Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Stability of solutions to abstract evolution equations with delay

by

Alexander Ramm

Preprint no.: 50 2011

Stability of solutions to abstract evolution equations with delay

A.G. Ramm

Department of Mathematics Kansas State University, Manhattan, KS 66506-2602, USA ramm@math.ksu.edu

Abstract

An equation $\dot{u}=A(t)u+B(t)F(t,u(t-\tau)), \ u(t)=v(t), -\tau \leq t \leq 0$ is considered, A(t) and B(t) are linear operators in a Hilbert space H, $\dot{u}=\frac{du}{dt},\ F:H\to H$ is a non-linear operator, $\tau>0$ is a constant. Under some assumption on A(t),B(t) and F(t,u) sufficient condittions are given for the solution u(t) to exist globally, i.e, for all $t\geq 0$, to be globally bounded, and to tend to zero as $t\to\infty$.

MSC: 34G20, 34K20, 37L05, 47J35

Keywords: abstract evolution problems; delay; stability; differential inequality.

1 Introduction

Consider an abstract evolution problem

$$\dot{u} = A(t)u + B(t)F(t, u(t-\tau)),\tag{1}$$

$$u(t) = v(t), \quad -\tau \le t \le 0 \tag{2}$$

where $u(t) \in H$, H is a Hilbert space, A(t) and B(t) are linear operators in H, F(t,u) is a nonlinear operator in H, $\tau > 0$ is a constant.

Let us assume that A(t) is closed densely defined operator, D(A(t)) = D(A), D(A) is the domain of A(t), independent of t,

$$Re(A(t)u, u) \le -\gamma(t)(u, u), \tag{3}$$

$$||B(t)|| \le b(t),\tag{4}$$

$$||F(t,u)|| \le \alpha(t,q), \qquad q := ||u(t)||.$$
 (5)

We assume that problem (1)-(2) has a unique local solution. Sufficient conditions for this one can find in the literature, see, e.g., [1].

We assume that the function $\alpha(t,g) \geq 0$ satisfies a local Lipschitz condition with respect to g and is continuous with respect to t on $[-\tau, \infty)$, functions b(t) and $\gamma(t)$ are continuous on $[-\tau, \infty)$.

Our aim is to give sufficient conditions for global existence, global boundedness, and stability of the solution to problem (1)-(2).

There is a large literature on functional differential equations, see [1]-[4], and references therein. The method we propose is new. A version of this method was used in a study of the Dynamical Systems Method (DSM) for solving operator equations, see [5]-[7].

Our approach is as follows: multiply equation (1) by u(t) in H and take real part to get

$$Re(\dot{u}, u) = Re(A(t)u(t), u(t)) + Re(B(t)F(t, u(t-\tau), u).$$
(6)

Let g(t) := ||u(t)||. Then equation (6) yields an inequality

$$g\dot{g} \le -\gamma(t)g^2 + b(t)\alpha(t, g(t-\tau))g. \tag{7}$$

Since $g(t) \ge 0$, inequality (7) implies

$$\dot{g}(t) \le -\gamma(t)g(t) + b(t)\alpha(t, g(t-\tau)), \qquad g(t) := ||v(t)||, \qquad \tau \le t \le 0.$$
 (8)

Indeed, at the points at which g(t) > 0, inequality (7) is equivalent to (8) and $\dot{g}(t) = \text{Re}(\dot{u}, \frac{u(t)}{||u(t)||})$.

If g(t) = 0 on an open interval, $t \in (a, b)$, then $\dot{g}(t) = 0$, $t \in (a, b)$, and inequality (8) holds since $b(t) \ge 0$ and $\alpha(t, g) \ge 0$.

If g(s) = 0 but in any neighborhood $(s-\delta, s) \cup (s, s+\delta)$, $g(t) \neq 0$, provided that $\delta > 0$ is sufficiently small, then by $\dot{g}(s)$ we understand derivative from the right:

$$\dot{g}(s) = \lim_{h \to +0} g(s+h)h^{-1} = ||\dot{u}(s)||. \tag{9}$$

Inequality (8) then follows from (7) by continuity as $t \to s + 0$.

The following lemma is a key to our results.

Lemma 1. If there exists a function $\mu(t) > 0$, defined for all $t \geq 0$, such that

$$b(t)\alpha\left(t, \frac{1}{\mu(t-\tau)}\right)\mu(t) \le \gamma(t) - \frac{\dot{\mu}(t)}{\mu(t)},\tag{10}$$

and

$$\mu(0)g(0) \le 1,\tag{11}$$

then any solution $g(t) \geq 0$ to inequality (8) satisfies the following inequality:

$$0 \le g(t) \le \frac{1}{\mu(t)}, \qquad \forall t \ge 0. \tag{12}$$

Remark 1. Since $\mu(t)$ is defined on all of $\mathbb{R}_+ = [0, \infty)$, inequality (12) implies that $g(t) \geq 0$ is defined on all R_+ . Moreover, if $\lim_{t\to\infty} \mu(t) = +\infty$, then $\lim_{t\to\infty} g(t) = 0$ In section 2, we show how to choose $\mu(t)$ and to use Lemma 1 in order to obtain estimates for the solution to problem (1)-(2).

Proof of Lemma 1. Let us write inequality (8) as

$$\dot{g}(t) \le l(g) := -\gamma(t)g(t) + b(t)\alpha(t, g(t - \tau)). \tag{13}$$

Then inequalities (10)-(11) can be written as

$$l\left(\frac{1}{\mu(t)}\right) \le \frac{d\mu^{-1}(t)}{dt}, \qquad \mu^{-1}(0) \ge g(0).$$
 (14)

Let w_n solve the problem

$$\dot{w}_n = l(w_n) - \frac{1}{n}, \quad w_n(0) = g(0) = v(0), \ w_n(t) = v(t), -\tau \le t \le 0, \quad (15)$$

$$n = 1, 2, \dots$$

Let us prove that

$$w_n(t) \le \mu^{-1}(t), \qquad \forall t \ge 0. \tag{16}$$

Since $\lim_{n\to\infty} w_n = w$, where

$$\dot{w} = l(w), \qquad w(t) = v(t), \qquad -\tau \le t \le 0, \tag{17}$$

it follows from (16) and (17) that

$$w(t) \le \mu^{-1}(t), \qquad \forall t \ge 0. \tag{18}$$

To prove (16), note that if $w_n(0) < \mu^{-1}(0)$, then there exists an interval $(0, t_1), t_1 > 0$, such that $w_n(t) < \mu^{-1}(t)$ when $t \in [0, t_1)$. If $w_n(0) = \mu^{-1}(0)$, then inequality (14) and equation (15) imply that

$$w_n(0) = \mu^{-1}(0), \quad \dot{w}_n(0) < \frac{d\mu^{-1}(t)}{dt} \bigg|_{t=0}.$$

Therefore, in this case there exists a number $t_1 > 0$ such that on the interval $(0, t_1)$ one has

$$w_n(t) < \mu^{-1}(t), \qquad 0 < t < t_1.$$
 (19)

Let us prove that $t_1 = \infty$ in both cases. Assume the contrary. Then at some point $s < \infty$, one has $w_n(s) = \mu^{-1}(s)$ and

$$w_n(t) \le \mu^{-1}(t), \quad \text{for } t < s.$$
 (20)

At the point s the following inequalities hold:

$$\dot{w}_n(s) = l(w_n(s)) - \frac{1}{n} < l(\mu^{-1}(s)) \le \left. \frac{d\mu^{-1}(t)}{dt} \right|_{t=s}. \tag{21}$$

By continuity, one has

$$\dot{w}_n(t) \le \frac{d\mu^{-1}(t)}{dt}, \qquad s - \delta \le t \le s,$$
 (22)

for a sufficiently small δ .

Integrate (22) on the interval $[s - \delta, s]$ and get

$$w_n(s) - w_n(s - \delta) < \mu^{-1}(s) - \mu^{-1}(s - \delta). \tag{23}$$

Since $w_n(s) = \mu^{-1}(s)$, inequality (23) implies

$$\mu^{-1}(s-\delta) < w_n(s-\delta). \tag{24}$$

This is a contradiction, and it proves that $t_1 = \infty$. Consequently,

$$w_n(t) < \mu^{-1}(t), \quad \forall t > 0.$$
 (25)

Passing to the limit $n \to \infty$ in (25), one gets (18).

A similar argument proves that

$$g(t) \le w(t), \qquad \forall t \ge 0.$$
 (26)

Combining inequalities (18) and (26), one obtains (12).

Lemma 1 is proved.

2 Estimates of solutions to evolution problem

Let us apply Lemma 1 to the solution of problem (1) - (2).

In order to choose $\mu(t)$, let us assume that

$$\gamma(t) = \gamma = const > 0, \qquad b(t) \le \frac{\gamma}{2}, \qquad \alpha(t, g) \le c_0 g^p, \qquad (27)$$

where $c_0 > 0$ and p > 1 are constants, and $b(t) \ge 0$, $\alpha(t, g) \ge 0$.

Let us choose

$$\mu(t) = \lambda e^{\nu t},$$

where λ and ν are positive constants.

Inequalities (10) and (11) hold if

$$\frac{\gamma}{2}c_0\lambda^{-(p-1)}e^{-p\nu(t-\tau)+\nu t} \le \gamma - \nu, \tag{28}$$

and

$$\lambda g(0) \le 1. \tag{29}$$

Choose

$$\lambda = \frac{1}{g(0)}.$$

Then inequality (29) holds. Choose $\nu = \frac{\gamma}{2}$. Then inequality (28) holds if

$$c_0 g^{p-1}(0) e^{p\nu\tau} \le 1. (30)$$

Inequality (30) holds if c_0 is sufficiently small, or if g(0) is sufficiently small. We have proved the following theorem.

Theorem 1. Assume that (3) holds with $\gamma(t) = \gamma = const > 0$, (4) holds with $b(t) \leq \frac{\gamma}{2}$, (27) and (30) hold. Then the solution to problem (1)-(2) satisfies inequality

$$||u(t)|| \le g^{p-1}(0)e^{-\gamma t/2}, \quad \forall t \ge 0.$$
 (31)

Estimate (31) of Theorem 1 implies exponential stability of the solution to problem (1)-(2).

Consider now the case when $\gamma(t)$ tends to zero as $t \to \infty$.

Assume that

$$\gamma(t) = \frac{c_1}{(1+t)^{m_1}}, \quad b(t) \le \frac{c_2}{(1+t)^{m_2}}, \quad \alpha(t,g) \le \frac{c_3}{(1+t)^{m_3}} g^p, \tag{32}$$

where $c_j, m_j > 0, j = 1, 2, 3$, and p > 1 are constants.

Choose $\mu(t)$ of the form

$$\mu(t) = \lambda (1 + t + \tau)^{\nu}, \qquad \lambda, \nu > 0, \tag{33}$$

where λ and ν are positive constants.

Inequalities (10) and (11) hold if

$$\frac{c_2}{(1+t)^{m_2}} \frac{c_3}{(1+t)^{m_3}} \frac{1}{\lambda^{p-1}(1+t)^{(p-1)\nu}} \le \frac{c_1}{(1+t)^{m_1}} - \frac{\nu}{1+t}, \tag{34}$$

$$\lambda g(0) \le 1. \tag{35}$$

Inequality (35) holds if $\lambda = \frac{1}{g(0)}$.

Assume that

$$m_2 + m_3 + (p-1)\nu \ge 1, \qquad m_1 \le 1.$$
 (36)

Then inequality (34) holds for all $t \geq 0$ provided that

$$c_2 c_3 g^{p-1}(0) \le c_1 - \nu. (37)$$

Inequality (37) holds if $\nu < c_1$ and c_2c_3 is sufficiently small. If these conditions are satisfied then, by Lemma 1, one gets

$$||u(t)|| \le \frac{||u(0)||}{(1+t+\tau)^{\nu}}, \qquad \forall t \ge 0.$$
 (38)

We have proved the following theorem

Theorem 2. Assume that (32) and (36) hold, $\lambda = \frac{1}{g(0)}$, $\nu < c_1$, and c_2c_3 is sufficiently small so that (37) holds. Then the solution to problem (1)-(2) exists for all $t \geq 0$, and estimate (38) holds.

Acknowledgement. This paper was written when the author visited in Summer of 2011 Max Planck Institute (MPI) for Mathematics in the Sciences, Leipzig. The author thanks MPI for hospitality.

References

- [1] O.Aribo, M. Hbid, E. Ait Dads (Editors) Delay equations and applications, NATO Science Series, vol. 206, 2006.
- [2] T. Faria, Global attractivity in scalar delayed differential equations with applications to population models. J. Math. Anal. Appl. 289 (2004), no. 1, 35-54.
- [3] J.Hale, S. Verduyn Lunel, Introduction to functional differential equations, Springer Verlag, Berlin, 1993.
- [4] V. Kolmanovskii, A. D. Myshkis, Introduction to the theory and applications of functiona-differential equations, Kluwer, Dordrecht, 1999.
- [5] A. G. Ramm, Asymptotic stability of solutions to abstract differential equations, Journ. of Abstract Diff. Equations, (JADEA), 1, N1, (2010), 27-34.
- [6] A. G. Ramm, Stability of solutions to some evolution problems, In the book "Topics in Chaotic Systems: Selected Papers from Chaos 2011 International Conference", Editors C.Skiadas, I. Dimotikalis, Char. Skiadas, World Sci.Publishing
- [7] A. G. Ramm, Dynamical systems method for solving operator equations, Elsevier, Amsterdam, 2007.