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Abstract

Tensor product approximation of pair-correlation functions opens a new route from quantum Monte
Carlo (QMC) to explicitly correlated F12 methods. Thereby one benefits from stochastic optimization
techniques used in QMC to get optimal pair-correlation functions which typically recover more than
85 % of the total correlation energy. Our approach incorporates, in particular, core and core-valence
correlation which are poorly described by homogeneous and isotropic ansatz functions usually applied
in F12 calculations. We demonstrate the performance of the tensor product approximation by ap-
plications to atoms and small molecules. It turns out that the canonical tensor format is especially
suitable for the efficient computation of two- and three-electron integrals required by explicitly corre-
lated methods. The algorithm uses a decomposition of three-electron integrals, originally introduced
by Boys and Handy and further elaborated by Ten-no in his 3d numerical quadrature scheme, which
enables efficient computations in the tensor format. Furthermore, our method includes the adaptive
wavelet approximation of tensor components where convergence rates are given in the framework of
best N -term approximation theory.

1 Introduction

From the early days of quantum theory, it was a major goal to obtain highly accurate approximations for
solutions of the many-particle Schrödinger equation. Focusing on the helium atom and isoelectronic ions,
Hylleraas pioneering work [1] demonstrated the reachability of this goal. For technical reasons, however,
his ansatz was not immediately applicable to more complicated atoms or molecules. In the subsequent
development of quantum many-particle theory, two different lines of research have been followed. In
quantum chemistry systematic expansions in terms of linear combinations of Slater determinants rep-
resented the favoured approach. Whereas research in nuclear and condensed matter physics also dealt
with Jastrow-type wavefunctions [2] where correlation is described by a symmetric exponential ansatz
function which explicitly depends on the inter-particle distances. Sophisticated many-particle theories
[3, 4, 5] were developed to deal with the corresponding highly nonlinear optimization problem. It is inter-
esting to see how both approaches merged to a certain extend in the framework of coupled cluster theory
[6]. An alternative procedure represent stochastic optimization schemes for Jastrow-type wavefunctions
[7, 8, 9, 10, 11, 12] which have been developed within the quantum Monte Carlo (QMC) approach. This
highly successful method has been applied to atoms, molecules and solids [13, 14]. In the course of these
studies, considerable knowledge concerning construction and performance of Jastrow factors [15, 16] has
been accumulated.

The major bottleneck for highly accurate calculations using a basis of Slater determinants is the slow
convergence with respect to the underlying single particle basis. To overcome this problem, additional
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basis functions explicitly depending on inter-particle distances were also introduced in quantum chemistry.
However, it was not until the work of Kutzelnigg and Klopper [17, 18] that this approach became man-
ageable for larger molecules. Originally based on a simple linear ansatz in the inter-particle distance, the
R12 method was recently extended to F12 methods [19, 20, 21, 22, 23, 24] by using more general ansatz
functions with improved behaviour at large inter-particle distances. So far not much impact from QMC
calculations on the construction of these correlation functions has been observed. This can be attributed
to rather different underlying philosophies in both communities. Quantum chemists consider these ad-
ditional correlation functions mainly as a completion of the original basis of Slater determinants which
only contributes in the asymptotic region of the electron-electron cusp. In contrast to this, the Jastrow
factor in QMC calculations typically acts on a Hartree-Fock (HF) wavefunction and carries over the whole
burden of electron correlation in the short, intermediate and long-range regime. Recent studies using the
F12 method [25], however, revealed the large potential of fairly simple optimized correlation functions also
in this context.

It is the purpose of the present work to bridge the gap between QMC and F12 methods. Before we
discuss the details of our approach let us briefly comment on similarities and differences of both methods.
The common object is the pair-correlation function τ (2) which enters into QMC via the Jastrow ansatz
for the wavefunction, i.e., Ψ = FΦ, with Jastrow factor

F(x1, . . . ,xN ) = exp

(

∑

i

τ (1)(xi) +
∑

i<j

τ (2)(xi,xj) + · · ·

)

, (1.1)

and in F12 methods as additional basis functions for electron pairs

wij(x1,x2) := (1 −Q1)(1 −Q2)τ
(2)(x1,x2)φi(x1)φj(x2), (1.2)

with indices i, j running over all occupied orbitals. Here the projection operators Q1 and Q2 map into
the space spanned by the occupied orbitals. The essential difference is that F12 methods restrict to
pair-correlation functions which depend only on the inter-electron distance. The consequence of such a
restriction can be well seen from QMC calculations, in particular the systematic study of Schmidt and
Moskowitz [26] demonstrated the significance of additional degrees of freedom. Unfortunately, it is difficult
to compare their results with recent F12 calculations based on optimized pair-correlation functions [25]
because the latter consider only valence correlation whereas QMC inherently includes core and core-
valence correlation. It is not surprising that often excellent results for valence correlation can be achieved
with optimized F12 pair-correlation functions because the valence electron density is to a certain extent
homogeneous and isotropic as well. Therefore, it seems that a real benefit of this more general approach
can be expected in cases where core and core-valence correlation must be taken into account or when low
lying valence orbitals, like for transition metals, are considered. This makes sense because such correlations
require substantial extensions of standard basis sets.

2 Route from quantum Monte Carlo to F12 methods

Various explicit representations for Jastrow factors have been reported in the QMC literature. Within the
present work we focus on the ansatz of Schmidt and Moskowitz [26] which was actually introduced earlier
by Boys and Handy for their transcorrelated approach [27]. Presently, these Jastrow factors are the most
popular for QMC calculations. The pair-correlation function is represented by a polynomial

τ(xi,xj) =
∑

I,J

∑

l,m,n

cI,Jlmn(r̄
m
iI r̄

n
jJ + r̄mjI r̄

n
iJ)r̄

l
ij , (2.1)

in rational distance variables

r̄iI =
|xi − AI |

1 + |xi − AI |
and r̄ij =

|xi − xj |

1 + |xi − xj |
. (2.2)
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Here and in the following, we have skipped the superscript in τ (2) for notational simplicity. Powers of
these variables can be further approximated by sums of Gaussians

[

|x|

1 + |x|

]m

≈
κ
∑

k=1

bm,ke
−αm,k |x|

2
for m = 1, 2, . . . , (2.3)

leading to a separable approximation τ̃ of the pair-correlation function, i.e.,

τ(x,y) ≈ τ̃(x,y) :=
∑

I,J

∑

l,m,n

aI,Jlmn

3
∏

i=1

e−αl(xi−AI,i)
2
e−βm(xi−yi)2e−γn(yi−AJ,i)

2
, (2.4)

with x := (x1, x2, x3), y := (y1, y2, y3), respectively. This separable approximation, however, has by
construction a large separation rank and is of limited use for the computation of three-electron integrals.
Therefore, a compression step is required which provides us with a low-rank approximation of the pair-
correlation function. It is our goal to find the best possible separable approximation for a given separation
rank κ in the general form

τ̃(x,y) ≈
κ
∑

k=1

u
(1)
k (x1, y1)u

(2)
k (x2, y2)u

(3)
k (x3, y3), (2.5)

which is known in the literature as the canonical tensor format [28]. Like in our previous work [29, 30],
we applied Newton’s algorithm [31] to solve the least-squares problem

σκ(τ̃) := inf
w

(i)
k

∥

∥e−µ(|x|2+|y|2)
(

τ̃(x,y) −

κ
∑

k=1

3
∏

i=1

w
(i)
k (xi, yi)

)
∥

∥

L2(R6)
(2.6)

for the pair-correlation function in the weighted L2(R
6) norm. The weight e−µ(x2+y

2) has been introduced
for computational convenience because the asymptotic behaviour of the pair-correlation function is not
well defined for |x| or |y| → ∞. It has been shown by Espig [31] that the best approximation

{u
(i)
k (xi, yi)}k=1,...,κ, i=1,2,3 := arg minσκ(τ̃ ) (2.7)

is contained in the L2(R
2) subspaces, cf. (2.4),

Ui := span
{

e−αl(xi−AI,i)
2
e−βm(xi−yi)2e−γn(yi−AJ,i)

2}

, (2.8)

which means that the bivariate components u
(i)
k are given in the form

u
(i)
k (xi, yi) =

∑

I,J

∑

l,m,n

cI,Jk,lmne
−αl(xi−AI,i)

2
e−βm(xi−yi)2e−γn(yi−AJ,i)

2
. (2.9)

The computational complexity of the compression algorithm for a target rank κ is given by

O

(

κ(κ+K) + κ3 + (κ+K)

3
∑

i=1

dimUi

)

, (2.10)

where K denotes the initial separation rank of τ̃ . The basic assumption for our applications is κ ≪ K,
and therefore it is the last term which eventually determines the computational complexity. The last term
actually corresponds to a precomputing step performed before the minimization of the functional (2.6)
using Newton’s algorithm. By construction, the number of 2d-Gaussian geminals whose span defines Ui
equals K, however, among these geminals a multitude of almost linear dependencies have to be expected.
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In order to achieve optimal performance in the compression step, it is important to use an appropriate
norm for the least-squares fit. For the pair-correlation function, its contribution to the kinetic energy is
decisive. The weak formulation of the kinetic energy requires the first partial derivatives ∂xτ which are
not part of the L2 error. Therefore, the Sobolev space H1 which also takes into account the L2 error of
first partial derivatives, is appropriate. It is not hard to see that the original pair-correlation function τ
belongs to H1(Ω) for any bounded domain Ω ⊂ R

6. Again the boundedness of Ω is required just because
we want to avoid any explicit statement concerning the asymptotic behaviour of τ in the limit |x| or
|y| → ∞. Recently, one of us proved that the best canonical tensor product approximation in the L2

sense preserves the Sobolev regularity of the function to be approximated [32]. It is consistent with this
regularity result to consider a H1

mix norm for the approximation of τ̃ , already in a separable format, which
explicitly depends on first partial derivatives ∂xτ . For a function given in a separable representation, the
H1
mix norm is defined as

‖

κ
∑

k=1

3
∏

i=1

w
(i)
k ‖2

H1
mix

:=
∑

k,k̃

3
∏

i=1

(

〈w
(i)
k , w

(i)

k̃
〉 + λ〈∂xi

w
(i)
k , ∂xi

w
(i)

k̃
〉 + λ〈∂yi

w
(i)
k , ∂yi

w
(i)

k̃
〉

)

, (2.11)

where

〈w
(i)
k , w

(i)

k̃
〉 :=

∫

R2

w
(i)
k (xi, yi)w

(i)

k̃
(xi, yi) dxidyi, (2.12)

and

〈∂xi
w

(i)
k , ∂xi

w
(i)

k̃
〉 :=

∫

R2

∂xi
w

(i)
k (xi, yi)∂xi

w
(i)

k̃
(xi, yi) dxidyi. (2.13)

In our applications, we have chosen λ = 1/2. A major advantage of this definition is that it requires no
modifications of the Newton algorithm which is not the case if we would insist on optimization in the H1

norm.
In order to demonstrate the performance of the compression step and the accuracy of corresponding

canonical tensor product approximations, we have studied QMC optimized pair-correlation functions for
some simple atoms and molecules. In Fig. 2.1, compression errors at various ranks and corresponding
variational Monte Carlo (VMC) energies are shown for He, Ne, CH4 and H2O. It can be seen that the
VMC energy of the original pair-correlation functions are recovered at separation ranks between 40 and 50.
The H1

mix error converges exponentially with the separation rank. For orientation of the reader, fixed-node
diffusion Monte Carlo (DMC) energies and exact ground state energies are shown. The DMC energies
can be actually considered as the real benchmark for the Jastrow ansatz which is not exact because of the
fixed-node approximation.

3 Tensor product approximation of three electron integrals

The tensor product approximation of stochastically optimized pair-correlation functions paves the way for
their application in explicitly correlated methods. Because of the anisotropic and inhomogeneous character
of the ansatz (2.1), a direct computation of the required two- and three-electron integrals would be hard
to accomplish. Via the separable tensor product representation, however, the computational complexity
of these integrals can be drastically reduced by appropriate modifications of already existing numerical
intergration schemes. In this section we want to outline such an approach and present some preliminary
numerical results.

For explicitly correlated methods, three-electron integrals represent a major bottleneck [24] and the
ultimate success of these methods is closely linked to the development of efficient and accurate approxi-
mation schemes. In this section we want to discuss a tensor product based approach for the computation
of three-electron integrals. The canonical tensor product approximation of the pair-correlation function
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Figure 2.1: H1
mix compression errors and corresponding VMC energies versus separation rank κ of canon-

ical tensor product approximations of pair-correlation functions for He, Ne, CH4 and H2O. For reference,
VMC energies before compression (dashed line), DMC energies (dotted line) and exact energies (solid
line) are given.

(2.5) leads to bivariate components of the form (2.9) which can be used for the computation of two- and
three-electron integrals. As an illustrative example, we want to discuss a specific type of three-electron
integral

〈ij||x1 − x2|
−1Q2τ(x1,x2)|kl〉 =

∑

m

〈ijm||x1 − x2|
−1τ(x1,x3)|kml〉, (3.1)

where the indices i, j, k, l,m run over all occupied orbitals. Such integrals are required, e.g., for the
explicitly correlated MP2 method. Our tensor product based approach can be considered as a variant of
Ten-no’s numerical quadrature scheme [33] which was originally introduced by Boys and Handy in their
transcorrelated approach [34]. We take the same decomposition of three-electron integrals, but instead
of a 3d numerical quadrature, tensor product approximations are used. The basic idea is to obtain low-
rank approximations for convolutions1 of orbital products with the Coulomb potential and pair-correlation
function from which three-electron integrals are easily computed. To illustrate our concept, let us consider

1Here it should be mentioned that the notion of convolution has been used in a slightly generalized sense in order to apply

it to pair-correlation functions, not only depending on the inter-electron distance, as well.
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the integral (3.1) more closely. This integral can be decomposed into convolutions according to

〈ijm||x1 − x2|
−1τ(x1,x3)|kml〉 =

∫

R3

Ajm(x1)φi(x1)φk(x1)Bml(x1)d
3x1, (3.2)

with

Ajm(x1) :=

∫

R3

|x1 − x2|
−1φj(x2)φm(x2)d

3x2, (3.3)

Bml(x1) :=

∫

R3

τ(x1,x3)φm(x3)φl(x3)d
3x3. (3.4)

Ten-no’s approach consists of approximating the integral (3.2) by a 3d numerical quadrature. Instead
of this, we are aiming at low-rank tensor product approximations for the intermediate quantities Ajm
and Bml, thereby Eq. (3.2) factorizes into sums of products of 1d-integrals. Our algorithm consists of
a succession of product evaluations, convolutions and compressions. In detail, we consider the following
steps:

(i) Tensor product approximation of products of orbitals. For each pair of occupied orbitals, we compute
a low-rank approximation of their product

φi(x)φj(x) ≈

κ′
∑

k=1

ϕ
(1)
ij,k(x1)ϕ

(2)
ij,k(x2)ϕ

(3)
ij,k(x3). (3.5)

A detailed discussion of this topic with an application to HF exchange integrals has been given in
[30, 35].

(ii) Convolution with Coulomb potential and pair-correlation function. In order to get the intermediate
quantities Ajm and Bml, convolutions of products of orbitals with the Coulomb potential and pair-
correlation function must be computed. This can be done in the canonical tensor format in a very
efficient manner, e.g.,

Bml(x) =

κ,κ′
∑

k,k′=1

3
∏

i=1

∫

R

u
(i)
k (xi, yi)ϕ

(i)
ml,k′(yi)dyi. (3.6)

(iii) Compression of intermediate quantities Ajm and Bml. It is a typical feature of the tensor product
approach that operations on a tensor product increase its rank and a subsequent compression step
is mandatory in order to avoid an undue increase of the computational complexity. The convoluted
quantities are therefore further approximated by low-rank tensor products, e.g.,

Bml(x) ≈
κ
∑

k=1

b
(1)
ml,k(x1) b

(2)
ml,k(x2) b

(3)
ml,k(x3), (3.7)

which can be stored at low costs for each pair of occupied orbitals. A similar approach has been
outlined in [29] for the computation of standard two-electron integrals.

(iv) Intermediate sum and further compression. In explicitly correlated methods it is only the sum of
three-electron integrals (3.1) which enters into the calculation. With the low-rank approximations
of the previous step at hand, the sum can be computed in the tensor format

Djl(x) :=
∑

m

Ajm(x)Bml(x) (3.8)

=
∑

m

κ,κ′
∑

k,k′=1

3
∏

i=1

a
(i)
jm,k(xi)b

(i)
ml,k′(xi),
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Figure 3.1: Error in the “three-electron” integral (3.1) of the helium atom for various separation ranks of
intermediate quantities. The same separation rank, depicted at the abscissa, has been taken for the orbital
product and its convolution with the Coulomb potential A. For the convolution with the pair-correlation
function B, three different separation ranks κ = 40 (©), 60 (�), 80 (△) have been chosen. A 8s GTO
basis was taken for the 1s orbital.

and a subsequent compression step provides an efficient approximation of this intermediate quantity

Djl(x) ≈
κ
∑

k=1

d
(1)
jl,k(x1) d

(2)
jl,k(x2) d

(3)
jl,k(x3). (3.9)

(v) Computation of the integrals. In the last step, three-electron integrals are easily computed in the
tensor format, i.e.,

∑

m

〈ijm||x1 − x2|
−1τ(x1,x3)|kml〉 =

κ,κ′
∑

k′,k′′=1

3
∏

p=1

∫

R

d
(p)
jl,k′(xp)ϕ

(p)
ik,k′′(xp)dxp. (3.10)

We want to emphasize that all intermediate quantities and corresponding compression steps refer to
two index quantities with respect occupied orbitals.

In order to demonstrate the feasibility of our approach, we computed the “three-electron” integral
(3.1) for the helium atom. The error at various separation ranks of intermediate quantities is shown in
Fig. 3.1, where it can be seen that the separation rank of the convolution of the pair-correlation function
is the most sensible quantity. This simple example indicates that with moderate separation ranks of
the intermediate quantities, it is possible to achieve sufficiently high accuracies. For more complicated
atoms and molecules we expect no dramatic increase of the separation ranks. Our expectation is based
on our previous work [29, 30] where we have studied tensor product approximations of orbital products
and Hartree potentials for some small molecules.

4 Best N-term approximation theory for tensor components

In Sections 2 and 3, we discussed our approach to obtain a low-rank tensor product approximation for
the pair-correlation function and how to use it for the computation of three-electron integrals. So far
our discussion, however, leaves an important point open, namely how to represent the uni- and bivariate
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tensor components. This can be done e.g. by equidistant or adaptive grids as well as by some kind of basis
functions. The tensor components reflect electron-nuclear and inter-electron cusps and one cannot expect
a higher regularity beyond the result in [32]. Consequently, uniform representations, like equidistant grids,
become highly inefficient. Instead adaptive schemes are required which enable data sparse approximations
after an additional compression step. For this purpose, we have already studied wavelet approximations
of tensor components for the electron density and the Hartree potential [29] where good compression
rates have been achieved. It is the purpose of this section to put these heuristic observations on solid
mathematical ground.

The following discussion is of practical significance with respect to the construction of adaptive wavelet
algorithms for the computation of intermediate quantities in the tensor format, cf. [29]. In order to obtain
an algorithm with optimal computational complexity it is essential to achieve the best possible benefit to
cost ratio with respect to approximation order and size of support of a wavelet. We provide the order of
approximation for different wavelet bases in an adaptive setting, where it turns out that uni- and bivariate
tensor components behave differently.

The concept of best N -term approximation belongs to the realm of nonlinear approximation theory.
For a detailed exposition of this subject, we refer to Ref. [36]. Loosely speaking, one considers for a
given basis {ζi : i ∈ Λ} the best possible approximation of a function f in the nonlinear subset ΣN which
consists of all possible linear combinations of at most N basis functions, i.e.,

ΣN :=

{

∑

i∈∆

ci ζi : ∆ ⊂ Λ,#∆ ≤ N, ci ∈ R

}

. (4.1)

Here, the approximation error
σN (f) := inf

fN∈ΣN

‖f − fN‖H (4.2)

is given with respect to the norm of an appropriate Hilbert space H. Best N -term approximation spaces
Aαq (H) for a Hilbert space H can be defined according to

Aαq (H) := {f ∈ H : |f |Aα
q (H) <∞} with |f |Aα

q (H) :=

(

∑

N∈N

(

NασN (f)

)q

N−1

)
1
q

. (4.3)

It follows from the definition that the error σN (f) decreases asymptotically like O(N−α) with respect
to the number of basis functions. In fact σN (f) is the best error bound which can be obtained with N
degrees of freedom. For a complete orthonormal basis, the best N -term approximation in L2 is simply
given by the N largest coefficients.

In our applications we consider best N -term approximation for wavelet bases. For the ease of the
reader, some basic facts about wavelets are given in Appendix A. In the following only orthogonal wavelet
bases are considered, however, our considerations can be easily generalized to biorthogonal wavelets.
Furthermore, in our notation, we do not distinguish between scaling functions and wavelets on the coarsest
level. Such a distinction is not relevant in the following and should cause no confusion. The multiscale
best N -term approximation of a univariate function in a wavelet basis is given by

f(x) ≈ fN(x) =
∑

(j,a)∈∆

〈ψj,a|f〉ψj,a(x), with #∆ ≤ N. (4.4)

where the index set ∆ has been chosen in order to minimize the error σN (f). Since we are mainly interested
in the energy of a molecule it is appropriate to restrict to a finite domain. Therefore, we consider in the
following the Sobolev space H1(I) for a bounded interval I ⊂ R. The corresponding approximation spaces
Aαq (H

1(I)) have been identified as Besov spaces [36] which have an equivalent norm for 1
q = α + 1

2 in
terms of weighted ℓq spaces of wavelet coefficients, i.e.,

‖ f ‖qAα
q (I)≡

∑

j≥j0

2jq

(

∑

a

|〈ψj,a|f〉|
q

)

. (4.5)
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This norm equivalence is satisfied for all wavelet bases with p > α + 1 vanishing moments and for which
ψ belongs to an appropriate Besov space. By estimating wavelet coefficients for a given function f , one
can try to show that the sum (4.5) is finite which proves that f belongs to Aαq (H1(I)).

Best N -term approximation can be also applied to bivariate tensor components of pair-correlation
functions. For this we consider anisotropic tensor product wavelets

ψj1,a1(x)ψj2,a2(y), (4.6)

and corresponding best N -term approximation for bivariate functions

f(x, y) ≈ fN (x, y) =
∑

(j1,j2,a1,a2)∈∆

〈ψj1,a1 ψj2,a2 |f〉ψj1,a1(x)ψj2,a2(y) with #∆ ≤ N. (4.7)

Similar to the univariate case, we consider approximation spaces Aαq (H1(Ω)) for a square Ω := I×I ⊂ R
2.

The necessary generalization of N -term approximation theory to anisotropic tensor product wavelets has
been given by Nitsche [37]. Here we just want to mention that the equivalent weighted ℓq norm for
1
q = α+ 1

2 becomes

‖ f ‖qAα
q (Ω)≡

∑

j1,j2≥j0

2max{j1,j2}q

(

∑

a1,a2

|〈ψj1,a1 ψj2,a2 |f〉|
q

)

. (4.8)

4.1 Univariate components of tensor products

In the course of our tensor algorithm for the computation of three-electron integrals outlined in Section
3, we encountered several intermediate quantities (3.5), (3.7) and (3.9) which are represented by ten-
sor product approximations. Any computation using these tensor products greatly benefits from sparse
approximations of the corresponding univariate tensor components.

Theorem 1. Let the function η correspond to a solution φi of the Hartree-Fock equation, a pointwise
product φiφj , its convolution with the Coulomb potential Alm or pair-correlation function Blm. The direc-

tional univariate components η
(i)
k , for i = 1, 2, 3 and k = 1, . . . , κ, of their canonical best separable tensor

product approximations, i.e., local minimizers2

κ
∑

k=1

η
(1)
k ⊗ η

(2)
k ⊗ η

(3)
k = arg min

{h
(i)
k

}

∥

∥

∥

∥

η −
κ
∑

k=1

h
(1)
k ⊗ h

(2)
k ⊗ h

(3)
k

∥

∥

∥

∥

L2(R3)

, (4.9)

belong to best N -term approximation spaces Aαq (H1(I)) for all α > 0 and 1
q = α+ 1

2 .

Proof. In the following, we always assume that rank η > κ, i.e., the actual tensor rank of the function η
to be approximated is larger than the separation rank κ of its approximation. This is generally satisfied
in our applications.

According to a regularity result for univariate components of tensor products [32], the univariate

components η
(i)
k , i = 1, 2, 3, k = 1, . . . , κ of a local minimizer inherit the regularity of the function η, that

is, if η ∈ Hs(R3) then η
(i)
k belongs to Hs(R). It is known that HF orbitals and their products belong to

Sobolev spaces Hs(R3) for s < 5/2 [38]. A convolution with the Coulomb potential or pair-correlation
function increases the Sobolev regularity further. Therefore, we assume in the following η ∈ Hs(R3) for
s < 5/2.

It can be seen from the proof in [32] that the univariate components satisfy an integral equation

η
(1)
k (x1) =

∫

R2

η(x)wk(x2, x3)dx2dx3 (4.10)

2For convolutions the L2 norm is taken over a large finite cube Q containing I × I × I as a subcube, instead of R
3.
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with wk ∈ L2(R
2) and η

(1)
k ∈ Hs(R) for s < 5/2. For the following estimates of the wavelet coefficients, let

us consider w.l.o.g. the component in the x1 direction and assume a single nucleus located at the origin.
According to (4.10), a coefficient is given by

〈ψj,a, η
(1)
k 〉 :=

∫

R

ψj,a(x1)η
(1)
k (x1)dx1 =

∫

R3

ψj,a(x1)η(x)wk(x2, x3)d
3x. (4.11)

For wavelets with support close to the origin, i.e., dist(suppψj,a, 0) . 2−j , we get from (A.7) the
estimate

∣

∣〈ψj,a, η
(1)
k 〉
∣

∣ . 2−
3
2
j‖∂x1η

(1)
k ‖L∞(suppψj,a) (4.12)

because of the embedding η
(1)
k ∈ H

5
2
−ǫ(R) →֒ C1

B(R), for 0 < ǫ < 1
2 , into the space of functions with

bounded weak derivative. The number of such wavelet coefficients is O(1). Here and in the following
a . b means that a ≤ Cb for some constant C which is independent of variables or parameters on which
a, b may depend on. Similarly a ≃ b means that the quantities can be bounded by some multiple of each
other.

Next let us consider dist(suppψj,a, 0) & 2−j , in particular dist(suppψj,a, 0) ≃ 2−j |a| can be assumed.
In a neighbourhood of the nucleus, we can apply the asymptotic estimate

∣

∣∂β
x
η(x)

∣

∣ . |x|1−|β| for x 6= 0 and |β| ≥ 1, (4.13)

which provides an upper bound on the divergence of partial derivatives. This estimate applies to orbitals,
their products and convolutions, cf. [38] for further details. Here, we used the standard short-hand notation
for mixed partial derivatives

∂β
x

:=
∂β1

∂xβ1
1

∂β2

∂xβ2
2

∂β3

∂xβ3
3

, (4.14)

with β1, β2, β3 ∈ N and absolute value of the multi-index |β| := β1 + β2 + β3. Using (A.7) and Schwarz’s
inequality, corresponding wavelet coefficients can be estimated according to

∣

∣

∣

∣

∫

R

ψj,a(x1)η
(1)
k (x1)dx1

∣

∣

∣

∣

. 2−(p+ 1
2
)j

∥

∥

∥

∥

∫

R2

∂px1
η(x)wk(x2, x3)dx2dx3

∥

∥

∥

∥

L∞(suppψj,a)

. 2−(p+ 1
2
)j

∥

∥

∥

∥

∫

R2

|x|1−pwk(x2, x3)dx2dx3

∥

∥

∥

∥

L∞(suppψj,a)

. 2−(p+ 1
2
)j

(
∫ ∞

0
|2−2ja2 + r2|1−prdr

)
1
2

‖w‖L2

. 2−
5
2
j|a|2−p, (4.15)

where the estimate
∫ ∞

0
|2−2ja2 + r2|1−prdr .

(

2−2ja2
)2−p

, (4.16)

for p > 2 has been applied in the second last line.
The estimates for the wavelet coefficients (4.12) and (4.15) can be used to estimate the weighted ℓq

norm (4.5), i.e.,

∑

j≥j0

2qj
∑

a

∣

∣〈ψj,a, η
(1)
k 〉
∣

∣

q
.

∑

j≥j0

2qj
(

2−
3
2
qj + 2−

5
2
qj

∑

a∈Z\{0}

|a|(2−p)q
)

.
∑

j≥j0

2−
1
2
qj <∞, (4.17)

which applies for wavelets with p > 2 + 1
q vanishing moments. It should be mentioned that the norm

equivalence (4.5) requires wavelets with more than 1
2 + 1

q vanishing moments. It follows that η
(1)
k belongs

to Aαq (H1(I)) or all α > 0 and 1
q = α+ 1

2 .
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As already mentioned before the optimization problem (4.9) is often ill-posed and global minimizers
do not exist. It is however possible to generalize the Sobolev regularity theorem [32] to a well-posed
optimization problem using Tikhonov regularization, which is frequently used in numerical algorithms.

4.2 Bivariate tensor components of pair-correlation functions

In order to study the best N -term approximation of bivariate tensor components of a pair-correlation
function, it is necessary to estimate its singular behaviour along the diagonal. No rigorous general results
are presently available, however, guided by Kato’s cusp condition and the ansatz (2.1) used in QMC
calculations we make the following assumption

|∂βxi
τ(x,y)| . |x − y|1−|β|f(x,y), for |β| ≥ 1 and x 6= y, (4.18)

concerning the singular behaviour of the pair-correlation function near the diagonal, where f belongs to
the Schwartz space S(R3 × R

3) of smooth rapidly decreasing functions, e.g., f(x,y) = e−µ(|x|2+|y|2) is
fine. Here, f is introduced for technical reasons only, to make the pair-correlation function well-behaved
at infinity. For example, one can choose a smooth cut-off function which is adapted to the size of the
molecule. In the ansatz (2.1), we assume that only even powers with respect to electron-nuclear distance
variables (2.2) are taken into account which means that the pair-correlation function has no off-diagonal
cusps at the nuclei. This assumption is actually satisfied in most applications, cf. [26], and a comparative
study [16] showed that inclusion of odd powers gives only a minor improvement. An extension of our result
which takes odd powers into account is possible, however, due to additional singularities at the nuclei a
considerably more elaborate proof is required, cf. [39] for further details. It is for the sake of simplicity
that we refrain from such complications in the present work.

After these preliminary remarks, the best N -term approximation spaces for bivariate tensor compo-
nents can be stated.

Theorem 2. Suppose a two-particle correlation function τ satisfies the estimate (4.18). The bivariate

components u
(i)
k (xi, yi), i = 1, 2, 3, k = 1, . . . , κ, of a canonical tensor product approximation, i.e., a local

minimizer
κ
∑

k=1

u
(1)
k ⊗ u

(2)
k ⊗ u

(3)
k = arg min

{w
(i)
k

}

∥

∥

∥

∥

τ −
κ
∑

k=1

w
(1)
k ⊗w

(2)
k ⊗w

(3)
k

∥

∥

∥

∥

L2(R6)

,

belong to best N -term approximation spaces Aαq (H1(Ω)) with 0 < α < 3
2 and 1

q = α + 1
2 for anisotropic

tensor product wavelets (4.6).

In contrast to the univariate case, the bivariate tensor components do not belong to all best N -term
approximation spaces. This is because of the singular behaviour along the diagonal which cannot be fully
compensated by adaptivity. In our previous work [39], the best N -term approximation of pair-correlation
functions has been studied directly without intermediate tensor product approximation. It was shown
that the pair-correlation function τ in this case belongs to best N -term approximation spaces Aαq (H1)

for all 0 < α < 1
2 and 1

q = α + 1
2 . Provided sufficiently accurate tensor product approximations can be

obtained at low ranks, the gain is significant in particular for the energy which converges quadratically
with respect to the H1 error.

Proof. Similarly to the univariate case, the bivariate tensor components satisfy an integral equation, e.g.,

u
(1)
k (x1, y1) =

∫

R2×R2

τ(x,y)wk(x23,y23)d
2x23d

2y23, (4.19)

with x23 := (x2, x3), y23 := (y2, y3), where wk ∈ L2(R
2 × R

2) and u
(1)
k ∈ Hs(R × R) for s < 5/2. The

Sobolev regularity follows from [32] and the fact that τ belongs to Hs(R3 × R
3) for s < 5

2 , cf. [40]. With
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it, the wavelet coefficients are given by

〈ψj1,a1ψj2,a2 , u
(1)
k 〉 :=

∫

R×R

ψj1,a1(x1)ψj2,a2(y1)u
(1)
k (x1, y1)dx1dy1

=

∫

R3×R3

ψj1,a1(x1)ψj2,a2(y1)τ(x,y)wk(x23,y23)d
3xd3y. (4.20)

In the following estimates, we take Uj,a := suppψj,a, L := diam suppψ and assume w.l.o.g. j1 ≥ j2.
The first case we have to consider are tensor product wavelets with support close to the diagonal,

i.e., dist{Uj1,a1 × Uj2,a2 ,diag} ≤ 2−j2L. Let us subdivide the support Uj2,a2 of the wavelet ψj2,a2 into
subintervals Ii, i = 1, . . . , 2j1−j2, of length 2−(j1−j2)L. Then, let us split up the integral according to

〈ψj1,a1ψj2,a2 , u
(1)
k 〉 =

2j1−j2
∑

i=1

∫

Ii

∫

Uj1,a1

ψj1,a1(x1)ψj2,a2(y1)u
(1)
k (x1, y1)dx1dy1. (4.21)

Let us estimate the case dist{Uj1,a1 × Ii,diag} ≤ 2−j1L, i.e.,
∫

Ii

∫

Uj1,a1

ψj1,a1(x1)ψj2,a2(y1)u
(1)
k (x1, y1)dx1dy1

=

∫

Ii

∫

Uj1,a1

∫

R2×R2

ψj1,a1(x1)ψj2,a2(y1)τ(x,y)wk(x23,y23)d
3xd3y, (4.22)

after splitting up the inner integral
∫

R2×R2

=

∫

D
+

∫

R2×R2\D
, (4.23)

with
D :=

{

(x23,y23) : |x23 − y23| ≤ 2−j1L
}

, (4.24)

estimates for the two parts can be obtained separately
∣

∣

∣

∣

∫

Ii

∫

Uj1,a1

∫

D
ψj1,a1(x1)ψj2,a2(y1)τ(x,y)wk(x23,y23)d

3xd3y

∣

∣

∣

∣

. 2−
5
2
j12

1
2
j2

∥

∥

∥

∥

∫

D
∂x1τ(x,y)wk(x23,y23)d

2x23d
2y23

∥

∥

∥

∥

L∞(Uj1,a1
×Ii)

. 2−
5
2
j12

1
2
j2

∥

∥

∥

∥

(
∫

D
|∂x1τ(x,y)|2d2x23d

2y23

)
1
2
∥

∥

∥

∥

L∞(Uj1,a1
×Ii)

‖w‖L2(D)

. 2−
7
2
j12

1
2
j2 , (4.25)

and
∣

∣

∣

∣

∫

Ii

∫

Uj1,a1

∫

R2×R2\D
ψj1,a1(x1)ψj2,a2(y1)τ(x,y)wk(x23,y23)d

3xd3y

∣

∣

∣

∣

. 2−(p+ 3
2
)j12

1
2
j2

∥

∥

∥

∥

∫

R2×R2\D
∂px1

τ(x,y)wk(x23,y23)d
2x23d

2y23

∥

∥

∥

∥

L∞(Uj1,a1
×Ii)

. 2−(p+ 3
2
)j12

1
2
j2

∥

∥

∥

∥

(
∫

R2×R2\D
|∂px1

τ(x,y)|2d2x23d
2y23

)
1
2
∥

∥

∥

∥

L∞(Uj1,a1
×Ii)

‖w‖L2(R2×R2\D)

. 2−(p+ 3
2
)j12

1
2
j2

∥

∥

∥

∥

(
∫

R2×R2\D
|x23 − y23|

2(1−p)|f(x,y)|2d2x23d
2y23

)
1
2
∥

∥

∥

∥

L∞(Uj1,a1
×Ii)

. 2−(p+ 3
2
)j12

1
2
j2

(
∫ ∞

2−j1

s2(1−p)sds

)
1
2

. 2−
7
2
j12

1
2
j2. (4.26)
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Next we define di := dist{Uj1,a1 ×Ii,diag}, and consider those subintervals Ii which refer to the index set
Λ := {i : di > 2−j1L}, i.e.,

∑

i∈Λ

∣

∣

∣

∣

∫

Ii

∫

Uj1,a1

∫

R2×R2

ψj1,a1(x1)ψj2,a2(y1)τ(x,y)wk(x23,y23)d
3xd3y

∣

∣

∣

∣

. 2−(p+ 3
2
)j12

1
2
j2
∑

i∈Λ

∥

∥

∥

∥

∫

R2×R2

∂px1
τ(x,y)wk(x23,y23)d

2x23d
2y23

∥

∥

∥

∥

L∞(Uj1,a1
×Ii)

. 2−(p+ 3
2
)j12

1
2
j2
∑

i∈Λ

∥

∥

∥

∥

∫

R2×R2

∣

∣d2
i + |x23 − y23|

2
∣

∣

1−p

2 |f(x,y)||wk(x23,y23)|d
2x23d

2y23

∥

∥

∥

∥

L∞(Uj1,a1
×Ii)

. 2−(p+ 3
2
)j12

1
2
j2
∑

i∈Λ

(
∫ ∞

0

∣

∣d2
i + s2

∣

∣

1−p
sds

)
1
2

‖w‖L2(R2×R2)

. 2−(p+ 3
2
)j12

1
2
j2
∑

i∈Λ

d2−p
i

. 2−
7
2
j12

1
2
j2 , (4.27)

where we used
∑

i∈Λ d
2−p
i . 2−(2−p)j1 for p > 3 vanishing moments. Summing, we get the estimate

∣

∣〈ψj1,a1ψj2,a2 , u
(1)
k 〉
∣

∣ . 2−
7
2
j12

1
2
j2, (4.28)

for coefficients of bivariate wavelets located on or next to the diagonal.
The second case we have to consider are wavelets with dj2,a2 := dist{Uj1,a1 × Uj2,a2 ,diag} > 2−j2L. In

this case one gets the following estimate
∣

∣

∣

∣

∫

Uj2,a2

∫

Uj1,a1

∫

R2×R2

ψj1,a1(x1)ψj2,a2(y1)τ(x,y)wk(x23,y23)d
3xd3y

∣

∣

∣

∣

. 2−(p+ 1
2
)(j1+j2)

∥

∥

∥

∥

∫

R2×R2

∂px1
∂py1τ(x,y)wk(x23,y23)d

2x23d
2y23

∥

∥

∥

∥

L∞(Uj1,a1
×Uj2,a2

)

. 2−(p+ 1
2
)(j1+j2)

∥

∥

∥

∥

∫

R2×R2

∣

∣x− y
∣

∣

1−2p
|f(x,y)||wk(x23,y23)|d

2x23d
2y23

∥

∥

∥

∥

L∞(Uj1,a1
×Uj2,a2

)

. 2−(p+ 1
2
)(j1+j2)

(
∫ ∞

0

∣

∣d2
j2,a2 + s2

∣

∣

1−2p
sds

)
1
2

‖w‖L2(R2×R2)

. 2−(p+ 1
2
)(j1+j2)d2−2p

j2,a2
. (4.29)

These wavelet coefficients are specified by the index sets Γj2j1,a1 := {a2 : dj2,a2 > 2−j2L}.
It remains to estimate the weighted ℓq norm (4.8) on the square Ω := I × I using (4.28) and (4.29)

which gives

∑

j1≥j2≥j0

∑

a1,a2

2qj1
∣

∣〈ψj1,a1ψj2,a2 , u
(1)
k 〉
∣

∣

q

.
∑

j1≥j2≥j0

2qj12j1
[

2−
7
2
qj12

1
2
qj2 + 2−(p+ 1

2
)q(j1+j2)

∑

a2∈Γ
j2
j1,a1

d
(2−2p)q
j2,a2

]

.
∑

j1≥j2≥j0

2qj12j1
[

2−
7
2
qj12

1
2
qj2 + 2−(p+ 1

2
)qj12(p− 5

2
)qj2

]

.
∑

j1≥j0

2−2qj12j1 , (p > 2), (4.30)
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where we used
∑

a2∈Γ
j2
j1,a1

d
(2−2p)q
j2,a2

. 2−(2−2p)qj2 for p > 1
2 + 1

q vanishing moments. Therefore, the sum

(4.30) converges for q > 1
2 and u

(1)
k belongs to Aαq (H1(Ω)) for all 0 < α < 3

2 with 1
q = α+ 1

2 .

5 Conclusions

We discussed a general approach, based on tensor product approximation, for transfering optimized pair-
correlation functions from QMC Jastrow factors into F12 methods, the latter are presently considered to
represent the most accurate computational scheme in quantum chemistry. For most applications QMC
Jastrow factors recover between 85 and 90 % of the correlation energy. In particular, core and core-
valence correlations are taken into account. The canonical tensor product approximation of pair-correlation
functions leads to moderate separation ranks which enables an efficient computation of three-electron
integrals in the tensor format. This requires the computation of various intermediate two-index quantities
which themselves are approximated in the canonical tensor format. In order to perform all the necessary
computations in the tensor format in an efficient manner, it is beneficial to have sparse representations
of tensor components available. In the second half of the paper we discussed adaptive approximation of
tensor components in wavelet bases and provide convergence rates for the best N -term approximation.
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A Basic notions of multiresolution analysis

The purpose of this appendix is to provide some basic facts about wavelets which are required in Section
4. For a detailed exposition of this subject, we refer to the monographs [41, 42, 43].

In one dimension, multiresolution analysis provides a partition of the Hilbert space L2(R) into an
infinite sequence of ascending subspaces · · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · · , where the index j runs over all
integers. The union of these subspaces

⋃

j Vj is dense in L2(R). On each subspace Vj the scaling function
ϕ(x) generates a basis

ϕj,a(x) := 2j/2ϕ(2jx− a), a ∈ Z, (A.1)

via the operations of dilation and translation. The dilation factor 2j scales the size of the basis functions,
which means that with increasing j, the ϕj,a provide a finer resolution in L2(R). An explicit embedding
of Vj into the larger space Vj+1 is given by the refinement relation

ϕ(x) = 2
∑

a

ha ϕ(2x− a),

where the number of nonzero filter coefficients ha is finite for the scaling functions considered in our
application. Wavelet spaces Wj are defined as complements of Vj in Vj+1. The corresponding wavelet
basis is generated from a mother wavelet ψ(x) analogous to Eq. (A.1)

ψj,a(x) := 2j/2ψ(2jx− a), a ∈ Z.

This construction leads to a hierarchical decomposition

L2(R) = Vj0 ⊕
⊕

j≥j0

Wj (A.2)

into wavelet subspaces Wj [41]. In an orthogonal wavelet basis, i.e.,

〈ϕj0,a|ϕj0,b〉 = δa,b, 〈ψj,a|ψk,b〉 = δj,k δa,b, 〈ϕj0,a|ψj,b〉 = 0, (A.3)
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with j0 ≤ j, k, any function in L2(R) can be represented as

f(x) =
∑

a

〈ϕj0,a|f〉ϕj0,a(x) +

∞
∑

j=j0

∑

a

〈ψj,a|f〉ψj,a(x), (A.4)

where the scaling function and wavelet coefficients are given by the corresponding scalar products. The
multiscale approximation of piecewise smooth functions reveals an important sparsity feature due to the
vanishing moments property of wavelets. Depending on the specific choice of the wavelet, a certain number
of moments vanish, i.e.,

∫

dxxk ψ(x) = 0, for k = 0, . . . , p− 1. (A.5)

This property has a significant effect on the magnitude of wavelet coefficients, as can be seen from a local
Taylor series expansion

f(x) = c0 + · · · + cn−1(x− 2−ja)n−1 +Rn−1(x)(x − 2−ja)n, (A.6)

with n ≤ p, at the center of a wavelet ψj,a(x). Inserting the Taylor series (A.6) into a scalar product yields
the following estimate for the wavelet coefficient

|〈ψj,a|f〉| . 2−j(n+1/2)‖f (n)‖L∞(suppψj,a), (A.7)

which represents the basic estimate used in Section 4.
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