
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Optimization Problems in Contracted Tensor

Networks

(revised version: April 2012)

by

Mike Espig, Wolfgang Hackbusch, Stefan Handschuh, and Reinhold

Schneider

Preprint no.: 66 2011

Optimization Problems in Contracted Tensor Networks

Mike Espig∗ Wolfgang Hackbusch∗ Stefan Handschuh∗ Reinhold Schneider†

April 18, 2012

Abstract

We discuss the calculus of variations in tensor representations with a special focus on tensor networks
and apply it to functionals of practical interest. The survey provides all necessary ingredients for applying
minimization methods in a general setting. The important cases of target functionals which are linear
and quadratic with respect to the tensor product are discussed, and combinations of these functionals are
presented in detail. As an example, we consider the representation rank compression in tensor networks.
For the numerical treatment, we use the nonlinear block Gauss-Seidel method. We demonstrate the rate of
convergence in numerical tests.

Keywords: tensor format, tensor representation, tensor network, variational calculus in tensor networks.

1 Introduction

Different tensor formats are of large recent interest and there has been a competition between them in terms
of storage and computational efficiency. In this paper, we want to introduce a general approach that covers all
these rivaling formats.

We are going to address some general optimization problems such as best approximation, solution of linear
systems and minimization of the Rayleigh quotient in high dimensions. Here all tensors are represented in
tensor networks. For the numerical treatment we are use the nonlinear block Gauss-Seidel method. Let us start
with the description of our problem setting.

Let (Vµ, 〈, 〉Vµ
) be a real pre-Hilbert spaces andV :=

d⊗

µ=1
Vµ equipped with the induced inner product and

norm.

Notation 1.1. LetX be a vector space andf : X → R. We will use the short notationM(f,X) for the set of
minimizers of the induced minimization problem, i.e.

M(f,X) := {x ∈ X : f(x) = inf f(X)}. (1)

Problem 1.2. Given a functionalF : V → R and a setM ⊂ V, we are searching for a minimizer of the
constrained optimization problem where the original setM is confined to tensors which we can represent in a
parametrized way, i.e. we are searching for

u ∈M(F,M∩U), (2)

∗Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
†Technical University Berlin, Germany

1

whereU ⊂ V is the image of a multilinear mapU : P → V. The multilinear mapU is called a tensor format
from a parameter spaceP into the tensor product spaceV, see Definition 2.3 for an explicit description.

We will see that a contracted tensor network is a special tensor representation, see Definition 2.6 for more
details. Let us mention a few basic examples which are important in several practical applications in high
dimensions.

(i) The approximation ofv ∈ V in a specific tensor representation, i.e.F (u) = ‖u− v‖2, u ∈ U .

(ii) The solution of equationsAu = b or g(u) = 0 whereA, g : V → V ′. Here we haveF (u) = ‖Au− b‖2V ′

resp.‖g(u)‖V ′ .

(iii) If A : V → V ′ is bounded, symmetric and coercive with respect to||.||V andb ∈ V ′ given, we may
instead of the first functional in (ii) focus onF (u) := 1

2 〈Au, u〉 − 〈b, u〉.

(iv) Computation of the lowest eigenvalue of a symmetric operatorA : V → V ′ by minimizing the Rayleigh
quotient:F (u) := 〈Au, u〉/〈u, u〉 overM = V\{0}. This problem is equivalent to the minimization
problem

find u ∈M
(
F, {u ∈ U : ||u|| = 1}

)
.

In the first three examples we haveM∩ U = U , while in the last example we have an additional constraint,
namelyM = {W ∈ V : 〈W,W 〉 = 1}.

The case of interest for our work is summarized in the following abstractly formulated Problem 1.3.

Problem 1.3. For a given functionF : V → R and a tensor formatU : P → V we consider the following
problem:

findu ∈M(J,M), J := F ◦ U : P → V → R andM ⊆ P. (3)

We call the functionJ : P → R objective function.

2 Mathematical description of tensor formats and tensor networks

A tensor format is described by the parameter space and a multilinear map into the tensor space of higher order.
The parameter space consist of two different types of parameters: the parameters of vector space meaning and
interior parameters. We will describe this in more details below. Let in the followingV =

⊗d
µ=1 Vµ be the

tensor product of vector spacesV1, . . . , Vd.

Notation 2.1. LetA ∈ {R, V1, . . . , Vd}, ℓ ∈ N0 := N∪ {0}, andNℓ :=
ℓ

×
ν=1

N (1 ≤ ℓ). The set of maps with

finite support fromNℓ into A is defined by

M0(N
ℓ, A) :=

{
A, ℓ = 0,
{
u : Nℓ → A |#supp(u) ∈ N

}
, ℓ ≥ 1.

(4)

The natural numberℓ is called thedegreeof u ∈ M0(N
ℓ, A). # denotes the cardinality of a set.

Let us start with an example for pointing out our further intentions.

2

v1 v2
w

j1 j2

Figure 1: The tensor network graph of the tensor network fromExample 2.2.

Example 2.2. A tensor network is described by its tensor network graphG = (N,E). An example of a tensor
network graph is plotted in Figure 1. The set of nodesN contains two different types of nodes, i.e. we have
N = {v1, v2} ∪ {w}. The set for vertices of vector space meaning{v1, v2} and the set of nodes for the

coefficients{w}, where in Figure 1 the symbol stands for nodes of vector space meaning and the symbol
denotes vertices for the coefficients. We have two edgesE = {{v1, w}, {w, v2}} in our example. The tensor
network format introduced by the tensor network graph is thefollowing multilinear map:

UG : M0(N
2,R)×M0(N, V1)×M0(N, V2)→ V1 ⊗ V2

(w, v1, v2) 7→ UG(w, v1, v2) :=
∞∑

j1=1

∞∑

j2=1

w(j1, j2)
︸ ︷︷ ︸

∈R

v1(j1)
︸ ︷︷ ︸

∈V1

⊗ v2(j2)
︸ ︷︷ ︸

∈V2

,

where for a better understanding the edges are identified by there corresponding summation indices, i.e.j1 ≃
{v1, w} and j2 ≃ {w, v2}. For given so called representation ranksr = (r1, r2) ∈ N

2, the tensor network
representationUG, r introduced by the tensor network formatUG is the restriction ofUG ontoM0(N≤r1 ×
N≤r2 ,R)×M0(N≤r1 , V1)×M0(N≤r2 , V2), i.e.

UG, r(w, v1, v2) :=

r1∑

j1=1

r2∑

j2=1

w(j1, j2)v1(j1)⊗ v2(j2),

Notice that the representation rankr refers to the support of the representation system(w, v1, v2) and not to
the represented tensor.

Definition 2.3 (Parameter Space, Tensor Format). Letd, L ∈ N0 and furthermoreℓ1, . . . , ℓd, ℓ̃1, . . . , ℓ̃L ∈ N0.

The vector spaceS of parameters of vector space meaning forV is defined by

S :=
d

×
µ=1

M0(N
ℓµ , Vµ). (5)

In a similar way we define the spaceC for the interior parameter

C :=
L

×
ν=1

M0(N
ℓ̃ν ,R). (6)

We call the Cartesian product
Pd,L = S × C (7)

a parameter spaceof order(d, L). A tensor formatof order(d, L) in V is a multilinear map

U : Pd,L → V (8)

from the parameter space into the tensor space.

3

We will see in the following that a tensor network is a specialtensor format, where the definition of a tensor
network is based on the tensor network graph.

Definition 2.4 (Tensor Network Graph, Degree Map). Let

Ns =






vµ ∈

⋃

ℓ∈N0

M0(N
ℓ, Vµ) : 1 ≤ µ ≤ d







be a set of nodes of vector space meaning with#Ns = d and

Nc =






wν ∈

⋃

ℓ∈N0

M0(N
ℓ,R) : 1 ≤ ν ≤ L







be a finite subset of nodes of interior parameters with#Nc = L. Further letN := Ns ∪ Nc and E ⊂
{{n1, n2} : n1, n2 ∈ N,n1 6= n2} ⊂ P(N) a set of edges. We call the finite graphG := (N,E) a tensor
network graph inV of order(d, L). Thedegree mapof G is defined asg : N → N, n 7→ #{e ∈ E : n ∈ e},
such thatg assigns each element ofN the number of edges, it is connected to.

In graph theory there are different ways to describe a graph.For our work, the most useful is the incidence
map.

Definition 2.5 (Incidence Map). LetG = (N,E) be a tensor network graph of order(d, L). Since we have
chosen all tensor network graphs to be finite, we can select anedge enumeration, i.e. there is a bijective map
e : N≤m → E, wherem := #E. We call the map

I : N ×
m

×
ℓ=1

N→
m⋃

ℓ=1

N
ℓ (9)

(n, j1, . . . , jm) 7→ I(n, j) := (jℓ : 1 ≤ ℓ ≤ m,n ∈ e(ℓ)) . (10)

the incidence mapof G, where the order of thejℓ is being preserved.

We will not distinguish betweenN andN≤d+L such that we identify both sets with each other, i.e. there isa
bijective mapϕ : N≤d+L → N such that we can uniquely identifyµ ∈ N≤d+L with n = ϕ(µ). If it is clear
from context we simply writeµ with the meaning ofϕ(µ), (µ ≃ ϕ(µ)). Further, if1 ≤ µ ≤ d thenn ∈ Ns

andn ∈ Nc otherwise.

Definition 2.6 (Tensor Network Format, Tensor Network Representation). LetG = (N,E) be a tensor net-
work graph of order(d, L) andm := #E. Furthermore, letI be the incidence map andg the degree map of
G. We define the following tensor formatUG as atensor network format inV.

UG :
d

×
µ=1

M0(N
g(µ), Vµ) ×

L

×
ν=1

M0(N
g(d+ν),R)→ V (11)

(v1, . . . , vd, w1, . . . , wL) 7→
∞∑

j1=1

· · ·
∞∑

jm=1

(
L∏

ν=1

wν(I(d+ ν, j))

)
d⊗

µ=1

vµ(I(µ, j)).

Thetensor network representationUG, r with representation rankr = (r1, . . . , rm) ∈ N
m is defined as

UG,r :
d

×
µ=1

M0(N
g(µ), Vµ) ×

L

×
ν=1

M0(N
g(d+ν),R)→ V (12)

(v1, . . . , vd, w1, . . . , wL) 7→
r1∑

j1=1

· · ·
rm∑

jm=1

(
L∏

ν=1

wν(I(d+ ν, j))

)
d⊗

µ=1

vµ(I(µ, j)).

4

We sayu = UG,r(v1, . . . , vd, w1, . . . , wL) ∈ RangeUG,r ⊂ V is represented in the tensor network format
with representation rankr ∈ N

m. Furthermore, we call the tuple of parameters(v1, . . . , vd, w1, . . . , wL) a
representation systemof u with representation rankr.

Note that due to the multilinearity ofUG,r a representation system is not uniquely determined. We wantto
illustrate the abstract definition of the tensor network on further examples. The most recent tensor represen-
tations are tensor networks, e.g. hierarchical tensor format [8, Hackbusch and Kühn, 2009], [6, Grasedyck,
2010], the tree Tucker format (TT) [19, 14, Oseledets and Tyrtyshnikov, 2009], where the TT tensor format
is also called tensor train format. The Tucker decomposition is also a tensor network format, see Figure 2 for
illustration. The canonical polyadic decomposition (CP) for tensor ranks greater than one andd > 2 is not
a tensor network. But, it is easy to illustrate that the canonical polyadic tensor representation ford = 2 is a
tensor network for any rank.

v1

v2 v3

(a) Elementary Tensor (CP with
r = 1)

v1

v2 v3

w1

j1

j2 j3

(b) Tucker

Figure 2: The tensor network graph of the canonical polyadic(rank is one) and the Tucker format ford = 3.

Example 2.7. Our first example of a tensor network is the hierarchical tensor format ford = 4. Where the
tensor network graph of order(4, 3) is shown in Figure 3. The mapIH : N ××6

l=1 N→
⋃6

l=1 N
l is defined

w1

w2 w3

v1 v2 v3 v4

j5 j6

j1 j2 j3 j4

Figure 3: The tensor network graph of the hierarchical tensor format ford = 4.

5

by

IH(n, (j1, . . . , j6)) :=







(j1), n = 1;
(j2), n = 2;
(j3), n = 3;
(j4), n = 4;
(j5, j6), n = 5;
(j1, j2, j5), n = 6;
(j3, j4, j6), n = 7.

Furthermore, the multilinear map for the hierarchical tensor format is

UH(v1, . . . , w3) :=
∑

j∈N6

w1(j5, j6)w2(j1, j2, j5)w3(j3, j4, j6) v1(j1)⊗ v2(j2)⊗ v3(j3)⊗ v4(j4). (13)

v1 v2 v3 v4

j1 j2 j3

Figure 4: The tensor network graph of the tensor train formatfor d = 4.

Next, we want to consider the tensor train format ford = 4. The tensor network graph of order(4, 0) is
illustrated in Figure 4. We see that the degree of the nodesv1 andv2 is equal to1. Furthermore, the degree of
the nodesv2, v3 is2 and the number of edges in the graph is3. For this example, the mapITT : N××3

l=1N→⋃3
l=1N

l is defined by

ITT (n, (j1, j2, j3)) :=







(j1), n = 1;
(j1, j2), n = 2;
(j2, j3), n = 3;
(j3), n = 4.

Finally, for the tensor network representation with representation rankr = (r1, r2, r3) ∈ N
3 we have

UTT, r(v1, . . . , v4) :=

r1∑

j1=1

r2∑

j2=1

r3∑

j3=1

v1(j1)⊗ v2(j1, j2)⊗ v3(j2, j3)⊗ v4(j3).

Another example of a tensor network is the tensor chain (see [11]). The network graph of the tensor chain

v1

v2v3

j1 j2

j3

Figure 5: The tensor network graph of the tensor chain ford = 3.

6

is presented in Figure 5 ford = 3 and the tensor network representationUTC, r with representation rank
r = (r1, r2, r3) ∈ N

3 is defined by

UTC, r(v1, . . . , v3) :=

r1∑

j1=1

r2∑

j2=1

r3∑

j3=1

v1(j1, j2)⊗ v2(j2, j3)⊗ v3(j1, j3). (14)

The so called projected entangled-pair states (PEPS) offers an efficient tensor network of certain many-body
states of a lattice system, see e.g. [18], [17]. Ford = 6, the tensor network graph of the PEPS tensor network
is shown in Figure 6.

v1 v2 v3

v4 v5 v6

j1 j2

j3

j4j5

j6 j7

Figure 6: The tensor network graph of the PEPS ford = 6.

The multilinear map of the PEPS with equal representation ranksr ∈ N is given by

UPEPS,r(v1, . . . , v6) :=
∑

j∈N7
≤r

ṽ(j)⊗ v̂(j), (15)

where

ṽ(j) := v1(j1, j6)⊗ v2(j1, j2, j7)⊗ v3(j2, j3),

v̂(j) := v4(j5, j6)⊗ v5(j4, j5, j7)⊗ v6(j3, j4).

3 Closedness of tensor network formats

The following section is of interest for optimization problems in tensor networks. The main statements of
Theorem 3.2 and Proposition 3.4 can be summarized as follows. Assume, we have a sequence(uk)k∈N in V
with lim

k→∞
uk = u and everyuk is presented in a tensor networkUG : Pd,L → V with representation rankr,

i.e. there iŝuk ∈ Pd,L with uk = UG,r(ûk) (see Definition 2.6). The crucial question is whether we represent
u in UG,r, i.e. is therêu ∈ Pd,L such thatu = UG,r(û).
In the following letG := (N,E) be a tensor network graph of order(d, L), m := #E, andUG : Pd,L → V
the tensor network introduced by the network graphG, as described in Definition 2.6.

Definition 3.1 (Closed). A tensor network formatUG : Pd,L → V is calledclosed, if for every representation
rank r ∈ N

m the image of the corresponding tensor network representation UG,r : Pd,L → V is a closed set
in (V, ‖ · ‖).

In order to prove the statement of Theorem 3.2 one needs further assumption on the norm of(V ‖ · ‖). The
norm of (V, ‖ · ‖) is supposed to be not weaker then the induced injective norm‖ · ‖∨, where the injective

7

norm onV is defined by

‖x‖∨ := sup
06=v∗µ∈V

∗
µ ,µ∈N≤d

{

|(v∗1 ⊗ . . .⊗ v∗d)(x)|
∏d

µ=1 ‖vµ‖V ∗
µ

: 0 6= vµ ∈ V ∗
µ , 1 ≤ µ ≤ d

}

, (16)

see [5].

Falcó and Hackbusch showed in [5] that the tensor subspace representation is closed. Therefore, the Tucker,
the tensor train and the hierarchical tensor format is a closed tensor format, see [7, Chapter 6]. The following
Theorem 3.2 shows that arbitrary tree structured tensor networks are closed. The basic idea for the proof is not
explained in [5] and [7].

Therorem 3.2. Let the norm of(V, ‖ · ‖) be not weaker than‖ · ‖∨ andG = (N,E) a tensor network graph.
Further, assume that the tensor network graphG is a tree. Then every tensor networkUG introduced by the
treeG is a closed tensor format.

Proof. (Induction over the cardinality ofE, m := #E) In order to make notations not more difficult than
necessary, we assume thatr = r1 = · · · = rm. Initial Step: Follows direct from [7, Chapter 6]. Inductive
Step: LetG = (N,E) be a tensor network tree withm + 1 = #E and lim

k→∞
UG(û

k) = u ∈ V. Choose an

edgee ∈ E. SinceG is a tree, the edgee subdividesG into two tensor network sub treesG1 = (N1, E1) and
G2 = (N2, E2) with incidence mapsI1, I2. WhereN1 = N1s ∪ N1c andN2 = N2s ∪ N2c are parameter
spaces of order(d1, L1) and(d2, L2) respectively, see Definition 2.3 and Definition 2.4, so thed-th node ofG
is in G2. We introduce the following index sets:

Ic1 = {ν ∈ N : wk
ν ∈ N1c}, I

s
1 = {ν ∈ N : vkν ∈ N1s}, I

c
2 = {ν ∈ N : wk

ν ∈ N2c}, I
s
2 = {ν ∈ N : vkν ∈ N2s}.

We can assume without loss of generality that the edgee and the enumeration of the notes are chosen such that
e = {vd1 , vd}. Furthermore, we have forUG(û

k)

uk := UG(û
k) =

r∑

je=1

UG1(û
k
1(je))⊗ UG2(û

k
2(je)),

with

UG1(û
k
1(·)) =

∑

j∈N
m1
≤r




∏

ν∈Ic1

wk
ν(I1(ν, j))




⊗

µ∈Is1\{d1}

vkµ(I1(µ, j))⊗ vkd1((I1(µ, j), ·)) ∈ Ṽ1 and (17)

UG2(û
k
2(·)) =

∑

j∈N
m2
≤r




∏

ν∈Ic2

wk
ν(I2(ν, j))




⊗

µ∈Is2\{d}

vkµ(I2(µ, j))⊗ vkd((I2(µ, j), ·)) ∈ Ṽ2, (18)

whereṼ1 :=
⊗

µ∈Is1\{d1}

Vµ ⊗M0(N≤r, Vd1) andṼ2 :=
⊗

µ∈Is2\{d}

Vµ ⊗M0(N≤r, Vd).

The tensor spaceV is isomorphic toV1 ⊗ V2, whereV1 =
⊗

µ∈Is1
Vµ andV2 =

⊗

µ∈Is2
Vµ. According to [7,

Chapter 6], there exist a decomposition ofu = lim
k→∞

uk in V1 ⊗ V2 such that

u =

r′∑

i=1

u1(i)⊗ u2(i), (r′ ≤ r) (19)

8

with smallest setsU1 := {u1(i) ∈ V1 : 1 ≤ i ≤ r′} and U2 := {u2(i) ∈ V2 : 1 ≤ i ≤ r′} linearly inde-
pendent. It remains to show that there are parametersû1(·) and û2(·) such thatu1(·) = UG1(û1(·)) and
u2(·) = UG2(û2(·)).

Let U ′
1 = {u′1(i) ∈ V

′
1 : 1 ≤ i ≤ r′} andU ′

2 = {u′2(i) ∈ V
′
2 : 1 ≤ i ≤ r′} be the dual basis ofU1 andU2. In

[7, Chapter 6] it is shown that(idV1 ⊗ u′2(i))(u
k) −−−→

k→∞
u1(i) and(u′1(i) ⊗ idV2)(u

k) −−−→
k→∞

u2(i) for all

1 ≤ i ≤ r′. After short calculation (using tensor contractions) we have that

(idV1 ⊗ u′2(·))(UG(û
k)) =

∑

j∈N
m1
≤r




∏

ν∈Ic1

wk
ν(I1(ν, j))




⊗

µ∈Is1\{d1}

vkµ(I1(µ, j))⊗ ṽkd1((I1(µ, j), ·)),(20)

(u′1(·)⊗ idV2)(UG(û
k)) =

∑

j∈N
m2
≤r




∏

ν∈Ic2

wk
ν(I2(ν, j))




⊗

µ∈Is2\{d}

vkµ(I2(µ, j))⊗ ṽkd((I2(µ, j), ·)), (21)

where we definẽvkd1((I1(µ, j), ·)) :=
∑r

je=1 u
′
2(·)(UG2(u

k
2(je)))v

k
d1
((I1(µ, j), je)) ∈ M0(N≤r, Vd1) and

ṽkd((I2(µ, j), ·)) :=
∑r

je=1 u
′
1(·)(UG1(u

k
1(je)))v

k
d ((I2(µ, j), je)) ∈ M0(N≤r, Vd). Comparing the equations

(17) and (18) with (20) and (21), we see that there are parametersûk1(·) andûk2(·) such that

(idV1 ⊗ u′2(·))(UG(û
k)) = UG1(û

k
1(·))

(u′1(·)⊗ idV2)(UG(û
k)) = UG2(û

k
2(·)).

Note that this is only possible if the network graphG is a tree. SinceG1 andG2 are tensor network trees iñV1
andṼ2, the induction hypothesis shows that there are parametersû1(·) andû2(·) such thatu1(·) = UG1(û1(·))
andu2(·) = UG2(û2(·)). With Eq. (19) we finally have

u =
r′∑

je=1

u1(je)⊗ u2(je) =
r′∑

je=1

UG1(û1(je))⊗ UG2(û2(je)) = UG(û),

whereû := (û1, û2) ∈ Pd,L andr′ ≤ r.

�

If the tensor network graphG is not a tree (it contains cycles), then the induced tensor networkUG is in general
not closed, see [12, Landsberg et al., 2011]. We want to mention that in the interesting case ifdim(Vµ) ≤
3 (calculations in the second quantization of quantum mechanics), the analysis in [12] make no statement
about the closedness of tensor network formats. If the tensor representation would be stable, we can ensure
closedness.

Definition 3.3 (Stable). LetUG : P → V be a tensor network inV andr ∈ N
m a representation rank, where

G = (N,E) is a tensor network graph andm := #E.

(a) For û ∈ P we define

χUG
(û, r) :=

1

‖UG(û)‖

r1∑

j1=1

· · ·
rm∑

jm=1

(
L+d∏

ν=d

|wν(I(ν, j))|

)
d∏

µ=1

‖vµ(I(µ, j))‖.

(b) For u ∈ Range(UG) we set

χUG
(u, r) := inf {χUG

(û, r) : u = UG(û)} .

9

(c) The sequence(uk)k∈N ⊂ Range(UG,r) is calledstable in Range(UG,r), if

χUG
((uk)k∈N, r) := sup

k∈N
χUG

(uk, r) <∞;

otherwise, the sequence is calledinstable.

Proposition 3.4. Let V =
⊗d

µ=1 Vµ and suppose thatdimVµ ∈ N. Furthermore, letG = (N,E) be a
tensor network graph andUG,r : P → V a tensor representation with representation rankr. If a sequence
(uk)k∈N ⊂ Range(UG,r) is stable and convergent, thenlimk→∞ uk ∈ Range(UG,r).

Proof. Let (uk)k∈N ⊂ Range(UG,r) with limk→∞ uk and setc := 2χUG
((uk)k∈N, r). After choosing a

subsequence,limk→∞ uk = u holds with a representation system̂uk := (wk
1 , . . . , w

k
L, v

k
1 , . . . v

k
d)

t ∈ P such
that

r1∑

j1=1

· · ·
rm∑

jm=1

(
L+d∏

ν=d

|wk
ν(I(ν, j))|

)
d∏

µ=1

‖vkµ(I(µ, j))‖ ≤ c‖u‖.

The components of the parameter spacewk
ν(I(ν, j)) and vkµ(I(µ, j)) can be scaled equally so that all

{wk
ν (I(ν, j)) ∈ R : k ∈ N} and{vkµ(I(µ, j)) ∈ Vµ : k ∈ N} are uniformly bounded. Choosing furthermore

a subsequence, limits̃wν(I(ν, j)) := limk→∞wk
ν(I(ν, j)) and ṽµ(I(µ, j)) := limk→∞ vkµ(I(µ, j)) exists

and with the continuity ofUG it follows that limk→∞ uk = UG,r(ũ), whereũ := (w̃1, . . . , w̃L, ṽ1, . . . , ṽd)
t ∈

P . �

4 Computation of derivatives in tensor representations

We would like to find a local minimizer by means of differential calculus in an arbitrary tensor format. Let

P :=
d+L

×
ν=1

Pν a parameter space of order(d, L) andU : P → V a tensor format. Before we can start with the

computation of the derivatives, we need to introduce the following useful notation.

Notation 4.1. LetD := d+ L, ν ∈ N≤D and p̂ := (p1, . . . , pD) ∈ P . We define the following substitution

Uν(p̂) : Pν → V, u 7→ Uν(p̂)(u) := U(p1, . . . , pν−1, u, pν+1, . . . , pD). (22)

The Fréchet derivativeU ′(p̂) of U at p̂ ∈ P is a linear mapping fromP to V. Due to the multilinearity
of U , it may be expressed by the partial derivatives ofU in direction pν ∈ Pν which we will denote by
dU(p̂)/dpν ∈ L(P,V) := {f : P → V : f is a homomorphism}. The mappingdU(p̂)/dpν mapsu ∈ Pν1 to

dU(p̂)

dpν1
(u) = lim

h→0

Uν1(p̂)(pν1 + hu)− Uν1(p̂)(pν1)

h
= Uν1(p̂)(u).

Corollary 4.2. LetU be a tensor network as defined in Definition 2.6. For the partial derivatives we have

dU(v̂, ŵ)

dvµ1

(u) =

∞∑

j1=1

· · ·
∞∑

jm=1

w(j)





µ1−1
⊗

µ=1

vµ(I(µ, j))



 ⊗ u(I(µ1, j))⊗





d⊗

µ=µ1+1

vµ(I(µ, j))



 ,(23)

dU(v̂, ŵ)

dwν1

(u) =
∞∑

j1=1

· · ·
∞∑

jm=1

L∏

ν=1, ν 6=ν1

wν(I(d+ ν, j)) v(j)u(I(ν1, j)), (24)

wherew(j) :=
∏L

ν=1wν(I(d+ ν, j)) andv(j) :=
⊗d

µ=1 vµ(I(µ, j)).

10

Corollary 4.3. By the chain rule, the Fŕechet derivative of the functionalJ := F ◦ U : P → R from (3) at
point û ∈ P is given by

J ′(û) = F ′(U(û)) ◦ U ′(û). (25)

5 Tensor product subspaces and best approximation in tensornetworks

Let G = (N,E) be a tensor network graph of order(d, L) in V andm := #E, whereV is the tensor

product of pre-Hilbert spaces
(

Vv, 〈, 〉µ

)

. Furthermore, we define the two tensor network representations

UR : PR → V andUr : Pr → V introduced byG with representation ranksR = (R1, . . . , Rm)t ∈ N
m and

r = (r1, . . . , rm)t ∈ N
m respectively, where we have

rl ≤ Rl, (26)

for all 1 ≤ l ≤ m. Moreover, leta ∈ V be represented inUR, i.e. there ispR = (vR,1, . . . , wR,L) ∈ PR with

a = UR(pR) =

R1∑

i1=1

· · ·
Rm∑

im=1

(
L∏

ν=1

wR,ν(I(d+ ν, i))

)
d⊗

µ=1

vR,µ(I(µ, i)). (27)

In this section we are analyzing the following minimizationproblem.

Problem 5.1(Representation Rank Minimization). For given representation ranksR, r with 26, findp∗r ∈ Pr

such that
‖UR(pR)− Ur(p

∗
r)‖V = inf

pr∈Pr

‖UR(pR)− Ur(pr)‖V . (28)

For a convenient description of our results we need an edge enumeration of the tensor network graphG =
(N,E), i.e. a bijective mape : E → N≤m from the set of edgesE to the setN≤m.

Therorem 5.2. Letp∗r = (v∗r,1, . . . , w
∗
r,L) ∈ Pr be a solution of the representation rank minimization problem

(28) andg the degree map ofG as defined in Definition 2.4. Then we have for allµ ∈ N≤d and all j ∈
×1≤l≤g(µ) N≤re(l)

v∗r,µ(j) ∈ Uµ := span

{

vR,µ(i) ∈ Vµ : i ∈ ×
1≤l≤g(µ)

N≤Re(l)

}

. (29)

Proof. Assume there is aµ∗ ∈ N≤d and aj ∈ ×1≤l≤g(µ)N≤re(l) with v∗r,µ(j
∗) /∈ Uµ. LetNµ : Vµ → Uµ be

the orthonormal projection fromVµ ontoUµ. Then it is straightforward to show thatN :
d⊗

µ=1
Vµ →

d⊗

µ=1
Uµ is

the orthonormal projection from
d⊗

µ=1
Vµ onto

d⊗

µ=1
Uµ. After a short calculation, we have

‖UR(pR)− Ur(p
∗
r)‖

2
V = ‖UR(pR)−NUr(p

∗
r)‖

2
V + ‖Ur(p

∗
r)−NUr(p

∗
r)‖

2
V

> ‖UR(pR)−NUr(p
∗
r)‖

2
V

since because ofv∗r,µ(j
∗) /∈ Uµ we can conclude‖Ur(p

∗
r)−NUr(p

∗
r)‖V > 0. Furthermore, we have

NUr(p
∗
r) =

r1∑

j1=1

· · ·
rm∑

jm=1

(
L∏

ν=1

w∗
r,ν(I(d+ ν, j))

)
d⊗

µ=1

Nµv
∗
r,µ

︸ ︷︷ ︸

v̂∗r,µ:=

(I(µ, j))

= Ur(p̂r
∗),

11

wherep̂r
∗ := (v̂∗r,1, . . . , v̂

∗
r,d, w

∗
r,1, . . . , w

∗
r,L) ∈ Pr. Consequently‖UR(pR)− Ur(p̂

∗
r)‖V < ‖UR(pR)− Ur(p

∗
r)‖V ,

but this contradicts the fact that‖UR(pR)− Ur(p
∗
r)‖V = infpr∈Pr ‖UR(pR)− Ur(pr)‖V . �

Under the notations and premises of Theorem 5.2, let{zlµ ∈ Uµ : l ∈ N≤tµ} be an orthonormal basis ofUµ,
where we settµ := dimUµ. If we are looking for a solution of the Problem 5.1, with the use of Theorem 5.2,
we can restrict our search toU :=

⊗d
µ=1 Uµ. Therefore, there areαR,µ(i) ∈ R

tµ andξr,µ(j) ∈ R
tµ such that

vR,µ(i) =

tµ∑

lµ=1

(αR,µ(i))lµzlµµ and vr,µ(j) =

tµ∑

lµ=1

(ξr,µ(j))lµzlµµ.

These equations induce a linear mappingZµ : Rtµ → Uµ with

vR,µ(i) = ZµαR,µ(i) and vr,µ(j) = Zµξr,µ(j),

wherei ∈×1≤l≤g(µ) N≤Re(l)
andj ∈×1≤l≤g(µ)N≤re(l) . Furthermore, we have

UR(pR) =

R1∑

i1=1

· · ·
Rm∑

im=1

(
L∏

ν=1

wR,ν(I(d+ ν, i))

)
d⊗

µ=1

vR,µ(I(µ, i))

=

R1∑

i1=1

· · ·
Rm∑

im=1

(
L∏

ν=1

wR,ν(I(d+ ν, i))

)
d⊗

µ=1

ZµαR,µ(I(µ, i))

=





d⊗

µ=1

Zµ









R1∑

i1=1

· · ·
Rm∑

im=1

(
L∏

ν=1

wR,ν(I(d+ ν, i))

)
d⊗

µ=1

αR,µ(I(µ, i))





︸ ︷︷ ︸

ÛR(p̂R):=

and

Ur(pr) =

r1∑

j1=1

· · ·
rm∑

jm=1

(
L∏

ν=1

wr,ν(I(d+ ν, j))

)
d⊗

µ=1

vr,µ(I(µ, j))

=





d⊗

µ=1

Zµ









r1∑

j1=1

· · ·
rm∑

jm=1

(
L∏

ν=1

wr,ν(I(d+ ν, j))

)
d⊗

µ=1

ξr,µ(I(µ, j))



 .

︸ ︷︷ ︸

Ûr(p̂r):=

Corollary 5.3. From the definition of̂UR and Ûr it is obvious thatÛR and Ûr are tensor networks inS :=
⊗d

µ=1 R
tµ , where the network topology is the same as forUR andUr respectively, since the incidence map is

the same for all tensor networks. Further, we have

UR(pR) = ZÛR(p̂R) and Ur(pr) = ZÛr(p̂r), (30)

where we setZ : S → U , Z :=
⊗d

µ=1 Zµ. In addition

‖UR(pR)− Ur(pr)‖
2
V =

〈

ÛR(p̂R)− Ûr(p̂r), Z
tZ(ÛR(p̂R)− Ûr(p̂r))

〉

S
= ‖ÛR(p̂R)− Ûr(p̂r)‖

2
S . (31)

12

Corollary 5.4. Under the notations and premises of Theorem 5.2, we have that

‖UR(pR)− Ur(p
∗
r)‖V = inf

pr∈Pr

‖UR(pR)− Ur(pr)‖V (32)

is equivalent to
‖ÛR(p̂R)− Ûr(p̂

∗
r)‖S = inf

p̂r∈P̂r

‖ÛR(p̂R)− Ûr(p̂r)‖S . (33)

For this reason, it is sufficient to consider the original approximation only inS. Hereby we have to assume
that in practice the computation of the orthonormal basis ofUµ and the coefficientsαR is reasonable. This fact
reduces the original potentially infinite dimensional approximation to a finite minimization task.

6 Nonlinear block Gauss-Seidel method

So far we have developed all ingredients for applying steepest decent type algorithms. In the following section
let P = ×D

µ=1 Pµ be a parameter space of order(d, L), whereD := d + L, andU : P → V a tensor
representation. Further, letJ := F ◦ U : P → V → R be an objective function as defined in Problem 1.3. In
the following analysis, it is not required thatU is a tensor network.
The nonlinear Gauss-Seidel (GS) method arises from iterative methods used for linear systems of equations.
Intuitively, we may think of a generalized linear method which reduces to a feasible iteration for nonlinear
systems. The direct extension of the linear Gauss-Seidel method to the nonlinear GS method is obvious.
Suppose that thek-th iteratexk = (xk1 , . . . , x

k
n)

T and the firstl−1 componentsxk+1
1 , . . . , xk+1

l−1 of the(k+1)-
th iteratexk+1 have been determined. IfH : Ω ⊂ Rn → R

n has components functionsh1, . . . , hn, then the
basic step of the the nonlinear GS, in analogy to the linear case, is to solve thel-th equation

hl(x
k+1
1 , . . . , xk+1

l−1 , xl, x
k
l+1, . . . , x

k
n) = 0,

for xl, and to setxk+1
l = xl. Thus, in order to obtainxk+1 from xk, we have to solve successively then

one-dimensional nonlinear equations.
From a mathematical point of view, the established alternating least square (ALS) method [2, 3] and the density
matrix renormalization group (DMRG) algorithm [9, 10, 16] are nonlinear block Gauss-Seidel methods, where
the DMRG algorithm is also called modified alternating leastsquare method (MALS). In the DMRG method
we allow an enlargement of the parameter space and the partitioning (blocking) of the parameter space is not
disjoint.
For the nonlinear block GS method, we want to describe the situation by an explicit example in order to
motivate the abstract setting defined below. For this purpose consider a simple structured tensor network for
d = 3, e.g. the tensor train format as defined in Example 2.7. The tensor train representation is described by
the multilinear map

UTT : M0(N≤r, V1)×M0(N
2
≤r, V2)×M0(N≤r, V3)→

3⊗

µ=1

Vµ

v̂ = (v1, v2, v3) 7→ UTT (v̂) =

r∑

j1=1

r∑

j2=1

v1(j1)⊗ v2(j1, j2)⊗ v3(j2),

i.e. in our setting we have the parameter spaceP = P1 × P2 × P3, whereP1 = V r
1 , P2 = V r2

2 , andP3 = V r
3 .

The ALS and the DMRG method are introduced by a partitioning of the parameter spaceP . The partitioning

13

{X̃1, X̃2, X̃3} for the ALS method is given by

P = P1 × {0} × {0}
︸ ︷︷ ︸

=:X̃1

+ {0} × P2 × {0}
︸ ︷︷ ︸

=:X̃2

+ {0} × {0} × P3
︸ ︷︷ ︸

=:X̃3

and the partitioning{X1,X2} for the DMRG method is defined by

P = P1 × P2 × {0}
︸ ︷︷ ︸

=:X1

+ {0} × P2 × P3
︸ ︷︷ ︸

=:X2

.

For general cases, a partition of the coordinates is defined as follows.

Definition 6.1 (Partition of Coordinates). Letp ∈ N andP =
D

×
µ=1

Pµ a parameter space of a tensor represen-

tation. We call the set{Xl ⊂ P : 1 ≤ l ≤ p} a partition of coordinatesof P if:

(i) P =
p∑

l=1

Xl.

(ii) EveryXl is of the formXl =
D

×
µ=1

Xl,µ, whereXl,µ is either equal toPµ or equal to the null space{0Pµ}

of Pµ.

We say{Xl ⊂ P : 1 ≤ l ≤ p} is adisjoint partition of coordinatesif we have

Xl ∩Xl′ = {0P } for all 1 ≤ l, l′ ≤ D.

For a convenient description of the nonlinear block GS method we introduce the functionJl. Where for a given
partition of coordinates{Xl ⊂ P : 1 ≤ l ≤ p}, the functionJl can be viewed as the restriction ofJ to the the
subsetXl, see Notation 6.2.

Notation 6.2. Let {Xl ⊂ P : 1 ≤ l ≤ p} be a partition of coordinates ofP andJ : P → R the objective
function from Problem 1.3. Further, letXc

l := P \Xl be the complement ofXl in P . We define

Jl : Xl ×Xc
l → R, (xl, x

c
l) 7→ Jl(xl, x

c
l) := J(xl + xcl).

Definition 6.3 (Nonlinear block Gauss-Seidel method). Let {Xl ⊂ P : 1 ≤ l ≤ p} be a partition of coordi-
nates ofP andJ : P → R the objective function. Thenonlinear block Gauss-Seidel methodis described by
Algorithm 1.

Similar to the linear case one can extend the nonlinear Gauss-Seidel method to the nonlinear successive over-
relaxation method. The convergence analysis of the nonlinear GS method is already discussed in the literature,
e.g. in [13, Ortega and Rheinboldt]. Generally speaking, the convergence of the nonlinear GS method is locally
assigned by the convergence of the linear GS method applied to the HessianJ ′′(x∗) of J at a pointx∗ ∈ P
with J ′(x∗) = 0. Let us consider a block decomposition of the HessianJ ′′(x)

J ′′
block(x) = Dblock(x)− Lblock(x)− Lt

block(x)

into its block diagonal, strictly block lower-, and strictly block upper-triangular parts, where the blocking is
introduced by a disjoint partitioning of coordinates, and suppose thatDblock(x

∗) is nonsingular. Furthermore,
let H(x) be defined by

H(x) := [Dblock(x)− Lblock(x)]
−1 Lt

block(x), (35)

14

Algorithm 1 Nonlinear block GS method

1: Choose initialx1 ∈ P , and definek := 1.
2: while Stop Conditiondo
3: for 1 ≤ l ≤ p do
4: Computex̃l ∈ Xl such that

∂1Jl

(

x̃l,x
ck(l)
l

)

= 0Xl
, (34)

wherexck(l)
l =

(

xk(l) − x
k(l)
l

)

∈ Xc
l andxk(l) ∈ P is the current iteration point.

5: x
k(l+1)
l := x̃l.

6: end for
7: k 7→ k + p.
8: end while

whereH(x) is simply the GS iteration matrix for the linear systemJ ′′(x)x̃ = b. We can establish the fol-
lowing Theorem 6.4, whose proof follows directly from the arguments used in [13, Theorem 10.3.5, p. 326].
Unfortunately, the proof of Theorem 10.3.5 does not match for nonlinear block GS methods with a non-
disjoint partition of the coordinates, since the functionĜ defined in [13, Eq. (15), p. 326] does not fulfill
Ĝ(xk+1,xk) = 0 for all k ∈ N0. Therefore, we cannot apply Theorem 10.3.5 for methods withoverlapping
partition of the coordinates like the DMRG method.

Therorem 6.4. Let {Xl ⊂ P : 1 ≤ l ≤ p} be a partition of coordinates ofP , J ∈ C2(P,R) andx∗ ∈ P a
parameter for whichJ ′(x∗) = 0 andρ (H(x∗)) < 1, whereH(x∗) is defined in Eq. (35) andDblock(x

∗) is
nonsingular. Then there exists an environmentB(x∗) of x∗ such that, for any initial guessx1 ∈ B(x∗), there
is a unique sequence(xk)k∈N ⊂ B(x∗) which satisfies the description of the nonlinear block GS method from
Algorithm 1. Furthermore,limk→∞ xk = x∗ is R-linear with R-convergence factorρ (H(x∗)).

The statement of Theorem 6.4 provides useful a priori information, even when it is not possible to ascertain in
advance thatρ (H(x∗)) < 1. For quadratic functionalsF and the canonical tensor formatUCP , the situation
J = F ◦ UCP is considered in [20].

7 Efficient numerical treatment

In this section, we want to explicitly describe the nonlinear block Gauss-Seidel method for two different
partitions of the coordinates. We want to express that the nonlinear block GS method can be performed
efficiently on certain formats.

We are going to consider a tensor chaina ∈ S :=
⊗d

µ=1 R
nµ with (n1, . . . , nd) ∈ N

d and representation rank

(R1, . . . , Rd) ∈ N
d similarly to the tensor chain (TC) example in Section 2. We want to minimize

‖a− u‖

which is equivalent to minimizing

Fa(x) :=
1

‖a‖2

(

−〈a, x〉+
1

2
〈x, x〉

)

,

where the quotient‖a‖2 has been added for numerical reasons. We considerUTC from Eq. (14) with repre-
sentation rank(r1, . . . , rd) ∈ N

d. SoJ of Eq. (3) is defined asFa ◦ UTC , which we want to minimize in our

15

experiments. We define

Aµ(iµ, iµ+1, jµ, jµ+1) := 〈aµ(iµ, iµ+1), uµ(jµ, jµ+1)〉, 1 ≤ µ ≤ d− 1

Ad(id, i1, jd, j1) := 〈ad(i1, id), ud(i1, jd)〉

Bµ(jµ, jµ+1, j
′
µ, j

′
µ+1) := 〈uµ(jµ, jµ+1), uµ(j

′
µ, j

′
µ+1)〉, 1 ≤ µ ≤ d− 1

Bd(jd, j1, j
′
d, j

′
1) := 〈ud(j1, jd), ud(j

′
1, j

′
d)〉

such that

J(u1, . . . , ud) =
1

‖a‖2



−
∑

i∈I

∑

j∈J





d−1∏

µ=1

Aµ(iµ, iµ+1, jµ, jµ+1)



Ad(id, i1, jd, j1)

+
1

2

∑

j∈J

∑

j′∈J





d−1∏

µ=1

Bµ(jµ, jµ+1, j
′
µ, j

′
µ+1)



Bd(jd, j1, j
′
d, j

′
1)





(36)

whereasJ := {(l1, . . . , ld) : lµ = 1, . . . , rµ, 1 ≤ µ ≤ d}, I := {(l1, . . . , ld) : lµ = 1, . . . , Rµ, 1 ≤ µ ≤ d}
andjk denotes thek-th component of multi-indexj.

7.1 Alternating least squares for the tensor chain format

As stated earlier, the ALS method is the nonlinear block Gauss-Seidel method with disjoint partition of the
coordinates that is defined in Section 6.

For convenience, we will assumeℓ 6= d in our formulae and lemmata. In the following part, we want to
introduce some abbreviations, that will become handy lateron. We define

A[ℓ](iℓ, iℓ+1, jℓ, jℓ+1) :=

R1,...,Rℓ−1∑

i1,...,iℓ−1=1

Rℓ+2,...,Rd∑

iℓ+2,...,id=1

r1,...,rℓ−1∑

j1,...,jℓ−1=1

rℓ+2,...,rd∑

jℓ+2,...,jd=1




d−1∏

µ=1,µ6=ℓ

Aµ(iµ, iµ+1, jµ, jµ+1)



Ad(id, i1, jd, j1)

and

B[ℓ](jℓ, jℓ+1, j
′
ℓ, j

′
ℓ+1) :=

r1∑

j1=1

. . .

rℓ−1∑

jℓ−1=1

rℓ+2∑

jℓ+2=1

. . .

rd∑

jd=1

r1∑

j′1=1

. . .

rℓ−1∑

j′
ℓ−1=1

rℓ+2∑

j′
ℓ+2=1

. . .

rd∑

j′
d
=1





d−1∏

µ=1,µ6=ℓ

Bµ(jµ, jµ+1, j
′
µ, j

′
µ+1)



Bd(jd, j1, j
′
d, j

′
1)

which leads to a structure of Eq. (36) that pays respect to thepartitioning:

Jℓ(uℓ, u
c
ℓ) =

1

‖a‖2



−

Rℓ∑

iℓ=1

Rℓ+1∑

iℓ+1=1

rℓ∑

jℓ=1

rℓ+1∑

jℓ+1=1

Aℓ(iℓ, iℓ+1, jℓ, jℓ+1)A[ℓ](iℓ, iℓ+1, jℓ, jℓ+1)

+
1

2

rℓ∑

jℓ=1

rℓ+1∑

jℓ+1=1

rℓ∑

j′
ℓ
=1

rℓ+1∑

j′
ℓ+1=1

Bℓ(jℓ, jℓ+1, j
′
ℓ, j

′
ℓ+1)B[ℓ](jℓ, jℓ+1, j

′
ℓ, j

′
ℓ+1)



 .

16

Setting this derivative∂
∂uℓ

Jℓ(uℓ, u
c
ℓ) equal to zero as in Eq. (34) in Algorithm 1, one has to solve theequation

(
A[ℓ] ⊗ Idnℓ

)
aℓ =

(
B[ℓ] ⊗ Idnℓ

)
uℓ

where

aℓ :=






aℓ(1, 1)
...

aℓ(Rℓ, Rℓ+1)






A[ℓ] :=
(

A[ℓ](iℓ, iℓ+1, jℓ, jℓ+1)
)

(jℓ,jℓ+1),(iℓ,iℓ+1)

uℓ :=






uℓ(1, 1)
...

uℓ(rℓ, rℓ+1)






B[ℓ] :=
(

B[ℓ](j
′
ℓ, j

′
ℓ+1, jℓ, jℓ+1)

)

(jℓ,jℓ+1),(j
′
ℓ
,j′
ℓ+1)

and consequently, we have to solve

uℓ
!
=
(

B−1
[ℓ] ⊗ Idnℓ

) (
A[ℓ] ⊗ Idnℓ

)
aℓ =

(

B−1
[ℓ] A[ℓ] ⊗ Idnℓ

)

aℓ.

Remark 7.1. The existence ofB−1
[ℓ] is not guaranteed in all cases. IfB[ℓ] is not regular, its matrix-rank is

smaller thanrℓ · rℓ+1 and sinceB[ℓ] is a Gramian matrix we can reduce the rank ofB[ℓ](jℓ, jℓ+1, j
′
ℓ, j

′
ℓ+1).

To make compact statements about the complexity of the algorithm, we want to definer := max1≤µ≤d{rµ},
R := max1≤µ≤d{Rµ} andn := max1≤µ≤d{nµ}.

The question may arise, how to efficiently computeA[ℓ] andB[ℓ]. For one single entry ofA[ℓ], the naive
approach (compute each term separately) is inO(rd−2Rd−2(d − 2)) such that the complete cost would be in
O(rdRd(d − 2)) which we want to avoid. A better approach it to treat each matrix entry as an inner product
of two tensors in the MPS/TT format which isO((d− 2)r2R2). This improves the complete complexity to be
O((d − 2)r4R4) but this still allows improvements since we have consideredeach entry as a separate tensor
train inner product. If we take into account the connection between each entry, we can improve the complexity
significantly. First, we introduce the definitions

Aµ :=







(

Aµ(iµ, iµ+1, jµ, jµ+1)
)

(iµ,jµ),(iµ+1,jµ+1)
∈ R

Rµrµ×Rµ+1rµ+1 1 ≤ µ ≤ d− 1
(

Aµ(id, i1, jd, j1)
)

(id,jd),(i1,j1)
∈ R

Rdrd×R1r1 µ = d

and

Bµ :=







(

Bµ(jµ, jµ+1, j
′
µ, j

′
µ+1)

)

(jµ,j′µ),(jµ+1,j′µ+1)
∈ R

r2µ×r2µ+1 1 ≤ µ ≤ d− 1
(

Bµ(jd, j1, j
′
d, j

′
1)
)

(jd,j
′
d
),(j1,j′1)

∈ R
r2
d
×r21 µ = d

such that we can formulate the following lemma.

Lemma 7.2. For 1 ≤ ℓ ≤ d− 1 andAµ andBµ for 1 ≤ µ ≤ d as defined above,

(

A[ℓ](iℓ, iℓ+1, jℓ, jℓ+1)
)

(iℓ+1,jℓ+1),(iℓ,jℓ)
=

d∏

µ=ℓ+1

Aµ

ℓ−1∏

µ=1

Aµ

17

and
(

B[ℓ](jℓ, jℓ+1, j
′
ℓ, j

′
ℓ+1)

)

(jℓ+1,j
′
ℓ+1),(jℓ,j

′
ℓ
)
=

d∏

µ=ℓ+1

Bµ

ℓ−1∏

µ=1

Bµ,

hold true, soA[ℓ] andB[ℓ] can be interpreted as a product of matrices.

Proof. Without loss of generality,ℓ will be set equal to1 and we will only prove the equation forA[ℓ]. As the
first step, let us abbreviate

x((i3, j3), (i1, j1)) :=

R4,...,Rd∑

i4,...,id=1

r4,...,rd∑

j4,...,jd=1





d−1∏

µ=3

Aµ(iµ, iµ+1, jµ, jµ+1)



Ad(i1, id, j1, jd)

which results in

A[1](i1, i2, j1, j2) =

(R3,r3)∑

(i3,j3)=(1,1)

A2(i2, i3, j2, j3)x((i3, j3), (i1, j1))

such that we see
(

A[ℓ](iℓ, iℓ+1, jℓ, jℓ+1)
)

(iℓ+1,jℓ+1),(iℓ,jℓ)
=
(

A2(i2, i3, j2, j3)
)

(i2,j2),(i3,j3)

(

x((i3, j3), (i1, j1))
)

(i3,j3),(i1,j1)
.

Applying this procedure successively tox((i3, j3), (i1, j1)) finishes the proof, since analogous arguments hold
for B[ℓ]. �

Corollary 7.3. The computational cost ofA[ℓ] is at most

O(dr3R3).

Analogously,B[ℓ] ∈ O(dr
6).

Note thatB[ℓ] andA[ℓ] are only after reshaping representable as a product of matrices (compare the definition
of B[ℓ] andA[ℓ] with Lemma 7.2).

We want to give the concrete algorithm for ALS in the TC format, which is a specialized version of Algorithm
1. First, we have to give four short definitions

A
(k)
ℓ :=

(

〈aℓ(iℓ, iℓ+1), u
(k)
ℓ (jℓ, jℓ+1)〉

)

(iℓ+1,jℓ+1),(iℓ,jℓ)

A
(k)
>ℓ :=

d∏

µ=ℓ+1

A(k)
µ , A

(k)
<ℓ :=

ℓ−1∏

µ=1

A(k)
µ

B
(k)
ℓ :=

(

〈u
(k)
ℓ (jℓ, jℓ+1), u

(k)
ℓ (j′ℓ, j

′
ℓ+1)〉

)

(jℓ+1,j
′
ℓ+1),(jℓ,j

′
ℓ
)

B
(k)
>ℓ :=

d∏

µ=ℓ+1

B(k)
µ , B

(k)
<ℓ :=

ℓ−1∏

µ=1

B(k)
µ

for k ∈ N and1 ≤ ℓ ≤ d− 1, whereu(k)ℓ is thatuℓ which has been computed in cyclek. Additionally, we set

A
(k)
>d = B

(k)
>d = A

(k)
0 = B

(k)
0 = Id.

18

Lemma 7.4. The computational cost of
(

B−1
[ℓ] A[ℓ] ⊗ Idnℓ

)

aℓ is at most

O(dr6) +O(dr3R3) +O(n(r2R2 + r4))

if the matricesAµ andBµ are given for1 ≤ µ ≤ d and if we consider reshaping of a matrix as a free operation.

Proof. From Lemma 7.2, we can conclude that the computational cost for B[ℓ] is equal to the computational
cost ofd− 2 matrix-matrix multiplications ofr2 × r2 matrices such that

cost(B[ℓ]) ∈ O((d− 2)r6)

and an analogous argument holds forA[ℓ], such that

cost(A[ℓ]) ∈ O((d− 2)r3R3)

sinceA[ℓ] can be calculated as a product ofrR × rR matrices. ComputingB−1
[ℓ]

from B[ℓ] has a complexity

ofO(r6). The computation of
(

B−1
[ℓ] A[ℓ] ⊗ Idnℓ

)

aℓ can be done by one matrix-matrix multiplication without

having to perform⊗Idnℓ
by consideringaℓ(iℓ, iℓ+1) as columns of̃aℓ ∈ R

nℓ×Rℓ·Rℓ+1 such that

(

B−1
[ℓ] A[ℓ] ⊗ Idnℓ

)

aℓ ∼= ãℓ

(

B−1
[ℓ] A[ℓ]

)T
= ãℓA

T
[ℓ]B

−1T

[ℓ]

which finishes the proof bỹaℓAT
[ℓ]B

−1T

[ℓ] being in

O(n(r2R2 + r4))

if we computẽaℓAT
[ℓ] first. �

In cycle k, in the ℓ-th step of Algorithm 1, we have to computeB(k)
>ℓB

(k+1)
<ℓ andA(k)

>ℓA
(k+1)
<ℓ . Therefore, it

is more efficient to compute and storeB(k)
>ℓ andA(k)

>ℓ in a prephase. Additionally, we will storeB(k+1)
<ℓ and

A
(k+1)
<ℓ in eachℓ-step sinceB(k+1)

<ℓ+1 = B
(k+1)
<ℓ B

(k+1)
ℓ andA(k+1)

<ℓ+1 = A
(k+1)
<ℓ A

(k+1)
ℓ for 1 ≤ ℓ ≤ d− 1.

Lemma 7.5. One complete ALS cycle with prephase, as described in Algorithm 2, is at most

O(dr6) +O(dr3R3) +O(dn(r2R2 + r4))

in terms of complexity.

Proof. Follows from the described prephase and the proof of Lemma 7.4. �

Remark 7.6. The prephase described above needs additional storage ofdr4 + dr2R2.

Remark 7.7. Computing the initially neededBµ andAµ for 2 ≤ µ ≤ d in Lemma 7.4 and 7.5 is in

O
(
dn(r2R2 + r4)

)

in terms of the complexity.

19

Algorithm 2 Alternating Least Squares (ALS) Method for the TC format

1: Choose initialu(1) = (u
(1)
1 , . . . , u

(1)
d) ∈×d

µ=1 Pµ and parameterε ∈ R>0. Defineg := J(u(1)), k := 1.
2: while ∆g > ε do
3: B̃ := Id, Ã := Id
4: for d− 1 ≥ ℓ ≥ 1 do
5: storeB(k)

>ℓ = B
(k)
ℓ+1B

(k)
>ℓ+1 andA(k)

>ℓ = A
(k)
ℓ+1A

(k)
>ℓ+1

6: end for
7: for 1 ≤ ℓ ≤ d do
8: B̃ 7→ B̃B

(k+1)
ℓ−1 {⇒ B̃ = B

(k+1)
<ℓ }

9: Ã 7→ ÃA
(k+1)
ℓ−1 {⇒ Ã = A

(k+1)
<ℓ }

10: u
(k+1)
ℓ :=

((

reshape
(

B
(k)
>ℓ B̃

))−1
reshape

(

A
(k)
>ℓ Ã

)

⊗ Idnℓ

)

aℓ

11: end for
12: g← J(u(k+1))
13: k 7→ k + 1
14: end while

7.2 DMRG for the tensor chain format

ALS does not adjust the ranks of the edges, so now, we want to choose a slightly different approach: Instead
of fixing all nodes but one, we are fixing all nodes but two neighbored ones. So we are using the following
partition of coordinates as stated in Section 6.

In contrary to ALS, we do not have a disjoint partitioning which gives us the opportunity to adjust the rank
between nodesℓ andℓ+ 1 for 1 ≤ ℓ ≤ d− 1 and between nodesd and1 since we do not have to fixrℓ+1 and
r1, respectively.

From now on,1 ≤ ℓ ≤ d− 2 in order to keep the readability of the upcoming notations.

20

Similar to the previous section, we want to define some usefulabbreviations

A[ℓ)(iℓ, iℓ+2, jℓ, jℓ+2) :=

R1,...,Rℓ−1∑

i1,...,iℓ−1=1

Rℓ+3,...,Rd∑

iℓ+3,...id=1

r1,...,rℓ−1∑

j1,...,jℓ−1=1

rℓ+3,...,rd∑

jℓ+3,...,jd=1




d−1∏

µ=1,µ/∈{ℓ,ℓ+1}

Aµ(iµ, iµ+1, jµ, jµ+1)



Ad(i1, id, j1, jd),

B[ℓ)(jℓ, jℓ+2, j
′
ℓ, j

′
ℓ+2) :=

r1,...,rℓ−1∑

j1,...,jℓ−1=1

rℓ+3,...,rd∑

jℓ+3,...,jd=1

r1,...,rℓ−1∑

j′1,...,j
′
ℓ−1=1

rℓ+3,...,rd∑

j′
ℓ+3,...,j

′
d
=1





d−1∏

µ=1,µ/∈{ℓ,ℓ+1}

Bµ(jµ, jµ+1, j
′
µ, j

′
µ+1)



Bd(j1, jd, j
′
1, j

′
d),

aℓ,ℓ+1(iℓ, iℓ+2) :=

Rℓ+1∑

iℓ+1=1

aℓ(iℓ, iℓ+1)⊗ aℓ+1(iℓ+1, iℓ+2) ∈ R
nℓ×nℓ+1

and

uℓ,ℓ+1(jℓ, jℓ+2) :=

rℓ+1∑

jℓ+1=1

uℓ(jℓ, jℓ+1)⊗ uℓ+1(jℓ+1, jℓ+2) ∈ R
nℓ×nℓ+1 (37)

such that Eq. (36) with respect to the above written partitioning is

Jℓ(uℓ,ℓ+1, u
c
ℓ,ℓ+1) =

1

‖a‖2



−

Rℓ∑

iℓ=1

Rℓ+2∑

iℓ+2=1

rℓ∑

jℓ=1

rℓ+2∑

jℓ+2=1

〈aℓ,ℓ+1(iℓ, iℓ+2), uℓ,ℓ+1(jℓ, jℓ+2)〉A[ℓ)(iℓ, iℓ+2, jℓ, jℓ+2)

+
1

2

rℓ∑

jℓ=1

rℓ+2∑

jℓ+2=1

rℓ∑

j′
ℓ
=1

rℓ+2∑

j′
ℓ+2=1

〈uℓ,ℓ+1(jℓ, jℓ+2), uℓ,ℓ+1(j
′
ℓ, j

′
ℓ+2)〉B[ℓ)(jℓ, jℓ+2, j

′
ℓ, j

′
ℓ+2)



 .

Setting this derivative ∂
∂uℓ,ℓ+1

Jℓ(uℓ,ℓ+1, u
c
ℓ,ℓ+1) equal to zero results in

(
A[ℓ) ⊗ Idnℓ×nℓ+1

)
aℓ,ℓ+1 =

(
B[ℓ) ⊗ Idnℓ×nℓ+1

)
uℓ,ℓ+1

where

aℓ,ℓ+1 :=






aℓ,ℓ+1(1, 1)
...

aℓ,ℓ+1(Rℓ, Rℓ+2)






A[ℓ) :=
(

A[ℓ)(iℓ, iℓ+2, jℓ, jℓ+2)
)

(jℓ,jℓ+2),(iℓ,iℓ+2)

uℓ,ℓ+1 :=






uℓ,ℓ+1(1, 1)
...

uℓ,ℓ+1(rℓ, rℓ+2)






B[ℓ) :=
(

B[ℓ)(j
′
ℓ, j

′
ℓ+2, jℓ, jℓ+2)

)

(jℓ,jℓ+2),(j
′
ℓ
,j′
ℓ+2)

such that we have to solve

uℓ,ℓ+1
!
=
(

B−1
[ℓ) ⊗ Idnℓ×nℓ+1

) (
A[ℓ) ⊗ Idnℓ×nℓ+1

)
aℓ,ℓ+1 =

(

B−1
[ℓ)A[ℓ) ⊗ Idnℓ×nℓ+1

)

aℓ,ℓ+1

21

in order to improve the approximation. This formula will give us alluℓ,ℓ+1 but what we need are alluℓ and
uℓ+1. So we have to separateuℓ,ℓ+1 and the obvious way to do this is by using the singular value decomposition
(SVD). If we reorderuℓ,ℓ+1 such thatiℓ with the component dimension ofuℓ are the row index andiℓ+1 with
the component dimension ofuℓ+1 are the column index:

(

uℓ,ℓ+1(iℓ, iℓ+2)mℓ,mℓ+1

)

(mℓ,iℓ),(mℓ+1,iℓ+2)

SV D
=

r̃ℓ+1∑

jℓ+1=1








uℓ(1, i)1
uℓ(1, i)2

...
uℓ(rℓ, i)nℓ







⊗








uℓ+1(i, 1)1
uℓ+1(i, 1)2

...
uℓ+1(i, rℓ+2)nℓ+1








where we obtain the terms separated. Note thatr̃ℓ+1 is the new rank for the edge between the optimized nodes.

Just as before it is now necessary to computeA[ℓ) andB[ℓ) in an efficient way. That can be done similarly to
Lemma 7.2.

Lemma 7.8. For 1 ≤ ℓ ≤ d andAµ andBµ for 1 ≤ µ ≤ d as defined in Section 7.1,

(

A[ℓ)(iℓ, iℓ+2, jℓ, jℓ+2)
)

(iℓ+2,jℓ+2),(iℓ,jℓ)
=

d∏

µ=ℓ+2

Aµ

ℓ−1∏

µ=1

Aµ

and
(

B[ℓ)(jℓ, jℓ+2, j
′
ℓ, j

′
ℓ+2)

)

(jℓ+2,j
′
ℓ+2),(jℓ,j

′
ℓ
)
=

d∏

µ=ℓ+2

Bµ

ℓ−1∏

µ=1

Bµ,

hold true, soA[ℓ) andB[ℓ) can be interpreted as a product of matrices.

Proof. Analogous to Lemma 7.2. �

Lemma 7.9. Computing
(

B−1
[ℓ)A[ℓ) ⊗ Idnℓ×nℓ+1

)

aℓ,ℓ+1 is in

O(dr6) +O(dr3R3) +O(n2(r2R2 + r4)).

Proof. Analogous to the proof of Lemma 7.4. �

Similar to section 7.1, we add a prephase, which computes andstoresA(k)
>ℓ andB(k)

>ℓ for 2 ≤ ℓ ≤ d− 1 before
thek-th cycle. Then one complete DMRG cycle has a complexity linear ind.

Lemma 7.10. One DMRG cycle with prephase is in

O(dr6) +O(dr3R3) +O(dn2(r2R2 + r4)) +O(dn3R3).

Proof. Follows directly from Lemma 7.9 and the complexity of the singular value decomposition being in
O(n3R3). �

22

Algorithm 3 DMRG Method for the TC format

1: Choose initialu(1) = (u
(1)
1 , . . . , u

(1)
d) ∈×d

µ=1 Pµ and parameterε ∈ R>0. Defineg := J(u(1)), k := 1.
2: while ∆g > ε do

3: u
(k+1)
d,1 :=

((

reshape
(
∏d−1

µ=2 Bµ

))−1
reshape

(
∏d−1

µ=2 Aµ

)

⊗ Idnd×n1

)

ad,1

4: [u
(k+1)
d , u

(k+1)
1] := SV D

(

reshape
(

u
(k+1)
d,1

))

5: B̃ := Id, Ã := Id
6: for d− 1 ≥ ℓ ≥ 2 do
7: storeB(k)

>ℓ = B
(k)
ℓ+1B

(k)
>ℓ+1 andA(k)

>ℓ = A
(k)
ℓ+1A

(k)
>ℓ+1

8: end for
9: for 1 ≤ ℓ ≤ d− 1 do

10: B̃ 7→ B̃B
(k+1)
ℓ−1 {⇒ B̃ = B

(k+1)
<ℓ }

11: Ã 7→ ÃA
(k+1)
ℓ−1 {⇒ Ã = A

(k+1)
<ℓ }

12: u
(k+1)
ℓ,ℓ+1 :=

((

reshape
(

B
(k)
>ℓ+1B̃

))−1
reshape

(

A
(k)
>ℓ+1Ã

)

⊗ Idnℓ×nℓ+1

)

aℓ,ℓ+1

13: [u
(k+1)
ℓ , u

(k)
ℓ+1] := SV D

(

reshape
(

u
(k+1)
ℓ,ℓ+1

))

14: end for
15: g← J(u(k+1))
16: k 7→ k + 1
17: end while

7.3 Numerical experiments

After describing the ALS and DMRG algorithms for the TC format, we will perform some very basic experi-
ments with data that has been obtained from two–electron integrals.

Since the algorithmic description is about approximating aTC tensor with another TC tensor, we first have to
convert the data, which is a full order4 tensor, into a TC tensor without introducing a relevant error. A TT ten-
sor is a TC tensor where one representation rank component isequal to one, so we will perform the conversion
with the procedure which is described in [15] asTT-SVD algorithmand in [21] asVidal decompositionin the
MPS context where we choose an approximation accuracy of10−12. This procedure gives us a TT tensor that
we will approximate with a TC tensor with the help of the described algorithms ALS and DMRG.

We are using different molecules (NH3 and H2O) as well as different (chemical) basis sets (STO-3G and 6-
31G) that lead to different vector space dimensions. The initial r = (R1, . . . , R4) is the representation rank
that we obtain while converting the full tensor to the TT format andǫ is the relative error of the initial TT
tensor and the approximated TC tensor. We will write(a)4 instead of(a, a, a, a) in order to save space.

Another important factor for the experiments is the number of complete ALS/DMRG iterations that are needed
to compute the approximations (we will denote them by “#iter.”) which immediately gives an impression about
the consumed time (together with the complexity estimates).

The initial guess for the TC approximation is chosen with thefollowing procedure:

Rµ∑

iµ=1

uµ−1(·, iµ)⊗ uµ(iµ, ·)
ACA
≈:

rµ∑

iµ=1

uµ−1(·, iµ)⊗ uµ(iµ, ·)

for µ = 2, 3, 4 (µ = 1 analogously), such thatuµ−1 anduµ are getting reassigned, which is known as adaptive

23

cross approximation (or ACA, see [1]). All computations arepreformed with the library [4].
The subsequent tables display our results that we could obtain using Algorithms 2 and 3.

Table 1: Reduced representation ranks for AO integrals in H2O using ALS

Basis set dim(Vµ) Initial r
ǫ

10−2 10−4 10−6

r #iter. r #iter. r #iter.
STO-3G 7 (7, 49, 7, 1) (12)4 34 (14)4 61 (16)4 31
6-31G 13 (13, 169, 13, 1) (27)4 71 (40)4 82 (44)4 42

Table 2: Reduced representation ranks for AO integrals in NH3 using ALS

Basis set dim(Vµ) Initial r
ǫ

10−2 10−4 10−6

r #iter. r #iter. r #iter.
STO-3G 8 (8, 64, 8, 1) (14)4 97 (16)4 195 (18)4 90
6-31G 15 (15, 225, 15, 1) (33)4 29 (50)4 72 (55)4 39

Table 3: Reduced representation ranks for AO integrals in H2O using DMRG

Basis set dim(Vµ) Initial r r ǫ #iter.
STO-3G 7 (7, 49, 7, 1) (43, 7, 7, 7) 4.6 · 10−6 1
6-31G 13 (13, 169, 13, 1) (162, 13, 13, 13) 2.3 · 10−6 1

The conclusion of these experiments is, that we can use the ALS method to even out the representation rank.
This can become an advantage when a TC tensor is treated with algorithms that run in parallel over multiple
dimensions.

References

[1] M. Bebendorf. Approximation of boundary element matrices.Numer. Math., 86(4):565–589, 2000.

[2] G. Beylkin and M. J. Mohlenkamp. Numerical operator calculus in higher dimensions.Proc. Natl. Acad.
Sci. USA, 99(16):10246–10251, 2002.

[3] G. Beylkin and M. J. Mohlenkamp. Algorithms for numerical analysis in high dimensions.SIAM J. Sci.
Comput., 26(6):2133–2159, 2005.

[4] M. Espig, M. Schuster, A. Killaitis, N. Waldren, P. Wähnert, S. Handschuh, and H. Auer. TensorCalculus
library, 2008–2012.http://gitorious.org/tensorcalculus.

[5] A. Falcó and W. Hackbusch. On minimal subspaces in tensor representations. 2010. MIS Preprint 70.

24

[6] L. Grasedyck. Hierarchical singular value decomposition of tensors.SIAM J. Matrix Anal. Appl., 2010.

[7] W. Hackbusch.Tensor Spaces and Numerical Tensor Calculus. Springer, 2012.

[8] W. Hackbusch and S. Kühn. A new scheme for the tensor representation. J. Fourier Anal. Appl.,
5(15):706–722, 2009.

[9] S. Holtz, T. Rohwedder, and R. Schneider. The alternating linear scheme for tensor optimisation in the
TT format. 2010. Preprint 71.

[10] T. Huckle, K. Waldherr, and T. Schulte-Herbrüggen. Computations in quantum tensor networks. 2010.
Preprint.

[11] B. N. Khoromskij.O(d logN)-Quantics Approximation ofN − d Tensors in High-Dimensional Numer-
ical Modeling.Const. Approx., 34:1–24, 2010.

[12] J. M. Landsberg, Y. Qi, and K. Ye. On the geometry of tensor network states. arXiv:1105.4449
[math.AG], 2011.

[13] J. M. Ortega and W. C. Rheinboldt.Iterative Solution of Nonlinear Equations in Several Variables.
Society for Industrial Mathematics, 1970.

[14] I. V. Oseledets. Compact matrix form of thed-dimensional tensor decomposition. 2009. INM RAS
preprint 01.

[15] I. V. Oseledets. Tensor-Train Decomposition.SIAM J. Sci. Comput., 33(5):2295–2317, 2011.

[16] I. V. Oseledets and B. N. Khoromskij. DMRG and QTT approach to high-dimensional quantum molecular
dynamics. 2010. MIS preprint 69.

[17] N. Schuch, I. Cirac, and D. Pérez-Garcı́a. PEPS as ground states: degeneracy and topology.
arXiv:1001.3807v2 [quant-ph], 2010.

[18] S. Singh, R. N. C. Pfeifer, and G. Vidal. Tensor network decompositions in the presence of a global
symmetry.arXiv:0907.2994v1 [cond-mat.str-el], 2009.

[19] E. E. Tyrtyshnikov and I. V. Oseledets. Breaking the curse of dimensionality, or how to use SVD in many
dimensions.SIAM J. Sci. Comput., 31:3744–3759, 2009.

[20] A. Uschmajew. Local convergence of the alternating least squares algorithm for canonical tensor approx-
imation. 2011. Preprint 103.

[21] G. Vidal. Efficient classical simulation of slightly entangled quantum computations.Phys. Rev. Lett.,
91(14), 2003.

25

