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Abstract

An equation u̇ = A(t)u+B(t)F (t, u(t−τ)), u(t) = v(t),−τ ≤ t ≤ 0
is considered, A(t) and B(t) are linear operators in a Hilbert space H,
u̇ = du

dt , F : H → H is a non-linear operator, τ > 0 is a constant.
Under some assumption on A(t), B(t) and F (t, u) sufficient condittions
are given for the solution u(t) to exist globally, i.e, for all t ≥ 0, to be
globally bounded, and to tend to zero as t →∞.
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1 Introduction

Consider an abstract evolution problem

u̇ = A(t)u + B(t)F (t, u(t− τ)), (1)
u(t) = v(t), −τ ≤ t ≤ 0 (2)

where u(t) ∈ H, H is a Hilbert space, A(t) and B(t) are linear operators in
H, F (t, u) is a nonlinear operator in H, τ > 0 is a constant.

Let us assume that A(t) is closed densely defined operator, D(A(t)) =
D(A), D(A) is the domain of A(t), independent of t,

Re(A(t)u, u) ≤ −γ(t)(u, u), (3)
||B(t)|| ≤ b(t), (4)
||F (t, u)|| ≤ α(t, g), g := ||u(t)||. (5)

1



We assume that problem (1)-(2) has a unique local solution. Sufficient
conditions for this one can find in the literature, see, e.g., [1].

We assume that the function α(t, g) ≥ 0 satisfies a local Lipschitz con-
dition with respect to g and is continuous with respect to t on [−τ,∞),
functions b(t) and γ(t) are continuous on [−τ,∞).

Our aim is to give sufficient conditions for global existence, global bound-
edness, and stability of the solution to problem (1)-(2).

There is a large literature on functional differential equations, see [1]-[4],
and references therein. The method we propose is new. A version of this
method was used in a study of the Dynamical Systems Method (DSM) for
solving operator equations, see [5]-[7].

Our approach is as follows: multiply equation (1) by u(t) in H and take
real part to get

Re(u̇, u) = Re(A(t)u(t), u(t)) + Re(B(t)F (t, u(t− τ), u). (6)

Let g(t) := ||u(t)||. Then equation (6) yields an inequality

gġ ≤ −γ(t)g2 + b(t)α(t, g(t− τ))g. (7)

Since g(t) ≥ 0, inequality (7) implies

ġ(t) ≤ −γ(t)g(t)+ b(t)α(t, g(t− τ)), g(t) := ||v(t)||, τ ≤ t ≤ 0. (8)

Indeed, at the points at which g(t) > 0, inequality (7) is equivalent to (8)
and ġ(t) = Re(u̇, u(t)

||u(t)||).
If g(t) = 0 on an open interval, t ∈ (a, b), then ġ(t) = 0, t ∈ (a, b), and

inequality (8) holds since b(t) ≥ 0 and α(t, g) ≥ 0.
If g(s) = 0 but in any neighborhood (s−δ, s)∪(s, s+δ), g(t) 6= 0, provided

that δ > 0 is sufficiently small, then by ġ(s) we understand derivative from
the right:

ġ(s) = lim
h→+0

g(s + h)h−1 = ||u̇(s)||. (9)

Inequality (8) then follows from (7) by continuity as t → s + 0.
The following lemma is a key to our results.

Lemma 1. If there exists a function µ(t) > 0, defined for all t ≥ 0, such
that

b(t)α
(

t,
1

µ(t− τ)

)
µ(t) ≤ γ(t)− µ̇(t)

µ(t)
, (10)

and
µ(0)g(0) ≤ 1, (11)
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then any solution g(t) ≥ 0 to inequality (8) satisfies the following inequality:

0 ≤ g(t) ≤ 1
µ(t)

, ∀t ≥ 0. (12)

Remark 1. Since µ(t) is defined on all of R+ = [0,∞), inequality (12)
implies that g(t) ≥ 0 is defined on all R+. Moreover, if limt→∞ µ(t) = +∞,
then limt→∞ g(t) = 0 In section 2, we show how to choose µ(t) and to use
Lemma 1 in order to obtain estimates for the solution to problem (1)-(2).

Proof of Lemma 1. Let us write inequality (8) as

ġ(t) ≤ l(g) := −γ(t)g(t) + b(t)α(t, g(t− τ)). (13)

Then inequalities (10)-(11) can be written as

l

(
1

µ(t)

)
≤ dµ−1(t)

dt
, µ−1(0) ≥ g(0). (14)

Let wn solve the problem

ẇn = l(wn)− 1
n

, wn(0) = g(0) = v(0), wn(t) = v(t),−τ ≤ t ≤ 0, (15)

n = 1, 2, ...

Let us prove that
wn(t) ≤ µ−1(t), ∀t ≥ 0. (16)

Since limn→∞wn = w, where

ẇ = l(w), w(t) = v(t), −τ ≤ t ≤ 0, (17)

it follows from (16) and (17) that

w(t) ≤ µ−1(t), ∀t ≥ 0. (18)

To prove (16), note that if wn(0) < µ−1(0), then there exists an interval
(0, t1), t1 > 0, such that wn(t) < µ−1(t) when t ∈ [0, t1). If wn(0) = µ−1(0),
then inequality (14) and equation (15) imply that

wn(0) = µ−1(0), ẇn(0) <
dµ−1(t)

dt

∣∣∣∣
t=0

.

Therefore, in this case there exists a number t1 > 0 such that on the interval
(0, t1) one has

wn(t) < µ−1(t), 0 < t < t1. (19)
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Let us prove that t1 = ∞ in both cases. Assume the contrary. Then at some
point s < ∞, one has wn(s) = µ−1(s) and

wn(t) ≤ µ−1(t), for t < s. (20)

At the point s the following inequalities hold:

ẇn(s) = l(wn(s))− 1
n

< l(µ−1(s)) ≤ dµ−1(t)
dt

∣∣∣∣
t=s

. (21)

By continuity, one has

ẇn(t) ≤ dµ−1(t)
dt

, s− δ ≤ t ≤ s, (22)

for a sufficiently small δ.
Integrate (22) on the interval [s− δ, s] and get

wn(s)− wn(s− δ) < µ−1(s)− µ−1(s− δ). (23)

Since wn(s) = µ−1(s), inequality (23) implies

µ−1(s− δ) < wn(s− δ). (24)

This is a contradiction, and it proves that t1 = ∞. Consequently,

wn(t) < µ−1(t), ∀t > 0. (25)

Passing to the limit n →∞ in (25), one gets (18).
A similar argument proves that

g(t) ≤ w(t), ∀t ≥ 0. (26)

Combining inequalities (18) and (26), one obtains (12).
Lemma 1 is proved. 2

2 Estimates of solutions to evolution problem

Let us apply Lemma 1 to the solution of problem (1) - (2).
In order to choose µ(t), let us assume that

γ(t) = γ = const > 0, b(t) ≤ γ

2
, α(t, g) ≤ c0g

p, (27)

where c0 > 0 and p > 1 are constants, and b(t) ≥ 0, α(t, g) ≥ 0.
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Let us choose
µ(t) = λeνt,

where λ and ν are positive constants.
Inequalities (10) and (11) hold if

γ

2
c0λ

−(p−1)e−pν(t−τ)+νt ≤ γ − ν, (28)

and
λg(0) ≤ 1. (29)

Choose
λ =

1
g(0)

.

Then inequality (29) holds. Choose ν = γ
2 . Then inequality (28) holds if

c0g
p−1(0)epντ ≤ 1. (30)

Inequality (30) holds if c0 is sufficiently small, or if g(0) is sufficiently small.
We have proved the following theorem.

Theorem 1. Assume that (3) holds with γ(t) = γ = const > 0, (4) holds
with b(t) ≤ γ

2 , (27) and (30) hold. Then the solution to problem (1)-(2)
satisfies inequality

||u(t)|| ≤ gp−1(0)e−γt/2, ∀t ≥ 0. (31)

Estimate (31) of Theorem 1 implies exponential stability of the solution
to problem (1)-(2).

Consider now the case when γ(t) tends to zero as t →∞.
Assume that

γ(t) =
c1

(1 + t)m1
, b(t) ≤ c2

(1 + t)m2
, α(t, g) ≤ c3

(1 + t)m3
gp, (32)

where cj ,mj > 0, j = 1, 2, 3, and p > 1 are constants.
Choose µ(t) of the form

µ(t) = λ(1 + t + τ)ν , λ, ν > 0, (33)

where λ and ν are positive constants.
Inequalities (10) and (11) hold if

c2

(1 + t)m2

c3

(1 + t)m3

1
λp−1(1 + t)(p−1)ν

≤ c1

(1 + t)m1
− ν

1 + t
, (34)

λg(0) ≤ 1. (35)
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Inequality (35) holds if λ = 1
g(0) .

Assume that

m2 + m3 + (p− 1)ν ≥ 1, m1 ≤ 1. (36)

Then inequality (34) holds for all t ≥ 0 provided that

c2c3g
p−1(0) ≤ c1 − ν. (37)

Inequality (37) holds if ν < c1 and c2c3 is sufficiently small. If these condi-
tions are satisfied then, by Lemma 1, one gets

||u(t)|| ≤ ||u(0)||
(1 + t + τ)ν

, ∀t ≥ 0. (38)

We have proved the folowing theorem

Theorem 2. Assume that (32) and (36) hold, λ = 1
g(0) , ν < c1, and c2c3

is sufficiently small so that (37) holds. Then the solution to problem (1)-(2)
exists for all t ≥ 0, and estimate (38) holds.
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