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LOCAL ATTRACTOR CONTINUATION OF
NON-AUTONOMOUSLY PERTURBED SYSTEMS

MARTIN KELL

Abstract. Using Conley theory we show that local attractors remain (past)
attractors under small non-autonomous perturbations. In particular, the at-
tractors of the perturbed systems will have positive invariant neighborhoods
and converge upper semicontinuously to the original attractor.

The result is split into a finite-dimensional part (locally compact) and an
infinite-dimensional part (not necessarily locally compact). The finite-dimen-
sional part will be applicable to bounded random noise, i.e. continuous time
random dynamical systems on a locally compact metric space which are uni-
formly close the unperturbed deterministic system. The “closeness” will be
defined via a (simpler version of) convergence coming from singular perturba-
tions theory.

1. Introduction

This paper uses methods from Conley index theory to establish a continuation of
isolated attractors. For these attractors there is a stable neighborhood, i.e. a pos-
itive invariant isolating neighborhood. Traditionally the Conley index is applied
to isolated invariant set whose isolating neighborhoods are bounded and satisfy
some compactness assumption, Rybakowski [Ryb87] calls them admissible neigh-
borhoods. Focusing on a stable neighborhood we show that a non-autonomously
perturbed system has also a stable neighborhood which is “close” to the original
one.

A similar result for parabolic PDEs was obtained by Prizzi in [Pri05] for small
almost-periodic perturbations with sufficiently high “frequency”. Because almost-
periodicity causes compactness of the “perturbation-space” he can obtain non-empty
invariant sets even for the unstable case (for flows on locally compact spaces our
result also applies to totally unstable invariant sets). In [War94] Ward obtains
the result for ODEs and small perturbations satisfying some hypothesis (H1). Our
result generalizes both of them in a way that we don’t need almost-periodicity and
applies to quite general semiflows even in the infinite-dimensional setting.

An open question to us is if an unstable invariant set with non-trivial Conley
index disappears for all small non-autonomous perturbations. The continuation
result and the Ważewski principle only give us a non-empty positive invariant set.

Date: March 17, 2011.
2000 Mathematics Subject Classification. Primary: 37B55, 37B35, 37L15; Secondary: 37H99 .
Key words and phrases. local attractor, non-autonomous perturbation, bounded noise.
The author would like to thank the IMPRS “Mathematics in the Sciences” for financial sup-

port and his advisor, Prof. Jürgen Jost, and the MPI MiS for providing an inspiring research
atmosphere.

1



ATTRACTOR CONTINUATION OF NON-AUTONOMOUSLY PERTURBED SYSTEMS 2

Obviously this cannot happen in dimension 1 and the perturbation should neither
be almost-periodic nor satisfy Ward’s hypothesis (H1).

Furthermore, our result implies the upper semicontinuity of the global pullback
attractor (see [CL03]) if the perturbation is “uniformly small”. In addition, this also
holds for local attractors (called past attractors in [Ras07]).

The result (see section 3) is a consequence of the translation invariance of the
unperturbed flow and standard continuation results of the Conley index. The proof
is essentially contained in [Ryb87, Theorem 12.3] after replacing all admissibility
arguments by an appropriate version (see also [CR02]).

For locally compact metric spaces X we can use ideas from [Ben91]. Because
the proof is very clear and easy to understand, we are going to show it in section
2 even though this case, which we call finite-dimensional case, is contained in the
infinite-dimensional case. Another reason to give the proof is that the obtained
stable neighborhoods are flow-defined and thus applicable to random dynamical
system on locally compact metric spaces without further assumptions (see section
2.2). This implies that sufficiently small bounded noise does not destroy a local
attractor. We don’t need regularity of the support of the noise used by Ruelle in
[Rue81] and thus we could generalize his result (see also [BDV05, Appendix D] and
the reference therein).

Furthermore, using the ideas of [Kel11b] and adjusting the definition of semi-
singular admissibility the infinite-dimensional case can be extended to the discrete
time setting. Thus stable neighborhoods of a local attractor of a discrete time
dynamical system, i.e. a continuous maps f : X → X, can be continued under
small non-autonomous perturbations f̃ : Z×X → Z×X.

Preliminaries.

Definition 1 (local semiflow). Let π : D → X be a continuous map into a topo-
logical space X and D open in R+ × X with {0} × X ⊂ D. For all x ∈ X we
define

ωx = sup{t > 0 | (t, x) ∈ D} ∈ (0,∞].

Assume D ∩ R × {x} = [0, ωx) × {x}. Then π is called a (local) semiflow if the
following holds

• xπ0 = x for all x ∈ X
• if (t, x) ∈ D and (s, xπt) ∈ D then xπ(s+ t) is defined and equals (xπt)πs

If, in addition, ωx =∞ for all x ∈ X then π is called a global semiflow.

Remark. We use the notation xπt for π(t, p) and xφpt = φ(t, p, x) whenever (t, p, x) ∈
D (see below). Furthermore, we write xφp[0, t0] for the set {xφpt | t ∈ [0, t0]} under
the condition that t0 < ωpx, otherwise xφp[0, t0] is not defined.

Definition 2 (non-autonomous dynamical system (NDS)). LetX be a metric space
and P be a set called the base set. A (local) NDS is a pair of mappings

θ : R× P → P

φ : D → X

such that the following holds:
• θ is a (not necessarily continuous) flow, called the base flow
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• D is open in R≥0×P ×X with {0}×P ×X ⊂ D, xφp0 = x and whenever
(s, p, x) ∈ D and (s+ t, p, x) ∈ D for some s, t ≥ 0

(t, pθs, xφps) ∈ D
and

xφp(t+ s) = (xφps)φpθst.

Furthermore, we define

ωpx = sup{t > 0 | (t, p, x) ∈ D }
• φ is continuous with respect to t ∈ R≥0 and x ∈ X for fixed p ∈ P .

We call (φ, θ) a (local) semiprocess if θ is continuous and P a metric space.

Remark. To every (semi)process (φ, θ) we can associated a semiflow π : D → P ×X
in the following way. If (t, p, x) ∈ D then (p, x)πt = (pθt, xφpt). The resulting
(semi)flow is called skew product semiflow.

Remark. If P is a compact metric space and θ continuous then standard Conley
index theory is applicable: The unperturbed system π is a product of the flow θ
and a (semi)flow π0 on X so that a Conley index h(N, π0) lifts to

h(P ×N, θ × π0) = h(P, θ) ∧ h(N, π0).

The stability result follows from a standard continuation result for the index and
H0(h(P × N, θ × π0)) 6= 0 iff H0(h(N, π0)) 6= 0 (see [Kel11a] for classification of
stability via the zeroth singular homology H0 of the index).

Although most of the following can be formulated for general NDS if we assume
uniform convergence w.r.t. to the orbit set of θ (see section 2.1) we will restrict our
attention to P = R and τt(s) := θ(t, s) = t + s. This includes processes generated
by non-autonomous differential equations. Furthermore, we will only look at the
induced skew product (semi)flow, i.e. π : D ⊂ R≥0 × X̃ → X̃ with X̃ = R×X.

A map σ : J → X with J ⊂ R is called a solution of π through x0 ∈ X if 0 ∈ J
and σ(0) = x0 and whenever t, t+ s ∈ J for some s > 0 with s < ωσ(t) then

σ(t+ s) = σ(t)πs.

σ is a left solution if J ∩ R− = (a, 0] for some a ∈ [−∞, 0) and it is called a full
left solution if R− ⊂ J .

Let Y ⊂ X be arbitrary. We define the following sets

A+(Y ) = {x ∈ Y |xπt ∈ Y for all t ∈ [0, ωx)}
A−(Y ) = {x ∈ Y | ∃a full left solution σ through xwith σ(R−) ⊂ Y }

and
A(Y ) = A−(Y ) ∩A+(Y ).

Y is called invariant if Y = A(Y ), positive invariant if Y = A+(Y ) and negative
invariant if Y = A−(Y ). The sets A(Y ) and A±(Y ) depend on Y and π. In case
we talk about several flows πn we will write Aπn

(Y ) and A±πn
(Y ).

If S ⊂ intN for some closed neighborhood N and S is the maximal invariant
set in N , i.e. S = A(N), then S is called an isolated invariant set (w.r.t. π). A
closed set N is called isolating neighborhood if the maximal π-invariant set is in the
interior of N , i.e. A(N) ⊂ intN . In particular the closure clU of a neighborhood
U of A(N) with U ⊂ N is an isolating neighborhood.
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Definition 3. A closed isolating neighborhood N is called stable if

A(N) ⊂ intN

and N is positive invariant, i.e.

A+(N) = N.

2. Finite dimensional case

Although many ideas in this section are taken from Conley index theory we don’t
want to introduce the full theory of the Conley index. Many of the techniques and
definitions in this section are based on Benci’s paper [Ben91]. From now on let X be
locally compact. Since our isolating neighborhood will be compact we will assume
that π0 is a flow in order to simplify our arguments, i.e. there will be no finite-time
blow-up. This will be true for the skew product flow induced by a process if the
“X-component” of set Ñ ⊂ R ×X is compact as well (the unbounded component
represents time).

From [Ben91] we take the following definitions:

GT (N) = GTπ (N) = {x ∈ X |xπ[−T, T ] ⊂ clN}
and

ΓT (N) = ΓTπ (N) = {x ∈ GT (N) |xπ[0, T ] ∩ ∂N 6= ∅}.
Furthermore we define the set of isolating neighborhoods as

F = Fπ = {N ⊂ X | intN 6= ∅ and ∃T > 0 s.t.GT (N) ⊂ intN}.

Lemma 4 ([Ben91]). If N ∈ F then the following hold:
(1) T1 > T2 > 0 then GT1(N) ⊂ GT2(N)
(2) GT (N) and ΓT (N) are closed and ΓT (N) ⊂ ∂GT (N)
(3) If GT (N) ⊂ intN then G2T (N) ⊂ intGT (N)
(4) If ΓT (N) = ∅ then A+(GT (N)) = GT (N)

Remark. It can be shown that for large T the pair (GT (N),ΓT (N)) defines an
index pair (see section 3 for the definition). We will focus only on stable neighbor-
hoods for which ΓT (N) = ∅ for large T . We can show that for arbitrary isolated
invariant set with non-trivial Conley index the index continues even for sufficiently
small non-autonomous perturbations. But the corresponding index pair (N1, N2) is
unbounded. In particular, we cannot show in general that A(N1) 6= 0 if the index
(N1/N2, [N2]) is non-trivial.

A standard result from Conley index theory is the following theorem. This result
also holds under the assumption that N is strongly π-admissible (see section 3 for
the definition).

Theorem 5 ([Ryb87, Corollary 5.5]). Let N be a compact isolating neighborhood
such that

A−(N) = A(N) = K 6= ∅
then there exist a stable isolating neighborhood B ⊂ intN such that for all x ∈ ∂B
there is an ε > 0 such that for all t ∈ (0, ε)

xπ(−t) /∈ B
and

xπt ∈ intB.
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An isolating neighborhood with this property will be called stable isolating block.

Remark. Suppose we got B′ ⊂ N as a result from the theorem. Applying the
theorem again we get a second stable isolating block B ⊂ B′. Because B′ is
compact and K is in its interior, Uδ(B) = {x ∈ X | d(x,B) < δ} ⊂ B′ for some
δ > 0.

Let π0 be a flow on X. Then we can define a skew product flow π on R×X by

(s, x)πt = (τs(t), xπ0t).

Thus π0 can be considered as a process which does not depend on the base flow τ
and is therefore translation invariant w.r.t. time.

Definition 6 (Semi-singular convergence). Let πn be a sequence of semiflows on
R×X and (sn, xn)n∈N be any sequence in R×X and tn ∈ R≥0 such that xn → x0

and tn → t0 then we say πn converges semi-singularly to π0 if

P2((sn, xn)πntn)→ x0π0t0

where P2(s, x) = x. We write πn
ssing−→ π0. Semi-singular convergence implies that

πn → π in the usual sense if each πn is skew product flow of processes because if in
addition sn → s0 for some s0 ∈ R then

(sn, xn)πntn = (sn + tn, P2((sn, xn)πntn))→ (s0 + t0, x0π0t0) = (s0, x0)πt0.

Remark. Semi-singular convergence is a simplified version of singular convergence
defined in [CR02]. With the metric dε(t, s) = εmin{|t−s|, 1} we recover the singular
convergence.

Assume from now on that πn is a sequence of flows such that πn
ssing−→ π0.

Example. The standard example is an autonomous ordinary differential equation

ẋ = f0(x)

and the non-autonomous ODEs

ẋ = fn(t, x)

such that supt ‖fn(t, x)−f0(x)‖ < εn with εn → 0. If f0 and fn are locally Lipschitz
continuous then they induce a local flow π0, resp. local processes φn. Restricted
to some compact set in X we can assume that π0 and φn are defined everywhere.
Suppose we have (sn, xn)n∈N with xn → x0 and tn → t0. The ODEs defined by

ẋ = f̃n(t, x) = fn(sn + t, x)

generate time-translated processes φ̃n. We still have supt ‖f̃n(t, x) − f0(x)‖ < εn.
The sequence (sn, xn)n∈N corresponds to (0, xn)n∈N. Interpreting φn and φ̃n as
skew products πn and π̃n we see that π̃n → π = τ × π0 which implies semi-singular
convergence of πn.

Suppose now S ⊂ X is an attractor for π0. Then there exists a stable isolating
block B. Thus N := R× B is a stable isolating block for π with Aπ(N) = R× S.
Furthermore, it can be shown that for all T > 0

GTπ (N) = R×GTπ0
(B)

= R× (Bπ0T )

and ΓTπ (N) = ∅.
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Since B is compact (·)πt : N → N is uniformly continuous for all t ≥ 0. And
for each T > 0 there is some δ > 0 such that Uδ(GTπ (N)) ⊂ N where Uε(A) = {x ∈
X | d(x,A) < ε}.

We assume here that πn does not blow-up in finite time in N . This will always
be the case if πn is a skew product flow because the unbounded component of
N = R×B represents the time and B is compact. Hence whenever ωπn

(s,x) <∞ for
(s, x) ∈ N then (s, x)πn[0, ωπn

(s,x)) 6⊂ N .

Lemma 7. For every T > 0 there is an n0 > 0 such that for all n ≥ n0

GTπn
(N) 6= ∅.

Proof. easy exercise �

Lemma 8. There is a T0 and a n0 such that for all T ≥ T0 and n ≥ n0

ΓTπn
(N) = ∅.

Remark. The proof is based on [CR02, Lemma 3.5]. The idea is to show that if it
does not hold then K = Aπ0(B) and ∂B intersect non-trivial which is impossible
becauseK is isolated. We will give the whole proof because the fact that z̃ ∈ A−π0

(B)
will also apply to the infinite-dimensional case if we assume {πn}-semi-singular-
admissibility of N .

Proof. Suppose this is not the case. Then there exist a sequence Tn → ∞ and a
subsequence of πn, also denoted by πn, such that En := ΓTn

πn
(N) 6= ∅ for all n.

This implies that there is a sequence xn ∈ N such that for some sn ∈ [0, Tn] we
have xnπn[0, tn] ⊂ N , xnπnTn ∈ En and xnπtn ∈ ∂N with tn = Tn + sn.

Since N = R × B we have ∂N = R × ∂B. So that xnπtn = (rn, z̃n) for some
z̃n ∈ ∂B. Because ∂B is compact there is a subsequence of xnπntn denoted by
z0
n = x0

nπ
0
nt

0
n such that z̃0

n → z̃0 ∈ ∂B.
Since B is compact, t0n → ∞ and x0

nπ
0
n[0, t0n] ⊂ N there is a subsequence

(x1
nπ

1
nt

1
n)n∈N with t1n ≥ 1 such that (r1

n, z̃
1
n) = x1

nπ
1
n(t1n−1) is defined and z̃1

n → z̃1 ∈
B. Recursively, for each k ≥ 1 we get a subsequence (xknπ

k
nt
k
n)n∈N of (xk−1

n πk−1
n tk−1

n )n∈N
with tkn ≥ k such that zkn = (rkn, z̃

k
n) = xknπ

k
n(tkn − k) and z̃kn → z̃k for some z̃k ∈ B.

We claim that z̃kπ0t ∈ N all t ∈ [0, k] and z̃kπ0k = z̃0, i.e. z̃0 ∈ A−π0
(B).

Postponing the proof of this claim we immediately get that z̃0 ∈ ∂B ∩ A−(B)
but B is a stable isolating neighborhood such that A(B) = A−(B) ⊂ intB, i.e.
∂B ∩A−π0

(B) = ∅, which is a contradiction and thus the lemma is true.
It remains to proof our claim. Suppose z̃kπ0t0 /∈ B for some t0 ∈ [0, k]. Because

πn
ssing−→ π0 the sequence ỹn with (sn, ỹn) = zknπ

k
nt0 converges to z̃kπ0t0, but ỹn ∈ B

and B is closed which is impossible. Hence z̃kπ0[0, k] ⊂ B. �

Combining the two previous lemmas we obtain that there is a T0 and an n0

such that for all T ≥ T0 and n ≥ n0 the set GTπn
(N) 6= ∅ is a stable isolating

neighborhood for πn.
Because B is compact and (·)πt is uniformly continuous on N , there is a δ =

δ(π0, B) > 0 such that for T ≥ T0

Uδ(G
2T
π (N)) ⊂ GTπ (N)

and

Uδ(G
T
π (N)) ⊂ N.
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Furthermore, choose δ small enough and T large enough so that Uδ(B) ⊂ B′

(see remark after theorem 5) and

GTπ0
(B′) ⊂ B,

i.e. Uδ(GTπ (Uδ(N))) ⊂ N holds as well.

Remark. Benci ([Ben91]) defines a set Σ0 which contains all sets having a similar
property and uses it to prove the continuation of the Conley index. Most proofs of
the inclusions like Uδ(G2T

π (N)) ⊂ GTπn
(N) are omitted in that paper.

In addition assume now that each πn is a skew product flow, i.e.

P1((s, x)πnt) = s+ t.

Theorem 9. If for large n ≥ n0 and T ≥ T0 we have

d(xπnt, xπt) <
δ

3

for all t ∈ [−T, T ] and x ∈ N then

Aπn
(N) 6= ∅

is an isolated invariant set with compact t-slices such that for an ε = ε(π0, B, T ) > 0

Uε(Aπn
(N)) ⊂ GTπn

(N).

Remark. The theorem shows that Aπn(N) is a past attractor in the sense of Ras-
mussen [Ras07].

Proof. Let x ∈ GTπn
(N) then

xπn[−T, T ] ⊂ N.

Since d(xπt, xπnt) < δ for all t ∈ [−T, T ] we have

xπ[−T, T ] ⊂ Uδ(N).

This implies that GTπn
(N) ⊂ GTπ (Uδ(N)) and thus Uδ(GTπn

(N)) ⊂ N because
Uδ(G

T
π (Uδ(N))) ⊂ N

Because π is uniformly continuous on N × [−T, T ] we can choose ε > 0 such
that d(x, x̃) < ε implies d(xπt, x̃πt) < δ

3 for all x, x̃ ∈ N and t ∈ [−T, T ]. Now if
x ∈ Uε(G2T

πn
(N)) then there is an x̃ ∈ G2T

πn
(N) such that d(x, x̃) < ε and

x̃πn[−T, T ] ⊂ GTπn
(N).

Furthermore, we have for all t ∈ [−T, T ]

d(xπnt, x̃πnt) ≤ d(xπnt, xπt) + d(xπt, x̃πt) + d(x̃πt, x̃πnt)

<
δ

3
+
δ

3
+
δ

3
= δ.

Since Uδ(GTπn
(N)) ⊂ N we have xπn[−T, T ] ⊂ N , i.e. Uε(G2T

πn
(N)) ⊂ GTπn

(N). In
particular, Uε(Aπn

(N)) ⊂ GTπn
(N).

Now let x ∈ G2T
π (N) then xπ[−T, T ] ⊂ GTπ (N). Because Uδ(GTπn

(N)) ⊂ N and
d(xπt, xπnt) < δ for all t ∈ [−T, T ] we have x ∈ GTπn

(N). Hence

G2T
π (N) = R×G2T (B) ⊂ GTπn

(N).
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Since Gn := GTπn
(N) is closed the set Gn(t) = GTπn

(N) ∩ {t} ×X ⊂ {t} × B is
compact and non-empty for each t ∈ R. Now define

A(t) =
⋂
t≥0

Gn(−t)πnt ⊂ {t} ×B.

Gn is positive invariant so that this intersection is a decreasing sequence of non-
empty compact sets and thus compact and non-empty itself. Let

A =
⋃
t∈R

A(t).

Then A is invariant w.r.t. N and A(N) ⊂ A ⊂ N which implies A(N) = A 6= ∅. �

2.1. Non-autonomous dynamical systems. For a general NDS (φ, θ) we do not
have P = R. Assume X is locally compact and (φ, θ) is a two-sided process. Denote
by P ∗ the set of θ-orbits of P . Then each orbit σ ∈ P ∗ is represented by a p ∈ P .
So after choosing one representative for each orbit we can assume w.l.o.g. P ∗ ⊂ P .

Because (φ, θ) is two-sided for each p ∈ P ∗ we have an invertible skew product
flow πp with

(s, x)πpt = (s+ t, xφpθst).

Suppose B is a stable isolating neighborhood of π0. If each πp is close to π = τ×π0,
i.e. there is a sufficiently small δ > 0 and a T > 0 (both independent of p) such
that

d((s, x)πt, (s, x)πpt) < δ

for all t ∈ [−T, T ] and x ∈ B then theorem 9 implies

Gp = GT (R×B)

is a stable isolating neighborhood for πp and their isolated invariant sets Ap =
Aπp(R×B) are non-empty. Now define the set-valued map D : P → 2X by

D(q) = {x ∈ X | for some s ∈ R, p ∈ P ∗ s.t. (s, x) ∈ Gp and pθs = q}
It is an easy exercise to show that D maps into the set of closed sets and is forward
invariant w.r.t. the non-autonomous system (φ, θ). In the same way we can show
that there is set-valued map A which is invariant and

A(q) = P2((Apπps) ∩ {s} ×X)

is compact for q = pθs and p ∈ P ∗. Furthermore, the ε in theorem 9 only depends
on T , B and π0, i.e.

Uε(A(q)) ⊂ D(q)

which shows that A is a past attractor.

2.2. Random dynamical systems. A random dynamical system is an NDS such
that P = Ω is a probability space, θ is measurable dynamical system and the map

(t, ω) 7→ xφωt

is measurable for every x in X.
If we show that the sets D and A are random closed sets then A is a random

past attractor. And we get:

Theorem. Sufficiently small (bounded) noise does not destroy local attractors.
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In particular, if the global attractor of the unperturbed system has several dis-
joint local attractors (“sinks”) then the same holds for the global attractor of the
perturbed system. This is a complementary result to Crauel, Flandoli - “Additive
Noise Destroys a Pitchfork Bifurcation” [CF98] where they show that the “per-
turbed” global attractor is a single point with probability 1 when “small” white
noise is applied.

It remains to show that D and A are closed random sets. It suffices to show that
D is random compact. Each GTω (N) is flow-defined, i.e.

GTω (N) =
⋂

t∈[−T,T ]

(R×B)πωt.

Because the πω are skew products, for each s-slice we have

GTω (N)(s) = GTω (N) ∩ ({s} ×X)

= {s} ×
⋂

t∈[−T,T ]

(Bφωθ(s−t)t).

So that for $ = ωθs

D($) =
⋂

t∈[−T,T ]

(Bφ$θ(−t)t)

=
⋂

t∈[−T,T ]∩Q

(Bφ$θ(−t)t)

Because B is a deterministic compact set, φ invertible and D a decreasing inter-
section of compact sets, D is a random compact set. In particular, we see that the
choice of the representative ω ∈ Ω∗ = P ∗ does not matter and each D($) is defined
in the same way.

3. Infinite dimensional case

In this section we show that the index pair continuation in [Ryb87, Theorem
12.3] still holds if we replace the admissibility arguments by semi-admissibility and
semi-singular convergence arguments. We are not able to show that two index
pairs of the perturbed (non-autonomous) system are Conley equivalent, i.e. the
quotients have the same homotopy type in the category of pointed space. So the
Conley index is not well-defined. Even worse, because the index pair is unbounded
the Ważewski principle does not imply that the invariant set is non-empty if the
quotient space is non-trivial. Nevertheless, we can use the continuation to show
that a stable isolating neighborhood continues to a stable isolating neighborhood,
i.e. the exit set of the perturbed system is empty.

Remark. As mentioned in the introduction appropriate versions of theorem 14 and
corollary 15 hold also for stable isolating neighborhoods in the discrete time setting
using the ideas of [Kel11b]. The definitions of semi-(singular-)admissibility and
semi-singular convergence can be given similarly.

Furthermore, for both, continuous and discrete time, instead of a semi-admis-
sibility of the perturbed maps we could use “weak properness” of the space X, i.e.
bounded δ-neighborhoods of compact sets are weakly compact, to show that the
invariant set is non-empty and a weak attractor (see [Kel11b] for definition).
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Definition 10 (Semi-singular admissiblity). Let πn be semiflows on R×X and π0

be a semiflow on X such that πn
ssing−→ π0. A closed subset N of R × X is called

{πn}-semi-singular-admissible (ss-admissible) if the following holds:
• Let (sn)n∈N be a sequence in R. If xn ∈ X and tn ∈ R+ with 0 ≤
tn < ωπn

(sn,xn) are two sequences such that tn → ∞ as n → ∞ and
(sn, xn)πn[0, tn] ⊂ N then the sequence {P2((sn, xn)πntn)}n∈N of the pro-
jected endpoints has a convergent subsequence.

If, in addition, each πn does not explode in N , i.e.

(s, x)πn[0, ωπn

(s,x)) ⊂ N implies ωπn

(s,x) =∞

then we say that N is strongly {πn}-ss-admissible.

The definition means that πn should not converge too badly to π0. It is a
property of the sequence {πn}n∈N and does not tell anything about π0 alone and
neither about a single πn. An adjusted admissibility definition of a single semiflow
π for our setting is given as follows.

Definition 11 (Semi-Admissiblity). Let π be a semiflow on R×X. A closed subset
N of R×X is called π-semi-admissible if the following holds:

• Let (sn)n∈N be a sequence in R. If xn ∈ X and tn ∈ R+ with 0 ≤
tn < ω(sn,xn) are two sequences such that tn → ∞ as n → ∞ and
{sn + tn}n∈N is precompact, (sn, xn)π[0, tn] ⊂ N then the sequence of
endpoints {(sn, xn)πtn}n∈N has a convergent subsequence.

If, in addition, π does not explode in N , i.e.

(s, x)π[0, ω(s,x)) ⊂ N implies ω(s,x) =∞
then we say that N is strongly π-semi-admissible.

Remark. For a semiflow π0 on X the usual strong π0-admissibility of a closed subset
N is defined without the sequence sn (see [Ryb87, 4.1]).

Suppose B is closed and strongly π0-admissible, B ⊂ U for some open U ⊂ X

with strong π0-admissible closure and d(B, ∂U) ≥ δ. We say that πn
ssing−→ π0

converges uniformly if d(P2((s, x))πnt
∗, xπ0t

∗) < εn,t → 0 for t > 0 and all (s, x) ∈
R× U with t < min{ωπ0

x , ω
πn

(s,x)}.

Remark. Uniform convergence of πn
ssing−→ π0 is similar to the assumption of Benci

[Ben91] used to prove his continuation theorem for the Conley index.

Lemma 12. Suppose πn
ssing−→ π0 uniformly and πn does not explode in N = R×B.

Then N is strongly {πn}-admissible.

Proof. Let (sn, xn) ∈ N and tn →∞ be a sequence fulfilling the assumption of the
definition of ss-admissibility. Because of uniform convergence and d(N, ∂U) ≥ δ,
there is an N(t) for each such that for all n ≥ N(t)

xπ0[0, t] ⊂ U
whenever (s, x) ∈ N with (s, x)πnt ⊂ N .

Thus there is a sequence rn ≥ 0 with tn−rn →∞ such that (sn, xn)πn[0, tn] ⊂ N
implies that

ynπ0[0, tn − rn] ⊂ U
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for (s̃n, yn) = (sn, xn)πnrn. Furthermore, we can choose rn such that δn =
maxt∈[0,tn−rn] εn,t → 0 and therefore

d(P2((sn, xn)πntn)), ynπ(tn − rn)) ≤ δn.
Because the closure of U is strongly π0-admissible, the sequence of endpoints

{ynπ(tn−rn)}n∈N has a convergent subsequence which implies that {P2((sn, xn)πn)}n∈N
has a convergent subsequence, in particular the limit point is in N . �

Definition 13 (index pair). Let Ñ be a closed isolating neighborhood for K =

A(Ñ). A pair (N,L) is called an index pair in Ñ (w.r.t. π) if L ⊂ N ⊂ Ñ and the
following holds

(1) K ⊂ int(N\L) and K is the maximal invariant set in cl(N\L)
(2) if x ∈ L and xπ[0, ε] ⊂ N then xπ[0, ε] ⊂ L, i.e. L is positive π-invariant

relative to N
(3) if x ∈ N and xπ[0, ωx) 6⊂ N then there is a 0 ≤ t < ωx such that xπt ∈ L,

i.e. L is an exit ramp for N

The following theorem is a variant of [Ryb87, I-12.3-12.7] (see also [CR02]) by
replacing all admissibility arguments with semi-singular-admissibility argument and
replacing g− : Ñ → R≥0 by a lifted version g̃− : R×Ñ → R≥0 defined by g̃−(s, x) =
g−(x).

Theorem 14. Let π0 be a local semiflow on X and πn, n ∈ N, be local semiflows
on R ×X. Suppose Ñ is a closed set in X and strongly π0-admissible. Moreover,
assume πn

ssing−→ π0 as n→∞ and R× Ñ is strongly {πnm
}-semi-admissible for all

subsequences {πnm
}m∈N. Set Kn = Aπn

(R × Ñ), K0 = Aπ(R × Ñ) and assume
K = Aπ0(Ñ) ⊂ int Ñ . Then there exist an n0 ∈ N and two closed set N and
N

′
such that for each n ∈ {n ≥ n0} ∪ {0} there are two index pair 〈Nn, Ln〉 and

〈N ′

n, L
′

n〉 with the following properties:
• Kn ⊂ N

′ ⊂ int(R×N) ⊂ int(R× Ñ), N
′

0 = R×N ′
and N0 = R×N

• 〈N ′

n, L
′

n〉 (resp. 〈Nn, Ln〉) is an index pair in N
′

0 (resp. in N0) w.r.t πn
(resp. w.r.t π = τ × π0 if n = 0)

• N ′

n ⊂ N
′

0 ⊂ Nn ⊂ N0 and L
′

n ⊂ L
′

0 ⊂ Ln ⊂ L0.

Proof. Since the proof will follow the original one almost completely and we are only
interested in attractors, we only show a proof in case Ñ is positive π0-invariant. In
particular, we will assume that Ñ is an isolating block with empty exit set defined
via the function g−. For a > 0 define

V (a) = {x ∈ Ũ | g−(x) < a}.

Then there is an a0 > 0 such that N := clV (a0) ⊂ Ũ . And similar to [Ryb87,
I-4.5] we can show that for 0 < ε ≤ a0 and all n ≥ n0(ε)

Kn ⊂ R× V (ε).

Define

Nn(ε) = (R×N)∩cl{ỹ | ∃x̃ ∈ R× V (ε), t ≥ 0 s.t. x̃πn[0, t] ⊂ R× Ũ and x̃πnt = ỹ}.
Following the proof of [Ryb87, I-12.5] we can show that Nn(ε) satisfies the following
properties for n ≥ n0(ε)

• x ∈ Nn(ε) and xπn[0, t] ⊂ R×N implies xπnt ∈ Nn(ε)
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• Kn ⊂ R× V (ε) ⊂ Nn(ε)

We claim that for small ε0 > 0 whenever ε ≤ ε0 and n ≥ n0(ε) then Nn(ε) is positive
πn-invariant. If this is not true then there is a sequence εm → 0 and

ym = (sm, zm) ∈ Nnm(εm) ∩ (R× ∂N).

By definition of Nnm(εm) there is a sequence ỹm ∈ X, xm ∈ R×V (εm) and tm ≥ 0

such that d(ym, ỹm) < 2−m, xmπnm [0, tm] ⊂ Ũ and ỹm = xmπnmtm. Because
g−(xm) → 0 and A−f (B) = Af (B) we can assume w.l.o.g. that xm → x0 ∈
Af (B). Admissibility and πnm

ssing−→ π0 imply the sequence {P2(xmπnm
tm)}m∈N has

a convergent subsequence and w.l.o.g. P2(ỹm) = P2(xmπnmtm) → z0 ∈ A−f (Ñ) =

Af (Ñ) ⊂ intN (see proof of lemma 8) and thus P2(ym)→ z0. Since P2(zm) ∈ ∂N
we must have y0 ∈ ∂N , but this is a contradiction since ∂N ∩Aπ0(Ñ) = ∅.

Set N
′

= clV (ε) which is also positive π0-invariant. Applying the arguments
above for N ′ we get another positive πn-invariant N

′

n ⊂ R×N ′
. So we have

N
′

n ⊂ R×N
′
⊂ Nn ⊂ R×N.

Positive invariance and Kn ⊂ R×V (δ) ⊂ N ′

n ⊂ Nn for some δ > 0 implies that Nn
and N

′

n are index pairs. �

Corollary 15. If, in addition to the assumption of the theorem, we assume that
each πn is skew product flows and Ñ is a stable isolating neighborhood for π0 and
N0 = R × N from the theorem is strongly πn-semi-admissible then Kn 6= ∅ and
each t-slice Kn ∩ {t} × X is non-empty and compact. Furthermore, there is an
n0 = n0(Ñ , π0) and a δ = δ(Ñ , π0) > 0 such that for all n ≥ n0

Uδ(Kn) ⊂ Nn,

i.e. Kn is a past attractor in the sense of Rasmussen [Ras07]. And for the sequence
(Kn)n∈N we have

lim
n→∞

sup
y∈Kn

inf
x∈K

d(P2y, x) = 0,

i.e. Kn is upper-semicontinuous “at K0” as n→∞.

Remark. In [CL03] an upper-semicontinuity is proved by assuming that a global
attractor exists. Our result shows that the same is true for local attractors. We can
prove without further assumptions on the system that such local attractors always
exist if the perturbation is “uniformly small”. If K is the global attractor of π0 and
the assumption (h2) of [CL03] holds then Kn must be the global attractor for large
n.

Proof. If Ñ is stable then w.l.o.g. we can replace Ñ by a stable isolating block
defined via the function g− (see below). The previous theorem implies that Nn is
a stable isolating neighborhood for πn and n ≥ n0, i.e. Nn = A+

πn
(Nn). Because

N
′

0 = R×N ′ ⊂ Nn we have

Nn ∩ R×X 6= ∅.

Thus there is a sequence sk → −∞ and (xk)k∈N such that (sk, xk) ∈ Nn. Because
Nn is positive πn-invariant and N0 is strongly πn-semi-admissible the sequence

(sk, xk)πn(−sk) ∈ Nn ∩ {0} ×X
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has a convergent subsequence and each limit point is in A−n (Nn) and thus in
Aπn

(Nn) ⊂ intN
′

n. By the same argument we can show that each t-slice of Nn
contains a non-empty compact t-slice of the invariant set.

The upper-semicontinuity is a standard result from the index continuation (see
e.g. [CR02, Corollary 4.11]).

It remains to show that there is a δ > 0 such that for large n

Uδ(Kn) ⊂ Nn.

Recall the definition of the function g− : Ñ → R≥0 (adjusted to the stable case)

g−(x) := sup{α(t)F (xπt) | 0 ≤ t <∞}

with

F (x) := min{1,dist(x,K)}

and some strictly increasing C∞-diffeomorphism α : [0,∞) → [1, 2). g− is con-
tinuous on Ñ and strictly decreasing along π0 outside of K. For sufficiently small
0 < ε < 1

2

Bε := (g−)−1([0, ε]) ⊂ int Ñ

defines a stable isolating block and Bδ ⊂ Bε for δ < ε. Since g−(x) < 1 for x ∈ B
we have dist(x,K) ≤ g−(x). Because K is compact there exists some 2δ < ε such
that for all x ∈ ∂B

2δ < d(x,K) ≤ ε.

This implies

Uδ(Bδ) ⊂ Bε.

The same applies for the suspension g̃− : R× Ñ → R≥0. Our proof of the previous
theorem constructs the sets N

′

0 and N0 from the function g− (resp. g̃− in our
adapted version), i.e.

N
′

0 = (g̃−)−1([0, ε])

= R× (g−)−1([0, ε])

= R×Bε

for some ε > 0. By the previous argument there is a δ > 0 such that for N
′′

0 :=
(g̃−)−1([0, δ]) we have

Uδ(N
′′

0 ) ⊂ N
′

0.

Similar arguments as used in the proof above show that there is a stable isolating
neighborhood N

′′

n of Kn = Aπn(R× Ñ) with

N
′′

n ⊂ N
′′

0 ⊂ N
′

n ⊂ N
′

0 ⊂ Nn ⊂ N0.

Now the inclusion sequence implies

Uδ(Kn) ⊂ Uδ(N
′′

n ) ⊂ Nn.

�
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3.1. Retarded functional differential equations. Let C = C([−r, 0],Rm) be
the space of continuous functions equipped with the sup-norm, r ≥ 0 and Ω ⊂ C
be an open set. For a continuous map x : [−r + t, t] → Rm and t ∈ R we write xt
as the element in C such that xt(θ) = x(t+ θ) for θ ∈ [−r, 0].

If f0 : Ω→ Rm is Lipschitz continuous then the following (autonomous) retarded
functional differential equation (RFDE)

ẋ(t) = f0(xt)

induces a semiflow π0 such that each bounded and closed N ⊂ Ω for which f0(N)
is bounded is strongly π0 admissible (see [HV93, Ryb87]).

Remark. An RFDE with r = 0 is an ODE on Ω ⊂ Rm.

Similarly if fn : R× Ω → Rm is Lipschitz continuous then the non-autonomous
RFDEs

ẋ(t) = fn(t, xt)

induce (skew product) semiflows πn on R× Ω. Furthermore, πn does not blow up
in R×N if N ⊂ Ω is closed and bounded and fn(t,N) is bounded uniformly in t.
One can even show that R×N is strongly πn-semi-admissible (see proof of [Ryb87,
4.2]).

If we assume that

sup
t∈R
‖fn(t, ·)− f0‖ < εn → 0

then we can easily show that πn
ssing−→ π0. R × N is strongly {πn}-semi-singular-

admissible.

3.2. Semilinear parabolic equations. The idea for semilinear parabolic equa-
tions is very similar. Suppose A is a sectorial operator and f0 : Xα → X and Ω are
“nice” then

ut = Au+ f0(u)

u|∂Ω = 0

induces a local semiflow π0 on some Xα. Furthermore, bounded closed set N ⊂ Xα

with f0(N) bounded are strongly π0-admissible.
As above the non-autonomous equation

ut = Au+ fn(t, u)

u|∂Ω = 0

induces a skew product semiflow on R×Xα and R×N is strongly πn-semi-admissible
for a bounded closed N ⊂ Xα with fn(t,N) is bounded uniformly in t. If, further-
more,

sup
t∈R
‖fn(t, ·)− f‖ < εn → 0

then πn
ssing−→ π0 and R×N is strongly {πn}-semi-singular-admissible.
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