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Abstract

We discuss the calculus of variations in tensor representatvith a special focus on tensor networks
and apply it to functionals of practical interest. The syrpeovides all necessary ingredients for applying
minimization methods in a general setting. The importasesaof target functionals which are linear
and quadratic with respect to the tensor product are disdyssid combinations of these functionals are
presented in detail. As an example, we consider the repgamrank compression in tensor networks.
For the numerical treatment, we use the nonlinear block &8eddel method. We demonstrate the rate of
convergence in numerical tests.

Keywords: tensor format, tensor representation, tensor networiati@nal calculus in tensor networks.

1 Introduction

Different tensor formats are of large recent interest aedetinas been a competition between them in terms
of storage and computational efficiency. In this paper, wetw@introduce a general approach that covers all
these rivaling formats.

We are going to address some general optimization problewcis @& best approximation, solution of linear
systems and minimization of the Rayleigh quotient in higmelsions. Here all tensors are represented in
tensor networks. For the numerical treatment we are usedthiéear block Gauss-Seidel method. Let us start
with the description of our problem setting.

d

Let (V,, <,>V#) be a real pre-Hilbert spaces awd:= ) V,, equipped with the induced inner product and

p=1
norm.

Notation 1.1. Let X be a vector space anfl: X — R. We will use the short notatio®it( f, X) for the set of
minimizers of the induced minimization problem, i.e.

M(f, X) == {z € X : f(z) = inf f(X)}. )

Problem 1.2. Given a functionalF' : V — R and a setM C V, we are searching for a minimizer of the
constrained optimization problem where the original 8dtis confined to tensors which we can represent in a
parametrized way, i.e. we are searching for
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wherel/ C V is the image of a multilinear mafy : P — V. The multilinear mag/ is called a tensor format
from a parameter spacg into the tensor product spadé see Definition 2.3 for an explicit description.

We will see that a contracted tensor network is a speciabterepresentation, see Definition 2.6 for more
details. Let us mention a few basic examples which are impbiin several practical applications in high
dimensions.

(i) The approximation of) € V in a specific tensor representation, ilu) = ||u — v||?, u € U.

(i) The solution of equationslu = b or g(u) = 0 whereA, g : V — V'. Here we have”(u) = || Au—b||3,
resp. |g(u)y-

(i) If A : VY — V' is bounded, symmetric and coercive with respecfi i, andb € V'’ given, we may
instead of the first functional in (i) focus afi(u) := 3 (Au, u) — (b, u).

(iv) Computation of the lowest eigenvalue of a symmetricrapm A : V — V' by minimizing the Rayleigh
quotient: F'(u) := (Au,u)/{u,u) over M = V\{0}. This problem is equivalent to the minimization
problem

findu € M(F, {ueld: |[u]| =1}).

In the first three examples we hawed N4 = U, while in the last example we have an additional constraint,
namelyM = {W eV : (W,W) =1}
The case of interest for our work is summarized in the follmp@bstractly formulated Problem 1.3.

Problem 1.3. For a given functionF' : ¥ — R and a tensor format/ : P — )V we consider the following
problem:
findue M(J, M), J:=FoU:P—V —RandM C P. 3

We call the function/ : P — IR objective function

2 Mathematical description of tensor formats and tensor netorks

Atensor format is described by the parameter space and dinealt map into the tensor space of higher order.
The parameter space consist of two different types of paesighe parameters of vector space meaning and
interior parameters. We will describe this in more detaétoty. Let in the followingy = ®ﬁ:1 V. be the
tensor product of vector spacks, . . ., V.

¢

Notation 2.1. LetA € {R, Vi,...,Vy}, £ € Ny := NU {0}, andIN* := X IN (1 < ¢). The set of maps with
v=1

finite support fromN¢ into A is defined by

A 0 =0,

{l’“WﬁA!#supp(u)e]l\I}, 0> 1. (4)

Mo(N?, A) = {
The natural numbet is called thedegreeof u € M, (IN, A). # denotes the cardinality of a set.

Let us start with an example for pointing out our further imiens.
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Figure 1: The tensor network graph of the tensor network feEo@ample 2.2.

Example 2.2. A tensor network is described by its tensor network gréph (N, E). An example of a tensor
network graph is plotted in Figure 1. The set of nodésontains two different types of nodes, i.e. we have
N = {v1,v2} U {w}. The set for vertices of vector space meanjng, v2} and the set of nodes for the

coefficients{w}, where in Figure 1 the symbcTI stands for nodes of vector space meaning and the symbol
denotes vertices for the coefficients. We have two efges{{v,,w}, {w,v2}} in our example. The tensor
network format introduced by the tensor network graph isfttiewing multilinear map:

Us : My (JN2 R) x Mo(IN, V1) x Mo(N, V) — Vi @ V4
w, vy, v2) — Ug(w, v, v = ,J2) v Qv
(w,v1,v2) a(w,v1,v2) Zl Zl (J1,J2) v1(J1) ® v2(J2),
Ji=2 2 €R evi eV

where for a better understanding the edges are identifiethéretcorresponding summation indices, g~
{v1,w} and j, ~ {w,vy}. For given so called representation ranks= (r1,72) € IN?, the tensor network
representation’¢; , introduced by the tensor network formig; is the restriction ofUs onto My(IN<,, X
INSTQ,R) X MO(INSTU Vl) X Mo(mgrz,VQ), i.e

Ug,r(w,v1,v2) Z Z w(j1, j2)v1(J1) @ va(j2),
J1=1j2=1

Notice that the representation rankrefers to the support of the representation systemw,, v2) and not to
the represented tensor.

Definition 2.3 (Parameter Space, Tensor Formagtd, L € INy and furthermore/y, . .., 44, 01,..., 0 € Ny.

The vector spacé of parameters of vector space meaning ¥ois defined by

d
= X Mo(N%, V). ®)

p=1

In a similar way we define the spa€dor the interior parameter

L .
= X Mo(IN", R). (6)
v=1
We call the Cartesian product
Pd,L =S xC (7)

a parameter spacaf order(d, L). Atensor formabf order (d, L) in V is a multilinear map
U Pd,L -V (8)

from the parameter space into the tensor space.



We will see in the following that a tensor network is a spetagaisor format, where the definition of a tensor
network is based on the tensor network graph.

Definition 2.4 (Tensor Network Graph, Degree Map)et

Ny=qup€ |J Mo(N, V) :1<pu<d
(€N

be a set of nodes of vector space meaning wifti, = d and

Ne=qw, € U Mo(INR):1<v <L
£eNg
be a finite subset of nodes of interior parameters with, = L. Further letN := Ny, U N, and E C
{{n1,n2} 1 n1,n2 € N,n1 # na} C P(NV) a set of edges. We call the finite graph:= (V, E) a tensor
network graph in/ of order(d, L). Thedegree mapf G is defined ag : N — IN,n — #{e € E : n € e},
such thaty assigns each element &f the number of edges, it is connected to.

In graph theory there are different ways to describe a gréjum.our work, the most useful is the incidence
map.
Definition 2.5 (Incidence Map) Let G = (N, E) be a tensor network graph of ordéd, ). Since we have

chosen all tensor network graphs to be finite, we can seleedge enumeration, i.e. there is a bijective map
e: N<,, — E, wherem := #E. We call the map

7 :NXQN%UW 9)
=1 =1
(M, 5155 Jm) = Z(n,j) =G 1 <L <m,nee(l)). (20)

theincidence mapf GG, where the order of they is being preserved.

We will not distinguish betweerV andIN< 4 ;, such that we identify both sets with each other, i.e. theee is
bijective mapy : IN<4.;, — N such that we can uniquely identify € IN< 447, with n = ¢(u). Ifitis clear
from context we simply writg: with the meaning ofp(x), (1 ~ ¢(u)). Further, ifl < p < dthenn € N;
andn € N, otherwise.

Definition 2.6 (Tensor Network Format, Tensor Network Representatit®t G = (N, E) be a tensor net-
work graph of orden(d, L) andm := #E. Furthermore, letZ be the incidence map angdthe degree map of
G. We define the following tensor formiag as atensor network format ify.

d L
Ug: X Mo(INYW V) % X Mo(IN9H) R) — v (11)
pn=1 v=1

d
(V1,..., Vg, W1, ..., WL Z Z (Hwy (d+v,j)) >®Uu

Jj1=1 Jm=1 pn=1
Thetensor network representatiéft; , with representation rank= (r1,...,r,) € IN™ is defined as
d L
Uy s X Mo(IN9W. V) X Mo(IN9H) R) — v (12)
pn=1 v=1
(U1, ., Vg, W, ..., W Z Z (Hwy (d+v,j) )@vu
Ji=1 Jm pn=1



We sayu = Ugr(v1,...,vq,w1,...,wr) € RangdJg, C V is represented in the tensor network format
with representation rank € IN"*. Furthermore, we call the tuple of parametdtrs, ..., v, wy,...,wr) @
representation systeof v with representation rank.

Note that due to the multilinearity df , a representation system is not uniquely determined. We teant
illustrate the abstract definition of the tensor network ariifer examples. The most recent tensor represen-
tations are tensor networks, e.g. hierarchical tensordof8y Hackbusch and Kuhn, 2009], [6, Grasedyck,
2010], the tree Tucker format (TT) [19, 14, Oseledets andy$hnikov, 2009], where the TT tensor format
is also called tensor train format. The Tucker decompasisalso a tensor network format, see Figure 2 for
illustration. The canonical polyadic decomposition (C&)tensor ranks greater than one ahd- 2 is not

a tensor network. But, it is easy to illustrate that the cé&amolyadic tensor representation for= 2 is a
tensor network for any rank.

i U1 U1
J1
wq
J2 J3
T (%] T U3 V2 V3
(a) Elementary Tensor (CP with (b) Tucker

r=1)

Figure 2: The tensor network graph of the canonical polyé&aick is one) and the Tucker format fér= 3.

Example 2.7. Our first example of a tensor network is the hierarchical terfermat ford = 4. Where the
tensor network graph of ordef., 3) is shown in Figure 3. The mafy; : N x X% IN — Ule IN! is defined

w1

Figure 3: The tensor network graph of the hierarchical tefmonat ford = 4.



by

(J1), n =1
(.]2)7 n= 2;
(]3)7 n =3,
Tu(n, (j1,---,J6)) = (Ja), n =4,
(J5, J6), n=>5;
(j1,72,75), n=6;
(j3,JaJ6), n=T1.

Furthermore, the multilinear map for the hierarchical tengormat is

Ut (v1,...,ws) == > wi(Js, jo)wa (i1, ja, js)ws (s, ja, J6) v1.(j1) @ va(j2) ® vs(js) ® va(da).  (13)
jEne

U1 (%] (R} V4
I 5

Figure 4: The tensor network graph of the tensor train forfiorat = 4.
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Next, we want to consider the tensor train format for= 4. The tensor network graph of ordét, 0) is
illustrated in Figure 4. We see that the degree of the nadeand v, is equal tol. Furthermore, the degree of
the nodes, v3 is 2 and the number of edges in the grapB.ig-or this example, the mapyr : N x xf’zl N —
Ui, IN! is defined by

(1),  n=1
ZTT(”? (j17j27j3)) = Ej;:izg Z z ?3:
(]3)7 n=4.

Finally, for the tensor network representation with re@egation rankr = (71,7, 73) € IN* we have

T1 72 T3
Urr,e(vi,-yva) = Y > o1(1) @ va(iin, j2) @ v3(ja, s) ® valja)-

J1=1j2=1j3=1

Another example of a tensor network is the tensor chain (&p.[ The network graph of the tensor chain

U1
J1 J2

Vs (%)
J3

Figure 5: The tensor network graph of the tensor chainifer 3.



is presented in Figure 5 fo = 3 and the tensor network representatiéfiy.c , with representation rank
r = (r1,m2,73) € IN® is defined by

T1 T2 T3
Urc,r(v1,-..,v3) = > > > 011, j2) ® vz, Js) ® vs(j1, js)- (14)

J1=1j2=1j3=1

The so called projected entangled-pair states (PEPS)#arefficient tensor network of certain many-body
states of a lattice system, see e.g. [18], [17]. Ho 6, the tensor network graph of the PEPS tensor network
is shown in Figure 6.

Y1 J1 V2 J2 U3
/.
Je J7 J3
U4 Js Us Ja Vg

/.

Figure 6: The tensor network graph of the PEPSffer 6.

The multilinear map of the PEPS with equal representatiarksa € IN is given by

Upgpss(vi,. .. v6) = Y (j) @(4), (15)

where

v1(J1, J6) ® va(j1, Jo, j7) ® v3(Jja, J3),
v4(J5, J6) @ v5(Ja, 35, J7) @ v6(J3, Ja)-

ST
N N
|, |%.
— =

3 Closedness of tensor network formats

The following section is of interest for optimization prebis in tensor networks. The main statements of
Theorem 3.2 and Proposition 3.4 can be summarized as follégsume, we have a sequeneg )xcw in V
with lim w, = w and everyuy, is presented in a tensor netwdrk; : Py ; — V with representation rank,

k—o0

i.e. there isiy, € Py, with uy, = Ug (1)) (See Definition 2.6). The crucial question is whether weesent
uwinUg,, i.e. is therei € Py, such thatu = Ug . (1).

In the following letG := (N, E)) be a tensor network graph of ordef, L), m := #FE, andUq : Py, — V
the tensor network introduced by the network gréptas described in Definition 2.6.

Definition 3.1 (Closed) A tensor network formalc; : Py, — V is calledclosed if for every representation
rankr € IN™ the image of the corresponding tensor network represemtdfy; , : P, ; — V is a closed set
in(V, [ ).

In order to prove the statement of Theorem 3.2 one needsefuagsumption on the norm ¢6¥ || - ||). The
norm of (V, || - ||) is supposed to be not weaker then the induced injective lorfh,, where the injective

7



norm onV is defined by

lzllv == sup 0i®.. ©v)@) 0#v, eV, 1<u<dy, (16)
d © o
O#UTLEV‘?,MEINSd | |M 1 ||UH| Vi

see [5].

Falcd and Hackbusch showed in [5] that the tensor subsggresentation is closed. Therefore, the Tucker,
the tensor train and the hierarchical tensor format is eedaensor format, see [7, Chapter 6]. The following
Theorem 3.2 shows that arbitrary tree structured tensaranks are closed. The basic idea for the proof is not
explained in [5] and [7].

Therorem 3.2. Let the norm of V, || - ||) be not weaker thafj - ||, andG = (N, E) a tensor network graph.
Further, assume that the tensor network grapghs a tree. Then every tensor netwdrk; introduced by the
tree G is a closed tensor format.

Proof. (Induction over the cardinality off, m := #F) In order to make notations not more difficult than

necessary, we assume that r; = --- = r,,. Initial Step: Follows direct from [7, Chapter 6]. Indudaiv

Step: LetG = (N, E) be a tensor network tree with + 1 = #FE andklim Uc(i*) = u € V. Choose an
— 00

edgee € E. SinceG is a tree, the edge subdivides into two tensor network sub treés, = (N1, F7) and
Go = (Ng, E5) with incidence mapg;, Zo. WhereN; = Nj, U Ny, and Ny = No, U Ny, are parameter
spaces of ordefd;, L) and(da, L2) respectively, see Definition 2.3 and Definition 2.4, sodth node ofG
is in Go. We introduce the following index sets:

F={veN:wleN ), [={veN: vt e N}, I§={veN:wkec Ny}, I5={veN:ovke N}

We can assume without loss of generality that the edayed the enumeration of the notes are chosen such that
e = {vq,,v4}. Furthermore, we have fdfg(i*)

uf = Ug(@b) = Y Us, (@5 (je)) ® U, (85 (i),

Je=1
with
Us,(@5(-) = > | [Twb@@) ] @ vpl@iw.i) @ vg (Zi(n ), ) € Viand (17)
JENZ) \VElT nel{\{di}
Uy (i5() = > | ] wb@w.i) | Q vi@alwh) @ vi(Talp, ), ) € Vs, (18)
JENT? \Vel3 pels\{d}
Wherefﬁ = ® Vi® M(](]Ngr, le) andf)g = ® Vi ® Mo(INgr, V).
neIf\{d1} nelz\{d}

The tensor spac¥ is isomorphic toV; ® V., whereV; = ®u€1f V, andV, = ®u€[§ V.. According to [7,
Chapter 6], there exist a decompositionuct klim u¥ in V; ® Vs such that
— 00

u= Z ui (i) ® ug(i), (' <) (19)



with smallest setd/; := {u1(i) € V1 :1<i<r'} andUs = {uz(i) € Vo :1 <i <’} linearly inde-
pendent. It remains to show that there are parameterg and aq(-) such thatu;(-) = Ug,(41(-)) and

uz(+) = Uy, (t2())-

LetU] = {u)(i) e V] : 1 <i <r'}andU; = {u)(i) € V45 : 1 <i <’} be the dual basis df; andUs. In
[7, Chapter 6] it is shown thafidy, ® u}(i))(u*) — up (i) and (u} (i) @ idy, ) (u¥) — us(4) for all
1 < < r/. After short calculation (using tensor contractions) weehthat

(idy, @ uy()(Ug(a¥) = > (Hw’:m(u,j))) Q) vi (i 5) @ 6, (Ta (. 5), -)),(20)

JENTL \velf pelf\{d1}

(W) () @idy,) (Ua(dF)) = > (Hw’;@(u,j))) Q) vi(Ta(i 1)) @ Ti(Ta(p §), ), (21)

JENT2 \vels neIs\{d}

where we define’; ((Z1(1,),-)) = Y. 1 us(-)(Uq, (u5(je)))vf, (Z1(p, §), Je)) € Mo(N<r, V) and
T(Za(ps §), ) = 225 =1 wh () (Ug, (Wi (5e)) v (T2 (i, §) Je)) € Mo(N<,, Va). Comparing the equations
(17) and (18) with (20) and (21), we see that there are pasasét(-) anda5(-) such that

(idy, ® up()(Ua(i*)) = Ug, (@5(-))
(u) () @idy,) (Ua(i*)) = Ug,(as5(-)).
Note that this is only possible if the network graphis a tree. Sincé&; andG» are tensor network trees

and),, the induction hypothesis shows that there are paramétérsandii (-) such thatu () = Ug, (t1(-))
andus(-) = Ug, (u2(+)). With Eq. (19) we finally have

,r./ /

u = Z Ui (]e) & U2 ]e Z UGI (0} (]6)) ® UG'2 (uQ(]e)) = UG(Q)v
Je=1 Je=1

wheret := (41, 42) € Py andr’ <r.

If the tensor network grap@y' is not a tree (it contains cycles), then the induced tenswark U, is in general

not closed, see [12, Landsberg et al., 2011]. We want to wredhiat in the interesting casedim(V),) <

3 (calculations in the second quantization of quantum mechgnthe analysis in [12] make no statement
about the closedness of tensor network formats. If the tergwesentation would be stable, we can ensure
closedness.

Definition 3.3 (Stable) LetUs : P — V be a tensor network v andr € IN™ a representation rank, where
G = (N, E) is atensor network graph ana := #FE.

(a) Foru € P we define
Tm L+d d
U,r) 1= ———— wy (T v
XU ( HUG’ a) ]121 ]Z <H| ) 1;[ lou (T
(b) Foru € RangeUg) we set

Xvg (u,r) == inf {xu, (4, 1) :u=Ug(a)}.



(c) The sequencg:*),en C Range(Ug ) is calledstable in Rang&Uc ), if

Xue (WP )kew, 7) = sup xu (u¥, ) < oo;
kEN

otherwise, the sequence is calledtable

Proposition 3.4. LetV = ®ﬁ:1 V., and suppose thalim V,, € IN. Furthermore, letG = (N, E) be a
tensor network graph anti, : P — V a tensor representation with representation rankif a sequence

(u*)rew C RanggUg,,) is stable and convergent, théimy, .. u* € Range(Ucg ).

Proof. Let (u*)reny € RanggUg,,) with limy, . u* and setc := 2y, ((u*)ren, 7). After choosing a

subsequenceéimy_,, u¥ = u holds with a representation systeth := (wf,...,wk o¥ ... v%)t € P such
that
Tm L+d
k
> 35 (T bzt 1) TT bzt i < o
Jji=1 Jm= v=d

The components of the parameter spa&ﬁz(y,l and vu( (1, j)) can be scaled equally so that all
{wh(Z(v,j)) € R: k € N} and{vi(Z(u,j)) € V, : k € N} are uniformly bounded. Choosing furthermore
a subsequence, limitd, (Z(v,j)) := limg_ oo wh(Z(v, ) and o, (Z(p,j)) = limg_o vE(Z(1, j)) eXists
and with the continuity ot/ it follows thatlimy, . u* = Ug, (@), wheret := (w1, ... 0,01, . ..,0q4)" €
P. |

4 Computation of derivatives in tensor representations

We would like to find a local minimizer by means of differemtzalculus in an arbitrary tensor format. Let
d+L
P := X P, aparameter space of ordet, L) andU : P — V atensor format. Before we can start with the

v=1
computation of the derivatives, we need to introduce thieviohg useful notation.

Notation 4.1. LetD :=d+ L,v € N<p andp := (p1,...,pp) € P. We define the following substitution

U,p): P, =V, uw—U,p)(u) :=U(p1,...,Pv—1,UDPyt1s---,PD)- (22)

The Fréchet derivativé/'(p) of U atp € P is a linear mapping fronP to V. Due to the multilinearity
of U, it may be expressed by the partial derivativeslofn directionp, € P, which we will denote by
dU(p)/dp, € L(P,V):={f: P —V : fisahomomorphisth The mappingiU(p)/dp, mapsu € P,, to

m U, (]5) (pm + hu) - Uy, (ﬁ)(]?yl)
dp., h—0 h

= Up, (9)(w).

Corollary 4.2. LetU be a tensor network as defined in Definition 2.6. For the phd@&ivatives we have

dU (8, 0) N :
o, W = S Z )| @ wulZ.4) | @)@ | Q) oulZnh) | (23)

J1=1 Jm= p=1 p=p1+1

— 2 (u) = Z Z H Z(d+ v, 5)) v(f)u(Z(, 4)), (24)

Ji=1 Jm=1lv=1 1/751/1
wherew(j) = [T, wy(Z(d +v,j)) andu(j) :== @y vu(Z(k, )).

10



Corollary 4.3. By the chain rule, the Fchet derivative of the functiondl := F o U : P — R from (3) at
pointa € P is given by
J'(4) = F'(U(a)) o U'(4). (25)

5 Tensor product subspaces and best approximation in tensaretworks

Let G = (N, E) be a tensor network graph of ordgf, L) in V andm := #E, whereV is the tensor

product of pre-Hilbert spaceéVU, {,) M). Furthermore, we define the two tensor network representati

Ur : Pg — V andU, : P, — Vintroduced byG with representation rankB = (Ry,..., R,,)! € N™ and

r=(ry,...,mm)" € N™ respectively, where we have
r < Ry, (26)
forall 1 < < m. Moreover, letz € V be represented itig, i.e. there i9r = (vr1,...,wr,) € Pr With
d
a = Ur(pr) Z Z (H wr,(Z(d+v Z))) @ vru(Z (1)) (27)
i1=1 im=1 n=1

In this section we are analyzing the following minimizatigroblem.

Problem 5.1(Representation Rank Minimizatianfor given representation rankB, r with 26, findp; € P,
such that

IUr(pr) — Ur(py)lly = inf [|[Ur(pr) — Ur(pr)lv- (28)
prEP,

For a convenient description of our results we need an edgmemation of the tensor network grapgh =
(N, E), i.e. abijective map : E — N<,, from the set of edge&’ to the sefN,,.

Therorem 5.2. Letp; = (vyy, ... ,wy 1) € P, be a solution of the representation rank minimization peoil

(28) andg the degree map ofr as defined in Definition 2.4. Then we have foralle N<; and all j €
Xa<i<g(u) Nereg)

vy, (3) €Uy = span{uRu( yeV,iie X ]NSRS(”}. (29)

1<i<g(p)

Proof. Assume there is p* € N<gand aj € X<j<y(.) N<r, ) With o ,(7°) & U, LetN,, : V,, — U, be

d d
the orthonormal projection frori, ontoU,,. Then it is straightforward to show thaf : @ V, - @ U, is
pn=1 pn=1

d d
the orthonormal projection fron§) V,, onto & U,,. After a short calculation, we have
p=1 p=1

1Ur(pr) = Ur03)Z = |Ur(pr) — NU (OIS + |U-(03) = NU (093
> ||Ur(pr) = NU (023

since because of; ,(j*) ¢ U, we can concludgU, (p;) — NU,(p;)|l,, > 0. Furthermore, we have

d
NG — S St (wa (1)) )@wuv:,u<z<u,z>>

Ji=1 jm=1
Uy ' =

= Ur(ﬁr*)a

11



~

Wher@r* = (Ar 1o 7{):,d7 w:,h R 7w:,L) € PT' ConsequentIMUR(pR) - Ur(ﬁ:)HV < HUR(Z?R) - Ur(p:)HV’
but this contradicts the fact thal/'r(pr) — U, (p))|lv = inf,, cp, ||Ur(pr) — Ur(pr)||v- [

Under the notations and premises of Theorem 5.2/dgt<c U, : | € IN<;, } be an orthonormal basis 6f,,
where we set, := dim U,,. If we are looking for a solution of the Problem 5.1, with treewf Theorem 5.2,

we can restrict our searchb:= ®ﬁ:1 U, Therefore, there areg (i) € R™ and¢,.,(j) € R™ such that

vru(®) = > (aru@)y 2,y and vru(G) = D (i), 210
l=1 lu=1

These equations induce a linear mappif)g: R — U,, with

UR,M(Z) = ZMO‘RM(D and va(i) = Zufr,u(i)7

wherei € X1<j<(u) N<r,,, andj € X1<<4() N<r,, - Furthermore, we have

R d
Z <HwR,, (d+v,i) >®1}R7M(Z(,u, 1))

tm=1

Ur(pr) = Z
Z <HwR,, (d+v,i) >®ZOZRM ,1))
1 im=1

Ry
=1
1=

K3
i

and

Ur(ﬁr)::

Corollary 5.3. From the definition of/;z and U, it is obvious thatl/ and U, are tensor networks i :=
®ﬁ:1 R!«, where the network topology is the same aslfarand U, respectively, since the incidence map is
the same for all tensor networks. Further, we have

UR(pR) = ZUR(ﬁR) and Ur(pr) = ZUT(ﬁr)a (30)
where wesef : S — U, 7 = ®z:1 Z,,. In addition

A

1Ur(om) = Us (o)l = (Tn(or) = Uplpr), 2 Z(On(pr) = Un(5,))) = |0n(or) - On(p)l3. - (D)

12



Corollary 5.4. Under the notations and premises of Theorem 5.2, we have that

|Ur(pr) — Ur(py)lly = pig; |Ur(pr) — Ur(pr)llv (32)
is equivalent to X R R X
IUr(Br) — Ur(By)lls = inf IUr(PR) — Ur(Br)lls- (33)
pr&Ly

For this reason, it is sufficient to consider the original ragpmation only inS. Hereby we have to assume
that in practice the computation of the orthonormal basis pénd the coefficients ; is reasonable. This fact
reduces the original potentially infinite dimensional apqimation to a finite minimization task.

6 Nonlinear block Gauss-Seidel method

So far we have developed all ingredients for applying stetegecent type algorithms. In the following section
let P = xle P, be a parameter space of orde; L), whereD := d + L, andU : P — V a tensor
representation. Further, Idt:= FoU : P — V — R be an objective function as defined in Problem 1.3. In
the following analysis, it is not required thétis a tensor network.
The nonlinear Gauss-Seidel (GS) method arises from ieratiethods used for linear systems of equations.
Intuitively, we may think of a generalized linear method efhreduces to a feasible iteration for nonlinear
systems. The direct extension of the linear Gauss-Seidéiadeo the nonlinear GS method is obvious.
Suppose that thee-th iterater® = (2%, ..., 2%)" and the first — 1 components} ™, ..., 2F ! of the (k +1)-
th iteratez*+! have been determined. H : Q ¢ R" — R™ has components functioris, . .., h,, then the
basic step of the the nonlinear GS, in analogy to the linese,da to solve théth equation

hl(xlfH, . ,xffll,xl,xfﬁrl, . xk) =0,

rrn

for x;, and to se‘tvé“rl = z;. Thus, in order to obtain**! from z*, we have to solve successively the

one-dimensional nonlinear equations.

From a mathematical point of view, the established alté@mgdeast square (ALS) method [2, 3] and the density
matrix renormalization group (DMRG) algorithm [9, 10, 16¢aonlinear block Gauss-Seidel methods, where
the DMRG algorithm is also called modified alternating lespiare method (MALS). In the DMRG method
we allow an enlargement of the parameter space and theiquairtg (blocking) of the parameter space is not
disjoint.

For the nonlinear block GS method, we want to describe thetsin by an explicit example in order to
motivate the abstract setting defined below. For this pwpassider a simple structured tensor network for
d = 3, e.g. the tensor train format as defined in Example 2.7. Timgotetrain representation is described by
the multilinear map

3
Urr @ Mo(N<p, Vi) x Mo(NZ,,V3) x Mo(N<,, V3) = (R) V,,
pn=1

b = (v1,v2,03) = Upp(0) = > > wi(j1) ® va(i1, j2) @ vs(j2),
J1=1j2=1

i.e. in our setting we have the parameter spAce P, x P x P3, whereP, = V], P, = V{Q, andP; = V3.
The ALS and the DMRG method are introduced by a partitionihthe parameter spade. The partitioning

13



{X1, X5, X3} for the ALS method is given by

P = P x{0} x{0} + {0}xP,x{0} + {0} x{0}x Ps

and the partitionind X3, X} for the DMRG method is defined by

P = P1><P2X{0} + {0}><P2XP3.
— —
=:X1 =:X>

For general cases, a partition of the coordinates is defiséallaws.

D
Definition 6.1 (Partition of Coordinates)Letp € INandP = X P, a parameter space of a tensor represen-
pn=1
tation. We call the sefX; C P : 1 <[ < p} apartition of coordinatesf P if:

0 P=3 X
=1

D
(i) EveryX;isofthe formX; = X X;,, whereX; , is either equal taP, or equal to the null spacé0p, }

pn=1
of P,.

We say{ X; C P :1 <[ < p}isadisjoint partition of coordinates we have

XiNnXy = {Op} forall1 < l,l/ <D.

For a convenient description of the nonlinear block GS netthe introduce the functiod;. Where for a given
partition of coordinateg X; C P : 1 <[ < p}, the functionJ; can be viewed as the restriction Hto the the
subsetX;, see Notation 6.2.

Notation 6.2. Let{X; ¢ P : 1 < < p} be a partition of coordinates aP and.J : P — R the objective
function from Problem 1.3. Further, et} := P\ X; be the complement df; in P. We define

J Xy x X[ = R, (z,27) = Ji(z, 27) = J(x) + x7).

Definition 6.3 (Nonlinear block Gauss-Seidel method)et {X; C P : 1 <[ < p} be a partition of coordi-
nates ofP andJ : P — IR the objective function. Theonlinear block Gauss-Seidel methistdescribed by
Algorithm 1.

Similar to the linear case one can extend the nonlinear Gaeisiel method to the nonlinear successive over-
relaxation method. The convergence analysis of the nani@S method is already discussed in the literature,
e.g. in[13, Ortega and Rheinboldt]. Generally speaking ctinvergence of the nonlinear GS method is locally
assigned by the convergence of the linear GS method appliftetHessia” (x*) of J at a pointx* € P
with J'(x*) = 0. Let us consider a block decomposition of the Hesslié(x)

I viock (X) = Dpiock(X) — Lpjock(X) — L pock (%)

into its block diagonal, strictly block lower-, and strictblock upper-triangular parts, where the blocking is
introduced by a disjoint partitioning of coordinates, angpose thaiy,..(x*) is nonsingular. Furthermore,
let H(x) be defined by

H (%) = [Dyiock(x) = Litock (%)] " Lijoer (%), (35)

14



Algorithm 1 Nonlinear block GS method
1: Choose initiakk! € P, and defing; := 1.
2: while Stop Conditiordo
32 for1<i<pdo
4: Computex; € X; such that

o01J; (X~17XC;€(Z)> = 0x,, (34)

wherexeF ") — (xk(l) - xf(l)) € X¢ andx*(!) € P is the current iteration point.

E(+1) |
X; = X].

end for
k— k+p.
end while

where H (x) is simply the GS iteration matrix for the linear systeffi(x)z = b. We can establish the fol-
lowing Theorem 6.4, whose proof follows directly from thg@ments used in [13, Theorem 10.3.5, p. 326].
Unfortunately, the proof of Theorem 10.3.5 does not matehnfinlinear block GS methods with a non-
disjoint partition of the coordinates, since the functiondefined in [13, Eq. (15), p. 326] does not fulfill
G‘(xk“,xk) = 0 for all & € INy. Therefore, we cannot apply Theorem 10.3.5 for methods evigtlapping
partition of the coordinates like the DMRG method.

Therorem 6.4. Let{X; C P : 1 <[ < p} be a partition of coordinates aP, J € C*(P,R) andx* € P a
parameter for which/’/(x*) = 0 and p (H(x*)) < 1, whereH (x*) is defined in Eq. (35) an@®y;..x (x*) is
nonsingular. Then there exists an environmBik*) of x* such that, for any initial guess! € B(x*), there
is a unique sequend&X) .y C B(x*) which satisfies the description of the nonlinear block GSofrom
Algorithm 1. Furthermorelim;,_, ., x¥ = x* is R-linear with R-convergence factpi H (x*)).

The statement of Theorem 6.4 provides useful a priori infdiom, even when it is not possible to ascertain in
advance thap (H (x*)) < 1. For quadratic functional$’ and the canonical tensor formidt p, the situation
J = F o Ugp is considered in [20].

7 Efficient numerical treatment

In this section, we want to explicitly describe the nonlineééock Gauss-Seidel method for two different
partitions of the coordinates. We want to express that thdimear block GS method can be performed
efficiently on certain formats.

We are going to consider a tensor chaig S := ®Z:1 R™ with (n1,...,nq) € N? and representation rank
(R1,...,R;) € IN? similarly to the tensor chain (TC) example in Section 2. Watta minimize
la — ull

which is equivalent to minimizing

Fule) = Tz (a2 + 50.2)).

where the quotienfa||* has been added for numerical reasons. We congigerfrom Eq. (14) with repre-
sentation rankry, ..., r4) € IN%. So.J of Eq. (3) is defined a$), o Ur¢, which we want to minimize in our
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experiments. We define

ApCipspsts o Jur1) = @uips ipr1), up (s Jut1)), 1<p<d-1
Aalig, i, ga, 1) = (aa(ix,ia)s ualit, ja))

Bu(]w]u—klvjwju 1) = <uu(jwju+1)7uu(jgvjlurl)% 1<p<d-1
Ba(ja, j1:Ja»j1) = (ua(ji, ja)s ua(it, ja))

such that

J(U1,...,Ud ||CLH2 ZZ HAu(iM7iM+1)jMaj,LL+1) Ad(idailyjdajl)
icl jeJ \p=1
- (36)

1 .
+§ZZ H j}“]u-f—h];u]u-i—l) Bd(]du?lv]élu?{)

j€I j'eJ \p=1

whereas) := {(l1,...,0q) : Ly =1,...,rpy, 1 < p < dp, 1= {(lh,...,0lg) : L, =1,...,R,, 1 < p < d}
andj, denotes thé:-th component of muIti—indeg‘.

7.1 Alternating least squares for the tensor chain format

As stated earlier, the ALS method is the nonlinear block G&midel method with disjoint partition of the
coordinates that is defined in Section 6.

For convenience, we will assunfe= d in our formulae and lemmata. In the following part, we want to
introduce some abbreviations, that will become handy lateWe define

Ry,...Re—1 Reqo,sRg ri,.re—1 Togo,T
Apgie,iet1,Je, Jer1) = > > > Z
i1yt 1=Ligq 2, ia=1j1,. . Je—1=1 ey 2,..,0a=1
d—1
T AuGusiurns g Gusr) | Aatiasin, jas 1)
p=1,pu#l

and
Te—1 To42 Te—1 To42

By (jes Jes1: o> Jo1) = Z o> ZZ > - Z

=l Jea=ljere=1 Ja=lji=1  j;_=1j;,,=1 ji=1
d—1
I BuGudurisdpsdpsr) | BaGas gr. g 3t)
p=1,p#L
which leads to a structure of Eq. (36) that pays respect tpahtiioning:

Ry Rey1r v 7Toegr

5 Agie,ies1, o, Jer1) Apg (ies e, Jos Jesr)
HGH

te=1ig11=17,=1jo41=1

Jo(ug, ug)

Te4+1 T Te4+1

5 Z S0 Bildeders dos dia) BigGes Jewas oo Joaa)

Je Vier1=14y=175, =1
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Setting this derivativea% Jo(ue, ug) equal to zero as in Eq. (34) in Algorithm 1, one has to solvestigation

(Am & [dn[) ay = (Bm &® Idw) u

ay = (
Rza RéJrl

where

Ay = <A[z %w+1,]é,ﬂ+1)) S
(Gerdes1)s(iesiest)
ue(1,1)
uy =
7“577”é+1
By = <Be] Jg,JgH,Je,Jm)) ‘

(j£7j[+l)7(jé7j2+1)

and consequently, we have to solve
|
w = (B @1d,,) (Ajg @ Idy,) ar = (Bl Ay @ Idy,) ar,

Remark 7.1. The existence cﬁm is not guaranteed in all cases. By, is not regular, its matrix-rank is
smaller thanry - 7411 and sinceBy, is @ Gramian matrix we can reduce the rankigf (Jes e 1, Jp o)

To make compact statements about the complexity of theitignrwe want to define := max;<,<q{r.},
R := max<,<q{R,} andn := max;<,<q{nu}

The question may arise, how to efficiently computg, and B(,. For one single entry ofA 4, the naive
approach (compute each term separately) ©in?~2R%2(d — 2)) such that the complete cost would be in
O(r*R4(d — 2)) which we want to avoid. A better approach it to treat each imafitry as an inner product
of two tensors in the MPS/TT format which@((d — 2)r2 R?). This improves the complete complexity to be
O((d — 2)r*R*) but this still allows improvements since we have consideach entry as a separate tensor
train inner product. If we take into account the connectietween each entry, we can improve the complexity
significantly. First, we introduce the definitions

<Au(iuviu+17ju7ju+1)) o eRBew e 1<y <d -1
AM e (tpsdn) (Gt 1,0 p+1)
<Au(id,i1,jd,j1)) € REaraxRir pn=d
(id>Ja),(i1,51)
and
<Bu(ju7ju+1ij7jL+1)>(, ). - c Rrﬁxriﬂ 1<pu<d-1
B,LL = . . ' . Jisdu)s ‘7“+1"]2H+12
<Bu(3d,31,1[1,]i)) o EeRmx n=d
(Jasdly)s(G1,31)

such that we can formulate the following lemma.

Lemma7.2.For1 </ <d-1andA,andB, for1 < ; < d as defined above,

=11 AT

p=0+1 p=1

(A[q(ie,ieﬂ,je,jeﬂ)) _

(te41,d041),(ie,7¢)
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and
d /—1
= 11 .11 8.
p=0+1 pu=1

hold true, soA, and By, can be interpreted as a product of matrices.

(Bm (Jes Jes1, Jos Je+1)>
(Je+1:3p41):(endp)

Proof. Without loss of generality; will be set equal td and we will only prove the equation fot(,. As the
first step, let us abbreviate

i4y.ig=1ja,....ja=1 \p=3

Ra,...;Rq Ta,...57q d—1
x((i3,73), (i1,71)) Z Z HAM(%%HJWJMH) Aq(in,id, 1, Ja)

which results in
(R3,r3)

Ap(in,d2, J1, Jj2) = Z As(iz, i3, j2, j3)2((73, J3), (i1, 1))
(i3,53)=(1,1)

such that we see

<A[e] (i57i€+17j£7j2+1)> . = <A2(i27i37j27j3)) <3€((i3713)7 (2‘17]'1))>

(ie+1:de+1)5(ie,e) (i2,52),(i3,53) (43,73),(i1,51)

Applying this procedure successively#@(is, j3), (i1, 71)) finishes the proof, since analogous arguments hold
for Bm |

Corollary 7.3. The computational cost @, is at most

O(dr3R3).

Analogously,By; € O(drf).

Note thatB, and A, are only after reshaping representable as a product ofeeatfcompare the definition
of By and A, with Lemma 7.2).

We want to give the concrete algorithm for ALS in the TC forpvehich is a specialized version of Algorithm
1. First, we have to give four short definitions

AP = <<ae(ie,ie+1),u§k)(je,je+1)>)_ o
(to+1:7de+1),(ie,de)
d
(k) ._ k (k k)
AY) = H AP, AY HA(
pu=L+1
Bé ) = <<u§ )(]z7]£+1)7U§ )(]67]6+1)>>(ﬂ+1 i G
2Je41):\90:7¢
(k) ‘ ® _ T
o k . k
BY) = H B, BY) = HB})
p=0+1 p=1

forke Nandl </<d-—1, whereuék) is thatu, which has been computed in cydle Additionally, we set

A®) ) 40 Z g _ gy
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Lemma 7.4. The computational cost r(TB[;}lAm ® Idw) ay is at most

(’)(drﬁ) + (’)(dr?’R?’) + (’)(n(TQR2 + 7”4))

if the matricesA,, and B, are given forl < ;. < d and if we consider reshaping of a matrix as a free operation.

Proof. From Lemma 7.2, we can conclude that the computational cod8f; is equal to the computational
cost ofd — 2 matrix-matrix multiplications of-> x 2 matrices such that

cost(Byy) € O((d - 2)r%)
and an analogous argument holds #oy;, such that
cost(Ag) € O((d — 2)r® R3)

since A, can be calculated as a productr@? x r 2 matrices. Computings[;}1 from By, has a complexity

of O(r%). The computation o(B[;}lAm ® Idw) ay can be done by one matrix-matrix multiplication without
having to performz1d,,, by consideringu, (i, i¢+1) as columns of, € R™¢*feRe1 such that

T T
<B[Z}1AW ® Id”f) a=a <B[?}1A[d) = a,ABy]

which finishes the proof bagA[%B[;]lT being in
O(n(r’R% + %))

if we computeégA%,_}] first. [ |

In cycle k, in the ¢-th step of Algorithm 1, we have to computég})Bg}“) andA(ng(fjl). Therefore, it

is more efficient to compute and stoBéfé) and A(fg in a prephase. Additionally, we will storB(fjl) and
A% in eachr-step sinceB ™) = BUTY B and A% ) = A% AT Y for1 < v <a - 1.
Lemma 7.5. One complete ALS cycle with prephase, as described in Afgor2, is at most

O(drb) + O(dr® R3) 4+ O(dn(r?R* + %))
in terms of complexity.
Proof. Follows from the described prephase and the proof of Lem#eha 7. |

Remark 7.6. The prephase described above needs additional storage'of dr?R2.

Remark 7.7. Computing the initially needef$, and A, for 2 < < dinLemma7.4and 7.5is in
@) (aln(rzR2 + 7"4))

in terms of the complexity.
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Algorithm 2 Alternating Least Squares (ALS) Method for the TC format

1: Choose initial/(!) = (u§1>, . ,ug)) € xﬁzl P, and parameter € R~. Defineg := J(uV)), k := 1.
2: while Ag > e do

33 B:=IdA:=1d
& ford-lab>1do (k) _ 4(0) A(K)
5 storeB_;) = B, 1By andAL) = Ay A,
6: end for
7: for~1 < €~§ d do )
8: B~ BB (= B = B
o0 A AAMY (s A= Ak

: /-1 A

- —1 -

10: ugkﬂ) = ((Teshape (B(jZ)B)) reshape <A(>k§A) ® Idvu) ay
11: end for

122 g+« J(uFth)
13: k= k+1
14: end while

7.2 DMRG for the tensor chain format

ALS does not adjust the ranks of the edges, so now, we wantatmseha slightly different approach: Instead
of fixing all nodes but one, we are fixing all nodes but two nbiled ones. So we are using the following
partition of coordinates as stated in Section 6.

In contrary to ALS, we do not have a disjoint partitioning athigives us the opportunity to adjust the rank
between nodegéand/ + 1 for 1 < ¢ < d — 1 and between nodesand1 since we do not have to fix_; and
r1, respectively.

From now on,1 < ¢ < d — 2 in order to keep the readability of the upcoming notations.
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Similar to the previous section, we want to define some usdfofeviations

Ri,..,Rp—1 Ryqs,.sRg 7T1,5me 1 Tegs,enT
Uyeenstg—1=1 004 3,.8g=1 J1,-..0e—1=1 Jo435--:Ja=1
d—1
H Au(iuaiu+17ju7ju+l) Ad(ilaidajlajd)7
p=1,pg{e,t+1}
T1yT0—1 043557 T1ye-T0—1 T0435--5T

Bioy(jes Jevas Jos Jova) = Z Z Z Z

Jisesde—1=1Jeq3,,ja= 1.717 7.7[,1—1.7[+37 7-7d_1

Ay (iey ie+2, Jo, Jot2)

d—1
IT  BuGusdusridpsdfcr) | BaGinsdas it i)
p=1ug{l,(+1}

Rpyq
aé,2+1(ié7ié+2) = Z ap(ig,ips1) @ apy1(ipr,ipra) € R
ipp1=1
and
Te41
ué,2+1(j27jé+2) = Z Ug(jg7jg+1) ® W+1(jé+1,jz+2) c R™Xne+1 (37)
Jer1=1

such that Eq. (36) with respect to the above written partitig is

Ry Ryyo 1y Tego

Jo(ug,e41,ugpy1) = ||GH2 =0 DT> aveliesiera), unesr (Ges Jes2)) A ey iega, e Jev2)

ty=11p42=17,=1jp42=1

T Te42 T Te42

+5 Z Z Z Z (we,e1(de, Jer2), W£+1(]g,Je+2)>B[£)(]Z,Jﬁ+2ajeaje+2)

Jz Lieya=1j)=174), ,=1

Setting this derivativ%ﬁ Jo(ug,e+1,u5 1) €qual to zero results in

(A[f) ® Idy, Xne+1) e+l = (B[Z) ® Idy, Xne+1) U +1

age1(1,1)
a1 =

ages1 Rz, Rz+2)

where

Ay = (A Zz,w+2,ﬂ,]z+2)) _
(Jesjes2),(ieyies2)
uge41(1,1)
Wyr+1 =
Ug 41 W,W+2)
By = (B[é Jb]uzd&]fu))

(j[7j€+2)7(j27j2+2)

such that we have to solve

! _
Uyl = < [g) ® Idn[wa) (Ajp) ® Idnyxng,,) A1 = <B[g)1A[£) ® Idngmm) a1
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in order to improve the approximation. This formula will gius allu, ¢, but what we need are all, and
ur+1. SO we have to separate . ; and the obvious way to do this is by using the singular valweugposition
(SVD). If we reorderuy . such that, with the component dimension af are the row index ané}.,; with
the component dimension af ; are the column index:

~ UZ(l,i)l u@+1(i, 1)1
Te4+1

. SVD Z ug(1,1)2 g1 (i, 1)2
UZ,ZJrl(ZZ, Zz+2)me’m£+l (mayig),(Mpat,iera) - : ® :
e Je+1=1

(e, i)ne U1 (4, 7042 g1
where we obtain the terms separated. Noteihat is the new rank for the edge between the optimized nodes.

Just as before it is now necessary to compAitg andBy) in an efficient way. That can be done similarly to
Lemma 7.2.

Lemma7.8.For1 </ <dandA,andB, for 1 < ; < d as defined in Section 7.1,

(A[z)(iz,ie+2,je,jé+2)) = 1T A 1]4

(to42,de+2),(ie,J0)

and

d -1
(B[e)(jé,je+2,jéajé+z)) , = [I B.IIBw

, o,
(Je+2:0040):(esdp) p—ii2 e

hold true, soA(,y and B can be interpreted as a product of matrices.

Proof. Analogous to Lemma 7.2. |

Lemma 7.9. Computing(B[;)lA[g) ® Idnexne+1> ag 41 isin

O(dr®) + O(dr*R?) + O(n?(r*R* + r)).
Proof. Analogous to the proof of Lemma 7.4. |

Similar to section 7.1, we add a prephase, which computestamisA(fg andB(fé) for2 < ¢ < d — 1 before

the k-th cycle. Then one complete DMRG cycle has a complexityalinie d.

Lemma 7.10. One DMRG cycle with prephase is in

O(dr®) + O(dr® R*) + O(dn®(r*R? + r*)) + O(dn*R?).

Proof. Follows directly from Lemma 7.9 and the complexity of thegsitar value decomposition being in
O(n®R3). [
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Algorithm 3 DMRG Method for the TC format

1: Choose initiahV) = (u{V, ... ,ufil)) € x!%_, P, and parameter € R-. Defineg := J(uV), k := 1.
2: while Ag > e do

-1
3: uék;rl) = <<reshape <Hﬁ;§ Bu)) reshape <Hﬁ;§ Au) ® Idndxn1> ag

4: [uékﬂ),ugkﬂ)] :=SVD (reshape (ugf;rl)))
5. B:=IdA:=1d
o ford = 1222w (K) _ 4 ) 4(R)
£ storeB_; = By 4By andAS, = AL Ay
8. end for
9: for~1§€~§d—1do )
10: B~ BB (= B = B
11: A AAFD (= A= ABy
-1 _
12: uékéfl) = ((reshape (B(>k€)+1B)) reshape <A(>kg+1A) ® Idwxn“1> ag 41
13: [uékﬂ),ugl_?l] :=SVD (reshape (u%ﬁ?))
14:  end for

15 g+« J(uFtD)
16: k—k+1
17: end while

7.3 Numerical experiments

After describing the ALS and DMRG algorithms for the TC fomae will perform some very basic experi-
ments with data that has been obtained from two—electregiiats.

Since the algorithmic description is about approximatingCatensor with another TC tensor, we first have to
convert the data, which is a full ordértensor, into a TC tensor without introducing a relevanteol T ten-
sor is a TC tensor where one representation rank componequé to one, so we will perform the conversion
with the procedure which is described in [15]BESVD algorithmand in [21] asVidal decompositiorin the
MPS context where we choose an approximation accura¢9of. This procedure gives us a TT tensor that
we will approximate with a TC tensor with the help of the désed algorithms ALS and DMRG.

We are using different molecules (NHnd H,O) as well as different (chemical) basis sets (STO-3G and 6-
31G) that lead to different vector space dimensions. Tha&lini = (Ry,..., Ry) is the representation rank
that we obtain while converting the full tensor to the TT fatnande is the relative error of the initial TT
tensor and the approximated TC tensor. We will w(it¢* instead of(a, a, a, a) in order to save space.

Another important factor for the experiments is the numbbeomplete ALS/DMRG iterations that are needed
to compute the approximations (we will denote them by “#itavhich immediately gives an impression about
the consumed time (together with the complexity estimates)

The initial guess for the TC approximation is chosen withftiilewing procedure:

il ACA
Z Uu—l(viu) ® uu(iw ) ~: Z U’M—l('viu) ® U’M(iuv )

ip=1 ip=1

for u = 2, 3,4 (1 = 1 analogously), such that, ; andu,, are getting reassigned, which is known as adaptive
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cross approximation (or ACA, see [1]). All computations preformed with the library [4].
The subsequent tables display our results that we couldnalgang Algorithms 2 and 3.

Table 1: Reduced representation ranks for AO integrals,i@ Hsing ALS

€
Basis set| dim(V,,) Initial r 102 1074 1076
r #iter. r #iter. r #iter.
STO-3G 7 (7,49,7,1) | (12* 34 (14* 61 (16)* 31
6-31G 13 (13,169,13,1) | (27)* 71 (40)* 82  (44)* 42

Table 2: Reduced representation ranks for AO integrals ig Msihg ALS

€
Basis set| dim(V},) Initial r 102 1074 1076
r #iter. r #iter. r #iter.
STO-3G 8 (8,64,8,1) | (14)* 97 (16)* 195 (18)* 90
6-31G 15 (15,225,15,1) | (33)* 29 (50)* 72 (55)* 39

Table 3: Reduced representation ranks for AO integrals,i@ Hsing DMRG

Basis set| dim(V,,) Initial r r € #iter.
STO-3G 7 (7,49,7,1) (43,7,7,7) 4.6-107° 1
6-31G 13 (13,169,13,1) | (162,13,13,13) | 2.3-1076 | 1

The conclusion of these experiments is, that we can use tf&méthod to even out the representation rank.
This can become an advantage when a TC tensor is treatedlgattitams that run in parallel over multiple
dimensions.
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