dσ

is the properly non-dimensionalized derivative. Pointwise control
means that control of the moments, cf. (34), is not sufficient. One also needs to know
thatµσ has no fine structure on scales much smaller thans. This property is ensured the
upper bound (35).
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As opposed to [GOVW09, Proposition 31], the Hamiltonianψ we want Proposition 3.1
apply to is not a perturbation of the quadratic1

2
x2 but of a general strictly convex poten-

tial ψ. As a consequence, the variances2 can be a strongly varying function of the field
strengthσ. Nevertheless, Lemma 3.2 from below shows that every element µσ in the
family of measures is characterized by the single length scale s, uniformly in σ in the
sense of (34) and (35). For the verification of (34) in Lemma 3.2, one could take over
the argument of [Cap03, Lemma 2.2] that relies on a result by Bokbov [Bob99] stating
that the SG constant̺ of the measureµσ can be estimated by its variance i.e.̺ & 1

s2
.

However, we provide a self-contained argument for the verification of (34) and (35) in
Lemma 3.2 just using basic calculus of one variable. The merit of Proposition 3.1 con-
sists in providing a version of the central limit theorem that isC2 in the field strengthσ
even if the variances2 varies strongly withσ.

Lemma 3.2. Assume that the single-site potentialψ is perturbed strictly convex in the
sense of(6). Thens . 1 uniformly inm, and the conditions(34) and (35) of Proposi-
tion 3.1 are satisfied.

Using Proposition 3.1, Lemma 3.2, and the Cramér representation (31) we could easily
deduce a local Cramér theorem (cf. [GOVW09, Proposition 31]) for general perturbed
strictly convex potentialsψ. However, because we are just interested in the convexi-
fication of H̄K , we just consider the convergence of the second derivativesof ϕ and
H̄K .

Lemma 3.3. Assume that the single-site potentialψ is perturbed strictly convex in the
sense of(6). Then for allm ∈ R it holds

∣

∣

∣

∣

d2

dm2
ϕ(m)− d2

dm2
H̄K(m)

∣

∣

∣

∣

.
1

Ks2
,

wheres2 is defined as in Proposition 3.1.

Proof of Theorem 2.6.Because of Lemma 2.8 it suffices to show that there existsδ > 0
andK0 ∈ N such that for allK ≥ K0 andm ∈ R

d2

dm2
H̄K(m) ≥ δ.

We start with some formulas on the derivatives ofϕ. Differentiation of the identity (29)
yields

d

dm
ϕ

(30)
=

d

dm
σ m+ σ − d

dσ
ϕ∗ d

dm
σ

(30)
=

d

dm
σ m+ σ −m

d

dm
σ

(30)
= σ.
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A direct calculation reveals that (see (61) below)

d

dσ
m = s2,

wheres2 is defined as in Proposition 3.1. Hence, a second differentiation of ϕ yields
the identity

d2

dm2
ϕ =

d

dm
σ =

(

d

dσ
m

)−1

=
1

s2
. (39)

By Lemma 3.3 we thus have

d2

dm2
H̄K =

d2

dm2
ϕ+

d2

dm2

(

H̄K − ϕ
)

≥ 1

s2
− C

K

1

s2

≥ 1

2

1

s2
,

if K ≥ K0 for some largeK0. The statement follows from the uniform bounds . 1
provided by Lemma 3.2.

3.2. Proof of the local Cramér theorem and of the auxiliary
results

In this section we prove the auxiliary statements of the lastsubsection. Before turning
to the proof of Proposition 3.1 we sketch the strategy. For convenience we introduce the
notation

〈f〉 :=

∫

f(x)µσ(dx) =

∫

f(x) exp(−ϕ∗(σ) + σx− ψ(x)) dx. (40)

The definition ofgK,σ (cf. Proposition 3.1) suggests to introduce the shifted andrescaled
variable

x̂ :=
x−m

s
. (41)

We note that by (33) the first and second moment inx̂ are normalized

〈x̂〉 = 0, 〈x̂2〉 = 1 (42)

and that (34) turns into
5
∑

k=1

〈|x̂|k〉 . 1. (43)
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Proposition 3.1 is a version of the central limit theorem that, like most others, is best
proved with help of the Fourier transform. Indeed, since therandom variableŝX1 :=
X1−m
s

, · · · , X̂K := XK−m
s

in the statement of Proposition 3.1 are independent and iden-
tically distributed, the distribution of their sum is theK-fold convolution of the distri-
bution ofX̂1. Therefore, the Fourier transform of the distribution of the

∑K
n=1 X̂n is the

K-th power of the Fourier transform of the distribution ofX̂. The latter is given by

〈exp(ix̂ξ̂)〉,

whereξ̂ denotes the variable dual tôx. Hence, the Fourier transform of the distribution
of the normalized sum1√

K

∑K
n=1 X̂K is given by〈exp(ix̂ 1√

K
ξ̂)〉K . Applying the inverse

Fourier transform, we obtain the representation

2π gK,σ(0) =

∫

〈exp(ix̂ 1√
K
ξ̂)〉Kdξ̂. (44)

In order to make use of formula (44), we need estimates on〈exp(ix̂ξ̂)〉. Because of

dk

dξ̂k
〈exp(ix̂ξ̂)〉 = ik〈x̂k exp(ix̂ξ̂)〉, (45)

the moment bounds (43) translate into control of〈exp(ix̂ξ̂)〉 for |ξ̂| ≪ 1. Together with
the normalization (42), we obtain in particular

|〈exp(ix̂ξ̂)〉 − (1− 1

2
ξ̂2)| . |ξ̂|3.

We will use the latter in the following form: There exists a complex-valued function
h(ξ̂) such that for|ξ̂| ≪ 1:

〈exp(ix̂ξ̂)〉 = exp(−h(ξ̂)) with |h(ξ̂)− 1

2
ξ̂2| . |ξ̂|3. (46)

This estimate, showing that the Fourier transform of the normalized probability〈·〉 is
close for|ξ̂| ≪ 1 to the Fourier transform of the normalized Gaussian, is at the core of
most proofs of the central limit theorem.

Estimate (46) provides good control over〈exp(ix̂ξ̂)〉 for |ξ̂| ≪ 1. Another key ingredi-
ent is uniform decay for|ξ̂| ≫ 1. In our new variables, (35) takes on the form

|〈exp(ix̂ξ̂)〉| . |ξ̂|−1. (47)

As usual in central limit theorems, we also need control of the characteristic function for
intermediate values of|ξ̂|. This can be inferred from (43) and (47) by a soft argument
(in particular, it does not require the more intricate argument for [Cap03, (2.10)] from
[Cap03, Lemma 2.5]):
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Lemma 3.4. Under the assumptions of Proposition 3.1 and for anyδ > 0 there exists
λ < 1 such that for allσ

|〈exp(ix̂ξ̂)〉| ≤ λ for all |ξ̂| ≥ δ.

So far, the strategy is standard; now comes the new ingredient: In view of formula (44),
in order to controlσ-derivatives ofgK,σ(0), we need to control1

s
1
dσ
〈exp(ix̂ξ̂)〉. Relying

on the identities

1

s

1

dσ
〈f(x)〉 = 〈x̂f(x)〉, (48)

1

s

1

dσ
x̂ = −1 − 1

2
〈x̂3〉x̂, (49)

that will be established in the proof of Lemma 3.5 below, we see that the estimate
again follow from the moment control (43). Lemma 3.5 is the only new element of our
analysis.

Lemma 3.5. Under the assumptions of Proposition 3.1 we have

|1
s

1

dσ
〈exp(ix̂ξ̂)〉| . (1 + |ξ̂|)|ξ̂|3, (50)

|(1
s

1

dσ
)2〈exp(ix̂ξ̂)〉| . (1 + ξ̂2)|ξ̂|3. (51)

Before turning to the proof of Proposition 3.1, we prove Lemma 3.4 and Lemma 3.5.

Proof of Lemma 3.4.In view of (43) and (47), it suffices to show: For anyC < ∞
andδ > 0 there existsλ < 1 with the following property: Suppose〈·〉 is a probability
measure (in̂x) such that

〈|x̂|〉 ≤ C, (52)

|〈exp(ix̂ξ̂)〉| ≤ C

|ξ̂|
for all ξ̂. (53)

Then
|〈exp(ix̂ξ̂)〉| ≤ λ for all |ξ̂| ≥ δ.

In view of (53), it is enough to show

|〈exp(ix̂ξ̂)〉| ≤ λ for all δ ≤ |ξ̂| ≤ 1

δ
.

We give an indirect argument for this statement and thus assume that there is a sequence
{〈·〉ν} of probability measures satisfying (52) & (53) and a sequence {ξ̂ν} of numbers
in [δ, 1

δ
] such that

lim inf
ν↑∞

|〈exp(ix̂ξ̂ν)〉ν | ≥ 1. (54)

27



In view of (52), after passage to a subsequence, we may assumethat there exists a
probability measure〈·〉∞ and a number̂ξ∞ > 0 such that

lim
ν↑∞

〈f〉ν = 〈f〉∞ for all bounded and continuousf(x̂), (55)

lim
ν↑∞

ξ̂ν = ξ̂∞. (56)

Since| exp(ix̂ξ̂ν)− exp(ix̂ξ̂∞)| ≤ |x̂||ξ̂ν − ξ̂∞|, we obtain from (52), (55) & (56):

lim
ν↑∞

〈exp(ix̂ξ̂ν)〉ν = 〈exp(ix̂ξ̂∞)〉∞,

so that (54) saturates to
|〈exp(ix̂ξ̂∞)〉∞| ≥ 1. (57)

On the other hand, (53) is preserved under (55) so that we havein particular

lim
|ξ̂|↑∞

|〈exp(ix̂ξ̂)〉∞| = 0. (58)

We claim that (57) and (58) contradict each other. Indeed, since x̂ 7→ exp(ix̂ξ̂∞) is
S1-valued, it follows from (57) that there is a fixedζ ∈ S1 such that

exp(ix̂ξ̂∞) = ζ for 〈·〉∞ − a. e. x̂.

This implies for everyn ∈ N

exp(ix̂(nξ̂∞)) = ζn for 〈·〉∞ − a. e. x̂

and thus
|〈exp(ix̂(nξ̂∞))〉∞| = |ζn| = 1, (59)

which in view of ξ̂∞ 6= 0 and thus|nξ̂∞| ↑ ∞ asn ↑ ∞ contradicts (58).

Proof of Lemma 3.5.We restrict our attention to estimate (51); estimate (50) iseasier
and can be derived by the same arguments. We start with the identities (48) and (49).
Deriving (40) w.r.t.σ yields

d

dσ
〈f(x)〉 = 〈(x− dϕ∗

dσ
)f(x)〉 (30)

= 〈(x−m)f(x)〉. (60)

In view of definition (41), the latter turns into (48).

We now turn to identity (49) and note that in view of definitions (33) and (41), the
identity (60) yields in particular

d

dσ
m

(33),(60)
= 〈(x−m)x〉 (33)

= 〈(x−m)2〉 (33)
= s2, (61)

d

dσ
s2

(33),(60)
= 〈(x−m)(x−m)2〉 (41)

= s3〈x̂3〉, (62)
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which we rewrite as

1

s

d

dσ
m = s,

1

s

d

dσ
s =

1

2
s〈x̂3〉. (63)

These formulas imply as desired

1

s

d

dσ
x̂

(41)
=

1

s

d

dσ

x−m

s
= −1 − 1

2
〈x̂3〉x̂.

We now combine formulas (48) and (49) to express derivativesof 〈f(x̂)〉. We start with
the first derivative:

1

s

d

dσ
〈f(x̂)〉 (48)

= 〈 df
dx̂

(x̂)
1

s

d

dσ
x̂+ f(x̂)x̂〉

(49)
= −〈 df

dx̂
(x̂)〉 − 1

2
〈x̂3〉〈x̂ df

dx̂
(x̂)〉+ 〈x̂f(x̂)〉. (64)

(As a consistency check we note that1
s
d
dσ
〈f(x̂)〉 (64)

= −〈( d
dx̂
−x̂)f〉− 1

2
〈x̂3〉〈x̂ df

dx̂
〉 vanishes

if ψ is quadratic since then the distribution ofx̂ under〈·〉 is the normalized Gaussian so
that both〈( d

dx̂
− x̂)f〉 = 0 and〈x̂3〉 = 0.)

Iterating this formula, we obtain for the second derivative

(
1

s

d

dσ
)2〈f(x̂)〉 (64)

= −1

s

d

dσ
〈 df
dx̂

(x̂)〉 − 1

2

(

1

s

d

dσ
〈x̂3〉

)

〈x̂ df
dx̂

(x̂)〉

−1

2
〈x̂3〉

(

1

s

d

dσ
〈x̂ df
dx̂

(x̂)〉
)

+
1

s

d

dσ
〈x̂f(x̂)〉

(64)
= 〈d

2f

dx̂2
〉+ 1

2
〈x̂3〉〈x̂d

2f

dx̂2
〉 − 〈x̂ df

dx̂
〉

+
1

2

(

3〈x̂2〉+ 3

2
〈x̂3〉2 − 〈x̂4〉

)

〈x̂ df
dx̂

〉

+
1

2
〈x̂3〉

(

〈 df
dx̂

+ x̂
d2f

dx̂2
〉+ 1

2
〈x̂3〉〈x̂ df

dx̂
+ x̂2

d2f

dx̂2
〉 − 〈x̂2 df

dx̂
〉
)

−〈f + x̂
df

dx̂
〉 − 1

2
〈x̂3〉〈x̂f + x̂2

df

dx̂
〉+ 〈x̂2f〉

= 〈d
2f

dx̂2
〉+ 〈x̂3〉〈x̂d

2f

dx̂2
〉+ 1

4
〈x̂3〉2〈x̂2d

2f

dx̂2
〉

+
1

2
〈x̂3〉〈 df

dx̂
〉 − 1

2
(1− 2〈x̂3〉2 + 〈x̂4〉)〈x̂ df

dx̂
〉 − 〈x̂3〉〈x̂2 df

dx̂
〉

−〈f〉 − 1

2
〈x̂3〉〈x̂f〉+ 〈x̂2f〉.
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Because of (45) we have for anyk ∈ N

dk

dξ̂k
(
1

s

d

dσ
)2〈exp(iξ̂x̂)〉 = (

1

s

d

dσ
)2
dk

dξ̂k
〈exp(iξ̂x̂)〉 = ik(

1

s

d

dσ
)2〈x̂k exp(iξ̂x̂)〉. (65)

This formula and the normalization (42) yield that(1
s
d
dσ
)2〈exp(iξ̂x̂)〉 vanishes to second

order inξ̂. More precisely, fork ∈ {0, 1, 2}

dk

dξ̂k

∣

∣

∣

∣

ξ̂=0

(
1

s

d

dσ
)2〈exp(iξ̂x̂)〉 = ik(

1

s

d

dσ
)2〈x̂k〉 = 0. (66)

Therefore, we consider the third derivative w.r.t.ξ̂ given by (65). For this purpose we
apply the formula for(1

s
d
dσ
)2〈f(x̂)〉 from above to the functionf = x̂3 exp(iξ̂x̂). Using

the abbreviatione := exp(iξ̂x̂) we obtain

d3

dξ̂3
(
1

s

d

dσ
)2〈e〉 = i3(

1

s

d

dσ
)2〈x̂3e〉

= i3

(

6 〈x̂e〉+ i6ξ̂
〈

x̂2e
〉

− ξ̂2
〈

x̂3e
〉

+
〈

x̂3
〉

(

6
〈

x̂2e
〉

+ i6ξ̂
〈

x3e
〉

− ξ2
〈

x̂4e
〉

)

+
1

4

〈

x3
〉2
(

6
〈

x̂3e
〉

+ i6ξ̂
〈

x̂4e
〉

− ξ̂2
〈

x̂5e
〉

)

+
1

2

〈

x̂3
〉

(

3
〈

x̂2e
〉

+ iξ̂
〈

x̂3e
〉

)

− 1

2

(

1− 2
〈

x̂3
〉2

+
〈

x̂4
〉

)(

3
〈

x̂3e
〉

+ iξ̂
〈

x̂4e
〉

)

−
〈

x̂3
〉

(

3
〈

x̂4e
〉

+ iξ̂
〈

x̂5e
〉

)

−
〈

x̂3e
〉

− 1

2

〈

x̂3
〉 〈

x̂4e
〉

+
〈

x̂5e
〉

)

.

From this formula and the moment estimates (43) we obtain theestimate

| d
3

dξ̂3
(
1

s

d

dσ
)2〈e〉| . 1 + ξ̂2.

In combination with (66), this estimate yields (51).

Proof of Proposition 3.1.We focus on (36) and (38). The intermediate (37) can be es-
tablished as (38).
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We start with (36). Fix aδ > 0 so small such that the expansion (46) of〈exp(ix̂ξ̂)〉
holds for|ξ̂| ≤ δ. We split the integral representation (44) accordingly:

2πgK,σ(0) =

∫

{| 1√
K
ξ̂|≤δ}

〈exp(ix̂ 1√
K
ξ̂)〉Kdξ̂

+

∫

{| 1√
K
ξ̂|>δ}

〈exp(ix̂ 1√
K
ξ̂)〉Kdξ̂. (67)

We consider the first termI on the r.h.s. of (67), which will turn out to be of leading
order. Sinceδ is so small that (46) holds, we may rewrite it as

I :=

∫

{| 1√
K
ξ̂|≤δ}

〈exp(ix̂ 1√
K
ξ̂)〉Kdξ̂ =

∫

{| 1√
K
ξ̂|≤δ}

exp(−Kh( 1√
K
ξ̂))dξ̂. (68)

We note that for| 1√
K
ξ̂| ≤ δ we have by (46),

|Kh( 1√
K
ξ̂)− 1

2
ξ̂2| .

1√
K

|ξ̂|3, (69)

in particular forδ small enough

Re

(

Kh(
1√
K
ξ̂)

)

≥ 1

4
ξ̂2, (70)

so that (69) implies by the Lipschitz continuity ofC ∋ y 7→ exp(y) ∈ C on Re y ≤
−1

4
ξ̂2 with constantexp(−1

4
ξ̂2):

| exp(−Kh( 1√
K
ξ̂))− exp(−1

2
ξ̂2)| .

1√
K

|ξ̂|3 exp(−1

4
ξ̂2).

Inserting this estimate into (68) we obtain

|I −
∫

{| 1√
K
ξ̂|≤δ}

exp(−1

2
ξ̂2)dξ̂| .

1√
K

∫

{| 1√
K
ξ̂|≤δ}

|ξ̂|3 exp(−1

4
ξ̂2)dξ̂

.
1√
K

∫

|ξ̂|3 exp(−1

4
ξ̂2)dξ̂

.
1√
K
.

The latter turns as desired into

|I −
√
2π| = |I −

∫

exp(−1

2
ξ̂2)dξ̂|

.
1√
K

+

∫

{| 1√
K
ξ̂|>δ}

exp(−1

2
ξ̂2)dξ̂

.
1√
K
,
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since
∫

{| 1√
K
ξ̂|>δ} exp(−1

2
ξ̂2)dξ̂ is exponentially small inK.

We now address the second termII on the r.h.s. of (67); On the integrand we use
Lemma 3.4 (onK − 2 of theK factors) and (47) (on the remaining2 factors):

|〈exp(ix̂ 1√
K
ξ̂)〉|K . λK−2

(

1

1 + 1√
K
|ξ|

)2

. K λK−2 1

K + ξ̂2
. K λK−2 1

1 + ξ̂2
.

It follows that the second termII on the r.h.s. of (67) is exponentially small and thus
higher order:

∣

∣

∣

∣

∣

∫

{| 1√
K
ξ̂|>δ}

〈exp(ix̂ 1√
K
ξ̂)〉Kdξ̂

∣

∣

∣

∣

∣

. K λK−2

∫

1

1 + ξ̂2
dξ̂

. K λK−2 λ<1≪ 1√
K
.

We now turn to (38). We take the secondσ-derivative of the integral representation (44):

2π(
1

s

d

dσ
)2gK,σ(0)

=

∫

(

K(K − 1)〈exp(ix̂ 1√
K
ξ̂)〉K−2(

1

s

d

dσ
〈exp(ix̂ 1√

K
ξ̂)〉)2

+K〈exp(ix̂ 1√
K
ξ̂)〉K−1(

1

s

d

dσ
)2〈exp(ix̂ 1√

K
ξ̂)〉
)

dξ̂ (71)

and use Lemma 3.5:
∣

∣

∣

∣

(
1

s

d

dσ
)2gK,σ(0)

∣

∣

∣

∣

.

∫

(

K2|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(1 + | 1√

K
ξ̂|2)| 1√

K
ξ̂|6

+K|〈exp(ix̂ 1√
K
ξ̂)〉|K−1(1 + | 1√

K
ξ̂|2)| 1√

K
ξ̂|3
)

dξ̂

.
1√
K

∫

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(1 + | 1√

K
ξ̂|2)(|ξ̂|6 + 1)dξ̂. (72)
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As for (36), we split the integral representation (72) according toδ:
∣

∣

∣

∣

(
1

s

d

dσ
)2gK,σ(0)

∣

∣

∣

∣

.
1√
K

∫

{ 1√
K
|ξ̂|≤δ}

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(1 + | 1√

K
ξ̂|2)(ξ̂6 + 1)dξ̂

+
1√
K

∫

{ 1√
K
|ξ̂|>δ}

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(1 + | 1√

K
ξ̂|2)(ξ̂6 + 1)dξ̂

.
1√
K

∫

{ 1√
K
|ξ̂|≤δ}

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(ξ̂6 + 1)dξ̂

+
1√
K

∫

{ 1√
K
|ξ̂|>δ}

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(ξ̂8 + 1)dξ̂. (73)

On the first r.h.s. term we use (70):

1√
K

∫

{ 1√
K
|ξ̂|≤δ}

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(ξ̂6 + 1)dξ̂

.
1√
K

∫

{ 1√
K
|ξ̂|≤δ}

exp(−(K − 2)
1

4
(

1√
K
ξ̂)2)(ξ̂6 + 1)dξ̂

K≫1

.
1√
K

∫

exp(−1

8
ξ̂2)(ξ̂6 + 1)dξ̂

.
1√
K
. (74)

On the integrand of the second r.h.s. term in (73) we use Lemma3.4 (onK − 12 of the
K − 2 factors) and (47) (on the remaining10 factors):

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(ξ̂8 + 1) . λK−12

(

1

1 + 1√
K
|ξ|

)10

(ξ̂8 + 1)

. K5λK−12 1

K5 + ξ̂10
(ξ̂8 + 1)

. K5λK−12 1

1 + ξ̂2
.

33



Hence, we see that this second term in (73) is exponentially small and thus higher order:

1√
K

∫

{ 1√
K
|ξ̂|>δ}

|〈exp(ix̂ 1√
K
ξ̂)〉|K−2(|ξ̂|8 + 1)dξ̂

. K9/2λK−12

∫

1

1 + ξ̂2
dξ̂

. K9/2λK−12 λ<1≪ 1√
K
.

For the proof of Lemma 3.2 we need the following auxiliary statement, based on ele-
mentary calculus.

Lemma 3.6. Assume that the single-site potentialψ : R → R is convex. We consider
the corresponding Gibbs measure

ν(dx) =
1

Z
exp(−ψ(x))dx.

LetM denote the maximum of the density ofν i.e.

M := max
x

1

Z
exp(−ψ(x)).

Then we have for allk ∈ N

∫

|x|k ν(dx) . 1

Mk

for some constant only depending onk.

Proof of Lemma 3.6.We may assume w.l.o.g. that

Z =

∫

exp(−ψ(x))dx = 1 (75)

andM := supx exp(−ψ(x)) is attained atx = 0, which means

M = exp(−ψ(0)). (76)

It follows from convexity ofψ that

ψ′(x) ≤ 0 for x ≤ 0 and ψ′(x) ≥ 0 for x ≥ 0. (77)
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We start with an analysis of the convex single-site potential ψ. We first argue that

ψ
(

± e

M

)

≥ − logM + log e. (78)

Indeed in view of the monotonicity (77) we have

1
(75)
≥
∫ e

M

0

exp(−ψ(y))dy
(77)
≥ e

M
exp

(

−ψ
( e

M

))

and

1
(75)
≥
∫ 0

− e
M

exp(−ψ(y))dy
(77)
≥ e

M
exp

(

−ψ
(

− e

M

))

.

We now argue that for|x| ≥ e
M

ψ(x) ≥ M

e

(

|x| − e

M

)

− logM. (79)

W.l.o.g. we may restrict ourselves tox ≥ e
M

. By the mean-value theorem there is
0 ≤ ξ ≤ e

M
such that

ψ′(ξ) =
ψ
(

e
M

)

− ψ(0)
e
M

.

Using once again the monotonicity ofψ′, (76), and (78) yields the estimate

ψ′
( e

M

)

≥ ψ′(ξ)
(76)
=

ψ
(

e
M

)

+ logM
e
M

(78)
≥ M

e
.

The convexity ofψ, the last estimate, and (78) yield forx ≥ e
M

as desired

ψ(x) ≥ ψ′
( e

M

)(

x− e

M

)

+ ψ
( e

M

)

≥ M

e

(

x− e

M

)

− logM.

We finished the analysis onψ and turn to the verification of the estimate of Lemma 3.6.
We split the integral according to

∫

|x|k exp(−ψ(x))dx =

∫ 0

−∞
|x|k exp(−ψ(x))dx+

∫ ∞

0

|x|k exp(−ψ(x))dx.
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We will now deduce the estimate
∫ ∞

0

|x|k exp(−ψ(x))dx .
1

Mk
.

A similar estimate for the integral
∫ 0

−∞ |x|k exp(−ψ(x))dx follows from the same argu-
ment by symmetry. We split the integral:
∫ ∞

0

|x|k exp(−ψ(x))dx =

∫ e
M

0

|x|k exp(−ψ(x))dx+
∫ ∞

e
M

|x|k exp(−ψ(x))dx.

The first integral on the r.h.s. can be estimated as
∫ e

M

0

|x|k exp(−ψ(x))dx ≤ ek

Mk

∫

exp(−ψ(x))dx (75)
=

ek

Mk
.

For the estimation of the second integral we apply (79), which yields by the change of
variablesM

e

(

x− e
M

)

= x̂
∫ ∞

e
M

|x|k exp(−ψ(x))dx ≤
∫ ∞

e
M

|x|k exp
(

−M
e

(

x− e

M

)

+ logM

)

dx

=M
e

M

∫ ∞

0

∣

∣

∣

e

M
x̂+

e

M

∣

∣

∣

k

exp (−x̂) dx̂

= e
( e

M

)k
∫ ∞

0

|x̂+ 1|k exp (−x̂) dx̂

.
1

Mk
.

Equipped with Lemma 3.6 we are able to give an elementary proof of Lemma 3.2:

Proof of Lemma 3.2.We argue thats . 1. Becauseψ is a bounded perturbation of
a uniformly strictly convex function, the measureµσ given by (32) satisfies the SG
uniformly in σ. This implies in particular

s2 = varµσ(x) .

∫
(

d

dx
x

)2

dµσ . 1 (80)

uniformly in σ and thus inm.
Now, we verify (34). Using|δψ| . 1 to pass fromψ to ψc, we may assume thatψ is
strictly convex. In fact, we can give upstrict convexity ofψ and may only assume that
ψ is convex. By the change of variablesx̂ = x−m

s
we have for anyk ∈ N

∫

|x−m|kdµ
sk

=

∫

|x̂|k exp(−ψ̂(x̂))dx̂
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for some convex function̂ψ, which is normalized in the sense that
∫

exp(−ψ̂(x̂))dx̂ = 1 and
∫

x̂2 exp(−ψ̂(x̂))dx̂ = 1. (81)

An application of Lemma 3.6 yields the estimate
∫

|x−m|kdµ
sk

≤
∫

|x̂|k exp(−ψ̂(x̂))dx̂ .
1

Mk
,

whereM is given byM := maxx̂ exp(−ψ̂(x̂)). Now, we argue that due to the normal-
ization ofψ̂ we have

M ≥ C

for some universal constantC > 0, which verifies the desired estimate (34). Indeed the
normalization (81) implies

∫

(−2,2)

exp(−ψ(x))dx (81)
= 1−

∫

R−(−2,2)

exp(−ψ(x))dx

≥ 1− 1

4

∫

x2 exp(−ψ(x))dx
(81)
≥ 3

4
.

Hence, there exists anx0 ∈ (−2, 2) such thatexp(−ψ(x0)) ≥ 3
8
, which yields

M = max
x̂

exp(−ψ̂(x̂)) ≥ exp(−ψ(x0)) ≥
3

8
.

Let us turn to the statement (35) of Proposition 3.1. Writing

exp (ixξ) =
d

dx

(

−i 1
ξ
exp(ixξ)

)

we obtain by integration by parts that

〈exp (ixξ)〉 = i
1

ξ

∫

exp (ixξ)
d

dx
(exp (−ϕ∗(σ) + σx− ψ(x))) dx

= i
1

ξ

∫

exp (ixξ) (σ − ψ′(x)) exp (−ϕ∗(σ) + σx− ψ(x)) dx.

The splittingψ = ψc + δψ with |δψ|, |δψ′| . 1 and definition (28) ofϕ∗ yield the
estimate

|〈exp (ixξ)〉| . 1

s|ξ|
s
∫

|σ − ψ′
c(x)| exp (σx− ψc(x)) dx

∫

exp (σx− ψc(x)) dx
+

1

s|ξ| s,
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wheres is defined as in Proposition 3.1. Becauses . 1 by (80), we only have to
consider the first term of the r.h.s. of the last inequality. We argue that for

M := max
x

exp (σx− ψc(x))
∫

exp (σx− ψc(x)) dx

it holds

2M =

∫

|σ − ψ′
c(x)| exp (σx− ψc(x)) dx

∫

exp (σx− ψc(x)) dx
. (82)

For the proof of the last statement, we only need the fact thatthe functionH(x) =
−σx + ψc(x) is convex. W.l.o.g. we may assume that

∫

exp(−H(x))dx = 1 and that
M is attained atx = 0, which means

M = exp(−H(0)).

It follows from convexity ofH that

H ′(x) ≤ 0 for x ≤ 0 and H ′(x) ≥ 0 for x ≥ 0.

Therefore, we get
∫

|H ′(x)| exp(−H(x))dx = −
∫ 0

−∞
H ′(x) exp(−H(x))dx+

∫ ∞

0

H ′(x) exp(H(x))dx

=

∫ 0

−∞
exp(−H(x))′dx−

∫ ∞

0

exp(−H(x))′dx

= 2 exp(−H(0)) = 2M.

Because the mean of a measureµ is optimal in the sense that for allc ∈ R
∫

(x− c)2 µ(dx) =

∫

x2µ(dx)− 2c

∫

xµ(dx) + c2

≥
∫

x2µ(dx)−
(
∫

xµ(dx)

)2

=

∫
(

x−
∫

yµ(dy)

)2

µ(dx), (83)

we can estimate

s2
|δψ|.1

≤
∫

x2 exp (σx− ψ(x)) dx
∫

exp (σx− ψ(x)) dx

|δψ|.1

.

∫

x2 exp (σx− ψc(x)) dx
∫

exp (σx− ψc(x)) dx
. (84)

Therefore, Lemma 3.6 applied tok = 2 andψ replaced by−σx + ψc yields

s
∫

|σ − ψ′
c(x)| exp (σx− ψc(x)) dx

∫

exp (σx− ψc(x)) dx

(82),(84)

.

(
∫

x2 exp (σx− ψc(x)) dx
∫

exp (σx− ψc(x)) dx

)
1

2

M . 1,

which verifies (35) of Proposition 3.1.

38



Before we turn to the proof of Lemma 3.3 we will deduce the following auxiliary result.

Lemma 3.7. Assume that(34) of Proposition 3.1 is satisfied. Then, using the notation
of Proposition 3.1, it holds:

(i)

∣

∣

∣

∣

d

dm
s

∣

∣

∣

∣

. 1 and (ii)

∣

∣

∣

∣

d2

dm2
s

∣

∣

∣

∣

.
1

s
.

Proof of Lemma 3.7.We start with restating some basic identities (cf. (61) and (62)): It
holds that

d

dσ
m = s2, (85)

d2

dσ2
m =

d

dσ
s2 =

∫

(x−m)3 µσ(dx), (86)

d3

dσ3
m =

∫

(x−m)4 µσ(dx). (87)

Let us consider(i): It follows from (85) and (86) that

d

dm
s2 =

d

dσ
s2

d

dm
σ

=

∫

(x−m)3 µσ(dx)

(

d

dσ
m

)−1

=

∫

(x−m)3 µσ(dx)

s3
s,

which yields by assumption (34) of Proposition 3.1 the estimate
∣

∣

∣

∣

d

dm
s2
∣

∣

∣

∣

. s.

The statement of(i) is a direct consequence of the last estimate and the identity

d

dm
s =

1

2s

d

dm
s2.

We turn to the statement(ii): Differentiating the last identity yields

d2

dm2
s = −1

2

1

s2
d

dm
s
d

dm
s2 +

1

2s

d2

dm2
s2.

The estimation of the first term on the r.h.s. follows from theestimates
∣

∣

∣

∣

d

dm
s2
∣

∣

∣

∣

. s and

∣

∣

∣

∣

d

dm
s

∣

∣

∣

∣

. 1,
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which we have deduced in the first step of the proof. We turn to the estimation of the
second term. A direct calculation using (85) yields the identity

d2

dm2
s2 =

d2

dm2

d

dσ
m =

d

dm

(

d2

dσ2
m

d

dm
σ

)

=
d3

dσ3
m

(

d

dm
σ

)2

+
d2

dσ2
m

d2

dm2
σ. (88)

Considering the first term on the r.h.s. we get from the identities (85) and (87), and the
assumption (34) of Proposition 3.1 that

∣

∣

∣

∣

∣

d3

dσ3
m

(

d

dm
σ

)2
∣

∣

∣

∣

∣

=

∫

(x−m)4 µσ(dx)

s4
. 1.

Before we consider the second term of the r.h.s. of (88) we establish the following
estimate:

∣

∣

∣

∣

d2

dm2
σ

∣

∣

∣

∣

.
1

s3
. (89)

Indeed, direct calculation using (85) and (86) yields

d2

dm2
σ =

(

d

dσ

d

dm
σ

)

d

dm
σ

=

(

d

dσ

(

d

dσ
m

)−1
)

(

d

dσ
m

)−1

= −
(

d

dσ
m

)−3
d2

dσ2
m

= − 1

s3

∫

(x−m)3 µσ(dx)

s3
.

The last identity yields (89) using the assumption (34) of Proposition 3.1. Using (89)
and (86) we can estimate the second term of the r.h.s. of (88) as

∣

∣

∣

∣

d2

dσ2
m

d2

dm2
σ

∣

∣

∣

∣

.
1

s3

∣

∣

∣

∣

∫

(x−m)3 µσ(dx)

∣

∣

∣

∣

.

By applying the assumption (34) of Proposition 3.1 this yields
∣

∣

∣

∣

d2

dσ2
m

d2

dm2
σ

∣

∣

∣

∣

. 1,

which concludes the argument for(ii).
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Proof of Lemma 3.3.Recall the representation (31) i.e.

g̃K,m(0) = exp
(

Kϕ(m)−KH̄K(m)
)

.

Hereg̃K,m(ξ) denotes the Lebesgue density of the random variable1√
K

∑K
i=1 (Xi −m),

whereXi are real-valued independent random variables identicallydistributed accord-
ing toµσ (cf. (32)). LetgK,σ denote the density of the normalized random variableX

s
,

wheres is given by (33). Then the densities are related by

1

s
gK,σ

(x

s

)

= g̃K,m(x).

It follows from (31) that

Kϕ(m)−KH̄K(m) = log gK,σ(0)− log s.

In order to deduce the desired estimate it thus suffices to show
∣

∣

∣

∣

d2

dm2
log s

∣

∣

∣

∣

.
1

s2
(90)

and
∣

∣

∣

∣

d2

dm2
log gK,σ(0)

∣

∣

∣

∣

.
1

s2
. (91)

The first estimate follows directly from the identity

d2

dm2
log s =

d

dm

(

1

s

d

dm
s

)

= − 1

s2

(

d

dm
s

)2

+
1

s

d2

dm2
s

and the estimates provided by Lemma 3.7. We turn to the secondestimate. The identity

d2

dm2
log gK,σ = − 1

g2K,σ

(

d

dm
gK,σ

)2

+
1

gK,σ

d2

dm2
gK,σ

and (36) yield for largeK the estimate

∣

∣

∣

∣

d2

dm2
log gK,σ(0)

∣

∣

∣

∣

.

(

d

dm
gK,σ(0)

)2

+

∣

∣

∣

∣

d2

dm2
gK,σ(0)

∣

∣

∣

∣

.

The estimation of the first term on the r.h.s. follows from theestimate (37) of Proposi-
tion 3.1 and the identity

1

s

d

dσ
= s

d

dm
, (92)
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which is a direct consequence of (61). Let us consider the second term. The identity
(

1

s

d

dσ

)2
(92)
=

(

s
d

dm

)(

s
d

dm

)

= s2
d2

dm2
+ s

(

d

dm
s

)

d

dm
,

which we rewrite as

s2
d2

dm2
=

(

1

s

d

dσ

)2

−
(

d

dm
s

)

1

s

d

dσ

yields

d2

dm2
gK,σ(0) =

1

s2

(

(

1

s

d

dσ

)2

gK,σ(0)−
(

d

dm
s

)

1

s

d

dσ
gK,σ(0)

)

.

Now, the estimates (37) and (38) of Proposition 3.1 and Lemma3.7 yield the desired
estimate (91).

A. Standard criteria for the SG and the LSI

In this section we quote some standard criteria for the SG andthe LSI. For a general
introduction to the SG and the LSI we refer to [Led01, Roy99, GZ03]. Note that even
if we only formulate the criteria on the level of the LSI, theyalso hold on the level of
the SG. The first one shows that the LSI is compatible with products (cf. for example
[GZ03, Theorem 4.4]).

Theorem A.1 (Tensorization principle). Letµ1 andµ2 be probability measures on Eu-
clidean spacesX1 andX2 respectively. Ifµ1 andµ2 satisfy the LSI with constant̺1
and ̺2 respectively, then the product measureµ1 ⊗ µ2 satisfies the LSI with constant
min{̺1, ̺2}.

The next criterion shows, how the LSI constant behaves underperturbations (cf. [HS87,
p. 1184]). Unfortunately, the criterion is not well suited for high dimensions.

Theorem A.2 (Holley-Stroock criterion). Let µ be a probability measure on the Eu-
clidean spaceX and let δψ : X → R be a bounded function. Let the probability
measurẽµ be defined as

µ̃(dx) =
1

Z
exp (−δψ(x)) µ(dx).

If µ satisfies the LSI with constant̺, thenµ̃ satisfies the LSI with constant

˜̺ = ̺ exp (− (sup δψ − inf δψ)) .
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Because of its perturbative nature, the Holley-Stroock criterion is not well adapted for
high dimensions. For the proof of the last statement, we refer the reader to [Led01,
Lemma 1.2]. Now, we state the Bakry-Émery criterion, which connects the convexity
of the Hamiltonian to the LSI constant (cf. [BE85, Proposition 3 and Corollary 2] or
[Led01, Corollary 1.6]).

Theorem A.3 (Bakry-Émery criterion). Letdµ := Z−1 exp(−H(x)) dx be a probabil-
ity measure on a Euclidean spacesX. If there is a constant̺ > 0 such that in the sense
of quadratic forms

HessH(x) ≥ ̺

uniformly inx ∈ X, thenµ satisfies the LSI with constant̺.

A proof using semigroup methods can be found in [Led01, Corollary 1.6]. There is also
a nice heuristic interpretation of the Bakry-Émery criterion on a formal Riemannian
structure on the space of probability measures (cf. [OV00, Section 3]).
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