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Abstract

Consider an abstract evolution problem in a Hilbert space H

u̇ = A(t)u + G(t, u) + f(t), u(0) = u0, (1)

where A(t) is a linear, closed, densely defined operator in H with domain independent
of t ≥ 0, G(t, u) is a nonlinear operator such that ||G(t, u)|| ≤ a(t)||u||p, p = const > 1,
||f(t)|| ≤ b(t). We allow the spectrum of A(t) to be in the right half-plane Re(λ) <
λ0(t), λ0(t) > 0, but assume that limt→∞λ0(t) = 0.
Under suitable assumption on a(t) and b(t) we prove boundedness of ||u(t)|| as t →∞.
If f(t) = 0, the Lyapunov stability of the zero solution to problem (1) with u0 = 0
is established. For f 6= 0, sufficient conditions for Lyapunov stability are given. The
novel point in the paper is the possibility for the linear operator A(t) to have spectrum
in the half-plane Re(λ) < λ0(t) with λ0(t) > 0 and limt→∞λ0(t) = 0 at a suitable
rate.
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1 Introduction and the results.

The main results of this paper are formulated in Lemma 1 and Theorem 2. Lemma 1 is
proved in Section 2. In Section 3 an example of applications of our result is given.

There is a large literature [1, 2, 3] on the stability of the solutions to differential
equation of the form

u̇ = A(t)u + G(t, u) + f(t), u(0) = u0; u̇ =
du

dt
, t ≥ 0, (1)

where A(t) is a linear, closed, densely defined in a Hilbert space H operator, with domain
D(A(t)) independent of t, G(t, u) is a nonlinear operator,

||G(t, u)|| ≤ a(t)||u||p, p > 1, t ≥ 0, (2)

f(t) is a function on R+ = [0,∞) with values in H,

||f(t)|| ≤ b(t), t ≥ 0, (3)
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We assume that a(t) and b(t) are non-negative continuous functions, that G(t, u) is locally
Lipschitz with respect to u in the ball B(u0, R) = {u : ||u−u0|| ≤ R} and is a continuous in
the operator norm function of t. We assume that problem (1) has a unique local solution.

This assumption holds, for example, if A(t) is a generator of C0 semigroup. In this
case, problem (1) is equivalent to

u(t) = U(t, 0)u0 +
∫ t

0
U(t, s)G(s, u(s))ds +

∫ t

0
U(t, s)fds := T (u), (4)

where
∂U(t, s)

∂t
= A(t)U(t, s), U(s, s) = I, t ≥ s, (5)

I is the identity operator, and U(t, s) is a bounded operator in H:

U(t, s) = I +
∫ t

s
A(τ)U(τ, s)dτ, t ≥ s. (6)

Indeed, a standard calculation shows that u, defined in (4), solved problem (1):

d

dt

∫ t

0
U(t, s)f(s)ds = U(t, t)f +

∫ t

0

∂U(t, s)
∂t

f(s)ds

= f(t) +
∫ t

0
A(t)U(t, s)fds

= f(t) + A(t)
∫ t

0
U(t, s)f(s)ds,

d

dt
U(t, 0)u0 = A(t)U(t, 0)u0, U(0, 0)u0 = u0,

d

dt

∫ t

0
U(t, s)G(s, u(s))ds = G(t, u(t)) + A(t)

∫ t

0
U(t, s)G(s, u(s))ds.

It follows that u, defined in (4), solves problem (1). If problem (1) is equivalent to problem
(4) and U(t, s) are bounded operators, then the operator T (u) in (4) is locally Lipschitz
since G(t, u) has this property. Consequently, problem (4) (and therefore problem (1))
has a unique local solution. This solution is global if it satisfies a uniform with respect to
t bound

sup
t
||u(t)|| ≤ c, (7)

where the supremum is taken over all t ∈ [0, T ) for which u(t) exists (see, e.g., [5]).
Let us derive bound (7). This derivation is based on an application of a new nonlinear

differential inequality, stated in Lemma 1, below. Our basic result, Theorem 2, is also
based on this inequality.

Take inner product of (1) with u(t), then take real part of the resulting equation, and
denote ||u(t)|| = g(t). The result is:

gġ ≤ Re(A(t)u, u) + |(G(t, u), u)|+ b(t)g(t). (8)
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Assume that
Re(A(t)u, u) ≤ γ(t)g2, ||G(t, u)|| ≤ α(t, g), (9)

where γ(t) ≥ 0 and α(t, g) ≥ 0 are continuous functions of t, and

α(t, g) ≤ a(t)gp, p > 1. (10)

Then inequality (8) implies

ġ ≤ γ(t)g + a(t)gp + b(t), g(0) = ||u0||. (11)

We assume that
a(t) > 0, ȧ(t) < 0, (12)

and γ(t) and b(t) tend to zero monotonically as t →∞.
We need the following lemma, which is proved in Section 2.

Lemma 1 If there exists a function

µ(t) > 0, µ̇(t) < 0, lim
t→∞

µ(t) = d > 0, (13)

and
γ(t) + a(t)µ−p+1(t) + b(t)µ(t) +

µ̇

µ
≤ 0, µ(0)g(0) ≤ 1, (14)

then any non-negative solution g to (11) satisfies inequality

0 ≤ g(t) ≤ µ−1(t) ≤ 1
d
. (15)

Applying Lemma 1 with µ(t) = d + q(t), d = const > 0, q(t) > 0, q̇(t) < 0, one gets
from (14) the following inequalities:

[d + q(t)]γ(t) + a(t)[d + q(t)]2−p + b(t)[d + q(t)]2 ≤ −q̇(t) = |q̇(t)|, (16)
[d + q(0)]g(0) ≤ 1. (17)

If g(0) 6= 0 and [d + q(0)] ≤ g−1(0), then (17) holds. If g(0) = 0, then (17) holds for any
d and q(0). Fix d and q(0) such that (17) holds. Then (16) holds if q(t) is such that

C[γ(t) + a(t) + b(t)] ≤ |q̇(t)|. (18)

Here C = const > 0,

C = max{d + q(0), [d + q(0)]2, [d + q(0)]2−p, d2−p}. (19)

We have used monotone decay of q(t) and the inequalities: [d + q(t)]2−p ≤ [d + q(0)]2−p if
2 ≥ p, and [d + q(t)]2−p ≤ d2−p if 2 ≤ p.

To satisfy inequality (18), one may choose q(t) using the relation

− q(t) + q(0) = C

∫ t

0
[γ(s) + a(s) + b(s)]ds := CQ(t), (20)
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or
q(t) = q(0)− CQ(t). (21)

If the number
Q∞ :=

∫ ∞

0
[γ(t) + a(t) + b(t)]dt

is sufficiently small, then one can choose the constant q(0), so that the function q(t),
defined in (21), is positive for all t ≥ 0.

Applying inequality (15), we obtain the following theorem:

Theorem 2 Assume that u(t) solves problem (1) and inequalities (2),(3),(9), (10), hold.
If the function q(t), defined in (21), with C defined in (19), is positive for all t ≥ 0, then
u(t) exists for all t ≥ 0, and is globally bounded:

||u(t)|| ≤ 1
d + q(t)

≤ 1
d
, ∀t ≥ 0. (22)

Remark. Let ε > 0 be a fixed small number. If g(0) = ||u(0)|| ≤ δ, where δ > 0 is a
sufficiently small number, then one can choose d = δ−1, define ε = δ, and obtain:

||u(t)|| ≤ ε, ∀t ≥ 0. (23)

The statement in the above Remark shows that the solution to evolution problem (1)
is Lyapunov stable.

2 Proof of Lemma 1.

Consider the problem:

v̇n = γ(t)vn + a(t)vp
n + f(t) +

1
n

, vn(0) = g(0), (24)

where n > 0 is an integer. This problem has a unique local solution. Clearly, v̇n > ġ(0).
Therefore, there is an interval (0, T ), such that

vn(t) > g(t), 0 < t < T, (25)

where T > 0 is some number. The interval [0, T ) is the maximal interval of the existence
of the local solution to (24), and if

sup
t≥0

|vn(t)| < ∞, (26)

then T = ∞.
Indeed, if inequality (26) holds but T < ∞, then one can solve the problem

ẇ = γ(t)w + a(t)wp + f(t) +
1
n

, w(T − l

2
) = vn(T − l

2
), (27)

where l is the length of the interval of the local existence of the solution to problem (27).
If (26) holds, then the length l does not depend on the choice of the Cauchy data. Thus,
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w exists on the interval (T − l
2 , T + l

2) and is equal to vn(t) on the interval (T − l
2 , T ).

Consequently, by the uniqueness of the solution to the Cauchy problem for equation (24),
vn(t) is defined on the interval [0, T + l

2), so T is not the maximal interval of the existence
of vn. This contradiction shows that T = ∞, as claimed, and inequality (25) holds for any
t > 0.

Passing to the limit n →∞ in (25), one obtains

0 ≤ g(t) ≤ v(t), ∀t ≥ 0, (28)

where
v̇ = γ(t)v + a(t)vp + f(t), v(0) = g(0). (29)

Inequality (14) can be written as

− µ̇

µ2
=

(
1
µ

).

≥ γ(t)
µ(t)

+
a(t)
µp(t)

+ b(t),
1

µ(0)
≥ v(0), t ≥ 0. (30)

By the argument similar to the given above, one obtains

1
µ(t)

≥ v(t) ≥ g(t) ≥ 0, ∀t ≥ 0. (31)

From (31) the conclusion (15) of Lemma 1 follows, because 1
µ(t) ≤

1
d .

Lemma 1 is proved. 2

A lemma, similar to Lemma 1, but with γ(t) < 0, was proved in [4] by a different
argument. In [2] and [5] one can find proofs of some comparison results for ordinary
differential equations. The ideas of these proofs are close to the idea of our proof of
Lemma 1.

The principally novel result in our paper is Theorem 2, because it gives sufficient condi-
tions for Lyapunov stability of the solution to evolution problem (1) under the assumptions
which allow the linear operator A(t) to have spectrum in the half-plane Re z > 0. Such a
result is possible to obtain because this spectrum tends sufficiently fast to the imaginary
axis as t →∞.

3 Example

Let us illustrate our result by a simple example. As H we take R2, as A(t) we take
m(t)I, where I is the unit matrix, m(t) = c1(1+ t)−m1 , G(t, u) is a quadratic nonlinearity,
‖G(t, u)‖ ≤ n(t)g2, so p = 2, g2 = x2(t) + y2(t), vector u has two components, u(t) :=
{x(t), y(t)}, n(t) = c2(1+ t)−m2 , constants cj ,mj > 0 will be chosen later. Inequality (11)
with b(t) = 0 takes the form

ġ ≤ c1(1 + t)−m1g + c2(1 + t)−m2g2, ∀t ≥ 0. (32)

Choose µ(t) = d+c3(1+ t)−m3 , where the constants d, c3,m3 > 0 will be fixed later. Then
(14) (with b(t) = 0) takes the form:

c1

(1 + t)m1
+

c2

(1 + t)m2 [d + c3(1 + t)−m3 ]
≤ m3c3

(1 + t)m3+1[d + c3(1 + t)−m3 ]
, ∀t ≥ 0, (33)

5



and
(d + c3)g(0) ≤ 1. (34)

Let us check that inequalities (33) and (34) can be satisfied if the parameters d, cj ,mj are
properly chosen. Assume that

m3 + 1 ≤ min{m1,m2}. (35)

Then (33) holds if
c1 + c2d

−1 ≤ c3m3(d + c3)−1. (36)

Inequality (34) holds if

d + c3 =
1

g(0)
. (37)

Choose c3 = d. Then

d =
1

2g(0)
, g(0) = ‖u(0)‖. (38)

Let g(0) ≤ δ, where δ > 0 is a small number. Then d ≥ (2δ)−1, and inequality (36) holds
if

c1 + 2δc2 ≤ c3m3(2d)−1 ≤ c3m3δ. (39)

This inequality holds if c1, c2 are sufficiently small. For example, let

c1 ≤ 0.5c3m3δ, c2 ≤ 0.25c3m3. (40)

Then inequalities (33) and (34) hold, and Lemma 1 yields:

0 ≤ ‖u(t)‖ ≤ [d + c3(1 + t)−m3 ]−1 ≤ d−1, ∀t ≥ 0. (41)

This estimate obviously yields global boundedness of ‖u(t)‖, and also Lyapunov stability.
Indeed, if ‖u(0)‖ ≤ δ, and δ > 0 is sufficiently small, then d ≥ (2δ)−1 can be chosen
sufficntly large, and consequently, inequlity (41) yields the estimate ‖u(t)‖ ≤ ε, ∀t ≥ 0,
where ε = 2δ is arbitrary small if δ > 0 is sufficiently small.
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