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We introduce and analyze a particular generalization of the Erdös-Rényi random graph model
that is based on adding not only edges but also copies of small graphs onto the nodes of a graph.
The resulting model is analytically tractable and can generate random graphs with local structures
that are not tree like. First, we introduce the simplest generalization called the triplet model
corresponding to the addition of three node subgraphs and investigate some of its key properties. In
the undirected model we obtain a random graph with non-zero clustering and assortativity while in
the directed case we obtain a graph with triangular motifs. Then, we formulate our model in its full
generality by allowing the addition of graphs of arbitrary size and generalize the results obtained
for the triplet model.

I. INTRODUCTION

Complex networks are studied across disciplines as many real world systems can be modeled as networks where
nodes represent interacting elements and edges interactions between them. Some of the most studied properties
networks are the small world property, clustering, assortativity, power law degree distributions and network motifs
[1–3]. Consequently, the construction of mathematical models that capture one or more of these properties of of real
world complex networks while being analytically tractable is of much interest. The most studied of such models is the
Erdös-Rényi model[4]. Although its study has provided essential insights into complex networks it is considered to be
a rather unrealistic model for real networks as it fails to account for the characteristics of real world-complex networks
listed above except the small world property. This is mainly due to its narrow-Poisson type degree distribution and
also the fact that it is locally tree like and therefore fails to produce densely connected local structures. Our approach
in this paper is based on constructing graphs by adding not only edges but also small subgraphs on to the nodes of a
graph. The parameters of the model are directly related to the probability of adding a certain subgraph on to a set
of nodes in analogy with the Erdös-Rényi model where edges are independently added between pairs of nodes with a
certain probability. These random graph models can produce sparse graphs with high expectation values for counts
of highly connected subgraphs and can be solved analytically for much of their properties. Consequently, graphs with
local structures that are not tree like can be generated and their general properties can be investigated within the
framework of the model.

The motivation for constructing our model is the observation that properties of complex networks like motifs [5],
clustering[6, 7], assortativity[8] and heavy tailed degree distributions [8] are interrelated through subgraph counts.
Whereas the clustering coefficient is determined by the number of triangles and two stars1, the assortativity can be
expressed in terms subgraph counts [8] and the n-th moments of the degree distribution are determined by the counts
of the star shaped subgraphs up to size n[8]. Therefore a model that is able to match subgraph counts of a given
network would also reproduce properties that are statistics of the subgraph counts.

There are various definitions for network motifs but essentially they all depend on comparing subgraph counts of a
given network with a certain null-model, usually some version of the configuration model[5]. In this paper we construct
networks using motifs as building blocks, rather than then assessing the significance of network motifs compared to a
null-model.

A similar and more elaborate model that is also based on the addition of small subgraphs has been proposed by
Bollobas et al. [9] and some special instances of the model presented here are equivalent to particular cases of the
model in [9].

The paper is structured as follows: First we formulate the Erdös-Rényi model in order to clarify the nature of the
generalization and briefly review some of its essential properties for comparison with the generalized model. We then
introduce the triplet model where three node subgraphs are added on to the nodes of a graph as an example for the
generalized model. We analyze the triplet model in the undirected and directed cases in details. In the next section
we generalize our model to include building blocks of arbitrary size and generalize the results obtained for the triplet
model. We then also briefly discuss the hierarchy between multiplet models and its connection to complexity.

1 A n-star consists of n edges attached to a central node
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II. THE ERDÖS-RÉNYI MODEL

The Erdös-Rényi model is arguably the most extensively studied random graph model [4]. In the Erdös-Rényi
model edges occur independently with a fixed probability p and for undirected graphs it can be formulated starting
with a the set of labeled nodes V = {1, 2, 3..N} and the set E = {{i, j} : i, j ∈ V } of pairs of nodes. For each of these
pairs of nodes an edge is present between the pair with probability p or absent with probability (1 − p). The state
space for pairs of nodes can be taken as S = {0, 1}-0 denoting the absence and 1 the presence of an edge. Since edges

are assumed to occur independently, the probability distribution over the configuration space X = {0, 1}CN2 is given
by:

P (x) = pe(x)(1− p)C
N
2 −e(x) (1)

2 for all x ∈ X, where e(x) is the number of edges in the configuration x. Each such configuration in X corresponds
to a unique labeled graph of which the adjacency matrix can be obtained by the following projection:

Φ : X −→ AN×N , Φ(x)αβ = S({α, β}, x) (2)

Where S({α, β}, x) is the state of the pair {α, β} in the configuration x.
We recall some well known properties of the Erdös Rényi model, for a more comprehensive account we refer to [10].

The first quantity of interest which is the degree distribution is given by:

P (k) = CN−1k pk(1− p)N−1−k (3)

For asymptotically large graphs with a fixed mean degree κ = pN this approaches a Poisson distribution:

P (k) ' κke−κ

k!
(4)

The degree distribution of the Erdös-Rényi random graph is narrowly concentrated around the mean degree which is
one of the main reasons that the model is considered to be a rather poor model for real world networks with heavy
tailed degree distributions.

The probability that a n-node connected graph H with e(H) edges is induced3 on set of n nodes is given by:

P (H) = Λ(H)pe(H)(1− p)C
n
2 −e(H) ' Λ(H)

( κ
N

)e(H)

(5)

where Λ(H) is the number graphs isomorphic to H. The last part of the equation is valid for large graphs with a fixed
mean degree κ = pN . In this case only subgraphs with e(H) < n 4 have a high density and the clustering coefficient
is C = κ/N which tends to zero for large N. Here by high density we mean that < n(H) > /N is nonzero as N→∞.
Where < n(H) > is the expected subgraph count of H.

The extension of the Erdös-Rényi model to the directed case is straight forward. To include directions one can
either consider ordered pairs of nodes while keeping the state space as S = {0, 1} or one can stick to the unordered
pairs and enlarge the state space to S = {00, 01, 10, 11} where 00 stand for absence while 01,10 for the two possible
directed edges and 11 for a mutual edge. In order to preserve the symmetry between the nodes p01 and p10 have to
be equal. In the first generalization the probability of a mutual edge is p2, while it is a free parameter in the second.
The second description is the one that fits better into the framework of our model, since our approach will be based
on considering all possible subgraphs that can be realized on a set of nodes of size n.

III. THE TRIPLET MODEL

A. The Undirected Triplet Model

In this section, we will introduce and analyze the undirected triplet model which is the simplest generalization
of the Erdös-Rényi model within the framework of our model. The undirected triplet model is based on assigning

2 CN
k = N !

(N−k)!k!
3 An induced subgraph of a graph G is a subset of nodes together with all respective edges present in G.
4 For connected graphs this is equivalent to H being a tree.
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FIG. 1: The 8 states of a triplet.

each triplet of nodes in TN3 = {{i, j, k} : i, j, k ∈ {1, 2, ...N}} one of eight states, each corresponding to a 3 node
subgraph. The graphical representations of the triplet states in S3 = {0, 1}3 are shown in Fig.1. The triplets are
independently assigned one of the states in S with the following probabilities: P (000) = p0, P (001) = P (010) =
P (100) = p1, P (011) = P (101) = P (110) = p2, P (111) = p3. Isomorphic states (the 3 one edged states and the 3
V-shaped states) are assigned equal probabilities in order to preserve the symmetry between nodes. Following these

assumptions the resulting probability distribution over the configuration space X = S
CN3
3 is:

P (x) =
∏
t∈TN3

P (S(t, x)) = p
n0(x)
0 p

n1(x)
1 p

n2(x)
2 p

n3(x)
3 (6)

where S(t, x) is the state of t in the configuration x and n0(x), n1(x),n2(x) and n3(x) are the number of triplets in the
empty, single edged, V-shaped and triangle states respectively. Written in terms of the state counts the probability
distribution is the multinomial distribution:

P (n0, n1, n2, n3) =

(
CN3

n0, n1, n2, n3

)
pn0
0 (3p1)n1(3p2)n2pn3

3 (7)

5 In order to obtain a probability distribution over labeled graphs of size N we define a random variable Φ(x) that
maps the elements of the configuration space to adjacency matrices. Φ(x) can be thought of as projection from the
latent configuration space X onto the edges of a graph. The projection is equivalent to adding an edge to the graph
whenever the edge is present in the state of a triplet in the configuration x:

Φ : X −→ AN×N , Φ(x)αβ =
∑

t∈T3|α,β∈t

Aαβ [S(t, x)] (8)

where A[S(t, x)] is the adjacency matrix of the state of the triplet t in the configuration x.
Defined in this way Φ induces a probability distribution over the space of labeled graphs of size N:

PG(A) = PX(Φ−1(A)) (9)

Where A is an adjacency matrix with integer weights smaller than N-1. Since every edge is contained in N-2 triplets
some edges will get a nonzero contribution from the state of more than one triplet producing an edge with integer
weight larger than one. Whether to include the weights or not in the model is a matter of choice and if all weights are
to be set to one the above formula has to be modified as Φ(x)αβ = min(1,

∑
t∈T3|α,β∈tAαβ [S(t, x)]). Allowing multiple

edges facilitates calculations in some instances therefore in this section we perform calculations keeping multiple edges
unless stated otherwise. Later we will see that in the case of sparse graphs multiple edges are rare and therefore their
inclusion makes little difference.

In general, the inversion of the projection is quite complicated for large graphs since the configuration space is
latent and in most cases there is large number of configurations that produce the same graph. On the other hand if
one is interested in local properties of the model the inversion turns our to be relatively easy.

A more restricted (micro canonical) version of the triplet model can also be constructed by fixing the number of
triplets in each state and assigning to all such configurations equal probability. Most results obtained below can be
generalized to this case in a straightforward manner.

5

(
N

n1, n2 . . . nk

)
= N !

n1!n2!...nk!
is the multinomial coefficient. Whenever used it implies n1 + n2 · · · + nk = N .



4

1. The Weight and Degree Distributions

The first quantity of interest is P (Aij = m), the probability that a randomly chosen pair i-j, of nodes is connected
by an edge of weight m. For an edge to have weight m, exactly m of the N-2 triplets that contain i and j have to be in
one of the states 100, 110, 101 or 111 which contribute 1 to Aij and the remaining N-2-m of these triplets have to be
in one of the states 000, 001, 010 or 011 which do not contribute to Aij . Therefore the probability that a randomly
chosen pair of nodes is connected by an edge of weight m is:

P (m) = CN−2m (p1 + 2p2 + p3)m(1− (p1 + 2p2 + p3))N−2−m (10)

To obtain the probability distribution for the degree of a randomly picked node one has to take in to account the
states of all triplets that contain the node. There are CN−12 such triplets. States 111 and 101 contribute two and
states 100, 001, 011 and 110 contribute one to the degree of node i. While the remaining states 000 and 010 do not
contribute to the degree. Let n2, n1 and n0 be the number of triplets in states that contribute 2, 1 and 0 to the degree
of node i respectively. Then P (n2, n1, n0) is a multinomial distribution and P (k) is the sum of P (n2, n1, n0)’s that
satisfy n1 + 2n2 = k:

P (k) =
∑

n1+2n2=k

(
CN−12

n0, n1, n2

)
(p0 + p1)n0(2p1 + 2p2)n1(p2 + p3)n2 (11)

2. Subgraph Probabilities

FIG. 2: The decomposition of the tree node subgraphs. The first column indicates the state of the triplet {i,j,k} and the other
columns indicate the contributions of the other triplets that contain ik, ij and jk respectively. The probabilities corresponding
to each of the factors are also given.

As stated in the introduction our main motivation for constructing our model is to obtain graphs with local
structures that are not only tree like which should be reflected in the expectation values of subgraph counts. In this
section we will calculate subgraph probabilities for the triplet model and show that the triplet model can produce
sparse graphs with a large number of triangles.

To calculate the probability that a certain subgraph H of size m is induced on a set of nodes the states of all triplets
that can contribute an edge between these nodes have to be taken into account. Here we will calculate induced
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subgraph probabilities because the expressions are in general shorter and the ordinary subgraph probabilities can be
obtained directly from these. Moreover when considering subgraphs we ignore edge weights and only consider patterns
of attachment.

The general strategy while calculating the probability that a certain graph H is induced on a set of m nodes is to
first fix the state of the triplets that are fully contained in the set. We call these base triplets. The base triplets can
be in any combination of states that is compatible with H, that is none of the states should contain an edge where
H has none6. Once the states of the base triplets are fixed, this imposes conditions on the triplets that only contain
two nodes from the set. The first condition being that whenever the states of the base triplets do not contain an
edge i-j where H actually has one this edge has to be present in at least one of the other triplets that contain nodes
i and j while the second condition is that these triplets should not contain an edge where H has none. In this way
given H the induced subgraph probability can decomposed into a sum of terms of which each corresponds to such a
decomposition of H into states of the base triplets and a set of conditions on the triplets that contain only two nodes
of H. Fig. 2 shows these decompositions for all tree node subgraphs. For instance for the graph induced on nodes
{i,j,k} to be empty the triplet {i,j,k} has to in the state 000 and the states of the other triplets containing only two
of the nodes should also not contain any edge between i-j, j-k or k-i.

The first subgraph probability of interest is the edge probability Pe. Each pair {i,j} of nodes is contained in N-2
triplets. For there to be no edge between i and j all the N-2 triplets have to be in one of the states 000, 010, 001 or
011. Therefore the edge probability is given by Pe = 1− (p0 + 2p1 + p2)N−2 = 1− (1− (p1 + 2p2 + p3))N−2

Now we will calculate the induced subgraph probabilities of 3 node subgraphs of which the decompositions are given
in Fig.2. Once the state of the base triplet is fixed we have to calculate the possible contributions from the triplets that
only contain two of the nodes. For each pair there are N-3 such triplets. As in the calculation of the edge probability,
the probability that these N-3 triplets do not produce an edge between these nodes is Q0 = (1− (p1 + 2p2 + p3))N−3.
Conversely the probability that these triplets produce an edge is 1 −Q0. Then, using the decomposition of the tree
node subgraphs given in Fig.2, the subgraph probabilities for the three node subgraphs are:

P∴ = p0Q
3
0

P = 3[p0Q
2
0(1−Q0) + p1Q

2
0]

P∨ = 3[p0Q0(1−Q0)2 + 2p1Q0(1−Q0) + p2Q0]
P4 = p0(1−Q0)3 + 3p1(1−Q0)2 + 3p2(1−Q0) + p3

(12)

The factors of three in the expressions for the single edged and V-shaped come from the symmetry of these subgraphs.
The given probabilities are equivalent to the expectation values of the indicator functions for the occurrence of induced
subgraphs and therefore the ensemble averages for the induced subgraph counts can be directly obtained by multiplying
the above probabilities with CN3 . To calculate probabilities for a subgraph H of size m the same method can be applied
the only difference being that one has to consider the states of Cm3 base triplets. For large subgraphs the number of
combinations compatible with H can be quite large but in the case of sparse graphs the number of configurations that
have to be taken into account reduces significantly.

3. The Sparse Triplet Model

The majority of real world networks are sparse, that is the number of edges is of the same order as the number
nodes[1, 2]. For the triplet model to be sparse the expectation value of the number of edges (including edge weights),
has to be of order N:

< e >= CN3 (3p1 + 6p2 + 3p3) ∼ O(N) (13)

This condition is equivalent to the pi’s being of order 1/N2. We set pi = βi/N
2 (i=1,2,3) for convenience. In the

sparse case most expressions can be expanded in orders of 1/N and in the large graph limit (fixing β1, β2, β3 and
N→∞) multinomial distributions can be approximated by combinations of Poisson distributions. For instance the
weight and degree distributions can be approximated by:

P (m) '
( κ
N

)m
+O(N−m−1) (14)

6 Ordinarily subgraph probabilities can be calculated by lifting this condition.
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where κ ' β1 + 2β2 +β3 is the average degree.This shows that multiple edges are quite rare when the model is sparse.
Moreover in the sparse case the degree distribution can be approximated by the following combination of Poisson
distributions:

P (k) '
∑

n1+2n2=k

e−λ1λn1
1

n1!

e−λ2λn2
1

n2!
(15)

Where λ1 = β1 +β2 and λ2 = (β2 +β3)/2.Which shows that the degree distribution decreases no faster than (k/2)!−1

which is considerably slower compared to k!−1 in the Erdös-Rényi model. Moreover the equation also shows that
graphs that have the same degree distribution but different local structures can be produced by the model. Similarly,
the subgraph probabilities can be expanded in orders of N−1.In the sparse case 1−Q0 ' κ/N and the probabilities
of the three node subgraphs can be expanded up to order N−3:

P∴ = 1− 3β1+6β2+3β3

N + 9
2
(β1+2β2+β3)

2

N2

P = 3[β1+2β2+β3

N + β1

N2 − 5
2
(β1+2β2+β3)

2

N2 ]

P∨ = 3[ β2

N2 + (β1+2β2+β3)
2

N2 ]

P4 = β3

N2

(16)

Starting from these probabilities one can define the clustering for the ensemble, to be 3 times the expectation value
of the number of triangles divided by the expectation number of connected triples in the ensemble.7

C =
3× < n4 >

< n∨ >
=

3P4
3P4 + P∨

(17)

In the sparse case the the above formulas can be approximated as follows:

C ' β3
β3 + β2 + (β1 + 2β2 + β3)2

≤ 1

1 + κ
(18)

Where κ = β1 + 2β2 + β3 is the average degree. The last inequality shows that there is a limit to the clustering that
can be obtained by randomly adding triangles to a sparse graph. In order to obtain higher values for the clustering
one has to consider models that use larger, more densely connected building blocks such as complete graphs. In the
sparse case the probabilities for larger subgraphs are easy to calculate up to leading order. The inclusion of each non
empty base triplet adds a factor of 1/N2 and each edge that is not generated by the states of the base triplets adds
a factor of 1 − (1 − κ/N2)N−m ' κ/N to the probability. Therefore the leading order terms will be produced by
combinations of base triplet states that cover large parts of the subgraph with the minimum number of non empty
base triplet states.For instance the probability for the three star and 3 chain in the triplet model can be calculated in
this way:

P3∗ = 4
[
κ3

N3 + 3κ(β2+β3)
N3

]
Pt = 12

[
κ3

N3 + 2κ(β2+β3)
N3

] (19)

The first terms in the expressions correspond to the case when all 4 base triplets are in the empty state and the second
terms to the case when two of the edges are produced by one of the 4 base triplets while the other are empty. We
omit the cases when more than one of the base triplets are in nonempty states since their contribution will be of order
1/N4 or lower. These together with the 3 node subgraph probabilities can be used to calculate the the assortativity
[8]:

r2 =
3n4+nt−

n2
∨
n

n∨+3n3∗−
n2
∨
n

=
β3β1−β2

2

(β1+β2)(β2+β3)+(β1+2β2+β3)3+(β1+2β2+β3)2(β2+β3)
(20)

Which shows that depending on the parameters the triplet model can generate graphs with both positive and negative
assortativity. As for the clustering coefficient, upper and lower bounds for the assortativity can also derived in terms
of the average degree κ. The above formula can also be interpreted in terms of the effects of subgraphs on the degree

7 Note that this is different from calculating the average of the clustering coefficient.
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of the nodes that they connect. For instance the V shaped subgraph connects a a central node contributing 2 to
its degree with two other nodes to which it only contributes one edge. Therefore on average it will connect a high
degree central node to two lower degree peripheral nodes. Thus the addition of V shaped subgraphs will decrease
the assortativity. On the other hand the single edge and triangle subgraphs contribute equally to the degree of the
nodes they connect therefore they fail to produce any effect on the assortativity on their own but when combined the
triangles will produce high degree nodes that the single edged states connect resulting in an increased assortativity.

4. The Connected Component Phase Transition

One of the most interesting results for the Erdös-Rényi random graph is the emergence of a giant connected
component at a critical probability pN = κ = 1 as N tends to infinity. Here following a heuristic argument we derive
the condition for a giant component to emerge in the triplet model. For this we assume that a fraction u of the nodes
is not contained in the giant component. Then consistency requires that if a node is not in the giant component the
states of the triplets containing the node should connect it only to nodes that are also not in the giant component.
States 000, 010 do not connect the node i to any nodes while 100 and 001 connect it to one and 110,011,101 and 111
connect it to two nodes. Therefore the probability distribution P (t1, t2) that t1 triplets connect the node to one and
t2 to two nodes as N tends to infinity has to satisfy the following condition:

u =

∞∑
t1,t2

P (t1, t2)ut1+2t2 (21)

Where:

P (t1, t2) =

(
CN−12

t0, t1, t2

)
(p0 + p1)t0(2p1)t1(3p2 + p3)t2 (22)

for large N this can be approximated as:

P (t1, t2) '
e−

β1
2

(
β1

2

)t1
t1!

e−
3β2+β3

2

(
3β2+β3

2

)t2
t2!

(23)

Therefore the fraction S of nodes in the giant component is given by the solution of the equation:

1− u = S = 1− e−β1(S)− 3β2+β3
2 (2S−S2) (24)

For which a nonzero solution exists only if:

β1 + 3β2 + β3 > 1 (25)

This reduces to the condition κ > 1 for Erdös-Rényi graphs when β2, β3 ' 0 (see next section) and when β2 = 0
to the result obtained in [11]for graphs where the number of triangles and edges connected to a node is distributed
according to a product of Poisson distributions.

5. The triplet model equivalent to the Erdös Rényi random graph

In order to obtain a triplet model equivalent to the Erdös Rényi model we assume that edges in the triplet states
are independent and occur with probability p. Then the probabilities for the triplet states are p0 = (1 − p)3, p1 =
p(1 − p)2, p2 = p2(1 − p) and p3 = p3. Because the edges are already independent in the state space of the triplet
model edges also occur independently with probability p′ = 1 − (1 − p)N−2 in the graph.Consequently, the model
reduces to the Erdös Rényi model when edge weights are set to one.

B. The Directed Triplet Model

To generalize the triplet model to the directed case the triplet state space has to be expanded to include all directed
3 node graphs. The set of the directed states S3→ = {00, 01, 10, 11}3 contains 64 directed 3 node subgraphs that fall
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FIG. 3: The 16 isomorphism classes of the directed 3 node subgraphs and their graphical representations. The first row indicates
the label of the classes while the second row indicates the number graphs in each class.

into 16 isomorphism classes[Fig.3]. As in the undirected case we assume that isomorphic states equiprobable and that
the assignment of states to triplets is i.i.d. Then the resulting probability distribution over the configuration space

X = S
CN3
3→ is:

P (x) =
∏
t∈T3

pS(t,x) =

15∏
i=0

p
ni(x)
i (26)

where S(t, x) is the state of triplet t and the ni(x)’s are the number of triplets that are in state i in the configuration
x.

As in the undirected case we define a random variable Φ(x) that corresponds to the projection of configurations on
to adjacency matrices. The projection Φ(x) is equivalent to adding an edge from node i to node j whenever such an
edge is present in the state of a triplet in the configuration x:

Φ : X −→ AN×N , Φ(x)αβ =
∑

t∈T3|α,β∈t

Aαβ [S(t, x)] (27)

where A[S(t, x)] is the adjacency matrix of the state of the triplet t in the configuration x. Methods used in the
undirected case can then be generalized to the directed case in a straightforward manner.

For instance to calculate the degree distribution P (kin, kout) the contribution of each triplet state to degree of node
i has to be considered. Let mI,O and qI,O denote the number of triplets states that contribute I incoming edges and
O outgoing edges and the probabilities to be in such states, respectively. Then the degree distribution is given by:

P (kin, kout) =
∑ CN−12

m00,m01,m10,m11,m12,
m21,m20,m02,m22

 qm00
00 qm01

01 qm10
10 qm11

11 qm12
12 qm21

21 qm02
02 qm20

20 qm22
22 (28)

Where the sum is performed over the all mI,O that satisfy the following conditions:
m10 +m11 +m12 + 2(m20 +m21 +m22) = kin
m01 +m11 +m21 + 2(m02 +m12 +m22) = kout

The qI,O can be inferred from Fig[3]:
q00 = p0 + 2p1 + p2
q10 = 2p1 + 2p3 + 2p4 + 2p6
q20 = p5 + 2p10 + p12
q01 = 2p1 + 2p5 + 2p4 + 2p7
q02 = p3 + 2p10 + p11
q11 = 2p2 + 2p4 + 2p6 + 2p7 + 2p8 + 2p9 + 2p10 + 2p13
q21 = 2p7 + 2p11 + 2p13 + 2p14
q12 = 2p7 + 2p12 + 2p13 + 2p14
q22 = p8 + 2p14 + p15

One feature of the degree distribution is that depending on the state probabilities it can generate degree distributions
that are not symmetric with respect to the in and out degree as well as degree distributions where the in and out
degrees are correlated. The degree distribution of in, out and mutual edges which can be calculated in the same way.

1. Subgraph Probabilities

The method for obtaining the probability that a certain graph is induced on a set of nodes in the directed case is
essentially the same as in the undirected case. For instance to calculate the subgraph probabilities for the three node
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subgraphs, all states of the base triplet{i, j, k} that are compatible with the induced subgraph have to be considered.
Once the state of the base triplet is fixed this imposes conditions on the states of the triplets that contain only two
of the nodes in the triplet. One example of such a decomposition is given in Fig. 4.

FIG. 4: The decomposition of for subgraph 4. The first column indicates the state of the triplet {i, j, k} while the other columns
indicate the conditions on the contributions of the triplets containing ik, ij and jk only.

The possible contributions from the N-3 triplets containing only two of the nodes and the corresponding probabilities
are: no edge r0 = qN−30 , a directed edge i to j or no edge r01 = (q0 + q1)N−3, a directed edge i to j r1 = r01 − r0, a
mutual edge r2 = 1− 2r01 + r0 and a mutual edge or a directed edge from i to j r12 = 1− r01.

Where, q1 = (p1 + p3 + 2p4 + p5 + p6 + p7 + p9 + 3p10 + p11 + p12 + 2p13 + p14) is the sum of the probabilities of
the states that contain a directed edge from i to j and q2 = p2 + 2p6 + 2p7 + 2p8 + p11 + p12 + 2p13 + 4p14 + p15 is
the sum of the probabilities of the states that contain a mutual edge between i and j. Then probability that the state
does not contain any edge at between i and j is q0 = 1− 2q1 − q2.

From the decomposition in Fig.4 one can then find that the probability that motif 4 is induced on a set of three nodes
is :P4 = p0r0r

2
1 +2p1r0r01r1 +p4r0r

2
01. Probabilities for all other three node directed subgraphs can be obtained using

the same method8. In the case of sparse graphs ( pi = βi/N
2 fori = 1, 2, ...15) r1 and r2 become of order N−1. Then

probabilities of the V shaped subgraphs up to order N−2 have the general form of P∨i ' βi
N2 + r

e(i)
1 r

m(i)
2 where e(i) is

the number of directed edges and m(i) is the number of mutual edges in subgraph i. The probabilities up to leading

order for the triangle shaped subgraphs are: P4i ' βi
N2 .Therefore provided that the probabilities corresponding to

triangular building blocks are of order N−2 the expectation values of the corresponding subgraph counts will be of
order N and therefore when compared to the configuration model using the method of [5] the triplet model will have
triangular motifs. Since the configuration model with the same degree distribution as the sparse triplet model has
expectation values of order 1 for triangular motif counts [12].

IV. THE MULTIPLET MODEL

The multiplet model is a generalization of the triplet model (and of the Erdös-Rényi model) that allows the
construction of graphs using building blocks of arbitrary size. Using larger building blocks the multiplet model can
generate more densely connected local structures than the triplet model and also patterns of attachment between
network motifs.

The multiplet model (MN
n ) of order n (corresponding to the size of the building blocks) on N nodes is based on

considering n-tuples of nodes and their states. The state space for n-tuples t ∈ TNn = {{i1, i2, ..., in} : i1, i2, ..., in ∈ V }
corresponds to all n node graphs that can be realized on n nodes. Therefore the most general state spaces are
Sn = {0, 1}Cn2 in the undirected and S→n = {00, 01, 10, 11}Cn2 in the directed case. In analogy with the Erdös-Rényi
model the states of n-tuples are assumed to be identically distributed and independent. Isomorphic states are assigned
equal probabilities in order to conserve the symmetry between nodes. Then the resulting probability distribution over

the configuration space XN
n = S

CNn
n is:

P (x) =
∏
t∈TNn

pS(t,x) (29)

8 A list of al the 3 node induced subgraph probabilities can be found in the appendix.
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Where S(t, x) is the state of the n-tuple t in the configuration x and the pi’s are the state probabilities. As in the
triplet model a configuration x ∈ X is projected on to a graph by adding an edge to the graph whenever the edge is
present in the state of an n-tuple:

Φ : X −→ AN×N , Φ(x)αβ =
∑

t∈TNn |α,β∈t

Aαβ [S(t, x)] (30)

where A[S(t, x)] is the entry of the adjacency matrix of the state of t in the configuration x.
In the multiplet models calculations are done considering all configurations x ∈ X that result in the desired graph

property. Consequently, the generalization of most of the methods used in the triplet model to higher order models
is straightforward.

For instance the degree distribution for an undirected model in the class MN
n is:

P (k) =
∑

(n−1)mn−1+(n−2)mn−2+···2m2+m1=k

(
CN−1n−1

m0,m1 . . . ,mn−1

)
q
mn−1

n−1 q
mn−2

n−2 · · · q
m1
1 qm0

0 (31)

Where the mi’s are the number of states that contribute i to the degree and the qi’s are the total probabilities of
such n-tuple states. In the directed case a similar expression for the in and out degree distribution can be obtained
by replacing the qi’s and mi’s with the corresponding qI,O and mI,O’s as in the directed triplet model and summing
over all configurations that produce the desired in and out degrees. Moreover the above formula shows that using
the multiplet model graphs that have the same degree distribution but differ significantly with respect to their local
structures can be generated. For instance in the undirected case with n=5 there are 4 equations for the qi’s while
there are 33 parameters corresponding to the probabilities of the 34 isomorphism classes.

In order to calculate subgraph probabilities in the multiplet model MN
n for a subgraph H of size m the subgraph

has to be decomposed into the contributions coming from the n-tuples that contain k,k-1,...,3 and 2 of its nodes
(k=sup[n,m]). In this decomposition once the states of the n-tuples that contain more than two of the nodes are
fixed the edges of H that are not produced by the state of these n-tuples have to be be present in at least one of the
n-tuples that contain only 2 of the nodes. In the case of induced subgraph probabilities one has to restrict the states
of the n-tuples so that they do not contribute an edge where where H has none.

A. The Sparse Multiplet Models

For a multiplet model MN
n to be sparse the pi’s have to be of order N1−n or less. Then for sufficiently large N

n� N so that CnN ' Nn/n! the degree distribution can be approximated by a product of Poisson distributions:

P (k) '
∑

(n−1)mn−1+(n−2)mn−2+···2m2+m1=k

n−1∏
j=0

e−λjλ
mj
j

mj !
(32)

Where λi = qiC
N−1
n−1 .The above equation shows that the degree distribution decreases as (k/(n − 1))!−1 for large k.

Moreover for k < n, P(k) is a function of the λi’s up to i=k only and therefore depending on the λi’s P(k) can fit
broad degree distributions in the range k < n, including power law type degree distributions with a cutoff near n.

Although in the multiplet model subgraph probabilities for large subgraphs can still be calculated exactly, in the
sparse case expressions up to leading order simplify significantly. Consequently, one can obtain expressions for the
assortativity and clustering as in the triplet model by calculating the subgraph probabilities.

The results for the emergence of the connected component in the triplet model can also be generalized to multiplet
models by considering how many nodes the states in Sn connect to each other.

B. The Hierarchy of Multiplet Models and Complexity

As there exists a triplet model that is equivalent to the Erdös-Rényi model, for most of the models in a class MN
n

there exists an equivalent higher order model in the class MN
n+1. Consequently, there exists a nested hierarchy between

multiplet models ordered according to the size of building blocks used so that for every lower order random graph
model in a certain subclass, a model of higher order that is equivalent can be found. Within this hierarchy of increasing
complexity graph properties traditionally associated with higher complexity such as assortativity, clustering, heavy
tailed degree distributions and highly connected network motifs are indeed indicators of higher complexity. The
precise form of the hierarchy and its connection to different complexity measures is beyond the scope of this paper
and will be treated elsewhere.
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V. DISCUSSION

We presented a model for constructing random graphs using small graphs as building blocks that can be solved
exactly for many of its properties.The model provides a method for introducing correlations between edges in a
systematic way.In the simplest case, corresponding to the triplet model, we showed that in the undirected case graphs
with non zero clustering and assortativity and in the directed case graphs with triangular motifs can be obtained.Then
we generalized the model to include building blocks of arbitrary size. We showed that multiplet models of of higher
order are able to generate graphs with heavy tailed degree distributions and a multitude of local structures. The
multiplet model can be used to investigate how network properties like motifs, clustering, assortativity and the degree
distribution are interrelated. The effects of motifs on various processes taking place on networks, including diffusion,
percolation, synchronization and information processing can also be studied within the framework of the multiplet
model.

We showed that properties that are considered to be characteristics of complex networks are indeed indicators that
these networks are better modeled by multiplet models of higher order and thus higher complexity. Moreover the
model can generate networks that have the same degree distribution but vary significantly with respect to their local
structures. This diversity of local structures increases as the degree distribution gets broader which indicates that
networks with broad degree distributions have a higher the capacity to adapt their local structure and might be a
hint to why evolving real world networks often have heavy tailed degree distributions.

The multiplet model allows the construction of random graphs that can be called genuinely complex while still being
analytically tractable. Although the calculations for higher order models become increasingly difficult to perform by
hand their algorithmic implementation is straightforward. The only difficulty being that for higher order models there
is no known practical way to partition the state space S in to isomorphism classes but one can still consider higher
order models with state spaces less general than Sn.

Real world networks that have an underlying bipartite structure such as collaboration networks can be modeled
naturally by multiplet models. For instance in collaboration networks complete graphs of size L would correspond to
independent occurrences of associations (movie casts, executive boards, scientific publications etc.) of size L. While
other building blocks would correspond to preferred attachment patterns between these.

The model can be generalized to cases where the nodes are be partitioned into different classes and the connections
within and between these sets follow different rules.This might be useful in modeling networks that have components
with different local structures. Another possibility would be the case when the set of nodes is a metric space. In this
case the set of n-tuples might be restricted to sets of nodes that are within a certain distance of each other and/or
the probabilities might be assumed be functions of distance. Such additional structure might be needed in order to
model accurately real networks in which distance plays a role.

Appendix A: Directed 3-node subgraph probabilities

The induced subgraph probabilities for the 16 directed three node subgraphs in the triplet model:

P0 = p0r
3
0

P1 = 6[p1r
2
0r01 + p0r1r

2
0]

P2 = 3[p2r
2
0 + 2p1r12r

2
0 + p0r

2
0r2]

P3 = 3[p3r0r
2
01 + 2p1r0r01r1 + p0r0r

2
1]

P4 = 6[p4r0r
2
01 + 2p1r0r01r1 + p0r0r

2
1]

P5 = 3[p5r0r
2
01 + 2p1r0r01r1 + p0r0r

2
1]

P6 = 6[p6r0r01 + (p3 + p4)r0r12r01 + p2r0r1 + p1(r2r01 + 2r1r12) + p0r2r0r1]
P7 = 6[p7r0r01 + (p5 + p4)r0r12r01 + p2r0r1 + p1(r2r01 + 2r1r12) + p0r2r0r1]
P8 = 3[p8r0 + 2(p6 + p7)r0r12 + (p3 + p5 + 2p4)r0r

2
12 + 2p2r0r2 + 4p1r0r12r2 + p0r

2
2]

P9 = 2[p9r
3
01 + 3p4r

2
01r1 + 3p1r

2
1r01 + p0r

3
1]

P10 = 6[p10r
3
01 + (p3 + p4 + p5)r201r1 + 3p1r

2
1r01 + p0r

3
1]

P11 = 3[p11r
2
01 + 2p7r1r01 + p3r2r

2
01 + 2p1(r01r1r2 + r12r

2
1) + p2r

2
1 + p0r

2
1r2 + 2p10r

2
01r12 + 2(p5 + p4)r01r12r1]

P12 = 3[p12r
2
01 + 2p6r1r01 + p5r2r

2
01 + 2p1(r01r1r2 + r12r

2
1) + p2r

2
1 + p0r

2
1r2 + 2p10r

2
01r12 + 2(p3 + p4)r01r12r1]

P13 = 6[p13r
2
01 + (p10 + p9)r201r12 + (p6 + p7)r1r01 + (p3 + p5)r01r1r12 + p4(2r1r01r12 + r201r2) + p2r

2
1 + 2p1(r01r1r2 +

r21r12) + p0r2r
2
1]
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P14 = 6[p14r01+(p12+p11+2p13)r01r12+p9r01r
2
12+2p10r01r

2
12+p8r1+(p6+p7)(r2r01+2r1r12)+(p3+p5)(r01r12r2+

r212r1) + p4(2r1r
2
12 + 2r2r01r12) + 2p2r2r1 + p1(4r2r1r12 + r01r

2
2) + p0r

2
2r1]

P15 = p15 + 6p14r12 + (6p13 + 3p12 + 3p11)r212 + (2p9 + 6p10)r312 + 3p8r2 + (6p7 + 6p6)r2r12 + (6p4 + 3p5 + 3p3)r2r
2
12 +

3p2r
2
2 + 6p1r

2
2r12 + p0r

3
2
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